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HOROSPHERICAL TWO-ORBIT VARIETIES AS ZERO LOCI

BORIS PASQUIER AND LAURENT MANIVEL

Abstract. We present geometric realizations of horospherical two-orbit varieties, by
showing that their blow-up along the unique closed invariant orbit is the zero locus of
a general section of a homogeneous vector bundle over some auxiliary variety. As an
application, we compute the cohomology ring of the G2-variety, including its quantum
version. We also consider the Spin7-variety, which deserves a different treatment.

1. Introduction

Homogeneous varieties play an important role in the classification of complex Fano
manifolds, one of the main building blocks in the classification of complex projective
varieties. Already in dimension three, the Fano-Iskovskih classification of Fano threefolds
of Picard number one and index one reveals that many of them (those of genus between
6 and 10, to be precise) can be realized as complete intersections in certain homogeneous
spaces [IP99]. In genus 12, one has to consider an equivariant bundle over a Grassmannian
in order to realize the Fano threefolds with this genus as zero loci of global sections. If
other approaches are also possible, this vector bundle method was applied systematically
by Mukai and many others for Fano threefolds and K3 surfaces. It has the great advantage
of allowing an easy access to the geometry of these varieties [Muk95]. Very recently, the
vector bundle method was used in order to cover the whole of Mori-Mukai’s classification
of Fano threefolds [DBFT20].

In higher dimensions, complete intersections and, more generally, zero loci of sections
of homogeneous vector bundles on homogeneous varieties also allow to construct lots of
interesting varieties (in dimension four, see [Kü95, Ben18] for a sample of these techniques).
Nevertheless, it is certainly important to enlarge the class of ambient manifolds on which
one could use the vector bundle method. Close to homogeneous varieties, one can consider
quasi-homogeneous varieties (those varieties whose automorphism group acts with a dense
orbit), especially those that have been classified by combinatorial data, such as spherical
varieties, or even more special ones, such as symmetric varieties or horospherical varieties.
Under the hypothesis that the Picard group is cyclic (which implies that these varieties are
Fano), symmetric varieties were classified by Ruzzi [Ruz11]. They are in fact homogeneous,
or hyperplane sections of homogeneous varieties, up to two exceptions. It is remarkable
that these two exceptional varieties can both be realized geometrically by the vector bundle
method; this was used in [Man18, Man20] in order to study their geometries and compute
their (quantum) intersection rings.

In this paper we consider the case of horospherical varieties. Before stating our main
result, let us recall the classification of smooth projective horospherical varieties with
Picard group Z.

Theorem 1. [Pas09, Th. 0.1] Let G be a connected reductive algebraic group. Let X be a
smooth projective horospherical G-variety with Picard group Z, which is not homogeneous.
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Then X is horospherical of rank one, and its automorphism group is a connected non-
reductive linear algebraic group, strictly containing G, acting with exactly two orbits.

Moreover, X is uniquely determined by its two closed G-orbits Y and Z, isomorphic to
G/PY and G/PZ respectively. With the convention that Z is fixed by Aut(X), the possible
triples (G,PY , PZ) are the following:

(1) (Bm, P (̟m−1), P (̟m)) with m ≥ 3
(2) (B3, P (̟1), P (̟3))
(3) (Cm, P (̟i+1), P (̟i)) with m ≥ 2 and i ∈ {1, . . . ,m− 1}
(4) (F4, P (̟2), P (̟3))
(5) (G2, P (̟2), P (̟1))

We denoted by P (̟i) the maximal parabolic subgroup of G corresponding to the dom-
inant weight ̟i, with the notations of Bourbaki [Bou68]. We will also denote it Pi for
simplicity.

Note that for each group G there is at most one variety in this list, that we will call
the G-variety. We refer to [GPPS18] for more geometric information on these varieties
(in particular their dimesion and their index). It turns out that the Spin7-variety has the
special feature of being a (generic) hyperplane section of the spinorial variety Spin10/P5 ⊂
P(∆), where ∆ denotes any of the half-spin representations of Spin10. Since its dimension
is 9 and its index is 7, this follows from Mukai’s classification of Fano varieties of coindex
three [Muk89]).

Our main result provides geometric models of the remaining varieties.

Theorem 2. Let X be a smooth projective horospherical G-variety with Picard group Z,
which is not homogeneous, and with G 6= Spin7. Let q : X̃ → X be the blow-up of X along
the closed orbit Z fixed by Aut(X). Then X̃ can be realized as the zero locus of a general
section of a vector bundle over some homogeneous space.

More precisely, there exist a fundamental G-module V , and a positive integer k , such
that X̃ coincides with the zero locus of a general section s of the vector bundle E = Q⊠U∗

over G/Pk+1×G(k+1, V ⊕C), where Q is the tautological quotient bundle over G/Pk+1 ⊂
G(k + 1, V ), and U the tautological bundle over G(k + 1, V ⊕ C).

Finally, the projection p to G/Pk+1 realizes X̃ as the projective bundle P(C⊕ V∗), if V
denotes the tautological rank k + 1 bundle over G/Pk+1.

We can illustrate the theorem by the following diagram.

