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ABSTRACT  The complement system is a major component of in-
nate immunity that participates in the defense of the host against 
a myriad of pathogenic microorganisms. Activation of complement 
allows for both local inflammatory response and physical elimina-
tion of microbes through phagocytosis or lysis. The system is high-
ly efficient and is therefore finely regulated. In addition to these 
well-established properties, recent works have revealed that com-
ponents of the complement system can be involved in a variety of 
other functions including in autophagy, the conserved mechanism 
that allows for the targeting and degradation of cytosolic materials 
by the lysosomal pathway after confining them into specialized 
organelles called autophagosomes. Besides impacting cell death, 
development or metabolism, the complement factors-autophagy 
connection can greatly modulate the cell autonomous, anti-
microbial activity of autophagy: xenophagy. Both surface receptor-
ligand interactions and intracellular interactions are involved in 
the modulation of the autophagic response to intracellular mi-
crobes by complement factors. Here, we review works that relate 
to the recently discovered connections between factors of the 
complement system and the functioning of autophagy in the con-
text of host-pathogen relationship. 
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INTRODUCTION 
Macro-autophagy, or autophagy, is a highly conserved cel-
lular process that directs cytosolic components to endo-
lysosomal compartments for degradation and recycling. 
Autophagy is required for the proper adaptation of cells to 
changes in their microenvironment and therefore, for cell 
homeostasis [1, 2]. Autophagy is constantly at work under 
physiological conditions, it ensures the disposal of aggre-
gated/malformed macromolecules and organelles with 

signs of senescence or dysfunction. The actual removal 
involves the encapsulation of the targeted cargo into dou-
ble-membrane vesicles named autophagosomes that un-
dergo fusion with lysosomal vesicles to form autolyso-
somes where the effective degradation occurs. Because 
autophagy greatly contributes to the maintenance of cell 
homeostasis, its proper functioning is crucial for all biologi-
cal functions and defective autophagy necessarily trans-
lates into various pathological manifestations [3]. Autoph-
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Abbreviations: 
ATG - autophagy-related factor; CD4 T – mature T 
lymphocytes of the CD4 lineage; C3aR – C3a 
receptor; C5aR – C5a receptor; EGF- epidermal 
growth factor; GAS – group A Streptococcus; GOPC 
– Golgi-associated PDZ and Coiled-Coil Motif 
containing; GTPases – guanosine triphosphate 
hydrolase; LC3 (MAP1LC3) – microtubule-
associated protein 1-light chain 3; Mcr – 
macroglobulin complement-related; mTORC1 – 
mammalian target of rapamycin complex 1; MAC – 
membrane attack complex (C5b-9); MASP – MBL-
associated serine proteases; MAVS – mitochondrial 
antiviral signaling; MBL – mannan-binding lectin; 
MCP – membrane cofactor protein (CD46); MEGF10 
– multiple epidermal growth factor-like domain 
factor 10; MeV – Measles virus; NF-κB – nuclear 
factor-kappa B; PI(3)P – phosphatidylinositol 3-
phosphate; RCA – regulators of complement 
activation; ULK1 – Unc51-like kinase; VPS – 
vacuolar protein sorting. 
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agy was also found to be instrumental to resist intracellular 
invasion by many different microorganisms thus represent-
ing an important component of cell autonomous defense 
mechanisms. The elimination of cytosolic microbes through 
the autophagic pathway is referred to as xenophagy [4]. 
During this process, the autophagy machinery can target 
components of replicating microbes for degradation but 
also entire microorganisms such as Group A Streptococcus 
(GAS) or Salmonella enterica Serovar Typhimurium (S. 
Typhimurium) [5, 6, 7]. As viruses are, by definition, intra-
cellular parasites, autophagy is often mobilized to oppose 
viral invasion/multiplication both in vitro [8, 9, 10] and in 
vivo [11, 12, 13], including during the earliest steps of vi-
rus-host cell interactions [14]. Perhaps, the strongest indi-
cation that autophagy represents a highly efficient host 
defense mechanism to oppose invasion by intracellular 
microbes is the variety of mechanisms microbes use to 
escape, counteract or subvert the autophagy machinery [8, 
9, 10]. Multiple factors are able to activate autophagy. 
Those include hypoxia, nutrient deprivation, oxidative 
stress, energy limitation, endoplasmic reticulum (ER)-
associated stress, mitochondrial dysfunction or irradiation. 
Signaling pathways involved in resistance to infection can 
also initiate autophagy. This can be the case for NF-κB 
pathway regulators or DNA sensors [15, 16]. Other factors 
susceptible to activate autophagy include infection-
induced GTPases, E3 ubiquitin ligases of the tripartite motif 
protein family (TRIMs) and the exocyst complex that regu-
lates the interaction of exocytic vacuoles with the plasma 
membrane [17, 18, 19, 20]. Here, we review a number of 
recent studies that revealed an unexpected connection 
between components of the complement system and the 
functioning of the autophagy machinery. We shall see that 
some complement factors have the capacity to activate or 
modulate the autophagic response to infection by intracel-
lular microbes. 

 

THE AUTOPHAGY PROCESS IN MAMMALS 
Macro-autophagy, thereafter referred to as autophagy, is a 
multistep cellular process that relies on the engagement of 
dozens of factors encoded by highly conserved genes (Atg). 
At steady state, autophagy is maintained at a basal level by 
mechanistic target of rapamycin complex 1 (mTORC1) 
whose kinase activity controls the so called ULK1 kinase 
complex (Unc51-like kinase (ULK1)/ATG13/ATG101/FIP200). 
Perturbation of mTORC1 activates the ULK1 kinase com-
plex causing the recruitment of the class III phosphatidylin-
ositol 3-kinase (PI3K) vacuolar protein sorting (VPS)34 fac-
tor that promotes the formation of isolation membranes 
through the addition of phosphatidylinositol 3-phosphate 
(PI(3)P) onto membrane microdomains (initiation phase). 
Other factors contribute to (BECLIN1, VPS15 and ATG14L 
assembled in the Class III PI3K Complex I), or modulate 
(VMP1, AMBRA1, Bif1 and RUBICON), this step that is 
named the initiation phase [21, 22, 17]. Through engage-
ment of the PI(3)P-binding factor WIPI2 and the recruit-
ment of two ubiquitin-like conjugation systems, the isola-
tion membrane extends to become the phagophore, a step 

