N

N

Software-defined load-balanced data center: design,
implementation and performance analysis

Ahmadreza Montazerolghaem

» To cite this version:

Ahmadreza Montazerolghaem. Software-defined load-balanced data center: design, implementation
and performance analysis. Cluster Computing, In press, 10.1007/s10586-020-03134-x . hal-03048010

HAL Id: hal-03048010
https://hal.science/hal-03048010
Submitted on 9 Dec 2020

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-03048010
https://hal.archives-ouvertes.fr

Software-defined Load-balanced Data Center:
Design, Implementation and Performance Analysis

Ahmadreza Montazerolghaem™

Department of Computer Engineering, Quchan University of Technology, Quchan,
Khorasan Razavi, Iran

Abstract

Data centers are growing densely and providing various services to millions of
users through a collection of limited servers. That’s why large-scale data center
servers are threatened by the overload phenomenon. In this paper, we propose
a framework for data centers that are based on Software-defined networking
(SDN) technology and, taking advantage of this technology, seek to balance the
load between servers and prevent overloading on a given server. In addition, this
framework provides the required services in a fast time and with low computa-
tional complexity. The proposed framework is implemented in a real testbed,
and a wide variety of experimentations are carried out in comprehensive sce-
narios to evaluate its performance. Furthermore, the framework is evaluated
with four data centers including Three-layer, Fat-Tree, BCube, and Dcell data
centers. In the testbed, Open vSwitch v2.4.1 and Floodlight v1.2 are used to
implement switches and OpenFlow controllers. The results show that in all four
SDN-based architectures, the load balances between the servers is well main-
tained, and a significant improvement has been made in parameters such as
throughput, delay, and resource consumption.

Keywords: Software-defined networking (SDN), Data center design, Load
balancing, PID controller, Throughput, Delay

*Corresponding author
Email address: ar.montazer@qiet.ac.ir (Ahmadreza Montazerolghaem)

Preprint submitted to Cluster Computing Journal October 4, 2020

20

25

1. Introduction

Recently, introduced Software Defined Networking (SDN) is a major trend in
the telecommunication industry that can enhance the data center networks [I].
The Software defined data center integrates the software defined concepts into
data center technology. Data center networks are the backbone of the Internet
services. SDN significantly simplifies and improves this networks management
[2]. In SDN, the control and data planes are separated and logically centralized
using the OpenFlow protocol[3, [, [5]. It can meet the requirements of the data
center communication network [6]. In this case, each network switch simply
forwards the traffic and enforces policy according to instructions received from
the controller. This makes the network programmable in a way that promises
to be more flexible, scalable, and secure than that of traditional networks [7].
SDN has attracted attention for developing different data center applications
which require a higher degree of network awareness [, [9, 10} [1T].

Data centers are being transformed into service-oriented networks as fully
connectivity oriented networks. This new paradigm changes the framework and
architecture of networks and changes their design and construction. In the new
paradigm, instead of layering switches and routers, it is attempted to reduce
the complexity of their components and create new capacities by homogenizing,
simplifying configurations and developing programmable capabilities in data
centers. The best way to quickly and easily achieve this goal is to achieve a
specific operating model with more coordinated services, thereby guiding us to-
wards the greatest change and flexibility available, Software Defined Networking.
Deploying SDN and other new approaches are the biggest challenges in next-
generation data center architecture that wants to move networks towards being
service-oriented. Traditionally data center scaling was done by building a subnet
and adding a new domain. In contrast, SD—DCEI method controls the resources

according to demand through a centralized view. This approach prevents the

ISoftware-Defined Data Center

30

35

40

45

50

55

saturation of server resources, overload, and loss of service quality.

1.1. Related work

Darabesh et al. [I] introduce an experimental simulation (not implementa-
tion) framework to provide a virtualized testbed environment for data center
based on SDN. This work is built based on the Mininet simulator, where its
core components, the host, the switch and the controller, are set. [12] describes
a technique based on Domain Name System (DNS) for providing distributed
server load balancing over resources across multiple data centers. [I3] explores
micro-level power management in Software defined data center and assess the
feasibility of this new power management paradigm by characterizing the re-
source and power impact of various management operations. [I0] proposes a
novel algorithm for use in an intelligent, user-aware SDDC which performs run-
time analysis of user storage system activity in a manner that has a minimal
impact on performance and provides accurate estimations of future user activity.
[14] implements the SDN based routing in CamCube data center topology that
is able to outperform the traditional OSPF protocol in the CamCube infras-
tructure network. [I5] designs new physical layer control instances and combine
SDN control with encoding in a data center. Yifei Xu et al. [I6] present a man-
agement model for data center networks managing information is three levels:
network managers, regional controllers, and tenants. The authors in [I7] design
a novel network fabric and shortest path algorithm for data center networks
based on SDN. New SDN-based TCP slow start mechanism for data center is
proposed in [18]. In this method, the available bandwidth can be obtained by the
SDN controller in every time slot. Then the slow start threshold and the conges-
tion window can be tuned suitably. An OpenFlow and SDN-based QoS traffic
method to achieve effective usage of data center network resources is proposed
by [19]. In [20], authors attempt to enhance the QoS of the multi-tenanted data
center network clouds. E*MC [21] is a method to improve data center energy
efficiency by leveraging SDN. In this regard, the energy optimization for both

forwarding and control plane are investigated by dynamic control mapping. [22]

60

65

70

75

80

85

introduces the dynamic timeout for SDN-based data centers, which can assign
appropriate timeout to various flows under their characteristics. In [23], Hwang
et al. introduce an approach for fast failover of both the control and data plane
in the data centers based on SDN. An dynamic load management method based
on SDN technology for optimizing data center link utilization by flow priority
is proposed in [24].

While much prior research has suggested the potential benefits of applying
SDN in computer networks in order to facilitate network management, there
has only been few studies about the practical approaches of applying SDN in
data center, practically. Additionally, the whole concept of SD-DC is in its
infancy and standardization efforts in terms of framework, protocols, applica-
tions, and assessment tools are still underway. Also, as discussed earlier, the
proposed ideas and related work are mostly preliminary proposals about soft-
warization of WSNs; or they focus on security and big data challenges of IoT.
Here, we pay particular attention to management of resources as well as QoS of
data centers. To the best of our knowledge, there are no studies concerning a
comprehensive approach for combining data center server load balancing with
QoS mechanism with operational view. Therefore, the exploration of such an
approach is timely and crucial, especially considering the rapid development of
data center applications and the emergence of SDN. In this paper, we propose a
SDN-based architecture for data center applications, so that both the path and
server selection can be managed together to improve QoS for the users, and to
balance traffic between servers simultaneously.

According to the above studies, there are no comprehensive studies on an
SDN-based data center load balancing. So, in this paper, we propose an SDN-
based architecture for data center to balance the load between servers and
prevent overloading. Also, the proposed framework is implemented in a real
testbed, and a wide variety of experimentations are carried out under various

scenarios.

90

95

100

105

110

115

1.2. Motivation

Why do we need a scalable DC communication infrastructure? Knowing
that the DC infrastructure is a key service in next generation network, it is
vital to design and develop a high performance and scalable communication
infrastructure with quality of service support. Recently, the DC has been uti-
lized for supporting new services. In addition, the DC is rapidly developing and
spreading in different geographical locations. Moreover, for the future large-
scale DC, it will be necessary to collect and transfer data. Therefore, this will
create a huge traffic load which should be efficiently routed and balanced across
the network and servers. To summarize, with the overall modern network road
map, both the number of users and data will increase dramatically. Conse-
quently, a huge amount of data will go through the servers, which imposes a
great challenge on the scalability of the traditional DC communication network.
Over the next few years not only will DC servers face overload, but also the
communication network will fail to satisfy the QoS of traffic. So this article

addresses this challenge and proposes a scalable SDN-based DC framework.