Q⊠ U∗

��
Q

��

G/Pk+1 ×G(k + 1, V ⊕C)

s general

[[

uu❦❦❦❦
❦❦
❦❦
❦❦
❦❦
❦❦
❦

**❯❯❯
❯❯

❯❯
❯❯

❯❯
❯❯

❯❯
❯❯

U∗

��
G(k + 1, V ) G/Pk+1

? _oo X̃
?�

OO

p

uu❦❦❦❦
❦❦
❦❦
❦❦
❦❦
❦❦
❦❦
❦❦

q

**❯❯❯
❯❯

❯❯
❯❯

❯❯
❯❯

❯❯
❯❯

❯❯
❯❯

❯❯
❯❯ G(k + 1, V ⊕ C)

G/Pk+1 X
?�

OO

In the second part of the paper, we use these simple geometric models to improve
our understanding of the cohomology (or Chow) ring of the horospherical varieties. The
Chevalley formulas for those varieties have been obtained in [GPPS18], including the
quantum version, which was recently used to prove that Galkin’s Conjecture O does hold
for these varieties [BFSS20]. We give a complete treatment of the G2-variety in Section
3. We also discuss the cohomology ring of the Spin7-variety in Section 4 and extend
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these results to quantum cohomology. Unfortunately, although the Chow ring of the F4-
variety could in principle be determined following the same approach, the computational
complexity seems too big for this case to be accessible.

2. Proof of Theorem 2

Let G be a simple algebraic group over C. Fix a Borel subgroup B of G containing a
maximal torus T .

We will show that to almost any horospherical two-orbit G-variety, we can associate
a horospherical G-variety of rank one, which is naturally embedded in a homogeneous
G × GLd+1-variety. Then we will prove that this variety is the zero locus of a general
section of a vector bundle over this homogeneous space.

2.1. The general construction. Our main construction will involve a certain funda-
mental G-module V , whose dimension will be denoted by d. Let k be a positive integer,
with k < d. Denote e1, . . . , ek+1 T -semi-invariant linearly independent vectors of maximal
weights in V . We order them starting from the highest weight, in some compatible way
with the partial dominance order. In particular vk := e1∧· · ·∧ek and vk+1 := e1∧· · ·∧ek+1

are B-semi-invariant vectors of
∧k V and

∧k+1 V , respectively. Denote by Vk (respectively

Vk+1) the sub-G-module of
∧k V (resp.

∧k+1 V ) generated by vk (resp. vk+1).
We will suppose that the weights of vk and vk+1 are fundamental weights ̟i and ̟j

of (G,B, T ), in particular Vk ≃ V (̟i) and Vk+1 ≃ V (̟j). This is a quite restrictive
hypothesis, which is sensible only when V is a fundamental module associated to an end
of the Dynkin of diagram of G; in this situation the closed orbit in P(Vk) can naturally be
realized as a subvariety of G(k, V ), as discussed in [LM03] (see in particular Proposition
4.15). Finally, fix a non-zero element e0 in the trivial G-module C.

Definition 3. With the notations above, we define X̃ as the G-orbit closure:

X̃ := G · [vk+1 ⊗ (vk ∧ (ek+1 + e0))] ⊂ P(Vk+1 ⊗

k+1
∧

(V ⊕ C)).

Denote by Pk and Pk+1 the maximal parabolic subgroups containing B associated to
̟i and ̟j respectively. Note that Pk and Pk+1 are the stabilizers in G of the lines Cvk
and Cvk+1, respectively.

Proposition 4. The variety X̃ is a horospherical G-variety. Moreover, there exists a
horospherical G-variety X of Picard group Z such that X̃ is obtained by blowing-up X
along a closed G-orbit.

To prove the proposition we will use the general theory of horospherical varieties, in
particular, the classification in terms of colored fans, the description of divisors and the
ampleness criterion. For a survey on this theory, see for example [Pas08] or [Pas17].

Proof. We start by studying the open G-orbit Ω of X̃ more closely. We have Ω ≃ G/H
whereH = StabG[vk+1⊗(vk∧(ek+1+e0)] is the kernel of ̟j−̟i in the parabolic subgroup
P = Pk ∩ Pk+1 that stabilizes both Cvk and Cvk+1. In particular Ω is a horospherical
homogeneous space of rank 1 with the following spherical data:

(1) the weight lattice M = Z(̟j −̟i) ≃ Z;
(2) the set of colors D = {Dk,Dk+1} corresponding to the set of inverse images by

G/H −→ G/P of the two Schubert divisors in G/P ;
(3) the images of Dk and Dk+1 in N := HomZ(M,Z) ≃ Z, given respectively by α∨

k|M

(i.e. −1 ∈ Z) and α∨
k+1|M (i.e. 1 ∈ Z).
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Figure 1. Two choices of moment polytopes for G/H

According to the Luna-Vust classification of G/H-embeddings in terms of colored fans,
there exist four complete G/H-embeddings, obtained by picking or not picking each of
the two colors. Each of these embeddings has three G-orbits: Ω and two closed orbits
isomorphic to either G/Pk, G/Pk+1 or G/P (which is a divisor).

The Picard group and the ample divisors of each of these G/H-embeddings can easily
be described. In particular, they are all projective and locally factorial, and their Picard
number can be 1, 2 or 3. Also, in order to realize these embeddings, we can choose
a (small) ample divisor (which is automatically very ample because G/H has rank one
[Pas06, Th. 0.3]), and by computing its global sections, we can describe the corresponding
embedding into the projective space of the dual G-module of global sections (here we need
to suppose that G is simply connected, so that our line bundle can be G-linearized). In
another point of view, the projective G/H-embeddings are classified and can be described
by moment polytopes, see [Pas15, Section 2.3].