named the elongation phase: on the one hand, ATG7 and 
ATG10 promote the formation of the ATG5-ATG12-
ATG16L1 complex that is directed to the nascent phago-
phore via WIPI2 and on the other hand, ATG7 cooperates 
with ATG4B to convert the microtubule-associated protein, 
light chain 3 (MAP1LC3/LC3) factors into a form (LC3-I) 
prone to phosphatidylethanolamine (PE) addition in the 
presence of both the ATG3 factor and the ATG5-ATG12-
ATG16L1 complex, leading to production of LC3-II. LC3-II 
indeed serves as a marker for the presence of autophagic 
membranes as it gets massively integrated into the elon-
gating isolation membrane and stably persists until the 
phagophore evolves into a closed double-membrane vesi-
cle that sequesters cytosolic cargoes and constitutes the 
autophagosome. LC3-I/II levels can be easily probed by 
Western blot-coupled SDS-PAGE and engineered versions 
of LC3 permit the quantitative analysis of autophagic activi-
ty through the numbering of fluorescent LC3 puncta by 
confocal microscopy. Along with GABARAP factors, factors 
of the LC3 type constitute the ATG8 family of core autoph-
agy factors. Fully constituted autophagosomes become 
autolysosomes by fusing with lysosomes with, in some 
circumstances, an intermediate fusion step with endo-
somes, a step referred to as maturation. Autolysosomes 
represent the effective site of cargo degradation due to the 
catalytic microenvironment brought by the lysosomal vesi-
cles [23, 24, 22, 17]. Autophagosome maturation involves 
multiples factors of different classes including Rab GTPases, 
cytosqueleton proteins, soluble N-acetylmaleimide-
sensitive factor attachment protein receptors (SNARES), 
SYNTAXINs, membrane-tethering components of the ho-
motypic fusion and vacuole protein sorting (HOPS) complex, 
endosomal sorting complexes required for transport 
(ESCRT) factors and the plekstrin homology domain con-
taining adaptor PLEKHM1 [25]. The process is promoted by 
the BECLIN1-VPS34-VPS15-UVRAG complex (Class III PI3K 
complex II) and other factors including BIF-1. While au-
tophagy is thought to be non-selective in the case of nutri-
ent deprivation, the targeting of particular cargoes to au-
tophagic degradation often involves the engagement of 
dedicated autophagy receptors that connect the cargoes to 
the growing phagophore by binding LC3-II via LC3-
interacting regions (LIRs) domains and ubiquitin/lectin tags 
on cargoes via distinct specialized domains. This can be the 
case during the autophagic targeting of damaged orga-
nelles or of intracellular bacteria. Examples of well-studied 
autophagy receptors include optineurin, sequestosome 1 
(SQSTM1/p62), nuclear dot 52 KDa protein (NDP52), NBR1, 
TRAF6-binding protein (T6BP/TAX1BP1) or NIX-BNIP3 [26, 
27]. Interestingly, particular autophagy receptors (NDP52, 
Optineurin, TAX1BP1) are characterized by a duality of 
function as they are also involved in the occurrence of effi-
cient autophagosome maturation [28, 29, 30]. 

 

THE COMPLEMENT SYSTEM 
The complement system represents an important arm of 
the innate immune system. It is made of dozens of soluble 
and membrane-associated proteins that can cooperate 
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very rapidly to resist infection by various pathogens includ-
ing bacteria, viruses, fungi and protozoa [31]. Soluble com-
plement factors are massively produced in the liver and 
released in the blood. Proteins of the complement system 
are germline-encoded factors that react to microbial sur-
face and facilitate microbe disposal by specialized phago-
cytes or directly trigger their lysis via lethal membrane 
damage. Concomitantly, complement factors facilitate the 
recruitment of other immune cell types by initiating in-
flammatory reactions. The complement system also modu-
lates adaptive immunity through regulation of follicular 
dendritic cells and B cells for instance, contributes to the 
elimination/recycling of immune complexes and apoptotic 
cells and is instrumental for the homeostasis of multiple 
immune cell types [32, 33]. A central component of the 
complement system is the so-called C3 factor that is pro-
duced first as the pro-C3 form and is then subjected to 
processing while progressing through the secretory path-
way that ultimately releases a complex made of a α and a β 
chain linked by a disulfide bond. Required for the activa-
tion of the complement system is the hydrolysis of circulat-
ing C3 by convertase enzymes that disrupt the thioester 
link leading to co-production of a short product called C3a 
and a larger one named C3b. C3b behaves as an opsonin 
that gets deposited onto target surfaces though formation 
of an amide or ester bond between its exposed active thi-
oester and available amino-acid or carbohydrate moieties. 
Once opsonized, C3b and its potential byproducts can be 
recognized by adequate receptors present on the surface 
of various phagocytic cells [34]. Unlike C3b, C3a is an ana-
phylatoxin. It triggers local inflammation through activation 
of monocytes, endothelial cells, mast cells and neutrophils. 
Hence, the cleavage of C3 by C3 convertases translates into 
both pathogen targeting for physical elimination and local-
ized inflammation. Once initiated, complement activation 
gets amplified by dedicated serine proteases while remain-
ing under the control of membrane-associated and soluble 
regulatory factors [31, 35, 36, 37].  