1.8. Contributions

Our study mainly aims at managing the traffic through the concept of the
SDN. In this regard, by applying the SDN in the data center, we provide a
resource and QoS conscious framework. In this framework, we seek to choose
the best path among the existing paths for each of the data center traffic classes
in a way that the load balance of data center servers is established and the QoS
of the traffic class is satisfied. To this end, we design a modular controller that
uses PID system. In this regard, we propose the system for resource managment
based on PID. In other words, PID is used to decide how to load balances
between servers.

So, the main innovation is the architectural design of a modular controller
based on SDN technology according to Proportional-Integral-Derivative (PID),

Least Connection and Least Response Time algorithms to achieve a scalable

120

125

130

135

140

data centers with a higher quality of service. In this regard, the main contribu-

tions of this paper can be summarized as follows:

Theoretical aspect

Designing a novel SDN-based control and management framework for the
data center (for avoiding the overload occurrence on data center servers

together with increasing the QoS),

Designing a proactive heuristic load balancing method based on PID sys-

tem,

Designing modules of the proposed framework,
Implementation aspect

Designing and preparing a real test platform to evaluate the performance

of the proposed framework (is applied to the well-known topologies).

Designing comprehensive scenarios to evaluate the efficiency of the pro-

posed framework.

1.4. Organization

The rest of this article is organized as follows: in Section [2] we propose a

data center framework as well as an SDN controller for proper distribution of

loads between servers. In Section [3] we discuss the details of the implementation

of the proposed schemes and their evaluation. Section [d] presents the conclusion

and further work.

2. Designing an SDN based enterprise data center framework

The framework consists of two parts: infrastructure and control. We first

present the overall architecture of the four important data centers and then

propose the controller details of the framework.

Data Plane

Control Plane

SDN
Controller

OpenFlow
Switches

‘ﬁm P R P R

P1 P2 P3 P4 P5 P6

Figure 1: SDN-based three-layer data center architecture

2.1. Three-layer architecture

The three-layer architecture based on SDN technology is illustrated in Fig[l]

The architecture consists of three layers of switches which establish the com-
munication between the servers. These switches use OpenFlow technology and

us are controlled by an SDN controller. Flows between the servers are also man-
aged by commands sent from the controller to the switches. The traditional

structure of this well-known data center architecture is illustrated in Fig[2]

Edge
o) switches

Figure 2: Traditional three-layer data center architecture

As can be seen in this architecture, there are three layers of edge, aggrega-
tion, and core, each layer having a desired number of switches with different
150 capacities. For example, in this example, there are 8 edge switches, 4 aggrega-

tion switches, and 2 core switches.

2.2. Fat-Tree architecture
Fat-Tree architecture is illustrated in Fig[3] The topology of this architecture

is tree-like.

Data Plane

OpenFlow

Control Plane

N SDN
Controller

S7 S8 S9
O e
P1 P2 P3 P4 P5 P6 P7 P8

Figure 3: SDN-based data center tree architecture

155 The traditional architecture of this model of the data centers is shown in
Fig[d] As can be seen, the data center consists of 4 pods, each of them consisting
of 8 aggregation and edge switches. A total of 4 core switches establish the

communication between the pods.

| Aggregation
. switches

i Edge

| switches

. Servers

Figure 4: Traditional data center tree architecture
2.83. BCube architecture
160 BCube architecture is illustrated in Fig[5] As can be seen, the two levels of

switch establish communication between the servers. Communications between
all four adjacent servers are provided via low-level switches and communications

between non-adjacent servers are provided via high-level switches.

Data Plane
OpenFlow Switches

Control Plane

SDN
Controller

Pl P2 P3 P4 P5 P6 P7 P8 P9 PIO PIl P12 PI3 PI4 PI5 PI6

Figure 5: SDN-based BCube data center architecture

The traditional architecture of this type of data center is shown in Figl6]
s The architecture has two levels. At the lower level, 4 four-port switches are
connected to 16 adjacent servers. At the top level, 4 four-port switches provide

communication between non-adjacent servers.

Level 1

Figure 6: Traditional BCube data center architecture

2.4. Dcell architecture

Dcell architecture is illustrated in Fig[7] The framework of this architecture
wo consists of several cells. Each cell contains one switch and four servers. Commu-
nications between servers of different cells are provided through switches. The
SDN controller also controls the flows and switches.
The traditional architecture of a Dcell data center is also shown in Fig[§
In the traditional architecture, the communication between cells is provided
s through traditional switches (not OpenFlow), which increases the complexity of
the infrastructure level, hence makes the architecture unscalable. In traditional

networks, once the flow management (forwarding policy) has been defined, the

180

185

190

SDN Controller

OpenFlow Switches

Figure 7: SDN-based Dcell data center architecture

only way to make an adjustment to the policy is via changes to the configuration
of the network equipment. This has proven restrictive for network operators
who are keen to scale their networks in response to changing traffic demands,

increasing the use of mobile devices.

2.5. Designing the SDN controller

In this section, we present the proposed architecture of the SDN controller
for balancing server loads in the aforementioned schemes. As shown in Figl9]
there are two layers of infrastructure and control. In the infrastructure layer,
there are servers, switches, and computers. The data flow is distributed through
the switches between the servers. In this regard, the SDN controller plays a role
in the control layer. The Network Statistics module collects traffic information
from switches. Server load information is also collected by the Servers Load
Monitoring module. In the SDN controller, Proportional-Integral-Derivative
(PID) controller is used to decide how to load balances between servers. In this
regard, the PID controller seeks to regulate the servers load within the target

load.

10

195

200

205

210

5 3 -9
/7 Deell,0 DCellgl o,

Figure 8: Traditional Dcell data center architecture

In order to address this issue, we propose here a control theory approach
that dynamically (re)adjusts load threshold depending on the system behavior
and the desired utilization levels, allowing the SDN controller to learn over
time depending on current system behavior. We evaluate a PID controller that
readjusts load threshold, i.e., change the level of load that the system is willing to
face, to achieve a desired level of resource utilization for each dimension (CPU,
memory) in a safer way. r denotes the desired load level, y the measured level,
e the difference between the current load level and the target one, and finally
u is the increment or decrement in the actual load threshold needed to achieve

the target utilization. The u value at time ¢ can be obtained from Equation :

de(t)
dt

(1)

In this equation, increasing the P component (K p) leads to faster response

u(t) = Kpe(t) + K; / eyt 1 Ko
0

but also to overshooting and oscillation problems. Increasing I component (K7)
reduces stationary errors but at the expense of larger oscillations. Finally, the D
component (Kp) reduces the oscillations but may lead to slower response. Only
setting these values turned out to be insufficient to achieve a good performance
(stable and fast response nal value (P + I + D)). This filter keeps threshold
load levels between certain values, i.e., between 0.2 and 0.8 instead of the [0,1]
range. Limiting the spectrum of feasible values for the load threshold reduces
fluctuations caused by fast switching between accepting too many and too few

services.

11

| Least Response Least |
Time Connection
de(t
P K,e0) D k%O
dt
£ f f

¥ -
Servers Load
Monitoring

Network
Statistics

I
1 1
1 1
1 1
1 1
1 1
I 1
I 1
I 1
I 1
I 1
I 1
I 1
I 1
I 1
I 1
I 1
I 1
1 R
! Error value (e(r)) !
1 aroat los |
: Target load (»() |
|
| |
| 1
| |
| |
| |
| |
| |
| |
| |
| 1
| 1
| 1
| 1
| 1
I 1

Controller (SDN Controler) OpE‘:I‘IFl ow

Protocol
__ \
]]
 S0D €&E» - SD ;

Infrastructure (Computers, Switches, Servers)

Figure 9: The proposed architecture of the SDN controller

Finally, if the server load tolerance is lower than the threshold (0), the server
25 with the lowest response time is selected, and otherwise, the server with the
lowest connection is selected.