For example, to get the G/H-embedding X obtained by picking the two colors of D, we
can choose D so that the corresponding moment polytope is Q = [̟i,̟j ], and then

X = G · [vk + vk+1] ⊂ P(Vk ⊕ Vk+1),

which is of Picard number one; and to get the G/H-embedding X ′ obtained by picking
only the color Dk, we can choose D so that the corresponding moment polytope is Q′ =
[̟i +̟j , 2̟j ], and then

X ′ = G · [vk+1 ⊗ vk + vk+1 ⊗ vk+1] ⊂ P((Vk+1 ⊗ Vk)⊕ (Vk+1 ⊗ Vk+1)),

which is of Picard number two. To get the descritpion of X ′, we also use that V (̟i+̟j) ⊂
V (̟j)⊗ V (̟i) ≃ Vk+1 ⊗ Vk and V (2̟j) ⊂ V (̟j)⊗ V (̟j) ≃ Vk+1 ⊗ Vk+1. We illustrate
the choice of the moment polytope in Figure 1.

Remark that X ′ can also be obtained by blowing-up X along the closed G-orbit iso-
morphic to G/Pk. Indeed, blowing-up one of the closed G-orbit in X we obtain another
projective G/H-embedding where the closed G-orbit of X has been replaced by a G-stable
divisor, which has to be a closed G-orbit isomorphic to G/P . In terms of colored fans, we
have deleted a color. Now, observe that

(Vk+1⊗Vk)⊕(Vk+1⊗Vk+1) = Vk+1⊗(Vk⊕Vk+1) ⊂ Vk+1⊗(

k
∧

V⊕

k+1
∧

V ) ≃ Vk+1⊗

k+1
∧

(V⊕C),

and that by this G-equivariant isomorphism,

X ′ ≃ G · [vk+1 ⊗ (vk ∧ (ek+1 + e0))] ⊂ P(Vk+1 ⊗

k+1
∧

(V ⊕ C)).
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This exactly means that X ′ is G-equivariantly isomorphic to X̃ . �

Remark 5. With the sameG-equivariant isomorphism as above, we also have the following
G-equivariant emmbedding

X ≃ G · [vk ∧ (ek+1 + e0)] ⊂ P(

k+1
∧

(V ⊕C)).

Now, X̃ is by construction a closed subvariety of the homogeneous G×GLd+1-space

G/Pk+1 ×G(k + 1, V ⊕ C) ⊂ P(Vk+1)× P(
k+1
∧

(V ⊕ C)) ⊂ P(Vk+1 ⊗
k+1
∧

(V ⊕ C)).

Moreover, the immersion X̃ −→ G/Pk+1 ×G(k + 1, V ⊕ C) is G-equivariant so that com-
posing with the projection to the second factor we get a proper G-equivariant morphism
π : X̃ −→ G(k+1, V ⊕C). The image of π is the closure of the image of G·[vk∧(ek+1+e0)]

in P(
∧k+1(V ⊕ C)), which is nothing else than X. This means that the projection to

G(k + 1, V ⊕ C) induces the blow-up X ′ ≃ X̃ → X.
Note also that the closed orbit G · [vk+1 ⊗ (vk ∧ ek+1)] ≃ G/Pk+1 maps by π to Z :=

G · [vk ∧ ek+1] ≃ G/Pk+1. Moreover G · [vk+1 ⊗ (vk ∧ e0)] ≃ G/(Pk ∩ Pk+1), which is the
exceptional divisor of the blow-up, maps by to Y := G · [vk ∧ e0] ≃ G/Pk.

2.2. The variety X̃ as the zero locus of a general section. We begin by the following
description of X̃. Recall that G/Pk+1 is embedded in G(k + 1, V ).

Proposition 6. Let (A,B) ∈ G/Pk+1 × G(k + 1, V ⊕ C), in particular A and B are

subspaces of dimension k + 1 of V and V ⊕ C, respectively. Then (A,B) is a point of X̃
if and only if the projection of B to V is contained in A, or equivalently B ⊂ A⊕ C.

Proof. The points of the G-orbit G · [vk+1 ⊗ (vk ∧ (ek+1 + e0))] are of the form [(x1 ∧ · · · ∧
xk+1)⊗ (x1 ∧ · · · ∧ (xk+1 + e0))], and then correspond to a pair (A,B) ∈ G/Pk+1 ×G(k+
1, V ⊕ C) where A is generated by x1, . . . , xk+1, and B is generated by x1, . . . , xk and
xk+1 + e0. In particular, the projection of B in V is contained in A. Since this is a closed
condition, it remains true on the closure of G · [vk+1 ⊗ (vk ∧ (ek+1 + e0))].

Conversely, if the projection ofB in V is contained in A, there exists a basis (x1, . . . , xk+1)
of A such that (x1, . . . , xk, xk+1 + e0) or (x1, . . . , xk+1) or (x1, . . . , xk, e0) is a basis of B.
In the first case, (A,B) is a point of the open G-orbit G · [vk+1 ⊗ (vk ∧ (ek+1 + e0))]. In
the two other cases, (A,B) is a point in one of the two closed G-orbits G · [vk+1 ⊗ vk+1]
and G · [vk+1 ⊗ (vk ∧ e0)]. �

We will deduce the following proposition, which completes the proof of Theorem 2.
Since G/Pk+1 is embedded in the Grassmannian G(k+1, V ), it admits a vector bundle Q
obtained by restricting the tautological quotient vector bundle, of rank d− k− 1. We also
denote by U the tautological vector bundle, of rank k + 1, over G(k + 1, V ⊕ C).

Proposition 7. The variety X̃ is the zero locus of a general section of the vector bundle
E = Q⊠ U∗ over G/Pk+1 ×G(k + 1, V ⊕ C).

