
HAL Id: hal-03047989
https://hal.science/hal-03047989

Submitted on 9 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A seamless DFT/FFT self-adaptive architecture for
embedded radar applications

Julien Mazuet, Michel Narozny, Catherine Dezan, Jean-Philippe Diguet

To cite this version:
Julien Mazuet, Michel Narozny, Catherine Dezan, Jean-Philippe Diguet. A seamless DFT/FFT
self-adaptive architecture for embedded radar applications. The International Conference on
Field-Programmable Logic and Applications (FPL), Aug 2020, Gothenburg (virtual), Sweden.
�10.1109/FPL50879.2020.00029�. �hal-03047989�

https://hal.science/hal-03047989
https://hal.archives-ouvertes.fr

A seamless DFT/FFT self-adaptive architecture for
embedded radar applications

Julien Mazuet1,2, Michel Narozny1, Catherine Dezan2, Jean-Philippe Diguet2
1Thales LAS-France, Élancourt, France, 2Lab-STICC, CNRS, UBO / UBS, Brest / Lorient, France

julien.mazuet@univ-ubs.fr

Abstract—Radar is one of the domains where adaptability is
paramount and algorithms must be adapted to system state.
However, most systems include static implementations on FPGA
or ASIC to process the massive amount of data from multiple
sensors in parallel. The classic approach is to configure hard-
ware logic through registers to switch radar modes, requiring
to hardwire all configurations. In embedded systems, FPGA
dynamic partial reconfiguration (DPR) is a promising solution
to reuse scarce resources. In this paper, we use DPR for radar
processing in order to switch between a classic discrete Fourier
transform (DFT) sum and a fast Fourier transform (FFT) to
enhance Doppler extraction. Our study explores the pros and
cons of both methods. Based on these observations, we propose
a new architecture and decision method that relies on Radar
QoS for enabling an efficient self-adaptive solution. Finally, we
provide a case study and a hardware-in-loop simulation with a
reconfigurable radar implementation.

Index Terms—FPGA, DPR, radar, QoS, DFT

I. INTRODUCTION

Modern embedded radar applications require high perfor-
mance architectures. This point is specially critical in small
aircraft and unmanned aerial vehicles. But a radar system can
inherently leverage data parallelism, which can be efficiently
implemented on a FPGA [1]. For instance, active electron-
ically scanned array (AESA) radar have multiple channels
which can be processed independently by HW accelerators
[2]. Besides, these applications have strong performance and
latency constraints. Furthermore, a radar system has different
modes [3], like high pulse recurrence frequency (PRF) and low
PRF, or more complex modes like search and tracking or air-
air and air-ground. These modes have different motivations
and requirements. The mode adaptation is often ensured by
runtime software adaptation and hardware reconfigurations
through dedicated registers. However, this approach means
that configurations are simultaneously implemented within
the same programmable logic (PL). Important configuration
changes result in the PL overuse. Consequently, designers
must limit the performances of the target algorithms to fit with
available PL resources. In that perspective, using DPR appears
as a promising solution. However, this approach requires a spe-
cific methodology to allow an efficient collaboration between
application experts who can determine the algorithm choices
and specify the reconfiguration decision making with hardware
experts who can design highly optimized architectures using
CAD tools. In this work we apply this methodology to design
the first solution that fully benefit of FFT and DFT compliant
configurations to mitigate the tradeoff between resolution and
latency according to user requirements.

Section II presents a state of the art on DFT in the radar
domain, and the use of reconfiguration. Section III details the
DFT algorithm in the context of radar systems and explains

the two main methods to compute it. Section IV proposes
a methodology to take efficient reconfiguration decisions at
runtime. A methodology to create an adaptive reconfigurable
DFT for radar, is described in section V. Section VI shows and
comments the results obtained through a hardware in the loop
(HIL) implementation on a case study. Section VII concludes
the paper and draws directions for future work.