Least response time method uses the response information from the Network
Statistics module to determine the server that is responding fastest at a particu-
lar time. In least connection method the current request goes to the server that

20 is servicing the least number of active sessions at the current time. The reason
is that if the load tolerance is high and the servers’ load is more imbalanced,
the least connection method can better detect less efficient servers and balance
the servers by injecting load into them, in comparison to the least response time
method. If the server load tolerance is low, the least response time method can

25 better and faster keep the server load status balanced.

12

In the end, depending on the selected server, the Flow Manager module
adjusts the appropriate path of flows to that server by installing the appropriate
rolls on the OpenFlow switches. Algorithm 1 below shows the details of the

proposed load balancing approach.

Algorithm 1: Load Balancing

Result: Select the most appropriate server

Data: r denotes the desired load level;

y the measured load level of server;

e the difference between the current load level and the target one;

u is the increment or decrement in the actual load threshold needed to
achieve the target utilization.

while as long as the traffic is flowing do
— The Flow Manager module receives the incoming packets like

Packet-In message;

— The Network Statistics module extracts the necessary information
such as time from the messages;

— Response time is given to the Least Response Time module;

— The Servers Load Monitoring module monitors and records y;
— The PID Controller module calculates v with regard to r;

if ©u > 6 then

Least Connection method runs;

The server with the least load is selected;

else

Least Response Time method runs;

The server with the least response time is selected;

end

end

13

230

235

240

245

250

255

The Flow Manager module is in charge of sending LLDP (Link Layer Dis-
covery Protocol) packets to all the connected switches through Packet Out mes-
sages. These messages instruct the switches to send LLDP packets to all ports.
Once a switch receives the Packet-Out message, the LLDP packets are sent out
among all the ports. If the neighbor device is an OpenFlow switch, it will per-
form a flow lookup. Since the switch does not have a flow entry for this LLDP
message, it will send this packet to the controller by means of a Packet-In mes-
sage. When the controller receives the Packet-In, it analyses the packet and
creates a connection in its discovery table for the two switches. All remaining
switches in the network will similarly send a packet into the controller, which
would create a complete network topology. LLDP messages are periodically
exchanged and events are brought to the controller when links go up/down,
or new links are added/removed. Information on switches and links are main-
tained in the Network Statistics module. Servers load information and load level
of servers (y) is also recorded by the Servers Load Monitoring module. Load
monitoring is defined in one place for the entire network - in the control plane
module. It is easy to scale by replicating the control plane. As mentioned, PID
module is used to decide how to load balances between servers. So, the PID
controller seeks to regulate the servers load (y) with the target load (r). The
PID controller output is . u is the increment or decrement in the actual load
threshold needed to achieve the target utilization. The u value at time ¢ can be
obtained from Equation (I} Finally, if the server load tolerance (u) is upper than
the threshold (), the server with the least connection is selected, and otherwise,
the server with the least response time is selected. Least connection load bal-
ancing algorithm selects the server with the fewest active connections. Neither
round robin or random take the current server load into consideration when dis-
tributing messages. The least connection algorithm considers the current server
load. In return, the least response time algorithm uses the response data from

a server to determine the server that is responding fastest at a deadline.

14

260

265

270

275

280

3. Testing and evaluating the proposed schemes

In this section, we first describe the implementation details. We then evalu-
ate the performance and present the results of the proposed approach in several
of the following subsections.

In the testbed, we employ Open vSwitch v2.4.1 and Floodlight v1.2 to im-
plement the OpenFlow switch and controller and modify them as described in
the previous section. Floodlight is a Java-based controller. The PID controller
is also coded and tuned as a module in Floodlight in Java. Open vSwitch is
also a virtual and software switch that supports the OpenFlow protocol. We
use SIPp to inject traffic. Oprofile software is also used to observe consumables.
If we need to inject background traffic between the servers, we use iperf to send
packets at a fixed rate. We run each experiment three times and reported the

mean as a result.

8.1. Implementation testbed

The testbed provided in the IP-PBX Laboratory of Ferdowsi University

of Mashhadﬂ for the implementation of the proposed architectures is given in

Fig[T0)
The list of equipment needed to implement the proposed architectures is as

follows:

HP G9 DL580 server

Open vSwitch v2.4.1 Switch

Floodlight v1.2 controller

SIPp for traffic injection

2http://voip-lab.um.ac.ir/index.php?lang=en

15

285

290

295

"

Opnemvm’

Figure 10: Implementation platform in the IP-PBX type approval laboratory of Ferdowsi
University of Mashhad

8.2. Performance evaluation and experimental results

In the following, we present experimental results for the Three-layer archi-
tecturd’] According to Figll] we use 7 OpenFlow switches and 8 servers to test

the architecture.

3.2.1. Fxperiment 1: Fized load

The first experiment involves two scenarios with different background traffic.
In Scenario 1, each server’s background traffic is equal to 500 bps. In Scenario
2, the background traffic for Servers 1 to 4 (P1 to P4) is 1000, and for Servers 5
to 8 (5P to P8) is 500 bps. A fixed offered-load of 400 seconds at a rate of 1500
requests per second (rps) is also injected into the system by a traffic generator.
Fig. [I0] shows the performance of the servers.

Three different methods are used to select a server: Round-robin, Random,
and SDN-based (the proposed approach). Servers’ throughput (the number of
serviced requests by servers per time), their average response time (the time be-

tween sending a request from the computer and receiving the acknowledgment

3The results of the other architectures are given in the appendix.

16

300

305

310

315

320

325

by the server), and the resources consumed by the servers are among the eval-
uation criteria. The goal is to achieve the maximum throughput and minimum
response time without overloading and with respect to resources.

The proposed method has achieved better results than the Round-robin and
Random methods in both scenarios (Fig. . In addition, the proposed method
results are similar in both scenarios, however, the results of Random-Robin and
Random in Scenario 2 are worse than in Scenario 1. The reason is that the
different background traffic of servers in Scenario 2 has made the blind load
distribution of the two methods worse over time. As can be seen from the
comparison of Fig. [[1a] to [[ID] the SDN-based method in both scenarios is
able to achieve near offered-load throughput, as it can have a good estimate
of servers’ load using both, response time and the number of connections. Not
only consuming the resources in Round-Robin and Random methods is more
than SDN-based method, but also their average response time is longer. The
servers’ resource utilization rate in the SDN-based approach is approximately
equal, indicating a conscious and fair distribution of the load of this method
(Fig. to [LOp).

In Round-Robin and Random methods unequal distribution of load over
time causes unanswered messages in the server queue. This is because the
redundant retransmissions and manipulation of the timers increase CPU and
memory occupation and worsen server overload. In other words, failure to
perform one task in due time affects subsequent tasks, causing an overload
of CPU and memory. The same is true for subsequent tasks. As a result, the
server processor and memory are always involved in a large number of previous
or retransmission messages. All of this is due to the lack of fair distribution.
Besides that, the flow of new requests eventuated to overflowing of the queue
and losing the packages. In this regard, an SDN-based framework is proposed
which uses the global view to distribute fairly and based on servers capacity.
On the contrary, in the random and round-robin approaches, the capacity of
the servers is neglected. This over time causes the queues to become full and

also overloaded.