The so-called alternative, classical and lectin pathway 
are the three pathways capable of activating the comple-
ment system in an independent manner. The converging 
point of these pathways is the activation of C3. The alter-
native pathway is highly efficient in resisting microbial in-
vasion. Under physiological conditions, minute quantities 
of C3 are naturally activated through spontaneous altera-
tion of the intramolecular thioester bond leading to pro-
duction of C3(H2O), a C3b equivalent that deposits on tar-
get surface [38]. If encountering healthy host cells, C3(H2O) 
is classically inactivated by regulatory factors such as Fac-
tors I and H. If it deposits onto abnormal cells or microbes 
instead, it recruits Factor B to assemble the pro-convertase 
C3(H2O)B that itself recruits Factor D and Factor P (proper-
din) to form the C3 convertase C3(H2O)Bb. As a conse-
quence, regular C3b is produced that further deposits on 
the targeted surface and, via engagement of Factors B, D 
and P, produces the C3 convertase C3bBb [39]. This ampli-
fication effect promotes the generation of large amounts 
of C3b and therefore maximizes the rapid opsonization of 
the targets. The classical pathway involves the assembly of 

antibody-antigen complexes. IgM, IgG3 and IgG1 are the 
main antibodies interacting with the globular domain of 
the factor C1q via their Fc portion. Associated to C1q are 
the serine proteases C1r and C1s. Their activation causes 
the cleavage of the factor C4 into C4a and C4b with the 
latter binding covalently to targets in a C3b-like manner 
[40]. Subsequently, the factor C2 is recruited and cleaved 
by C1s to produce the protease C2a that along with C4b 
generates C4b2a, the main C3 convertase that reduces C3 
into C3a + C3b within this pathway [41]. Within the lectin 
pathway, the C3 convertase production resembles that of 
the classical pathway with however an early step relying on 
the sensing of microbial oligosaccharides by lectins and the 
participation of lectin-associated proteases. Among host 
lectins involved are the collectin-LK and the mannan-
binding lectin (MBL) that recognize carbohydrates and the 
ficolins 1-3 that can bind to acetylated groups on sugar 
moieties [42, 43]. Host lectins then associate with dimers 
of MBL-associated serine proteases (MASP-1 and -2). Upon 
engagement, MASP-1 gets auto-activated and cleaves 
MASP-2 that itself hydrolyses both C4 and C2 favoring the 
production of C4b2a, the C3 convertase already seen in the 
classical pathway [44, 45, 46]. Once C3b deposits on tar-
gets, recruitment of the Factor B promotes the formation 
of the pro-convertase C3bB that is converted into C3bBb 
by the Factor D. C3bBb, the C3 convertase of this pathway, 
is the functional equivalent of the C3 convertase C4b2a 
that operates in both the classic and lectin pathway. Again, 
the neo-production of C3b further amplifies the formation 
of C3bBb. Hence, both the classical and lectin pathway of 
complement activation involve the sensing of particular 
components on the target surfaces. 

The final step of the response is the step of the target 
lysis. In contrast to the initiation phase, this terminal phase 
does not vary in its modality. It is dependent on the quanti-
ty of C3b that got associated with the target surface during 
the initiation phase. Subsequently to C3b recruitment, the 
C3 convertases C3bBb and C4b2a catalyze the formation of 
the C3bBb3b and C4b2a3b complexes endowed them-
selves with a convertase activity that targets the C3-related 
factor C5 [47, 48]. In this context, C5 gets degraded into 
C5a and C5b products allowing for the recruitment of the 
factors C6 to C9 by C5b to generate the C5b-9 complex, 
also named the membrane attack complex (MAC), on the 
targeted surface [49]. While C5a promotes localized in-
flammation, the MAC creates pores in biological mem-
branes leading to the death of targeted microorganisms. 
Through binding to C3aR, C5aR1 and C5aR2 receptors on 
host cells, the anaphylatoxins C3a and C5a trigger various 
pro-inflammatory reactions such as oxidative burst, inter-
leukin production, chemotaxis and production of histamine 
and leukotrienes [50, 51]. 

The corollary of the potent capacity of the complement 
system to cause microbe elimination through either inter-
nalization/degradation or MAC-mediated lysis is the re-
quirement for a tight regulation to preamp damages to 
host cell/tissues. Multiple factors of the complement sys-
tem are indeed directly involved in such a regulation. Col-
lectively, they are named the regulators of complement 
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activation (RCAs). RCAs can be either membrane-bound or 
soluble and not surprisingly, genetic alteration in RCA 
genes can be associated with marked pathologies [52, 53]. 
While the Factor H, the C1 inhibitor (C1INH) and the C4b-
binding protein (C4BP) are the main soluble RCAs, the cell 
surface-associated RCAs include the membrane cofactor 
protein (MCP/CD46), the decay-accelerating factor 
(DAF/CD55) and the complement receptor-1 (CR1/CD35) 
and -2 (CR2/CD21). RCAs exert their regulatory function 
either through cofactor activity as illustrated by the cofac-
tor effect CD46 exerts on the hydrolysis of the C3B/C4b 
opsonins by the serine protease Factor I or through decay-
accelerating activity as exemplified by the dissociation of 
the catalytic region of the C3/C5 convertases by CD55. In 
some instances, RCAs can mediate both effects. Thus, Fac-
tor H concomitantly interferes with C3 convertases via a 
decay-accelerating effect and neutralizes C3b by serving as 
a cofactor for its reduction to the iC3b form by Factor I. It is 
remarkable to note that some microbes evolved the capac-
ity to produce factors that promote the coating of their 
own surface with RCAs or to release factors that harbor 
biochemical properties resembling those of RCAs [54]. 

 

NOVEL FUNCTIONS AND ACTION SITES FOR 
COMPLEMENT FACTORS 
In the recent years, various observations brought support 
to the notion that the complement system not only con-
tributes to immunity but is also involved in the regulation 
of multiple biological phenomena including mitosis, tis-
sue/cell homeostasis, development, metabolism or tissue 
repair with some of such regulations being mediated by 
complement factors that are synthetized and secreted 
locally (reviewed in [33, 55]). In addition, recent findings 
also revealed that complement system factors can exert 
some functions within cells either directly in the cytosol or, 
within particular intracellular vesicles [56, 57, 33, 55, 58]. 
An interesting example is the intracellular effect that com-
plement factors C3b and C4b can mediate after endocyto-
sis of the microbe they were adsorbed to. In epithelial cells 
infected with the adenovirus, C3 factors attached to the 
virus get into contact with cytosolic components after exit 
from the endocytic vacuole, is capable of activating the 
mitochondrial antiviral signaling (MAVS)-related pathway 
and ultimately causes the production of pro-inflammatory 
cytokines via NF-kB engagement, protein-1 (AP-1) and in-
terferon regulatory factor (IRF)-3-5-7 activation. At the 
same time, C3b can also direct the virus to the proteasome 
for degradation [59]. Activation of NF-kB via adsorbed C3b 
has also been observed for S. Typhimurium and the astrovi-
rus 1 and coxsackievirus B3 non-enveloped viruses. In 
some instances, this activating effect on the NF-kB path-
way generates only marginal effects because some mi-
crobes, such as enteroviruses, harbor enzymatic activity 
able to hydrolyze C3 present on their surface [59]. Besides 
reaching the cytosol after microbe internalization, func-
tional complement factors can be found within fibroblasts, 
endothelial cells, epithelial cells or T cells due to endoge-
nous synthesis [60, 61, 62, 63]. Unlike in other cells, the 