II. STATE OF THE ART

Reconfigurable FPGA have been strongly used to efficiently
implement signal processing applications [4] but few works
have addressed the question of radar [5]–[7]. In radar tracking
systems, the environment is composed of targets, clutter and
other perturbations, which can be characterized by computing
a range-Doppler map of the radar signal (i.e. a discrete
version of the time-frequency analysis first described in [8]).
In practice, this function is composed of a matched filter and
a series of Fourier transforms. This transform is the core of
our study, it can be performed with different methods [9]. The
main methods are the FFT [10], [11] and the classic DFT
summation [12], [13]. The two approaches present different
characteristics in terms of throughput, latency, processing and
memory resources, that can benefit to different phases of ap-
plication scenarios. In the context of multi-channel radars, the
range-Doppler function becomes a major concern [14]. Indeed,
although the AESA spatial degrees of freedom give extra
information on the targets, this function must be computed
for every channel, consuming a lot of logic resources. In this
context, the DFT method used for the range-Doppler transform
is fixed at design time. Hence, the system cannot benefit
from different DFT architectures. DPR, which is proved to be
particularly efficient in the signal processing field [15]–[17],
permits to overcome this limitation.

The first contribution of this paper is a reconfigurable
architecture which allows to use the proper version of DFT
algorithms according to application needs, without the re-
source consumption overhead. This architecture limits the
impact of the reconfiguration time by performing an original
progressive reconfiguration that opens new perspectives. The
second contribution is a method to take the reconfiguration
decision at the right time in a radar application.

III. DFT OPTIONS FOR RADAR PROCESSING

A. DFT algorithm
The DFT algorithm (defined by Eq. (1)) is used to extract

the spectral distribution of a discrete signal.

Ak =

N−1∑
n=0

W kn
N an where W kn

N = e−i
2π
N ×kn (1)

This equation allows the DFT computation of any size N
of discrete signal. However, all the temporal samples an are
required to compute a single spectral sample Ak, k ∈ [0, N [.
This algorithm is well known and many implementations exist
in the literature, with complexities going from O(Nlog(N))
for the FFT to O(N2) for a direct implementation of Eq. (1).
However, in some applications, this direct DFT implementa-
tion can be useful to order certain operations.

B. DFT concerns in radar processing
The DFT in radar processing is used to extract a Doppler

frequency from the temporal signal. To this end, the system
downsamples the input data and performs a DFT over the
different sub-signals. The combination of a matched filter
and this transform is known as ‘range-Doppler processing’.
Fig. 1-a) depicts this downsampling and the DFT processing
to illustrate our statements. This manipulation is known as a
‘corner turn’ in radar and sonar domains [10], [11].

a)

Sl
ow

-t
im

e
ax

is
(0
→
N

)

Range axis (0→M)

Samples order
of arrival

Samples order
for DFT/FFT

Sample before DFT starts

Sample before FFT starts

b)

D
op

pl
er

ax
is

(0
→
N

)

Range axis (0→M)

Computing capacity of DFT

Computing capacity of FFT

Doppler processing

Fig. 1. Constitution of a range-Doppler radar map. a) down-sampling and
DFT. b) Representation of the computing capacities of DFT and FFT.

Fig. 1 a) shows that to complete the first DFT, we need to
wait for (N−1)×M+1 points to arrive. However, some DFT
algorithms allow to begin the computation earlier. If we can
process the input data as soon as we receive it, it is possible
to reduce the DFT latency. Otherwise, we have to wait for a
significant amount of data to arrive, which leads to a higher
latency. This latency depends on the algorithm used for DFT.

C. Discrete Fourier transform for dataflow
An important property of the direct implementation of DFT,

which we refer to as DFT in the rest of this paper, is its ability
to process inputs equally in any order. It is widely used in radar
systems to overcome the difficulty of processing the data in a
different order from arrival (Fig. 1-a)).