17

1600 T T T T
Offered load

1400 YN SDN-baset RutwmymrimtMngs Aoty e s i Y

== Round-robin

Random

~
S
=]

Throughput (rps)
5]
8

o
S
>

=
<1
>

0 50 100 150 200 250 300 350 400
Time (second)
(a) Servers’ throughput in Scenario 1
1600 T T T T T

= Offered load

1400 = SDN-based WWMNWMWW

I~ Round-robin
£1200 = Random
H
= 1000
o
3
£ 800
£
600
400 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400
Time (Second)
(b) Servers’ throughput in Scenario 2
1 T
2 ——— SDN-based
E B0 | |[——Round-robin
£ 50 =—Random
[
2
940
0
Q
@ 30
[
&
520
>
<
10
0 50 100 150 200 250 300 350 400

Time (Second)

(c) Servers average response time in Scenario 1

=3
>

= SDN-based
Round-robin

~
=)

N
E
L]
£ = Random
=60
Q
2
9 50
0
QO
o 40
[)
g
5 30
>
<

20

0 50 100 150 200 250 300 350 400
Time (Second)

(d) Servers average response time in Scenario 2

18

Average CPU usage (%)

Average CPU Usage (%)

Average CPU Usage (%)

100 P
I

| | D3 i
80 [
es

60 [| s J
[P

40 ~ P8 4

20r b

0
100 200 300 400
Time (Second)

(e) Servers average CPU usage in Scenario 1 (SDN-based)

100 200 300 400
Time (Second)

(f) Server average CPU usage in Scenario 1 (Round-robin)

100 | . -1

100 200 300 400
Time (Second)

(g) Server average CPU usage in Scenario 1 (Random)

19

Average CPU Usage (%) Average CPU usage (%)

Average CPU Usage (%)

o
S

o
(=}

23
=3

40

20

o
o
o

100 200 300 400
Time (Second)

(h) Server average CPU usage in Scenario 2 (SDN-based)

o]
o

(2]
o

iy
o

N
o

100 200 300 400
Time (Second)

(i) Server average CPU usage in Scenario 2 (Round-robin)

100 200 300 400
Time (Second)

(j) Server average CPU usage in Scenario 2 (Random)

20

<100 — mEc
e . -2
. F3

%80_ I8 7
=] [l

- | EEEErs 4
g 60 [
540_ | —] |
=3
S ol]
g 20
g
< 0

100 200 300 400

Time (Second)

(k) Server average memory utilization in Scenario 1 (SDN-based)

100 - - 1 T T T

Average Memory Usage (%)

100 200 300 400
Time (Second)

(1) Server average memory utilization in Scenario 1 (Round-robin)

Average Memory Usage (%)

100 200 300 400
Time (Second)

(m) Server average memory utilization in Scenario 1 (Random)

21

L 100 mmmm
o . 2
o L| e 4
b 80 [P
2 I s
2 60| mEEEes E
8 e
§ 40 LEA™ 1
=
& 20 1
o
¢
z 0

100 200 300 400

Time (Second)

(n) Server average memory utilization in Scenario 2 (SDN-based)

Average Memory Usage (%)

100 200 300 400
Time (Second)

(o) Server average memory utilization in Scenario 2 (Round-robin)

100 | I ~1

Average Memory Usage (%)

100 200 300 400
Time (Second)

(p) Server average memory utilization in Scenario 2 (Random)

Figure 10: Comparison of the data center servers’ performance in two scenarios

22

330

335

340

345

350

355

Fig. shows the performance of the proposed controller. The controller
throughput is denoted by the number of serviced flows per time, and the average
controller response time is denoted by the time between sending a Packet-In
message from the switch to receiving the Flow-Mod by the controller.

As shown in Fig. and the controller performance is scenario-
independent, with an average throughput of approximately 1450 fps and an
average response time of approximately 7 ms. This indicates that the controller
has been able to achieve high throughput and low delay. However, its modules
do not overload resources. Consuming fewer resources by the controller than
the servers is because the server is responsible for establishing and terminating
all requests, while the controller is responsible for managing a limited number of
switches. This is also deduced from Fig. This figure shows that the number
of packets processed per server is approximately 7 times that of the controller.
As you know, at least 7 messages are involved in establishing a connection, while
the process of managing the rules on the switches by the controller is initiated
with the Packet-In message and terminated with the Flow-Mod message. So the
overload on the controller is much less likely than on servers. Also, servers will
not be exposed to overload by the fair distribution of the load by the controller.

Other reasons the servers may be in trouble are the sudden failure of network
components and the sudden loss of capacity. This failure may be an imposed
corrupted server load on other servers. In order to test this situation, let P1 to
P4 fail at second 80 and recover at second 160, in the first scenario. Similarly,
let P1 to P4 fail at second 240 and recover at second 320, in the second scenario.
Fig. [[3] shows the performance under these conditions. In Scenario 1, the con-
troller is able to transfer the entire load, from second 80 to 160, to P5 to P8,
indicating the speed of the controller action, which, despite the sudden failure
of P1 to P4, still maintained the entire system throughput near to offered-load.
The consumption of resources P5 to P8 has also increased during this period.
The controller resources consumption has also increased in this period. Under
normal circumstances, server resource usage is almost equal and controller re-

source consumption is very low. In Scenario 2, the same process is repeated in

23

1500 PP S AN WA s A Ay AR A AR AV ANy AANA

Q1450 E
o AT M AN b A M g
£ 1400 g
g
o Scenario 1

1350 - Scenario 2 i

1 300 r r r r r r r

0 50 100 150 200 250 300 350 400

Time (Second)

(a) Controller throughput

—_ 25 T 13 13 13 T T T

(2}

£ Scenario 2

g 20 Scenario 1

=

2 15

o

(=%

8 10

14

(]

g 5

[

>

< 0 r r r r r r
0 50 100 150 200 250 300 350 400

Time (Second)

(b) The average response time of the controller

Uittt gt

0 50 100 150 200 250 3
Time (Second)

400

(c) The average controller CPU usage

50 T T T T T T T

401~ - Scenario 1
[scenario 2

30 b

20 b

" el WA inind et i

0 50 100 150 200 250 300 350 400
Time (Second)

Average memory usage (%)

o

(d) The average controller memory usage

Figure 11: Comparison of the controller performance in two scenarios

24

360

365

370

375

seconds 240 to 320, except that the load to P1 to P4 is not equal to P5 to P8,
yet the controller is able to transfer the entire load to the set P5 to P8 in second

240, and redistribute the load across all servers in second 320.

12000
10500 | Qe
9000
7500

—&— By controller - Scenario 1
= By controller - Scenario 2
6000 | ——4— By servers - Scenario 1
4500 —O— By servers - Scenario 2

3000
1500

0 r r r r r r r r

.
0 40 80 120 160 200 240 280 320 360 400

Time (Second)

packets processed per second (PPS)

Figure 12: Number of packets processed per second

3.2.2. Fxperiment 2: Variable load

In the previous section, a constant load of 1500 requests per second (1500
rps) is injected into the system, but in this section, we evaluate variable load
performance. In the previous section, the servers are not exposed to overload
because they had a capacity exceeding 1500 rps (and thus did not exposed to
resource shortage). But in this section, as the load increases, we introduce the
overload phenomenon and test the performance of the servers and controllers.
The results are shown in Fig. The load starts in 1500 and increases to 6000
requests per second (up to 400 seconds) in four steps. Then, as a result of a
sudden loss in the second 400, it again reaches 1500 requests per second. In
the second 500, it jumps to 6000 requests per second with a sudden jump and
reaches 3000 requests per second in the last 100 seconds. Before the second 200,
the server and controller throughputs are very close to the offered-load. In the
second 200, the servers become overloaded until the second 400. During these
200 seconds, the average throughput of the servers is approximately 3000 rps
and the rest of the load provided by the servers is rejected. Servers’ overload

occurs due to a lack of resources especially the processor (Fig. and |14d)).