cleavage of intracellular C3 into C3a and C3b is mediated 
by the lysosomal hydrolase cathepsin-L within human rest-
ing CD4 T cells. In such cells, C3a has been found to favor 
cell survival via tonic modulation mTOR functions after 
binding to the C3a receptor (C3aR) on lysosomes [57]. Sub-
sequently to T cell receptor (TCR)-mediated activation, the 
C3a-C3aR interaction gets relocated to the cell surface 
where it promotes a more stringent mTOR activation and 
initiates metabolic changes compatible with differentiation 
into effector lymphocytes [64]. Understanding the intracel-
lular functions of complement factors now represents an 
expanding field of research. The notion of a “cell-intrinsic” 
complement system has been put forward to describe 
these functions and the question of whether the intracellu-
lar functions of complement may have evolved prior to 
extracellular functions has been raised [63, 58]. 

 

THE HUMAN COMPLEMENT REGULATORY FACTOR 
CD46 RAPIDLY TRIGGERS AUTOPHAGY IN RESPONSE 
TO PATHOGEN SENSING 
The measles virus (MeV) is an enveloped RNA virus of the 
genus Morbillivirus of the Paramyxoviridae family. MeV 
entry into host cells requires interaction with a surface 
receptor. While clinical/virulent strains engage Nectin4 and 
CD150/SLAM to enter epithelial cells and immune cells 
respectively, attenuated/vaccinal strains use CD46/MCP to 
infect human cells [65]. CD46 is expressed on all nucleated 
cells and as indicated above, it acts as an important com-
plement regulatory factor to avoid cell lysis by complement. 
By binding to C3b and C4b that deposit on cells, CD46 
serves as a cofactor for the serine protease Factor I that 
hydrolyzes them leading to production of iC3b + soluble 
C3f and C4d + soluble C4c, respectively [66, 67]. Vacci-
nal/attenuated MeV strains rapidly activate autophagy 
during epithelial cell infection. This activation is a direct 
consequence of its interaction with CD46 and translates 
into both LC3-II formation and LC3-positive puncta for-
mation with a maximum reached 1.5 h after infection [68]. 
MeV-induced autophagic activity then normalizes by 3h 
without the need for active inhibition. MeV infection asso-
ciated autophagy is independent of viral protein synthesis 
as shown by its unperturbed induction in the presence of 
non-replicative MeV particles. The triggering of autophagy 
is indeed strictly related to the engagement of CD46 on the 
cell surface. For instance, the cross-linking of CD46 by the 
mean of monoclonal antibodies is sufficient to cause au-
tophagy induction in human epithelial cells. With respect 
to the mechanism involved, CD46-induced autophagy relies 
on the engagement of the CD46-Cyt-1, but not -Cyt-2, in-
tracytoplasmic splice variant [69] as demonstrated by the 
failure of vaccinal/attenuated MeV to activate autophagy 
in cells devoid of CD46-Cyt-1 [68]. The connection between 
CD46-Cyt-1 and autophagy triggering involves interaction 
with the class I PDZ portion of Golgi-associated PDZ and 
Coiled-Coil Motif containing (GOPC), a scaffold protein able 
to interact with the VPS34-BECLIN1 complex. Accordingly, 
silencing the expression of GOPC neutralizes the capacity 
of vaccinal/attenuated MeV to activate autophagy with no 
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effect on the surface expression of CD46. It is worth em-
phasizing that the early burst of autophagy induced by 
CD46 engagement is strictly decoupled from the subse-
quent and sustained autophagic activity associated with 
MeV infection. In the latter case, autophagy is directly re-
lated to viral replication and in fact, is beneficial to the 
virus [70, 30]. Consistent with the key role for CD46 in early 
autophagy induction by vaccinal/attenuated MeV, viru-
lent/clinical MeV strains that are independent of CD46 for 
infection do not trigger any signs of early autophagic activi-
ty, indicating that the CD46-Cyt-1-GOPC-VPS34-BECN1 
complex axis constitutes the sole pathway for early au-
tophagy induction by vaccinal/attenuated strains of MeV 
[71]. The CD46-Cyt-1-GOPC-VPS34-BECN1 complex path-
way is also operating in autophagy induction during infec-
tion of human cells by GAS [68] and Neisseria gonorrhoeae 
[72] that both bind to CD46. As CD46 is also a receptor for 
various other pathogens such as the human herpes virus 
HHV-6, the BVDV pestivirus and adenoviruses B and D, the 
CD46-Cyt-1-GOPC-VPS34-BECN1 complex axis is likely to 
also trigger autophagy during infection by those microbes 
[73]. Thus, the observations made with the Morbillivirus 
MeV allowed for the identification of the complement reg-
ulatory factor CD46 as a pathogen sensor endowed with 
the capacity to activate autophagy in cells undergoing in-
fection (Fig.1A). 