Consuming the data in the natural order of arrival minimizes
latency since computations start earlier and the O(N2) com-
putations are then covered as the data comes in. However, all
partial sums of Eq.(1) need to be stored locally in the FPGA
for every output, in order to keep the short latency benefit.
But in contrast with FFT, DFT can compute a selected part
of the spectral domain from the full time domain, reducing
the number of computation while ensuring spectral accuracy.
Hence, DFT allows to adapt the size of the explored spectrum

to available storage and logic resources on FPGA. Eventually,
we can summarize as follows:
• pros: dataflow processing, low latency, no need to buffer

the input data, possibility to compute a selected interval
• cons: high DSP and BRAM consumption per output

sample, limited range-Doppler exploration because of the
limited output samples

D. Fast Fourier transform for block processing
In contrast to DFT, FFT algorithms use more efficiently both

processing and memory resources, by means of computation
results reuse. However, a drawback of FFT is the inability
to process the inputs in order of arrival. With the DIF FFT
algorithm for instance, N2 +1 input samples are required before
the first computation can start. The main issue is the latency
penalty. A second one is the incapacity to store all the input
samples in the FPGA (N2 × number of distance gates ×
number of channels). Hence, an external DDR memory is
used and introduces an additional latency, but it also free up
resources that can be used to compute the full spectral domain.
Eventually, we can summarize as follows:
• pros: low resources consumption per output sample, full

size range-Doppler exploration
• cons: high latency, data buffering is mandatory

E. Conclusion on DFT algorithms for radar applications
At radar startup, the system does not know the exact position

of the tracked objects in Doppler and space domains. At
this time of the mission, it is critical to have information on
the full space to emphasize detection. Moreover, the latency
is not critical since no tracking is launched, thus a FFT is
the right solution. Once detection is successful the system
has to start tracking, which requires other algorithms (e.g.
angle of arrival estimation, filtering with Kalman filters). The
latency constraint is strengthened. Furthermore, the system
now has a precise estimation of the target range and speed. So,
the extensive overview on the range-Doppler domain can be
exchanged for reduced latency, allowing the system to perform
additional required functions. This trade-off on the exploration
space of the two algorithms is illustrated in Fig. 1-b).

This describes the original idea of our study, but we still
need to define the reconfiguration decision-making.

IV. QOS AWARE RECONFIGURATION CONTROLLER

Upon startup, the system uses the FFT algorithm. Once de-
tection is successful, we could change for the DFT algorithm.
However, a successful detection cannot guarantee a positive
detection in the next radar coherent processing interval (CPI).
Indeed, a poor signal to noise ratio (SNR) or signal to clutter
ratio (SCR) may result in the loss of the target. Such changes
in SNR and SCR can come from radar cross section (RCS)
changes, fluctuation loss or environment configuration.

The decision to reconfigure the system requires a more
accurate QoS indicator than the simple Boolean one. We need
a value which reflects the probability to successfully detect the
target. A good solution is to use the probability of detection
(Pd), which is in practice unknown but can be approximated
from a quantifiable variable. One possible approach is to
record the positive and negative detections of the target, and
compute the target detection frequency. To use this approach,
we need to ensure that the plots (i.e. positions where detection

is positive) come from the same object. This can be achieved
by a probabilistic data association filter (PDAF) [18]. This
filter uses the log-likelihood of the innovation (`) computed
by a Kalman filter to determine if the plot is likely to be
related to the observed target. The PDAF associates the plots
to a track with a validate function V (k) described in Eq. (2).

V (k) =

{
1, if `(k) > γ
0, if `(k) < γ

(2) Lq(k + q) = 1
q

q∑
i=1

V (k + i) (3)

Where : `(k) : log-likelihood of the innovation at plot k
γ : validation threshold

The detection ratio over q samples is given by Eq. (3). The
target detection is confirmed when the frequency exceeds a
defined threshold λ, so we can simply define the QoS criterion
as the detection ratio: fQoS(k + q) = Lq(k + q). A PDAF is
required in any radar tracking system, so the QoS function
does not introduce a computational overhead.