25

Offered Load

wmm— Throughput of servers 5to 8 -

‘mmmm Throughput of servers 1 to 4 - Sceacnario 1

io 1

(c) Average memory usage

Time (Second)

2000 Throughput of servers 1 to 4 - Sceacnario 2 t t t t t
mmm— Throughput of servers 5 to 8 - Sceacnario 2
2 1500
Q
)
3 10003 -
<
<)
3
[
£ 500 ~ \ , bl
0 I L r L r
0 40 80 120 160 200 240 280 320 360 400
Time (Second)
(a) Throughput
80 I servers 1o 4 - Scenario 1 r c c T — r r
I Servers 5 to 8 - Scenario 1 m B
- - Controller - Scenario 1
X [servers 1o 4 - Scenario 2
~ 60p . i
5 [I'servers 5t0 8- Scenario 2
> [T controller - Scenario 2
o]
=) -
0.
O
%)
o)
o
] i
>
<
40 8 120 160 200 240 280 320 360 400
Time (Second)
(b) Average CPU usage
[servers 1to 4 - Scenario 1 |— T T T T T T
80 I Servers 5 to 8 - Scenario 1 i
:\5 [Controller - Scenario 1
; [servers 1to 4 - Scenario 2
§ 60 [Tservers 5108~ Scenario 2 M Il 4
o [T Controller - Scenario 2
:
& 40 !
=
4]
&
g 20 4
>
<
0 L L
40 80 120 160 200 240 280 320 360 400

Figure 13: Controller performance when P1 to P4 servers fail

26

380

385

390

395

400

405

For example, Fig. shows the server CPU saturation at seconds 250, 350
and 550. Usually, in traditional architecture, the server CPU saturation leads
to approaching the throughput to zero, however, SDN architecture has been
able to prevent the severe throughput loss in the situation of overloading and
utilize the maximum server capacity (3000 rps). Unlike servers, the controller
does not overload at the offered pick load, and its throughput is always in
line with the offered-load. For example, its average throughput in seconds 300
to 400 is approximately 5978 fps. Depending on the throughput, the servers’
response time also varies (Fig. . With overload occurring, response times
also increase by several times. The overload control algorithm may not be able
to restore servers’ throughput to normal after the load is returned to less than
server capacity (return to the state without any overloading), but when the
overload terminates (in second 400), SDN-based architecture has again been
able to provide system throughput to the offered-load using the proper load
distribution. Unlike the incremental load presented in the first 400 seconds,
immediate congestion occurs at second 500. At the same time, despite the 100
percent busy servers’ processor (Fig. , the SDN-based architecture has still
been able to maximize server throughput. Immediate congestion occurs when
a large number of computers request simultaneously. The high throughput of
servers in the sudden load fluctuations indicates the stability of the system.
Finally, in the last 100 seconds, the rejection call rate is negligible, and the
maximum throughput and the response time is approximately 10 milliseconds.

It is worth noting that in a time interval of seconds 200 to 400 or 500 to 600
in which the input load is more than the network resources, we can achieve to
the throughput near to offered-load by increasing server resources and removing

their hardware limitations.

3.2.3. Experiment 3: Comparison with the traditional Three-layer architecture
Table[I] provides a comparison of two traditional Three-layer and SDN-based
architectures in terms of throughput, delay, and resource consumption. As can

be seen, SDN technology has been able to significantly improve the quality of

27

7500 : : T T T T 17500
+ Offered Load
Controller Throughput
" el s e e s e 6000
6000 '0 """ Servers Throughput W T LR b
==-%~=" Rejection Rate | ‘ 2500
7 4500 ko | \
g 08300&0 OO0 00@@3830 3000
3 L sl el 1 L oK O, H I e Sk
§ 3000 Py -G i H ok
O ()
PO 1500
500Kttt / Voo
6923833, ! OO
)@eeoe 2 'i 1
IR s L "I"v
100 200 300 400 500 600 700
Time (Second)
(a) Throughput
1000 T T T T T T T
100 s

Average response time (ms)
RRRRRRRRRRIIRIRLILALANE
NN e

MM A

it]

w
S
S

Time (Second)

(b) Average response time of servers

=0 = Seners

9 1007 = 1 = controller
b
2
3 80
)
50 150 250 350 450 550 650
Time (Second)
(c) Average CPU usage
T T T
A == Q .é\
£ 100
o ‘, ‘\ ,
" ’ K ’
3 *
E o \, /7 N
5 5 R T ST - X
2 R o® . b, o
g * *
z 2 aeet’ * . o" ¢
et -? I r n I
50 150 250 350 450 550 650
Time (Second)

(d) Average memory usage

Flow rate (fps)

Figure 14: Performance over time and with different offered-loads

28

410

415

420

425

Table 1: Comparison of traditional Three-layer and SDN architectures

1500 rps 2000 rps 2500 rps
Traditional | SDN | Traditional | SDN | Traditional | SDN
Throughput (rps) 956 1432 1432 1897 1998 2456
Delay (ms) 28 12 57 13 98 14
Average CPU Usage (%) 25 16 34 18 44 23
Average Memory Usage (%) 27 17 37 20 55 24

service of server requests including throughput, delay, and resource consump-

tion.

3.3. Discussion

The higher performance of our proposed method comes from an efficient
and integrated framework based on SDN concept, which decouples the network
control from the data forwarding by direct programming. With its inherent
decoupling of control plane from data plane, SDN offers a greater control of
a network through programming. This combined feature would bring poten-
tial benefits of enhanced configuration, improved performance, and encouraged
innovation in network architecture and operations. Especially, SDN offers a
promising alternative for traffic steering by programmatically configuring for-
warding rules. So, our proposed architecture is indebted to the SDN concept
and global view of entire network for performance improvement. Compared to
SDN-based approach, the traditional development of approach leads to inef-
ficiency in the use and management of infrastructure hardware resources. As
opposed to traditional hardware-centric products where control and data planes
are embedded into a closed equipment, SDN allows the control plane logic to
be decoupled from the network hardware (data plane), and it moves the con-

trol logic to a programmable software component, the SDN contmllmﬂ SDN

4we want the control of the network to be centralized rather than having each device be

its own island, which greatly simplifies the network discovery, connectivity and control issues

that have resulted with the current system. Having this overarching control actually makes

29

430

435

440

445

450

controller and APIs (such as OpenFlow) are capable of 1.2/3/4-based policy
enforcement.

So overall, by implementing a new orchestration level, SDN can tackle the
inflexibility and complexity of the traditional network. SDN provides enterprises
with the ability to control their networks programmatically and to scale them
without affecting performance, reliability, or user experience. The data and
control-plane abstractions constitute the immense worth of SDN. By eliminating
the complexity of the infrastructure layer and adding visibility for applications
and services, SDN simplifies network management and brings virtualization to
the network. It abstracts flow control from individual devices to the network
level. Network-wide data-flow control gives administrators the power to define
network flows that meet connectivity requirements and address the specific needs

of discrete user communities.

4. Conclusion

In this paper, we proposed an SDN-based framework for load balancing in
data centers. This framework was applied to the well-known topologies Three-
layer, Fat-Tree, BCube, and Dcell, each implementing a real platform and con-
ducting multiple experiments on each.We also proposed a proactive load bal-
ancer mechanism that uses a PID controller for load balancing between data
center servers. This mechanism is used as a SDN controller module. The fea-
tures of this controller are that it is applicable to all four data center archi-
tectures. In the testbed, we used Open vSwitch v2.4.1 and Floodlight v1.2 to
implement the OpenFlow switch and controller. We experimented each archi-
tecture under three tests. The first experiment is the fixed load inject to the
data center, the second experiment is the variable load inject to the data center,

and the third experiment is to compare traditional architecture with SDN based

the whole network programmable instead of having to individually configure each device every

time an application is added or something moves.