We first prove the following statement.

Lemma 8. The space of global sections of E contains V ⊗ (V ⊕ C)∗.

Proof of the lemma. By the Borel-Weil theorem on the Grassmannian,

H0(G(k + 1, V ⊕ C),U∗) = (V ⊕ C)∗,

so it suffices to prove that H0(G/Pk+1,Q) contains V . But by its very definition, Q is
a quotient of the trivial bundle with fiber V , so there is a non trivial equivariant map
V → H0(G/Pk+1,Q). Since V is irreducible, it must be injective. �
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We can then conclude with the following general statement. Suppose given a globally
generated rank r vector bundle F over some variety Z, and denote by F its space of global
sections, of dimension d. Consider a vector space W of dimension w ≥ d, some positive
integer ℓ < w, and denote by U the tautological rank ℓ bundle on the Grassmannian
G(ℓ,W ). The space of global sections of F ⊠ U∗ on Z ×G(ℓ,W ) is then

H0(Z ×G(ℓ,W ),F ⊠ U∗) = F ⊗W ∗ ≃ Hom(W,F ).

Since F is globally generated, there is an exact sequence

0 −→ M −→ F ⊗OZ −→ F −→ 0,

where M is a vector bundle of rank d− r.

Proposition 9. Let s be a section of F ⊠ U∗, defined by σ ∈ Hom(W,F ). Then:

(1) the zero locus Z(s) ⊂ Z ×G(ℓ,W ) is the set of pairs (x,U) such that

σ(U) ⊂ Mx ⊂ F ;

(2) if σ is surjective, Z(s) is smooth and has the structure of a G(ℓ, d− r)-bundle over
Z. More precisely, if K ⊂ W denotes the kernel of σ,

Z(s) ≃ G(ℓ,K ⊗OZ ⊕M).

Proof. The first claim is clear, since the evaluation of s at (x,U) is the vector inHom(U,Fx)
obtained by restricting σ to U ⊂ W and projecting from F to its quotient Fx.

The condition can be rewritten U ⊂ σ−1(Mx). When σ is surjective, σ−1(Mx) has
constant dimension e− r. This implies that the projection to Z is locally trivial, and the
second claim follows since σ−1(Mx) can be identified with K ⊕Mx. �

Conclusion of the proof of Proposition 7. Apply Proposition 9 (1) to the canonical section
of E given by σ ∈ Hom(V ⊕ C, V ), the projection to V . By Proposition 7, its zero locus

coincides with X̃. �

By Proposition 9 (2), the projection of X̃ to G/Pk+1 is the fiber-bundle G(k+1,C⊕V),
if V denotes the tautological bundle, restricted from G(k + 1, V ). Since C ⊕ V has rank
k + 2, this is just the hyperplane bundle P(C ⊕ V∗), of relative dimension k + 1. This
concludes the proof of the main Theorem.

Remark 10. The stabilizer of σ in G×GLd+1 is (G×C∗)⋉V . Indeed, (g1, g2) ∈ G×GLd+1

acts on Hom(V ⊕ C, V ) ≃ Md,d+1(C) by (g1, g2) ·M = g1Mg−1
2 ; then (g1, g2) · (Id, 0) =

(Id, 0) if and only if

g2 =

(

g1 0
tx y

)

,

with x ∈ V and y ∈ C∗. As a consequence, the G×GLd+1-orbit of σ is always dense, and
the zero-loci of the corresponding sections are all isomorphic to X̃.

2.3. More details on the module V . Here discuss what k and the module V are for
each case of Theorem 1 (except the Spin7-variety).

• Case 1. (Spin2m+1, P (̟m−1), P (̟m)) with m ≥ 3.

The G-module V is the spinorial representation, of dimension d = 2m, and k = 1. The
T -weights of V are the 1

2 (±ǫ1 + · · ·+±ǫm), all with multiplicity one. Let e1 be a T -semi-

invariant vector of weight ̟m = 1
2 (ǫ1+ · · ·+ ǫm) and let e2 be a T -semi-invariant vector of

weight ̟m−αm = 1
2(ǫ1+· · ·+ǫm−1−ǫm). Then e1∧e2 is of weight ̟m−1 = ǫ1+· · ·+ǫm−1.

• Case 3. (Sp2m, P (̟k+1), P (̟k)) with m ≥ 2.

The G-module V is the minimal representation, of dimension d = 2m, and k is any
positive integer smaller than m. The T -weights of V are the ±ǫh with 1 ≤ h ≤ m, all
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of multiplicity one. For any h ∈ {1, . . . , k + 1}, let eh be a T -semi-invariant vector of
weight ̟1 − α1 − · · · − αh−1 = ǫh. Then e1 ∧ · · · ∧ ek and e1 ∧ · · · ∧ ek+1 are of weights
̟k = ǫ1 + · · · + ǫk and ̟k+1 = ǫ1 + · · ·+ ǫk+1 respectively.

• Case 4. (F4, P (̟2), P (̟3)).

The G-module V is the minimal representation, of dimension d = 26, and k = 2. The
highest weight of V is ̟4 = ǫ1. Consider T -semi-invariant vectors e1 of weight ̟4, e2 of
weight ̟4−α4 =

1
2(ǫ1+ ǫ2+ ǫ3+ ǫ4), and e3 of weight ̟4−α4−α3 =

1
2(ǫ1+ ǫ2+ ǫ3− ǫ4).