The required configuration sk can take one of the two
states of S : {SDFT , SFFT }, which are the DFT and the
FFT respectively, depending on the QoS criterion. Eq. (4, 5)
describe the state of the configuration with regard to the QoS
criterion. Fig. 2 gives another representation of this system
through a cyclic graph and a transition hysteresis.

sk =

{
SDFT , if SDFT · ā+ SFFT · b
SFFT , if SDFT · a+ SFFT · b̄

(4)

Where: a = b̄ = fQoS(k + q) < λ (5)

SDFT SFFT

a
ā

b

b̄
fQoS(k + q)

λDFT

λFFT

λ

SFFT SDFT

Transitions
from Eq. (5)

Transitions
from Eq. (6)

Fig. 2. Control graph and associated transition hysteresis

A transition based on Eq. (5) induces a risk of constant
reconfiguration. For example, with λ = 2.5

3 , if the QoS
value follows the sequence: [35 ,

2
5 ,

3
5 ,

2
5], the reconfiguration

happens at every radar CPI. Therefore, we adopt an hysteresis
model with two different thresholds λ for the two state
changes. λFFT is used for the transition from DFT to FFT
and λDFT for the reconfiguration from FFT to DFT. With
λDFT > λFFT , the transition functions are given by Eq. (6).

a = fQoS(k + q) 6 λFFT ; b = fQoS(k + q) > λDFT (6)

Fig. 2 shows that Eq. (6) results in a more stable controller,
which is unlikely to cause ceaseless reconfigurations. This
automaton is synchronous with the radar CPI end.

It is worth mentioning that the QoS criterion is specific
to one target and must be computed independently for every
distinguished target. Once all the criteria are computed, an
external operator can choose where to place the DFT window
at reconfiguration time. In this study, we suppose this operator
wants the window to be centered on the last detected plot.

Since the concept and the benefits of the DFT reconfigura-
tion have been exposed, we present an architecture allowing
to efficiently implement a reconfigurable DFT.

a)

In
pu

t
ar

ra
y

O
ut

pu
t

ar
ra

y
(t

o
D

FT
)

DFT Switch
AXI (Data) to DDRAXI Lite

Switch DFT/FFT

FFT datapath DFT datapath Buffer

b)

In
pu

t
ar

ra
y

DFT block
AXI (Coeff) to DDR

DFT

DFT

DFT

O
ut

pu
t

ar
ra

y

In
pu

t
ar

ra
y

FFT block
AXI (Coeff) to DDR

FFT

O
ut

pu
t

ar
ra

y

Channel switch

Fig. 3. a) Switch block to adapt input data ordering for DFT. b) The two
configurations of the DFT IP.

V. IMPLEMENTATION OF A RECONFIGURABLE DFT
A. Problem of channel reconfiguration

In a radar system, the data is processed from the sensors to
the software in a dataflow way. The reconfiguration of part
of this processing flow requires to interrupt the flow. The
DPR introduces a delay which is not compliant with most
of radar systems that may lose the track of targets during
the interruption. However, we consider multi-channel radar,
whose channels can be processed independently when DFT is
performed. Hence, it provides an opportunity to reconfigure
channels by blocks, from one single channel, up to all chan-
nels. Nevertheless, the number of channels to reconfigure at the
same time determines the number of resources to reconfigure.
Reconfiguration time increases linearly with the reconfigurable
partition (RP) size. Our reconfiguration paradigm can be
formalized as the following problem. Determine the best trade-
off between stopping the process for a long time to reconfigure
all the channels and reconfiguring only one channel at a time,
but running in a degraded mode with the other channels. Fig. 4
shows a sixteen sensors radar system which implements DFT
reconfiguration, where each RP performs four DFT to divide
the reconfiguration time in four steps. During this process, the
radar system is still running with 3/4 of the channels.

B. Data reordering
As introduced in Sec. III, DFT and FFT inputs are not

processed in the same order. For the DFT, samples are pro-
cessed in arrival order without having to reorder input data.
Unlike DFT, FFT receives the data after downsampling, and
thus store batches of data in DDR until it has enough data in
the processing core. It means that a switch is required before
the reconfigurable DFT to act either as a passthrough or as
a store and load device. Fig. 3-a) represents this block which
uses a small amount of resources, thus we keep it out of the
RP. However, this block is mandatory when using FFT, to
deal with the ‘corner turn’, but AXI (Data) is used only with
the FFT configuration. An additional AXI lite slave port is
required to configure the switch block in FFT or DFT modes.