30

455

460

465

470

475

architecture. Observations and experiments show that all four SDN-based ar-
chitectures have been able to well distribute the load across algorithms such as
the proposed method or even Round-Robin. They also achieve higher evalua-
tion criteria than traditional architecture and have significant improvements in
parameters such as throughput, delay, and resource consumption. One of the
future works of this paper is to present a framework based on SDN and NFV
(Network Functions Virtualization) technologies in combination, to present vir-
tual servers in data centers in a VNF (Virtual Network Function) manner and
optimize their network communications by SDN controller. In this case, the
energy consumption of data centers can be optimized. Mathematical modeling

of this framework will also be followed in our future work.

Acknowledgment

This work was supported by the Quchan University of Technology (Grant
Nos. 11942).

References

[1] A. Darabseh, M. Al-Ayyoub, Y. Jararweh, E. Benkhelifa, M. Vouk,
A. Rindos, Sddc: A software defined datacenter experimental framework,
in: 2015 3rd International Conference on Future Internet of Things and

Cloud, 2015, pp. 189-194. doi:10.1109/FiCloud.2015.127.

[2] T. Hu, Z. Guo, P. Yi, T. Baker, J. Lan, Multi-controller based software-
defined networking: A survey, IEEE Access 6 (2018) 15980-15996.

[3] Y. Zhang, L. Cui, W. Wang, Y. Zhang, A survey on software defined net-
working with multiple controllers, Journal of Network and Computer Ap-

plications 103 (2018) 101-118.

[4] J. Xie, F. R. Yu, T. Huang, R. Xie, J. Liu, C. Wang, Y. Liu, A survey of

machine learning techniques applied to software defined networking (sdn):

31

http://dx.doi.org/10.1109/FiCloud.2015.127

480

485

490

495

500

505

[10]

[11]

[12]

[13]

Research issues and challenges, IEEE Communications Surveys & Tutorials

21 (1) (2018) 393-430.

V. S. N. Amulothu, A. Kapur, K. Khani, V. Shukla, Adaptive software
defined networking controller, uS Patent App. 10/257,073 (Apr. 9 2019).

K. TaKeaWays, The software-defined data center is the future of infras-

tructure architecture, strategies.

M. Carlson, A. Yoder, L. Schoeb, D. Deel, C. Pratt, C. Lionetti, D. Voigt,
Software defined storage, Storage Networking Industry Assoc. working

draft (2014) 20-24.

U. Bayram, D. Divine, P. Zhou, E. W. Rozier, Improving reliability with
dynamic syndrome allocation in intelligent software defined data centers,
in: 2015 45th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, IEEE, 2015, pp. 219-230.

V. Toérhonen, Designing a software-defined datacenter, Master’s thesis

(2014).

E. W. Rozier, P. Zhou, D. Divine, Building intelligence for software de-
fined data centers: modeling usage patterns, in: Proceedings of the 6th

International Systems and Storage Conference, ACM, 2013, p. 20.

U. Pascinski, J. Trnkoczy, V. Stankovski, M. Cigale, S. Gec, Qos-aware
orchestration of network intensive software utilities within software defined

data centres, Journal of Grid Computing 16 (1) (2018) 85-112.

L. Cui, X. Hailing, D. Chen, Distributed global load-balancing system for
software-defined data centers, uS Patent 9,998,530 (Jun. 12 2018).

Y. Hu, C. Li, L. Liu, T. Li, Hope: Enabling efficient service orchestration
in software-defined data centers, in: Proceedings of the 2016 International

Conference on Supercomputing, ACM, 2016, p. 10.

32

510

515

520

525

530

[14]

[16]

[18]

[19]

R. Touihri, S. Alwan, A. Dandoush, N. Aitsaadi, C. Veillon, Novel opti-
mized sdn routing scheme in camcube server only data center networks, in:
2019 16th IEEE Annual Consumer Communications Networking Confer-
ence (CCNC), 2019, pp. 1-2. doi:10.1109/CCNC.2019.8651677.

Mingwei Yang, H. Rastegarfar, I. B. Djordjevic, Physical-layer adaptive
resource allocation in software-defined data center networks, IEEE/OSA
Journal of Optical Communications and Networking 10 (12) (2018) 1015
1026. doi:10.1364/J0CN.10.001015.

Y. Xu, Y. Yan, Z. Dai, X. Wang, A management model for sdn-based
data center networks, in: 2014 IEEE Conference on Computer Commu-
nications Workshops (INFOCOM WKSHPS), 2014, pp. 113-114. |doi:
10.1109/INFCOMW.2014.6849181.

Wei Hou, L. Shi, Yingzhe Wang, Fan Wang, Hui Lyu, M. St-Hilaire, An
improved sdn-based fabric for flexible data center networks, in: 2017 In-
ternational Conference on Computing, Networking and Communications

(ICNC), 2017, pp. 432-436. |doi:10.1109/ICCNC.2017.7876167.

H. Yao, W. Mugqing, L. Shen, An sdn-based slow start algorithm for data
center networks, in: 2017 IEEE 2nd Information Technology, Networking,
Electronic and Automation Control Conference (ITNEC), 2017, pp. 687
691. |[doi:10.1109/ITNEC.2017.8284820.

Jian Di, Quanquan Ma, Design and implementation of sdn-base qos traffic
control method for electric power data center network, in: 2016 2nd IEEE
International Conference on Computer and Communications (ICCC), 2016,

pp. 2669-2672. doi:10.1109/CompComm.2016.7925182.

P. Kathiravelu, Software-defined networking-based enhancements to data
quality and qos in multi-tenanted data center clouds, in: 2016 IEEE Inter-
national Conference on Cloud Engineering Workshop (IC2EW), 2016, pp.
201-203. |[doi:10.1109/IC2EW.2016.19.

33

http://dx.doi.org/10.1109/CCNC.2019.8651677
http://dx.doi.org/10.1364/JOCN.10.001015
http://dx.doi.org/10.1109/INFCOMW.2014.6849181
http://dx.doi.org/10.1109/INFCOMW.2014.6849181
http://dx.doi.org/10.1109/INFCOMW.2014.6849181
http://dx.doi.org/10.1109/ICCNC.2017.7876167
http://dx.doi.org/10.1109/ITNEC.2017.8284820
http://dx.doi.org/10.1109/CompComm.2016.7925182
http://dx.doi.org/10.1109/IC2EW.2016.19

535

540

545

550

555

560

[21] K. Xie, X. Huang, S. Hao, M. Ma, P. Zhang, D. Hu, E?® mc: Improving
energy efficiency via elastic multi-controller sdn in data center networks,

IEEE Access 4 (2016) 6780-6791. doi:10.1109/ACCESS.2016.2617871.

[22] H. Zhu, H. Fan, X. Luo, Y. Jin, Intelligent timeout master: Dynamic
timeout for sdn-based data centers, in: 2015 IFIP/IEEE International
Symposium on Integrated Network Management (IM), 2015, pp. 734-737.
doi:10.1109/INM.2015.7140363.

[23] R. Hwang, Y. Tang, Fast failover mechanism for sdn-enabled data centers,
in: 2016 International Computer Symposium (ICS), 2016, pp. 171-176.
doi:10.1109/ICS.2016.0042.