 

THE ENGAGEMENT OF THE VSIG4 RECEPTOR BY C3b 
TRIGGERS AN EFFECTIVE ANTI-BACTERIAL AUTOPHAGY 
IN PHAGOYTIC ANTIGEN PRESENTING CELLS 
V-set and immunoglobulin domain containing 4 
(VSIG4/CRIg) is a surface receptor expressed on macro-
phages, monocytes, and dendritic cells [74, 75]. It is known 
to function as a C3b receptor involved in the efficient 
phagocytosis of bacteria, such as Listeria monocytogenes, 
coated with C3b. VSIG4 also participates in the efficient 
acidification of bacteria-containing vesicles through the 
modulation of the CLIC3 channel protein [76]. Recently, 
VSIG4 signaling was in fact found to also promote LC3 lipi-
dation and structuration of LC3-positive puncta during in-
fection of macrophage-like J774 cells by C3-coated L. mon-
ocytogenes [77]. Similar to CD46, the crosslinking of VSIG4 
with specific monoclonal antibodies is sufficient to cause 
formation of LC3-II and puncta accumulation in THP1 or 
J774 macrophage-like cells. In contrast to CD46 engage-
ment, however, the maximal level of LC3 lipidation was 
seen clearly latter: between 60 and 120 min after stimula-
tion. Under such conditions, an increased phosphorylation 
of BECLIN1 was observed indicating that VSIG4 engage-
ment alleviated BECLIN1 repression [76]. Such an autopha-
gy induction was associated with a reduction in the level of 
the long-lived factor p62/SQSTM1 suggesting that the in-
duced autophagy flux was complete. In macrophages in-
fected with L. monocytogenes, internalized bacteria can 
escape phagosomes before they fuse with lysosomes by 
producing the phospholipase C and listeriolysin O virulence 
factors allowing them to access the cytosolic environment. 
Under conditions of VSIG4 cross-linking, L. monocytogenes 

could colocalize with LC3-positive punctiform structures 
suggesting that cytosolic bacteria were targeted by the 
autophagy machinery. Such a targeting was not seen when 
the autophagy machinery was mobilized through starva-
tion as opposed to antibody-mediated VSIG4 engagement. 
Many of the bacteria that colocalized with LC3 puncta also 
colocalized with the lysosomal marker LAMP1, an effect 
that was sensitive to the autophagosome maturation 
blocker NH4Cl, suggesting that, in cells treated with anti-
VSIG4 antibodies, L. monocytogenes was effectively di-
rected to lysosomes via the autophagy machinery. When 
experiments were performed with THP1 macrophages de-
void of the autophagy factor ATG5, L. monocytogenes was 
found capable of efficient proliferation with no detectable 
LC3 colocalization despite the antibody-mediated engage-
ment of surface VSIG4 [77]. Of interest was the fact that 
VSIG4 signaling was associated with ubiquitination of cyto-
solic bacteria. Hence, the signaling event(s) associated with 
VSIG4 engagement induce an autophagic activity able to 
target L. monocytogenes to autophagic degradation. By 
using HeLa epithelial cells engineered to express VSIG4 it 
was observed that the lipidation of LC3 was markedly high-
er when cells were exposed to C3-coated L. monocyto-
genes as opposed to non-opsonized bacteria. In the latter 
situation, the level of LC3-II could be augmented by the co-
presence of anti-VSIG4 antibodies. Such experiments con-
ducted with modified epithelial cells demonstrated that no 
contribution specific to macrophages other than VSIG4 
engagement was necessary to trigger autophagy. Con-
sistent with data obtained with macrophage-like cells, ex-
tinction of the core autophagy factor ATG5 in VSIG4-HeLa 
cells resulted in the lack of LC3 lipidation and augmenta-
tion of L. monocytogenes multiplication, further indicating 
that VSIG4 engagement activated anti-bacterial autophagy. 
The capacity of VSIG4 signaling to oppose cytosolic bacte-
ria growth by promoting autophagy was confirmed by tak-
ing advantage of Vsig4 deficient mice. In macrophages de-
rived from Vsig4 deficient bone-marrow progenitors, the 
phagocytosis of C3-opsonized L. monocytogenes was low-
ered, LC3 lipidation and puncta formation were impaired, 
the polyubiquitination of cytosolic bacteria was limited and 
their proliferation was enhanced. Thus, the studies with 
primary macrophages nicely recapitulated the key observa-
tions made in vitro by using macrophage-like cell lines. 
Altogether, these observations demonstrated that through 
the engagement of the VSIG4 receptor, C3 adsorbed on  
L. monocytogenes can promote an autophagic response 
able to restrain the cytosolic growth of bacterial cells that 
escape phagosomes in professional phagocytic cells 
(Fig.1B). 

 
THE C3-ATG16L1 INTERACTION ACTIVIATES ANTI-
BACTERIAL AUTOPHAGY IN EPITHELIAL CELLS 
As indicated above, once adsorbed on adenoviruses, C3 is 
able to activate the MAVS signaling pathways leading to 
secretion of pro-inflammatory factors [59]. It appears that 
C3 deposited on bacteria can also initiate anti-microbial 
defense in epithelial cells after reaching the cytosol. 
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Searching for factors able to interact with human ATG16L1, 
Philpott and colleagues observed and validated that the C3 
degradation fragment C3d was among its privileged part-
ners [78]. These authors then examined the possibility that 
bacteria coated with C3 could impact the functioning of 
the autophagy machinery after accessing the cytosol of 
host cells via the C3-ATG16L1 interaction. As expected, C3-
coated L. monocytogenes was more efficiently internalized 
by the phagocytic THP-1 cells relative to its non-
manipulated counterpart. In addition, the presence of de-
posited C3 was associated with a lowered capacity of the 
bacteria to multiply in intestinal epithelial cells. In such 
cells, both ATG16L1 and LC3 displayed a stronger capacity 
to target cytosolic C3-coated L. monocytogenes. Under 

such conditions, C3-coated bacteria were found to effi-
ciently co-localize with p62 and NDP52 autophagy recep-
tors that engage interaction with ATG8 factors, with Galec-
tin-8 that recognizes sugar moieties on damaged bacteria-
containing vacuoles and with ubiquitin that binds to cyto-
solic bacterial cells, strongly suggesting that C3 opsoniza-
tion of L. monocytogenes translated into an enhanced tar-
geting by the autophagy machinery of epithelial cells. As a 
result, the resistance to the bacteria was augmented as 
illustrated  by   the  C3-dependent   restriction  of  cytosolic  
L. monocytogenes in ordinary epithelial cells but not in 
their counterpart that lacked ATG16L1. It was remarkable 
to observe that in complementation experiments, the au-
tophagic restriction of C3-opsonized L. monocytogenes 