C. Architectures of DFT/FFT configurations
An efficient DPR requires that the configurations sharing

the same RP have similar amount of resources since the RP

A
rr

ay
of

se
ns

or
s

PL region PS region

Matched
Filter

PS DDR
DeviceDFT

Switch

External DDR
Device

DDR
Controler

D
ec

ou
pl

er

Reconfigurable
DFT

Reconfigurable
DFT

Reconfigurable
DFT

Reconfigurable
DFT

D
ec

ou
pl

er

Filtering

Static logic Not implemented in
hardware for the HIL

Reconfigurable logic Axi stream Master/Slave
Axi

Master/Slave
AxiLite Bus

Fig. 4. Architecture used for the final results

is sized for the worst case, so a mismatch may result in an
excessive waste of hardware resources.

The DFT uses a lot of memory but only few DSP per
channel whereas an efficient FFT implementation demands a
lot of memory but also a lot of DSP. So we can balance the
resource consumption disparity by implementing n DFT per
FFT block. This implies no latency issue since most of this
latency is due to data movements with the FFT model. Fig. 3-
b) shows how the configurations design can balance resources
usage by using the same FFT core for n = 3 channels.

It is important to note that if only the FFT needs to access to
the DDR for the Data though an AXI (Data) bus, the situation
is different for the DFT since only the DFT needs to read the
coefficients from the DDR using an AXI (Coeff) bus which is
unused with the FFT configuration. Merging the AXI (Coeff)
and AXI (Data) requires more Mux resources and architecture
complexity, hence we keep a solution with two distinct bus.

A second consideration is the DDR bandwidth limit. Indeed,
the pipelined versions of the FFT can read a new input at each
clock cycle. If we can read up to N values per clock cycle
from the DDR, it is useless to implement more than N FFT.

D. Conclusion on the DFT implementation
Multiple parameters impact the implementation results (e.g.,

DFT window size, computations parallelism, reconfiguration
speed and channel number per FFT). Therefore, the design
space exploration is made by means of a HLS specification
that allows to get resource / performance estimations in a rea-
sonable amount of time. In this study, we implement a versatile
IP resulting in different implementation from preprocessing
directives. We have three distinct configurable specifications:
a DFT, a wrapper to the FFT of Xilinx with the pipeline
configuration, and a homemade pipelined FFT with resources
consumption and latency close to the proprietary IP. We
implement our own pipelined FFT on Vivado HLS to generate
a HLS synthesis estimation of resources consumption. Indeed,
the Vivado FFT uses incorrect precomputed HLS results with
the tool current version (2019.1) as indicated in Table I as the
HLS estimation quality. Our HLS code allows to choose the
number of channels per FFT in the reconfigurable IP.

VI. CASE STUDY

A. System description
To study the performance of our architecture, we implement

the system described in Fig. 4 on a ZCU102 board. This board
includes a Zynq Ultrascale+ circuit, two DPR are attached to
the ARM (PS) processor and FPGA (PL) respectively.

The input signal is a synthetic radar signal, transporting
information on a target through delay, Doppler frequency and
direction (phase shift). This signal is injected at the DFT
Switch input of Fig. 4. The filtering is a simple beamformer
which projects the signal in a spatial direction, and write the
result to the PS DDR memory. The detection is then performed
with a CA-CFAR [19] (Cell-Averaging Constant False Alarm
Rate) implemented in software. The reconfiguration controller
defined in Section IV is implemented in software as well.

We use the Gazebo simulator [20] to compute the target
movement and provide a graphical output for the HIL demon-
strator. The simulator sends the target position and speed to
a Python 3 process that generates the signals. This process
sends the signal through an Ethernet link to the board. The
reconfigurable modules of the FPGA computes the DFT and
the static part filters the data with the beamforming. Detection
is executed by the Zynq ARM as well as the reconfiguration
controller (described in Sec. IV) which is updated accordingly.
The board sends the output signal and the detection plots to
our Python 3 interface through Ethernet, for graphical plots.

B. PCAP API improvement
DPR is performed through the processor configuration port

(PCAP). But we have modified the Xilinx PCAP API to add
a non-blocking reconfiguration command. When the reconfig-
uration is launched, the task is suspended. When the PCAP is
done, a CSUDMA interruption resumes the task. Furthermore,
this API greatly reduces the reconfiguration time by avoiding
data cache flush. Unlike the Xilinx API, we control the
memory range and flush operation out of the reconfiguration
time. The impact on performance is given in the Sec. VI-E.