Then e1 ∧ e2 is of weight ̟3 = 1
2(3ǫ1 + ǫ2 + ǫ3 + ǫ4), while e1 ∧ e2 ∧ e3 is of weight

̟2 = 2ǫ1 + ǫ2 + ǫ3.
• Case 5. (G2, P (̟2), P (̟1)).

The G-module V is the minimal representation, of dimension d = 7, and k = 1. The
highest weight of V is ̟1. Consider T -semi-invariant vectors e1 of weight ̟1, and e2 of
weight ̟1 − α1. Then e1 ∧ e2 is of weight 2̟1 − α1 = ̟2.

3. Cohomology of the G2-variety

3.1. The Hasse diagram. Recall that the Chow ring of the horospherical variety X
of type G2 has two natural basis, made of classes coming from the two closed G2-orbits
[GPPS18]. The latter are Z = G2/P1 ≃ Q5, the only closed Aut(X)-orbit, and the adjoint
variety Y = G2/P2, also of dimension 5. Both are homologically rational projective
homogeneous spaces, in the sense that their Hodge numbers are the same as those of P5.
We deduce that the Chow ring of X is free of rank 6 + 6 = 12.

Let us choose the basis (τ ′i , σj), made of classes indexed by their degrees, where the τ ′i
are induced from Z = G2/P1 in degree 0 to 5, while the σj are induced from Y = G2/P2

in degree 2 to 7. More precisely, the τ ′i are the classes of the closures in X of C2-bundles
over Schubert varieties of G2/P1 (locally X is a C2-bundle over G2/P1), and the σj are
the classes of the Schubert varieties of G2/P2.

From Proposition 1.14 of [GPPS18] we deduce that the Hasse diagram of X is the
following:

• • • • • •

• • • • • •

❅
❅
❅❅

❅
❅
❅❅

❅
❅
❅❅

❅
❅
❅❅

❅
❅
❅❅

τ ′0 τ ′1 τ ′2 τ ′3 τ ′4 τ ′5

σ2 σ3 σ4 σ5 σ6 σ7

Recall that the edges in this diagram encode the multiplication by the hyperplane class
h (which is nothing else than τ ′1). For example hτ ′2 = 2τ ′3+σ3. In particular we can readily
deduce the degrees of the classes (τ ′i , σj), which are given in the following diagram:

• • • • • •

• • • • • •

❅
❅
❅❅

❅
❅
❅❅

❅
❅
❅❅

❅
❅
❅❅

❅
❅
❅❅

56 56 38 10 4 1

18 18 6 3 1 1

3.2. Fundamental class. According to Theorem 2, the blow-up X̃ of X along its closed
orbit Z is the zero-locus of a general section of the vector bundle Q⊠U∗ over the product
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variety G2/P2 × G, where G := G(2, V7 ⊕ C). The Thom-Porteous formula implies that
its fundamental class

[X̃ ] = c10(Q⊠ U∗) ∈ A10(G2/P2 ×G).

We can easily deduce the fundamental class of X ⊂ G. We will denote by σ̄ij the Schubert
classes on G, for 0 ≤ j ≤ i ≤ 6, and by τ̄kℓ, for 0 ≤ ℓ ≤ k ≤ 5, the Schubert classes on
G(2, V7).

Lemma 11. The fundamental class of X ⊂ G is

[X] = 2σ̄41 + 2σ̄32 ∈ A5(G).

Proof. Decompose [X̃ ] =
∑

k

∑

i α
i
k ⊗βi

10−k, with αi
k ∈ Ak(G2/P2) and βj

ℓ ∈ Aℓ(G). Since

the projection map p from X̃ to G is birational on its image X, we deduce that

[X] = p∗[X̃ ] =
∑

i

(p∗α
i
5)β

i
5.

In order to compute this, let us denote by x1, . . . , x5 the Chern roots of Q, and by y1, y2
the Chern roots of U∗. Recall that the m-th elementary symmetric function of x1, . . . , x5
is the m-th Chern class of Q, which is nothing else than the Schubert class τ̄m of G(2, V7),
restricted to G2/P2. We get

c10(Q⊠ U∗) =
∏

i,j

(yi + xj) =

2
∏

i=1

(y5i + y4i τ̄1 + y3i τ̄2 + y2i τ̄3 + yiτ̄4 + τ̄5).

The part of bidegree (5, 5) is

[X̃ ]5,5 = (y51 + y52)τ̄5 + (y41y2 + y1y
4
2)τ̄4τ̄1 + (y31y

2
2 + y21y

3
2)τ̄3τ̄2.

In order to project this, we need to evaluate the classes τ̄5, τ̄4τ̄1 and τ̄3τ̄2 on G2/P2. For
this we need to recall that G2/P2 ⊂ G(2, V7) is the zero locus of a general section of the
vector bundle Q∗(1). In particular, its fundamental class is

[G2/P2] = c5(Q
∗(1)) = 2τ̄41 + 2τ̄32 ∈ A5(G(2, V7)).

For any class α restricted from the Grassmannian, it is then straightforward to compute
∫

G2/P2

α =

∫

G(2,V7)
(2τ̄41 + 2τ̄32)α.

In particular, we get the following evaluations:
∫

G2/P2

τ̄5 = 0,

∫

G2/P2

τ̄4τ̄1 = 2,

∫

G2/P2

τ̄3τ̄2 = 4.