FIGURE 1: Autophagy induction by factors of the mammalian complement system in interaction with microbes. (A) Upon sensing of path-
ogens such as Measles virus (MeV) or group A Streptococcus (GAS), the regulator of complement activation CD46/MCP signals for autopha-
gy induction in epithelial cells (depicted here by phagophore formation) by recruiting the BECLIN-1-VPS34 complex via the GOPC scaffold 
protein. (B) The macrophage surface receptor VSIG4/CRIg activates autophagy in a BECLIN-1-dependent manner in response to detection of 
C3 adsorbed onto L. monocytogenes (LM). Such an induction leads to the effective targeting of internalized bacteria to LC3-positive puncti-
form structures and then, lysosomal compartments. VSIG4/CRIg is also a positive regulator of phagocytosis in macrophages. (C) C3 deposit-
ed onto invading bacteria can induce autophagy by activating the autophagy machinery after reaching the cytosol of epithelial cells. Thus, 
after exiting their containing vacuole (dotted lines), C3-coated L. monocytogenes (LM) and adherent-invasive Escherichia Coli (AIEC) activate 
autophagy via the interaction of C3 with ATG16L1, one of the core autophagy factors. As a result, both bacteria are restricted by the in-
duced autophagy. In contrast, other bacteria are able to escape such an antibacterial autophagy and multiply. For instance, C3-opsonized S. 
flexneri (SF) and S. Typhimurium (ST) are able to oppose autophagic restriction by lowering the level of the cytosolic C3-ATG16L1 interac-
tion. This is due to their capacity to express proteolytic factors called Omptins that target C3 and reduce its amount deposited on the sur-
face of bacterial cells. 
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could not be restored by re-expression of the 300A variant 
of ATG16L1 that is associated with Crohn’s disease (CD) 
[79]. The enhancing effect of C3 opsonization on anti-
bacterial autophagy was indeed not restricted to L. mono-
cytogenes as adherent-invasive Escherichia coli (AIEC), bac-
teria often found in expansion in patients with ileal forms 
of CD [80] and sensitive to autophagic degradation [81], 
could also be restricted by autophagy in an C3- and 
ATG16L1-dependent manner. Hence, by engaging ATG16L1 
in the cytosol of host epithelial cells, C3 adsorbed on inva-
sive bacteria efficiently promotes their restriction by au-
tophagy. The anti-bacterial potential of this phenomenon 
is best emphasized by the observation that some bacteria 
evolved means to oppose the C3-ATG16L1 interaction. 
Thus, although C3-opsonized Shigella flexneri appears well 
targeted by LC3 and ATG16L1 when it accesses the cytosol 
of epithelial cells, its expansion is indeed poorly restricted. 
Such an escape relies on the ability of S. flexneri to shed 
the C3 factor with a majority of bacterial cells being C3-
negative four hours after infection. The C3 shedding re-
quires no contribution from host cells as it can be observed, 
for S. flexneri but not L. monocytogenes, during expansion 
in regular media in vitro. Omptins are proteolytic factors 
found at the level of the outer membrane in gram-negative 
Enterobacteriaceae [82]. LcsP is one of such enzymes that 
is found in S. flexneri [83] and was therefore examined for 
its capacity to cause C3 shedding. S. flexneri lacking lcsP 
had a clearly reduced capacity to lose C3 in vitro and to 
replicate in the cytosol of host cells. This cellular restriction 
was dependent on C3 in ordinary, but not ATG16L1 defi-
cient cells in agreement with the notion that lcsP does 
promote the elimination of C3 from S. flexneri. In the same 
line, the omptin PgtE expressed by S. Typhimurium and 
capable of cleaving C3 [84, 85] could promote C3 shedding 
by Salmonella cells: S. Typhimurium lacking PgtE inefficient-
ly shed C3 and once C3-opsonized, became sensitive to C3-
dependent restriction in ordinary, but not ATG16L1 defi-
cient cells. Hence, by catalyzing the shedding of C3, omptin 
enzymes endowed both S. Typhimurium and S. flexneri 
with the capacity to escape the pro-xenophagic role of 
deposited C3 in host epithelial cells. Interestingly, both lcsP 
and PtgE partially controlled the shedding of C3 suggesting 
that additional enzymes are likely to be involved in this 
process (Fig. 1C). In a mouse intra-gastric model of infec-
tion with L. monocytogenes [86], it was observed that  
L. monocytogenes caused the production of C3 in intestinal 
mucosa, showing that C3 can be in close proximity to intes-
tinal cells in the course of infection. In contrast with lym-
phoid organs where it was stable, the load of bacteria was 
found clearly augmented in the colon and caecum from C3 
deficient mice. The extent of Listeria accumulation was 
indeed comparable to that observed in mice with ATG7 
deficiency restricted to intestinal epithelial cells. Also of 
interest was the observation that despite an unperturbed 
level of ATG16L1, the expression level of both LC3 and 
ATG7 core autophagy factors was lowered after Listeria 
infection, indicating that the autophagy machinery was 
perturbed in C3-deficient mice. The bacterial burden seen 
in C3 deficient mice could be brought back to the level of 

that seen in normal mice by simply administrating the au-
tophagy activator rapamycin to animals confirming that 
the anti-Listeria autophagic response of C3 deficient intes-
tinal cells was readily altered. Hence, C3 is efficient at en-
hancing the anti-Listeria autophagic response in the intes-
tine of infected mice. Besides the C3-ATG16L1 interaction, 
this contribution might involve a transcriptional modula-
tion of the LC3 and Atg7 genes and perhaps, other factors 
that remain to be examined. 