[24] U. Zakia, H. Ben Yedder, Dynamic load balancing in sdn-based data center
networks, in: 2017 8th IEEE Annual Information Technology, Electronics
and Mobile Communication Conference (IEMCON), 2017, pp. 242-247.
doi:10.1109/IEMCON.2017.8117206

5. Appendix: Supplementary experiments and results

5.1. Experimental results of the Fat-Tree architecture

We use 10 OpenFlow switches and 8 servers according to Fig3] architecture

and repeat the experiments as before to test this architecture.

5.1.1. Experiment 1: Fized load

There are two scenarios in this experiment. In Scenario 1, each server’s
background traffic is equal to 500 bps. In Scenario 2, the background traffic for
Servers 1 to 4 (P1 to P4) is 1000 and for the Servers 5 to 8 (5P to P8) is 500
bps. A fixed offered-load of 400 seconds at a rate of 1500 requests per second
is also injected into the system by a traffic generator. Figures [I5] and [16] show
the performance of the servers.

As can be seen from Figures[15| and the throughput and average delay in

both scenarios are slightly improved compared to the Three-layer architecture.

34

http://dx.doi.org/10.1109/ACCESS.2016.2617871
http://dx.doi.org/10.1109/INM.2015.7140363
http://dx.doi.org/10.1109/ICS.2016.0042
http://dx.doi.org/10.1109/IEMCON.2017.8117206

1600

o 1400
e
5 1200
2
=)
3 1000 mm mm SDN-based
£ 800 s Round-Robin i
[Random
600 r r r r r r
0 50 100 150 200 250 300 350 400
Time (Second)
(a) Servers’ throughput in scenario 1
1600f T T T T T T T i
g 1400
= 1200
>
g
5 1000 — Offered load
= 800 s SDN-based

mmm—— Round-Robin

600 e Random - - - .
0 200 250 300 350 400

Time (Second)

(b) Servers’ throughput in scenario 2

SDN-based
Round-Robin

L A e et

[
=]
1

N
o
‘jé

N
o
7
1

Average Response Time (ms)
o

0 50 100 150 200 250 300 350 400
Time (Second)

(c) Servers’ average response time in scenario 1

\
I

(9]
o

T T T T T T T

~— SDN-based o

Round-Robin o
ot—1 Random r r r r
0 50 100 150 200 250 300 350 400
Time (Second)

Average Response Time (ms

(d) Servers’ average response time in scenario 2

Figure 15: Comparison of the performance of data center servers in two scenarios

35

565

570

575

Table 2: Comparison of traditional Fat-Tree architecture with SDN

1500 rps 2000 rps 2500 rps
Traditional | SDN | Traditional | SDN | Traditional | SDN
Throughput (rps) 844 1389 1376 1787 1997 2497
Delay (ms) 24 11 55 12 96 12
Average CPU Usage (%) 26 15 33 16 42 20
Average Memory Usage (%) 23 14 35 18 53 21

The reason is that the Fat-Tree architecture (compared to the Three-layer ar-
chitecture) is divided into two general sections. OpenFlow switches are divided
into two subsystems in this architecture, which will result in better load balanc-
ing between the 8 servers. As in the previous sections, the results of Scenario
2 is slightly worse than the results of Scenario 1 due to the lack of background
traffic.

5.1.2. Experiment 2: Variable load

In the previous section, a constant load of 1500 requests per second (1500
rps) is injected into the system, but in this section, we evaluate variable load
performance. The results are shown in Fig. [[7] These results are almost similar

to those obtained from the Three-layer architecture.

5.1.3. Experiment 3: Comparison with the traditional Fat-Tree architecture
Table 2] provides a comparison of traditional Fat-tree and SDN-based archi-

tectures in terms of throughput, delay, and resource consumption. As can be

seen, SDN technology has been able to significantly improve the quality of ser-

vice of server requests including throughput, delay, and resource consumption.

5.2. Ezperimental results for BCube architecture

We use 8 OpenFlow switches and 16 servers in accordance with Fig. [B] to

test the BCube architecture.

36

< 607 N soN-based g —
g B Round-Robin
o [JRandom
w 40+ -
]
2
S
o 201 N
o)
o
o
>
< o0
100 200 300 400
Time (Second)
(a) Servers’ average CPU usage in scenario 1
;\: 60 T —— T T
o)
S
£ 40F g
o)
o
(@) 20k I SDN-based |
> I Round-Robin
§ [TRandom
<]

100 200 300 400
Time (Second)

(b) Servers’ average CPU usage in scenario 2

< 60~ NI sDN-based . : .
o I Round-Robin

> [TRandom

D 40 ~

>

o

=

[0}

= 20 g
(0]

(o))

©

[0)

> 0

< 100 200 300 400

Time (Second)

(c) Servers’ average memory usage in scenario 1

£ 60 | NN SDN-based] : .
° I Round-Robin

% [C—"""1 Random

(2]

=] 40

>

o

=

Q

= 20 |
[0]

[®)]

@

(0]

> 0

< 100 200 300 400

Time (Second)
(d) Servers’ average memory usage in scenario 2

Figure 16: Comparison of data center servers’ resource usage in two scenarios

37

Call rate (rps)

7500 f —A&— Offered Load . . - T 7500
Controller Throughput
6000 --*-' Servers Throughput

- -* =" Rejection Rate

4500 FEURITE

St Wkl 16000

an S

\ 14500
13000
¥

11500

100 200 300 400 500 600 700
Time (Second)

(a) Throughput

1000 T T T T T
o : H i :
g N : i Famg'atnd
S 10mNAA NN E
<)
&
2

r r r r r r r

1
0 100 200 300 400 500 600 700

Time (Second)

(b) Servers average response time

100F 13

Controller
Servers

100

2 75
2
S 50
g 25
0
50 150 250 350 450 550 650

Time (Second)

(c) Average CPU usage
50 T T T T T T T

Average memory usage (%)
N
(&)}
T
1

50 150 250 350 450 550 650

Time (Second)

(d) Average memory usage

Figure 17: Performance over time and with different offered-loads

38

rate

H

Flo\

580

585

590

595

600

605

5.2.1. Experiment 1: Constant load

The first experiment, as described in the previous sections, consists of two
scenarios with different background traffic. In Scenario 1, each server’s back-
ground traffic is equal to 500 packets per second. However, in the second sce-
nario, the background traffic of the servers are not equal. The results are shown
in Fig.

As shown in Fig. [I§ and the figures in the previous sections, servers are
less efficient in the BCube architecture than in the Fat-Tree architecture but
relatively better than the Three-layer architecture. This is also illustrated in
the resources usage by the servers in Fig. [19]

As can be seen, the servers resource usage in this architecture is slightly more
than in the Fat-Tree architecture. This is because, in the Fat-Tree architecture,
all the components are divided into two parts, and access to each server with
fewer jumps (links) is possible, while in the BCube architecture, access from the
source server to the destination server is possible with more jumps.

It is worth noting that all three examined architectures have correctly dis-
tributed loads, and the process of the three SDN-based, Round-Robin and Ran-
dom algorithms are consistent in all three architectures, having no significant

difference. For example, Scenario 2 consumes more resources than Scenario 1

(Fig. [19).

5.2.2. Experiment 2: Variable load

In the previous section, a constant load of 1500 requests per second (1500
rps) is injected into the system, however, in this section, we evaluate variable
load performance. The results are shown in Fig20] These results are almost
similar to those obtained from previous architectures.

As can be seen from Fig. and the amount of resources consumed
by the controller is not comparable to the servers, and therefore the probability

of controller bottlenecks is very low.