Plugging in our formula for the fundamental class of X, we finally get

[X] = 2(y41y2 + y1y
4
2) + 4(y31y

2
2 + y21y

3
2) = 2σ̄2(σ̄

3
1 − σ̄1σ̄2) = 2σ̄41 + 2σ̄32. �

3.3. Generators and relations. Our next ingredient in order to compute the intersec-
tion product on X is

Lemma 12. The restriction map A∗(G)Q → A∗(X)Q is surjective. And τ ′1 and σ2 are the
restrictions of the Schubert classes σ̄1 and σ̄11 of G, respectively.

Proof. The ring A∗(X)Q is generated by τ ′1 and σ2. It is therefore enough to prove that
these two classes are the restrictions of the Schubert classes σ̄1 and σ̄11 of G, respectively.
Remark that τ ′1 is the hyperplane class in X while σ̄1 is the hyperplane class of G, so the
claim is obvious for τ ′1.

Recall that σ2 is the class of the closed G2-orbit Y of X, which is isomorphic to G2/P2.
In a neighborhood of Y , more precisely on X\Z, X is a vector bundle of rank two over
Y . More precisely, the map X\Z −→ Y is given by the restriction of the projection map
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G = G(2, V7⊕C) 99K G(2, V7). This projection is defined on G\{W ∈ G, | C ⊂ W}, which
is a neighborhood of the Schubert variety G11 := {W ∈ G | W ⊂ V7}; and it defines a
vector bundle of rank two over G(2, V7). It is now clear that the restriction of σ̄11 (the
class of G11) is σ2. �

Remark 13. The ring A∗(X)Q is also generated by τ ′1 and τ ′2. We could also prove
directly that τ ′2 is the restriction of the Schubert class σ̄2, the class of {W ∈ G | W ∩
V5 6= {0}}, where V5 is a 5-dimensional subspace of V7. Indeed, one can check that this
Schubert variety intersects X transversely at general points, and that the intersection is
the subvariety of X that defines τ ′2.

In order to simplify the notations we will denote by h, σ our two generators τ ′1, σ2 of the
Chow ring of X. Given the Betti numbers of X, we deduce that the rational Chow ring

A∗(X)Q = Q[h, σ]/〈R4, R6〉

for two relations R4 of degree four and R6 of degree six.

Proposition 14. We can choose the relations to be

R4 = 3σ2 − h2σ and R6 = 28h4σ − 9h6.

Proof. The fact that R4 = 0 in A∗(X) follows from the observation that in the Chow ring
of G(2, V7), we have [X]σ̄22 = 2σ̄54, while [X]σ̄31 = 4σ̄54. Therefore the class 2σ̄22 − σ̄31 =
3σ̄2

11 − σ̄2
1σ̄11 restricts to zero on X, and this restriction is 3σ2 − h2σ.

The fact that R6 = 0 is even easier. Indeed A6(X) has rank one, so the classes h6 and
h4σ must be proportional. Since the degree of the latter is 18, while the degree of the
former is 56, the claim follows immediately. �

3.4. The multiplication table. Note that the information encoded in the Hasse diagram
is already sufficient to express all the classes of X in terms of h and σ. We get:

τ ′2 = h2 − σ, τ ′3 =
h3

2
− hσ, τ ′4 =

h4

2
−

4

3
h2σ, τ ′5 =

h5

2
−

3

2
h3σ,

σ3 = hσ, σ4 =
h2σ

3
, σ5 =

h3σ

6
, σ6 =

h6

56
, σ7 =

h7

56
.

Using the relations of Proposition 14, the multiplication table is then easily obtained:

(τ ′2)
2 = 2τ ′4 + 3σ4, τ ′2σ2 = 2σ4, σ2

2 = σ4,

τ ′3σ2 = σ5, σ3σ2 = 2σ5, τ ′3τ
′
2 = τ ′5 + 2σ5, σ3τ

′
2 = 4σ5,

τ ′4σ2 = σ6, σ4σ2 = 2σ6, τ ′4τ
′
2 = 3σ6, σ4τ

′
2 = 4σ6,

τ ′5σ2 = 0, σ5σ2 = σ7, τ ′5τ
′
2 = σ7, σ5τ

′
2 = 2σ7,

(τ ′3)
2 = 2τ ′6, τ ′3σ3 = 3σ6, σ2

3 = 6σ6,

τ ′4σ3 = σ7, σ4σ3 = 2σ7, τ ′4τ
′
3 = σ7, σ4τ

′
3 = σ7.

For completeness, we can also compute the Poincaré dual basis (which is not, as in
classical Schubert calculus, a permutation of the original basis). Following the notations
of [GPPS18, Proposition 1.10], we let σ′

i = σ∨
7−i and τj = (τ ′7−j)

∨. Then:

τ6 = σ6, τ5 = τ ′5, σ′
5 = σ5 − 2τ ′5, τ4 = 2τ ′4 − σ4, σ′

4 = σ4 − τ ′4,

τ3 = 2τ ′3 − σ3, σ′
3 = σ3 − τ ′3, τ2 = τ ′2 − 2σ2, σ′

2 = σ2, σ′
1 = τ ′1.