Interestingly, endogenously produced cytosolic C3 is al-
so capable of influencing autophagy through interaction 
with ATG16L1. For instance, human pancreatic beta cells 
were shown to produce C3 that positively regulates au-
tophagy via its interaction with ATG16L1 thereby contrib-
uting to cell homeostasis and stress resistance [87]. The 
endogenously produced intracellular C3 corresponds to its 
precursor form as it does not access the classical secretory 
pathway. As a consequence, the intracellular C3-ATG16L1 
interaction appears to require neither C3 glycosylation nor 
the production of the processed form of C3 (the α/β two 
chains form of C3). Whether the cytosolic environment of 
mammalian cells contains C3-convertase-like activity able 
to generate C3b that could deposit onto invading bacteria 
and enhance anti-bacterial autophagy as in the case of C3-
coated Listeria is unknown. Collectively, the available re-
sults suggest that the C3-ATG16L1 interaction is capable of 
modulating autophagy not only at the initiation step but 
also at the level of autophagosome maturation. How these 
modulations take place and the detail of their regulation in 
various cell types remain to be investigated. Of interest is 
the fact that unlike the ATG16L1-native C3 interaction, the 
interaction of ATG16L1 with cleavage-products of C3 (C3b, 
iC3b, C3d, C3c) is very poor in vitro [87]. Hence, the cleav-
age of intracellular C3 by endogenous enzymes could pos-
sibly represent a mean to adjust the effects of the C3-
ATG16L1 interaction. Pools of cytosolic C3 can be observed 
within several cell types such as cells of the immune sys-
tem, fibroblasts epithelial cells and endothelial cells. The 
production of cytosolic C3, the conditions involved in the 
formation of C3 stores and the requirement for their per-
sistence in distinct cell types remain to be fully character-
ized. Within CD4 T lymphocytes, it was noticed that the 
hydrolase cathepsin L is able to cleave C3 in order to gen-
erate C3a that positively regulate cell persistence through 
tonic activation of mTOR. Whether regulation of the au-
tophagy pathway contributes to this pro-survival outcome 
deserves further investigation.  

 

THE ANCIENT IMMUNE SIGNALING PATHWAY 
Mcr/Draper MODULATES AUTOPHAGY IN DROSOPHILA 
During Drosophila melanogaster development, hormones 
promote cell death in certain organs such as larval salivary 
glands. During this phase, active caspases and autophagic 
activity are both involved in the disposal of cell debris [88]. 
Studying the regulation of autophagy during this process, 
Lin et al., [89] examined a possible role for Draper, an an-
cient immune receptor that is a member of the epidermal 
growth factor (EGF)-like-repeat-containing receptor family 
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and a D. melanogaster orthologue of cell death abnormali-
ty protein-1 (CED-1) in Caenorhabditis elegans. Draper con-
tains an intracellular portion that signals for phagocytosis 
in response to altered self [90, 91], is known to act up-
stream of genes of the autophagy machinery and is re-
quired for autophagy associated with the developmental 
remodeling of salivary glands [92]. Indeed, the external 
portion of Draper turned out to be mandatory for salivary 
gland remodeling suggesting that an extracellular cue is 
able to activate Draper-activated autophagy. With this 
respect, a role for macroglobulin complement-related 
(Mcr/TEPVI), a factor related to the thioester-containing 
protein family, was investigated because its expression is 
detected in salivary glands and its level increases in the 
presence of ecdysone. Mcr is among the best-described 
complement-like opsonins in D. melanogaster where it 
represents an important defense factor against Candida 
albicans infection [93]. Lin et al. found that mcr invalida-
tion in salivary glands caused the aggregation of vacuo-
lated cellular fragments that closely resembled those ob-
served upon autophagy blockade via Atg13 knockdown. 
Enforcing autophagy via Atg1 overexpression could com-
pensate for such a degradation defect, pointing to an im-
portant role for Mcr upstream of Atg1 in the autophagy 
process involved in salivary gland cell disposal. Mcr is in 
fact mandatory for salivary gland-associated autophagy as 
shown by the scarcity of Atg8a punctiform structures and 
an increased level of Ref(2)P, the D. melanogaster ortholog 
of p62/SQSTM1, in salivary glands lacking Mcr. Remarkably, 
exogenous Mcr is capable of influencing the formation of 
Atg8a-positive puncta in wild type and Mcr deficient cells 
to a similar extend, indicating that Mcr can regulate au-
tophagy in a non-cell autonomous manner. In vivo, the 
cumulative mutations of mcr and draper caused a more 
marked degradation defect than either mutation consid-
ered individually. This phenotype was associated with a 
rarefaction of Atg8 puncta and reverted upon Atg1 ectopic 
expression. Of interest was the fact that a constitutively 
active version of Src42A, the enzyme responsible for 
Draper phosphorylation and that is required for degrada-
tive activity during salivary gland development, could com-
pensate for the defect imposed by Mcr deficiency. Hence, 
Mcr functions upstream of draper to signal for autophagy 
induction. In D. melanogaster embryo, the Draper-Src42A 
module also participates in macrophage migration to dam-
aged epithelium (Fig. 2A). In the absence of Mcr, the mi-
gration of macrophages is reduced and most of them dis-
play a low level of Atg8a puncta formation because epithe-
lial cell production of Mcr along with Draper expression by 
macrophages, are necessary for autophagy induction. The 
exogenous provision of Mcr is sufficient to activate au-
tophagy in embryonic macrophages in vitro in a Draper and 
Atg1/3/5 dependent manner. Thus, in D. melanogaster, 
interaction of the complement-like opsonin Mcr with the 
EGF-like-repeat-containing receptor Draper can mobilize 
the autophagy machinery in a non-cell autonomous fash-
ion. This pathway is instrumental for the regulatory role of 
autophagy both in the remodeling of salivary gland during 
development and in macrophages involved in the resolu-

tion of epithelial cell death in the embryo. The productive 
engagement of Draper by Mcr for phagocytosis induction 
and the known role of Mcr in immune response to fungi 
[93] and flaviviruses [94] in insects suggest an ancient 
origin for the Mcr-Draper axis. The observations by Lin et al. 
[89] now reveal that this ancient immune signaling axis can 
function in the regulation of autophagy in the remodeling 
of tissues during development (Fig. 2B). Phylogenetically, it 
would be interesting to determine whether Multiple EGF-
like domain Factor 10 (MEGF10), a mammalian factor re-
lated to Draper and serves as a receptor for the C1q com-
plement factor [95] can be connected to autophagy induc-
tion pathways.  
 