C. Scenario description
We choose to highlight our architecture benefits in terms of

performance and adaptability. Without loss of generality and to
avoid interference with phenomenons out of the scope of this
paper, the scenario features one target in white noise, without
clutter. This simplification does not invalidate the key concept
since the DFT reconfiguration process would be the same with
a target in a clutter. Besides, changing the architecture to a
multi-target version would only add a selection method which
is application specific and usually implemented out of the radar
system itself. However, the simplification results in a simpler
QoS function. The association result is considered as correct
when a plot is detected. We fix the QoS thresholds λDFT = 3

5
and λFFT = 1

5 . This configuration implies that the target is
still present in the DFT scope (and will likely be detected

Start (FFT config.)

High RCS
Good SNR

Succesful
Detection

Reconfiguration
to DFT

Lower RCS
Poor SNR

Loss of
Detection

Reconfiguration
to FFT

Closer target
Good SNR

Succesful
Detection

Reconfiguration
to DFT

EndScenario state Expected system response

Ph
as

e
1

Ph
as

e
2

Ph
as

e
3

Fig. 5. Case study scenario

again) if at least three detections were successfully performed
in the last five radar CPI. However, if less than two detections
are successful, the system should explore the entire range-
speed space. To observe the reconfiguration stability, we use
the Swerling I model of RCS [21].

The scenario is composed of three phases depicted in Fig. 5.
At the beginning of the mission, the target is distant. The radar
system does not know the target position in the range-Doppler
space and is in FFT configuration. At first, the RCS ensures
a good SNR. At this time of the mission, our system should
detect the target and switch to DFT configuration. Later, the
target orientation changes, lowering the RCS. The SNR falls,
leading to the target loss. The system should then switch to
FFT configuration. The target speed direction changes in the
time it was lost. When the target is close to the radar, the
system detects it again (at a different place in the range-
Doppler map), it should switch to DFT configuration and the
mission ends. We use this scenario to test our HIL system and
provide a demonstration video available online [22].

D. Implementation results

As we stated in Sec. V-D, the whole architecture
is generated with HLS codes. The main parts are the
DFT Switch and the different configuration of DFT. The
implementation can be parameterized with six variables:
(1) Ns is the maximum signal size (radar CPI), (2) Nd is
maximum DFT size, (3) Nc is total number of channels,
(4) Ndfts is number of samples per DFT, (5) Nipc is
channels per IP, (6) Nfft is FFT per IP (FFT mode).
The first three parameters depend on the application.
We choose the parameters as follow in our case study:
(1) Ns = 16000 (2) Nd = 1024 (3) Nc = 16

The next parameters need exploration to choose the
best channels slicing and to control its impact on the
radar performances. In a first step, we carry out different
Vivado HLS synthesis to observe the number of DFT we
can implement for one FFT to have equivalent resources
usage. The DFT and FFT sizes result in an optimal
ratio of four DFT per FFT (resource consumption from
logical synthesis in Table I). Furthermore, the maximum
DDR bandwidth allows us to read up to 4 values per
clock cycle. Therefore, we implement one FFT per IP,
for a total of four IP. We determine the best configuration:
(4) Ndfts = 1024 (5) Nipc = 4 (6) Nfft = 1

In our study, the PRF is not a relevant parameter and
remains unchanged. The two important observed metrics are

TABLE I
RESOURCES CONSUMPTION OF THE DIFFERENT CONFIGURATIONS

IP configuration for
four channels Precision LUT FF BRAM DSP

DFT (32 × 32 samples) full 4889 2648 43 48
Xilinx FFT (8 to 1024 samples) scaled 24bits 6697 9136 6 24

FFT (8 to 1024 samples) scaled 24bits 7496 7407 14 24

Previous HLS estimation quality: Accurate Approx. False

the latency and the size of the speed-range domain.
The full architecture is depicted in Fig. 4. The input signal is

injected to the DFT Switch and the matched filter is performed
beforehand by a Python 3 code. This architecture is based on
the parts described in Sec. V. Decouplers are connected to
the RP to guarantee isolation at reconfiguration time. These
decouplers can isolate the four partitions independently to
allow the reconfiguration of only a subset of the channels.