This is the other natural basis of the Chow ring of X, in terms of which the Hasse
diagram becomes, in agreement with [GPPS18, Proposition 4.6]:
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• • • • • •

• • • • • •

❅
❅
❅❅

❅
❅
❅❅

❅
❅
❅❅

❅
❅
❅❅

❅
❅
❅❅

σ′
0 σ′

1 σ′
2 σ′

3 σ′
4 σ′

5

τ2 τ3 τ4 τ5 τ6 τ7

In this basis, the multiplication table is the following:

(σ′
2)

2 = 2σ′
4, σ′

2τ2 = 0, τ22 = τ4,

σ′
3τ2 = −τ5, τ3τ2 = 2τ5, σ′

3σ
′
2 = σ′

5 + 2τ5, τ3σ
′
2 = 0,

σ′
4τ2 = −τ6, τ4τ2 = 2τ6, σ′

4σ
′
2 = τ6, τ4σ

′
2 = 0,

σ′
5τ2 = −2τ7, τ5τ2 = τ7, σ′

5σ
′
2 = τ7, τ5σ

′
2 = 0,

(σ′
3)

2 = 2τ6, σ′
3τ3 = −τ6, τ23 = 2τ6,

σ′
4τ3 = −τ7, τ4τ3 = 2τ7, σ′

4σ
′
3 = τ7, τ4σ

′
3 = −τ7.

Remarks.

(1) One important difference between the two multiplication tables is that the second
one has some negative signs, while the first one has none. This is due to the fact
that τ2 is the class of G2/P1 ⊂ X, which is the closed Aut(X)-orbit Z in X and
is therefore not movable. On the contrary, σ is the class of a restricted Schubert
cycle, and is therefore movable in X.

(2) The degree four relation R4 can be expressed as σ2τ2 = 0, and obviously follows
from the fact that the two closed G-orbits of X do not meet.

(3) More generally, and for any horospherical variety X with Picard number one, we
have inside A∗(X) two subalgebras A1 (here generated by the σi’s) and A2 (here
generated by the τj’s) such that

hA1 ⊂ A1, hA2 ⊂ A2, A1A2 = 0.

Formally we can even decompose A∗(X) = A1 ⊕ A∨
2 = A2 ⊕ A∨

1 (where A∨
1 is the

submodule generated by the Poincaré duals of the Schubert classes in A1). Then

A∨
1A2 ⊂ A2 and A∨

2A1 ⊂ A1.

If we add Poincaré duality and the Chevalley formula, do we get enough informa-
tion to determine A∗(X)?

3.5. Quantum cohomology. Recall that X has index four, so that the quantum param-
eter in its quantum cohomology ring QA∗(X) = A∗(X)Q[q] has degree four. By the general
results of Siebert and Tian [ST97], this quantum cohomology ring admits a presentation
of the form

QA∗(X)Q = Q[h, σ, q]/〈R4(q), R6(q)〉

for two relations R4(q) of degree four and R6(q) of degree six, which are q-deformations
of R4 and R6. In particular we can write

R4(q) = R4 + r4q and R6(q) = R6 + r6q,

where r4 has degree zero (a rational number) and r6 is a class of degree two. Note that
since there is no term of degree bigger that one in q, these relations are determined by
degree one Gromov-Witten invariants only.

The quantum Chevalley formula has been computed in Proposition 4.6 of [GPPS18], in
terms of our Poincaré dual basis. In the basis (σi, τ

′
j), this reads
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h ∗ h = σ2 + τ ′2, τ ′2 ∗ h = 2τ ′3 + σ3, σ2 ∗ h = σ3,

τ ′3 ∗ h = τ ′4 + σ4 + q, σ3 ∗ h = 3σ4 + q,

τ ′4 ∗ h = τ ′5 + σ5 + qh, σ4 ∗ h = 2σ5 + qh,

τ ′5 ∗ h = σ6 + qσ2, σ5 ∗ h = 3σ6 + qτ ′2,

σ6 ∗ h = σ7 + qτ ′3, σ7 ∗ h = qτ ′4 + 2q2.

One immediately deduces the quantum Giambelli formulas (that is, how to determine
each Schubert class in terms of the generators), and also the relation R6(q). Indeed, we
get in quantum cohomology

τ ′2 ∗ h
4 = 18τ ′6 + q(10σ2 + 4τ ′2), h6 = 56τ ′6 + 16q(2σ2 + τ ′2),

and therefore R6(q) = R6+8q(h2+3σ). So the only ingredient missing is the computation
of σ2 in quantum cohomology, which is given by

σ2 = σ4 + I1(σ, σ, σ7)q.

Lemma 15. The Gromov-Witten invariant I1(σ, σ, σ7) = 0.

Proof. Since the class τ is movable, the Gromov-Witten invariant I1(σ, σ, σ7) is enumer-
ative [GPPS18, Section 3.2]: it counts the number of lines ℓ in X that pass through a
general point x (representing a plane Px in V7 ⊕ C), and meet general Schubert cycles of
class σ11, that is, two general sub-Grassmannians G(2, A7) and G(2, B7), for A7, B7 two
general hyperplanes of V7 ⊕ C. But a projective line ℓ in G(2, V7 ⊕ C) is made of planes
containing a common line L1 (and contained in a common three dimensional space L3).
We would thus get the inclusion L1 ⊂ Px ∩A7 ∩B7 = 0, a contradiction. �

Since there is no other quantum correction, we deduce:

Proposition 16. The quantum cohomology ring of X is

QA∗(X) = Q[h, σ, q]/〈3σ2 − h2σ + q, 28h4σ − 9h6 + 8q(h2 + 3σ)〉.