CONCLUDING REMARKS 
A substantial corpus of recent observations indicates that 
besides their immune functions, complement system fac-
tors can regulate various cellular functions in both physio-
logical and pathological settings. Factors of the comple-
ment system are indeed capable of directly promoting au-
tophagic activity. For instance, cell surface receptors be-
longing to the complement system have the capacity to 
trigger anti-bacterial autophagy response as illustrated by 
the human complement regulatory factor CD46 that induc-
es a marked burst of autophagy in epithelial cells in re-
sponse to virus/bacteria sensing. In that case, autophagy 
induction relies on the CD46-Cyt1 isoform that recruits the 
GOPC factor leading to engagement of the VPS34-BECLIN1 
complex. While CD46 interacts on an in cis mode when 
engaged in the neutralization of C3b, the VSIG4 receptor 
binds to C3b in trans to facilitate the endocytosis of C3b-
coated Listeria by phagocytes. Although the detailed in-
termediate steps and factors involved remain to be identi-
fied, it is established that VSIG4-mediated activation of 
autophagy also involves the recruitment of BECLIN1. 

A link between activation of the autophagy machinery 
and engagement of complement-related factors can also 
be observed in insects. Mcr, a drosophila factor related to 
C3, can initiate autophagy in epithelial cells of the develop-
ing salivary gland in both an autocrine and paracrine man-
ner to regulate the homeostasis of the tissue. Via modula-
tion of autophagy, Mcr can also regulate the migration of 
phagocytic cells to inflammatory sites during embryogene-
sis. Autophagy activation by Mcr involves the ancient mi-
crobe-sensing axis called the Draper-Src42A pathway. The 
mammalian ortholog of Draper is MEGF10 that is capable 
of interacting with C1q. Hence it would be interesting to 
examine whether the C1q-MEGF10 interaction can influ-
ence developmental processes and/or immune responses 
to microbial infection in mammalian cells via autophagy 
induction/modulation. Indeed, a modulatory effect of C1q 
on epithelial cell autophagy has been reported. It involves 
the interaction of C1q with the metalloproteinase ADAM 
28 and disintegrin and appears to influence susceptibility 
to cell death [96]. It remains to be investigated whether 
other membrane-associated complement factors or com-
plement factors interacting with surface receptors are able 
to regulate autophagy. In addition, it will be interesting to 
examine to which extend pathogens may have evolved 
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means to oppose/ escape, autophagy induction by compo-
nents of the complement system. 

A truly unanticipated finding was the capacity of C3 de-
posited onto bacteria to promote anti-bacterial autophagy 
via direct interaction with the core autophagy factor 
ATG16L1 after internalization. This enhancing effect on 
autophagy translated into an ameliorated restriction of 
bacteria as demonstrated by the altered response to Lis-
teria infection in mice lacking C3. Of note, hydrolytic reac-
tions that degrade C3 deposition on some bacteria allow 
them to escape the enhancing effect of the C3-ATG16L1 
interaction on anti-bacterial autophagy. With respect to 
the cytosolic C3-ATG16L1 interaction and its role in anti-
microbial autophagy, it remains to be determined whether 
endogenously produced C3 than can operate in maintain-
ing homeostasis of cells such as pancreatic beta cells, can 
get adsorbed onto invading cytosolic bacteria and promote 

their restriction by the autophagy machinery. Retrospec-
tively, it would be also interesting to determine whether 
C3 deposited on viruses such as adenovirus [59] can acti-
vate autophagy via ATG16L1 engagement once it exited 
the endocytic vacuole. 

Among questions raised by the observation that factors 
of the complement system can regulate the autophagic 
activity is the issue of whether autophagy itself can in turn 
regulate the intracellular functions of complement factors. 
Possibly, the autophagy machinery could regulate the in-
tracellular function of complement factors at large via their 
specific degradation or via degradation of factors neces-
sary for their production in the case of complement factors 
produced intracellularly. Such regulatory effect would be 
somehow reminiscent of that involved in the regulation of 
the inflammasome by the autophagy machinery [97]. Final-
ly, it remains also to be studied whether complement fac-

FIGURE 2: Macroglobulin complement related factor (Mcr) in antimicrobial defense and autophagy. (A) During D. melanogaster develop-
ment, the complement-like opsonin Macroglobulin complement related/TEPVI (Mcr), that is highly similar to mammalian complement fac-
tor C3, can initiate autophagy in both epithelial cells and macrophages by engaging Draper, a Src42A protein kinase-coupled, EGF-like-
repeat-containing receptor known to signal for phagocytosis (left). Whether Multiple EGF-like-domain Factor 10 (MEGF10), a mammalian 
ortholog of Draper that mediates phagocytosis in response to C1q binding, can also signal for autophagy induction is unknown (right). (B) 
Mcr mediates the selective phagocytosis of Candida albicans in D. melanogaster (left) and, along with the scavenger receptor-C (AaSR-C) is 
involved in initiating the production of anti-viral peptides in response to the Dengue virus (DENV) in Aedes aegypti (AaMcr)(right). Whether 
pathogen sensing by Mcr (with a role for Draper in the case of D. melanogaster?) can activate anti-microbial autophagy in insects remains to 
be studied. 
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tors present intracellularly can interact with either a re-
stricted or a larger set of the core factors involved in the 
autophagy flux and what are the functional consequences 
both at steady state and under conditions of infection. 

Multiple observations now indicate that factors of the 
complement system mediate intracellular functions. It has 
been suggested that such phenomena could represent the 
manifestation of a cell-intrinsic complement system for 
which the term of “complosome” has been coined. As 
evoked above, one may ask whether such intracellular 
functions indeed co-evolved with the extracellular func-
tions of the complement system or whether they could 
have even preceded it [98, 63, 58]. Regardless of the right 
answer, it seems fair to state that the relationship between 
autophagy and factors of the complement system, as well 
as the impact of this relationship on the defense against 
microbes, are very likely to have emerged early during evo-
lution.  
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