E. Performance results
With this configuration, the observed system response meets

the expected response described in Sec. VI-C. We measured a
latency of 6.6ms for the DFT configuration, which coincides
with the sum of the CPI and the beamformer latencies, so DFT
latency is negligible compared to the other latency sources.
However, with the FFT configuration, the latency is higher
with a total of 9.3ms. The major improvement offered by this
architecture is the 2.7ms measured gain on the system latency
when using DFT instead of FFT, 2.7

6.4 ×100 = 42% of the CPI
in our example. It means that the system is more responsive
and this time is available for complex algorithms for tracking.

The RP reconfiguration time of each reconfigurable DFT
block takes from 4.4ms to 5.8ms with the Xilinx PCAP API,
and 2.2ms to 2.8ms with our modified API. This reconfig-
uration time is smaller than the CPI of 6.4ms, enabling to
reconfigure without interruption of the radar processing flow.
Indeed, although an expected degradation of the signal quality
is observed during the four cycles needed to reconfigure all
the RP, the radar signal consistency is preserved.

VII. CONCLUSION

To the best of our knowledge this paper presents the first
self-adaptive architecture in the embedded radar field that
tracks the best trade-off between latency and detection space
by means of smooth DFT / FFT reconfiguration per channels
group. Our reconfigurable architecture allows to take full ben-
efit of the conventional DFT and FFT respective strengths. The
decision method is the first contribution detailed in Sec.IV, it
relies on the use of QoS specific to our Radar application.
The second contribution is a dynamically reconfigurable ar-
chitecture which is optimized for the implementation of DFT
/ FFT configurations as well as fast and flexible enough to
avoid interruption of the radar function during transitions.

Through a case study implemented by means of a realistic
HIL approach, we demonstrate the efficiency of the architec-
ture implementation. Our solution is valid for a large range
of radar applications and can be parameterized to fit with dif-
ferent system configurations (e.g. number of channels, ranges,
etc.). In real-life applications, it is possible to observe objects
at different speeds and ranges. So a future work will allow to
isolate and process several areas in the range-speed map. The
proposed approach remains relevant, but modifications have to
be considered in the DFT IP and in the downstream processing.

https://osf.io/qsz8e/?view_only=8660442e37bc4904815a2deed6385e3e

REFERENCES

[1] Ming Yang, Jing Yang, Yanan Hou, and Cheng Jin. Implementation
architecture of signal processing in pulse Doppler radar system based
on FPGA. The Journal of Engineering, 2019(21):7335–7338, November
2019.

[2] D. Govind Rao, Aalhad P. Deshpande, N. S. Murthy, and A. Vengadara-
jan. Digital beam former architecture for sixteen elements planar phased
array radar. In 2013 The International Conference on Technological Ad-
vances in Electrical, Electronics and Computer Engineering (TAEECE),
pages 532–537, Konya, Turkey, May 2013. IEEE.

[3] Eric Chamouard. Radars aéroportés multifonctions (in french with
english abstract). page 24, 2013.

[4] Russell Tessier, Kenneth Pocek, and Andre DeHon. Reconfigurable
Computing Architectures. Proceedings of the IEEE, 103(3):332–354,
March 2015.

[5] Emmanuel Seguin, Russell Tessier, Eric Knapp, and Robert W. Jackson.
A Dynamically-Reconfigurable Phased Array Radar Processing System.
In 2011 21st International Conference on Field Programmable Logic
and Applications, pages 258–263, Chania, Greece, September 2011.
IEEE.

[6] Yuxi Zhang, Zhanchao Wang, and Jun Wang. Integrated radar signal
processing using FPGA dynamic reconfiguration. In 2016 CIE Interna-
tional Conference on Radar (RADAR), pages 1–4, Guangzhou, China,
October 2016. IEEE.