Using the quantum Giambelli formulas

τ ′2 = h2 − σ, τ ′3 =
h3

2
− hσ, τ ′4 =

h4

2
−

4

3
h2σ −

2

3
q, τ ′5 =

h5

2
−

3

2
h3σ − qh,

σ3 = hσ, σ4 =
h2σ

3
−

1

3
q, σ5 =

h3σ

6
−

2

3
qh,

σ6 =
h6

56
+

2

7
qσ −

4

7
qh2, σ7 =

h7

56
+

9

7
qhσ −

15

14
qh3,

it would then be easy to deduce the quantum multiplication table in our basis (or the dual
one). Let us just mention that the quantum multiplication by σ is given by the following
formulas:

τ ′2σ = 2σ4 + q, σ2σ = σ4, τ ′3σ = σ5 + qh, σ3σ = 2σ5,

τ ′4σ = σ6 + qτ ′2, σ4σ = 2σ6 + qτ ′2, τ ′5σ = qτ ′3, σ5σ = σ7 + 2qτ ′3,

σ6σ = qτ ′4 + q2, σ7σ = qτ ′5 + q2h.

We could also check the generic semi-simplicity of QA∗(X), which in [GPPS18] was
directly deduced from the quantum Chevalley formula.
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4. Cohomology of the Spin7-variety

Using the fact that the Spin7-variety X is a generic hyperplane section of the spinor
variety S for Spin10, its cohomology is easily described. First observe that the two closed
orbits in X are quadrics of dimensions 5 and 6, so that the topological Euler number is
6+ 8 = 14. If we use the Schubert basis (σ′

i, τj), where the classes τj are induced from the
closed orbit Q6, we get the following Hasse diagram:

• • • • • • •

• • • • • • •

❅
❅
❅❅

❅
❅
❅❅

❅
❅
❅❅

❅
❅
❅❅�

�
��

σ′
0 σ′

1 σ′
2 σ′

3 σ′
4 σ′

5 τ+6

τ3 τ4 τ5 τ−6 τ7 τ8 τ9

We deduce that the Chow ring is generated by the hyperplane class h = σ′
1 and the

degree three class τ = τ3. Moreover, from the Chevalley formula we get

σ′
2 = h2, σ′

3 =
h3 − τ

2
, τ4 = hτ, σ′

4 =
h4 − 3hτ

2
, τ5 = h2τ, σ′

5 =
h5 − 5h2τ

2
,

τ+6 =
h6 − 5h3τ

2
, τ−6 =

7h3τ − h6

2
, τ7 =

h7

12
, τ8 =

h8

12
, τ9 =

h9

12
.

There must be two relations between the generators, in degrees six and seven. For the
latter we can choose R7 = 6h4τ − h7. In order to find the former we use the fact that the
restriction map from the Chow ring of S to the Chow ring of X is surjective. The Schubert
classes in A∗(S) will be denoted γλ, for λ a strict partition with parts smaller than five.
In degree three the Schubert classes γ3 and γ21 have degree seven and five, respectively.
We deduce that τ is just the restriction of the difference γ3 − γ21. Since A6(S) has rank
two there must exist a linear relation between γ23 , γ21γ3 and γ221. By applying the Pieri
formulas for the spinor variety we get γ23 = 2γ221. By restricting to X we deduce the
relation we are looking for, namely

R6 = τ2 − 6h3τ + h6.

(Note that it follows that hτ2 = 0.)
This provides enough information to write down the multiplication table. The multi-

plication by τ is given by

σ′
1τ = τ4, σ′

2τ = τ5, σ′
3τ = τ+6 , τ3τ = τ−6 − τ+6 , τ4τ = 0,

σ′
4τ = τ7, τ5τ = 0, σ′

5τ = τ8, τ+6 τ = τ9, τ−6 τ = −τ9.

And the missing products are the following:

(σ′
3)

2 = τ+6 + τ−6 , σ′
3σ

′
4 = τ7, σ′

3τ4 = τ7, σ′
3σ

′
5 = 0, σ′

3τ5 = τ8,

σ′
3τ

+
6 = 0, σ′

3τ
−
6 = τ9, (σ′

4)
2 = 0, σ′

4τ4 = τ8, (τ4)
2 = τ8,

σ′
4σ

′
5 = −τ9, σ′

4τ5 = τ9, τ4σ
′
5 = τ9, τ4τ5 = 0.

In terms of the Poincaré dual basis we get the reversed Hasse diagram
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• • • • • • •

• • • • • • •

❅
❅
❅❅

❅
❅
❅❅

❅
❅
❅❅

❅
❅
❅❅�

�
��

σ0 σ1 σ2 σ−
3 σ6 σ5 σ6

σ+
3 τ ′4 τ ′5 τ ′6 τ ′7 τ ′8 τ ′9

Since the index of X is seven, the quantum cohomology is very easy to deduce from the
quantum Chevalley formula, computed in [GPPS18], Proposition 4.4: quantum corrections
do appear only for hτ−6 = τ7 + q, hτ7 = τ8 + qh, hτ8 = τ9 + qσ′

2 and hτ9 = qσ′
3. In

particular we get h(τ−6 − τ+6 ) = q, and since the the Giambelli type formulas above are
valid in quantum cohomology up to degree six, we deduce that

R6(q) = R6, R7(q) = 6h4τ − h7 − q.

Moreover the Giambelli type formulas in degree bigger than six must be corrected as

τ7 =
h7

12
−

5

12
q, τ8 =

h8

12
−

17

12
qh, τ9 =

h9

12
−

29

12
qh2.

Finally, the quantum multiplication by the generator τ is given, in degree bigger than
six, by the following formulas:

τ4τ = q, σ′
4τ = τ7 − q, τ5τ = qh, σ′

5τ = τ8 − qh, τ+6 τ = τ9,

τ−6 τ = −τ9 + qh2, τ7τ = qσ′
3, τ8τ = qσ′

4, τ9τ = qσ′
5.
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