39

— Offered load
1500 - ~— ® SDN-based
8 — I Round-Robin

g Random
5
a :
< 1000
=)
<
=
-
500 r r r r r r r
0 50 100 150 200 250 300 350 400
Time (Second)
(a) Servers’ throughput in Scenario 1
3 3 L T 3 3 3

1500 , TR
— R »m s s;p. -'yw“‘“ e o ""“"‘J»J 7 ey ‘ 5
7 /4 g2 .
Qo Offered load
= ———— SDN-based
a —+—— Round-Robin
-g., — % Random
S 3
[
L
'_

r r r r

500 -
0

50 100 150 200 250 300 350 40C
Time (Second)

(b) Servers’ throughput in Scenario 2

\
)

—t— Random

T

50 100 150 200 250 300 350 400
Time (Second)

SDN-based
Round-Robin 1
r r r r

Average Response Time (ms

-20

(c) Servers’ average delay in Scenario 1

\
)

[e]
o

40 -

ZT

0 r r r r

0 50 100 150 200 250 300 350 400
Time (Second)

Average Response Time (ms

(d) Servers’ average delay in Scenario 2

Figure 18: Comparison of the performance of data center servers in two scenarios

40

610

< 60 T T T T
x _
° -
&
2 40 -
-}
5 [—
o 20 | I Round-Robin b
% [T Random
)
>
< 0

100 200 300 400

Time (Second)

(a) The average CPU usage in Scenario 1
< 60 T T T T
S — —
o 50 i
&
£ 40 N
7 30- -
(@] I SDN-based
g 20 | P Round-Robin i
© 10 [Random -
o
>
< o0

100 200 300 400
Time (Second)

(b) The average CPU usage in Scenario 2
Figure 19: Comparison of resource usage by the data center server in two scenarios

5.2.8. Experiment 3: Comparison with traditional BCube architecture

Table [3] provides a comparison of traditional BCube and SDN-based archi-
tectures in terms of throughput, delay, and resource consumption.

As can be seen, SDN technology has been able to significantly improve the
quality of service of server requests including throughput, delay, and resource

consumption.up to here, in all three studied architectures, SDN technology has

had a great impact on server performance.

Table 3: Comparison of traditional BCube architecture with SDN

1500 rps 2000 rps 2500 rps
Traditional | SDN | Traditional | SDN | Traditional | SDN
Throughput (rps) 824 1442 1354 1987 2021 2496
Delay (ms) 23 12 56 13 97 11
Average CPU Usage (%) 25 14 34 17 41 23
Average Memory Usage (%) 27 17 36 20 54 22

41

7 - Offered Load
500 -'i ->.:" Controller Throughput 1'7500
6000 f| ST o Tt 16000
& 4500 14500 £
g g
% 3000 83000 3
(&) o
oot 11500
150Gf AP

0 100 200 300 400 500 600 700

Time (Second)

(a) Throughput

1000

100

10

Average response time (ms)

100 200 300 400 500 600 700

Time (Second)

(b) Average delay

T T
I Controller
I scrers

100

T

50

Average CPU Usage (%)

0 150 250 350 450 550 650
Time (Second)

(c) Average CPU usage of controllers and servers

100 T T T T

T T
I Controller
I scnrers

Average Memory Usage (%)
n
o o

0 150 250 350 450 550 650
Time (Second)

(d) Average memory usage of controllers and servers

Figure 20: Performance over time and with different offered-loads

42

615

620

625

630

635

640

5.8. Experimental results of Dcell architecture

We use 5 OpenFlow switches and 20 servers in accordance with the archi-

tecture in Fig. [7] to test the Dcell architecture.

5.3.1. FExperiment 1: Constant load

This experiment is also a repetition of the first experiment in the previous
sections. The first experiment involves two scenarios with different background
traffic. In Scenario 1, each server’s background traffic is equal to 500 bps. In
Scenario 2, the background traffic for servers 1 to 10 (P1 to P10) is 1000 and
for servers 11 to 20 (P11 to P20) is 500 bps. Fig. illustrates the performance
of SIP servers in this architecture.

As can be seen, the delay difference of the three SDN-based, Round-Robin
and Random methods is less than in the previous architectures. In other words,
the performance of these three algorithms in this architecture is close to each
other (compared to the previous three).

The results of consuming resources such as CPU and memory are almost
similar to the BCube architecture and we refuse to explain them here.

However, as can be seen from the results above, the SDN controller has been
able to distribute the load with high throughput and low latency between the

servers.

5.3.2. Experiment 2: Variable load

This section evaluates the performance of variable loads. However, since the
results of this section are similar to those of the BCube architecture, we refuse
to explain them again. It should be noted that the intended architecture for
Dcell consists of five cells and the transfer of packets from one cell to another
is slightly delayed compared to other architectures. For example, according to
our observations, this architecture had a slightly longer delay than the previous
architectures in sending loads from server 1 in cell 1 to server 2 in cell 2. It
should be noted, however, that SDN-based architectures have greatly improved

service quality than traditional architectures.

43

Throughput (rps)

Throughput (rps)

\
l

Average Response Time (ms

Average Response Time (ms

1500

1000

500

1500

1000

500
0

— SDN-based

Offered load

Round-Robin
Random

A S e A ANV A M A AP A A AR AN ANV N v

r r r r r

0 50 100 150 200 250 300 350 400

Time (Second)

(a) Servers throughput in Scenario 1

T T T T T T T

AV A A A AN A AN A A A IABAYANA S A A A AAA N Ao pr]

L ————— SDN-based 4

Offered load

 Round-Rabin MNMWWWMJ"WW‘J\WN\WW\N

Random

A AWV VMU M IAA AU, MW i

r r r r r

50 100 150 200 250 300 350 400
Time (Second)

(b) Servers throughput in Scenario 2

— % SDN-based
~——® Round-Robin

—<— Random
-

50 100 150 200 250 300 350 400
Time (Second)

(c) Servers delay in Scenario 1

< SDN-based
~® Round-Robin

—<>— Random

r r r r

50 100 150 200 250 300 350 400
Time (Second)

(d) Servers delay in Scenario 2

Figure 21: Server performance over time

44

645

Table 4: Comparison of traditional Dcell architecture with SDN

1500 rps 2000 rps 2500 rps
Traditional | SDN | Traditional | SDN | Traditional | SDN
Throughput (rps) 1163 1445 1451 1998 2065 2498
Delay (ms) 22 12 55 11 98 12
Average CPU Usage (%) 24 11 33 18 42 22
Average Memory Usage (%) 25 16 33 18 55 23

5.8.3. Experiment 3: Comparison with traditional Dcell architecture

Table [] provides a comparison of traditional Dcell and SDN-based architec-
tures in terms of throughput, delay, and resource consumption.

As can be seen, SDN technology has been able to significantly improve the
quality of service of server requests including throughput, delay, and resource

consumption.

45

	Introduction
	Related work
	Motivation
	Contributions
	Organization

	Designing an SDN based enterprise data center framework
	Three-layer architecture
	Fat-Tree architecture
	BCube architecture
	Dcell architecture
	Designing the SDN controller

	Testing and evaluating the proposed schemes
	Implementation testbed
	Performance evaluation and experimental results
	Experiment 1: Fixed load
	Experiment 2: Variable load
	Experiment 3: Comparison with the traditional Three-layer architecture

	Discussion

	Conclusion
	Appendix: Supplementary experiments and results
	Experimental results of the Fat-Tree architecture
	Experiment 1: Fixed load
	Experiment 2: Variable load
	Experiment 3: Comparison with the traditional Fat-Tree architecture

	Experimental results for BCube architecture
	Experiment 1: Constant load
	Experiment 2: Variable load
	Experiment 3: Comparison with traditional BCube architecture

	Experimental results of Dcell architecture
	Experiment 1: Constant load
	Experiment 2: Variable load
	Experiment 3: Comparison with traditional Dcell architecture