[7] Naim Harb, Smail Niar, Mazen A. R. Saghir, Yassin El Hillali, and
Rabie Ben Atitallah. Dynamically reconfigurable architecture for a driver
assistant system. In 2011 IEEE 9th Symposium on Application Specific
Processors (SASP), pages 62–65, San Diego, CA, USA, June 2011.
IEEE.

[8] J. Ville. Theory and Applications of the Notion of the Analytic Signal.
1948.

[9] Chapter 17: Doppler Processing. In Mark A. Richards, James A. Scheer,
and William A. Holm, editors, Principles of Modern Radar. Vol.1: Basic
Principles. SciTech Publ, Raleigh, NC, first published 2010, reprinted
with corrections 2015 edition, 2015.

[10] D.C. Lush. Airborne radar analysis using the ambiguity function. In
IEEE International Conference on Radar, pages 600–605, May 1990.

[11] Abdessamad Klilou, Said Belkouch, Philippe Elleaume, Philippe
Le Gall, François Bourzeix, and Moha M’Rabet Hassani. Real-time
parallel implementation of Pulse-Doppler radar signal processing chain
on a massively parallel machine based on multi-core DSP and Serial
RapidIO interconnect. EURASIP Journal on Advances in Signal Pro-
cessing, 2014(1):161, December 2014.

[12] Michael Inggs, Andrew van der Byl, and Craig Tong. Commensal radar:
Range-Doppler processing using a recursive DFT. In 2013 International
Conference on Radar, pages 292–297, Adelaide, Australia, September
2013. IEEE.

[13] Hyun-Ik Shin, Bum-Suk Lee, Beyung-Gwan Choi, Seok-Woo Lee, and
Whan-Woo Kim. Timing Analysis of Doppler Filter Bank with Parallel
Processing Configuration. page 4, 2003.

[14] Geoffrey San Antonio, Daniel R. Fuhrmann, and Frank C. Robey. MIMO
Radar Ambiguity Functions. IEEE Journal of Selected Topics in Signal
Processing, 1(1):167–177, June 2007.

[15] Chang-Seok Choi and Hanho Lee. An Reconfigurable FIR Filter Design
on a Partial Reconfiguration Platform. In 2006 First International
Conference on Communications and Electronics, pages 352–355, Hanoi,
Vietnam, October 2006. IEEE.

[16] A. Otero, E. De La Torre, T. Riesgo, T. Cervero, S. Lopez, G. Callico,
and R. Sarmiento. Run-Time Scalable Architecture for Deblocking
Filtering in H.264/AVC-SVC Video Codecs. In 2011 21st International
Conference on Field Programmable Logic and Applications, pages 369–
375, Chania, September 2011. IEEE.

[17] Michael Feilen, Matthias Ihmig, Anton Zahlheimer, and Walter Stechele.
Real-time signal processing on low-cost-FPGAs using dynamic partial
reconfiguration. In 2011 International Symposium on Integrated Cir-
cuits, pages 110–113, Singapore, Singapore, December 2011. IEEE.

[18] Yaakov Bar-Shalom and Fred Daum. The probabilistic data association
filter. IEEE Control Systems, 29(6):82–100, December 2009.

[19] Chapter 16: Constant False Alarm Rate Detectors. In Mark A. Richards,
James A. Scheer, and William A. Holm, editors, Principles of Modern
Radar. Vol.1: Basic Principles. SciTech Publ, Raleigh, NC, first pub-
lished 2010, reprinted with corrections 2015 edition, 2015.

[20] Open Source Robotics Foundation. Gazebo. http://gazebosim.org/.
[21] P. Swerling. Probability of detection for fluctuating targets. IEEE

Transactions on Information Theory, 6(2):269–308, April 1960.
[22] Julien Mazuet. HIL demonstration of the DFT/FFT self-

adaptive radar architecture. https : / / osf . io / qsz8e / ?view only =
8660442e37bc4904815a2deed6385e3e, March 2020.

http://gazebosim.org/
https://osf.io/qsz8e/?view_only=8660442e37bc4904815a2deed6385e3e
https://osf.io/qsz8e/?view_only=8660442e37bc4904815a2deed6385e3e

