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Abstract. This paper explores the connection between forensics, counter-
forensics, steganography and adversarial images. On the one hand, forensics-
based and steganalysis-based detectors help in detecting adversarial per-
turbations. On the other hand, steganography can be used as a counter-
forensics strategy and helps in forging adversarial perturbations that are
not only invisible to the human eye but also less statistically detectable.
This work explains how to use these information hiding tools for attack-
ing or defending computer vision image classification. We play this cat
and mouse game using both recent deep-learning content-based classi-
fiers, forensics detectors derived from steganalysis, and steganographic
distortions dedicated to color quantized images. It turns out that craft-
ing adversarial perturbations relying on steganographic perturbations is
an effective counter-forensics strategy.

Keywords: Adversarial Examples · Steganography · Image Forensics.

1 Introduction

Adversarial examples is an emerging field in Information Forensics and Security,
addressing the vulnerabilities of Machine Learning algorithms. This paper casts
this topic to Computer Vision, and in particular, to image classification, and its
associated forensics counter-part: the detection of adversarial contents.

A Deep Neural Network (DNN) is trained to classify images by the object rep-
resented in the picture. This is for instance the well-known ImageNet challenge
encompassing a thousand of classes. The state-of-the-art proposes impressive re-
sults as classifiers now do a better job than humans with less classification errors
and much faster timings. The advent of the AlexNet DNN in 2012 is often seen as
the turning point of ‘Artificial Intelligence’ in Computer Vision. Yet, the recent
literature of adversarial examples reveals that these classifiers are vulnerable
to specific image modifications. The perturbation is often a weak signal barely
visible to the human eyes. Almost surely, no human would incorrectly classify
these adversarial images. This topic is extremely interesting as it challenges the
‘Artificial Intelligence’ qualification too soon attributed to Deep Learning.
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The connection between adversarial examples and forensics/anti-forensics is
obvious. First, adding an adversarial perturbation to delude a processing is an
image manipulation per se and therefore detecting adversarial examples is a
forensic task by itself. Second, techniques forging adversarial examples are also
used to fool forensics detectors as proposed in [17][2]. In this case, the adversarial
attack is a counter-forensics strategy to conceal an image manipulation.

Paper [28] makes the connection between adversarial examples and informa-
tion hiding (be it watermarking or steganography). Both fields modify images
(or any other type of media) in the pixel domain so that the content is moved to
a targeted region of the feature space. That region is the region associated to a
secret message in information hiding or to a wrong class in adversarial examples.
Indeed, paper [28] shows that adversarial examples benefits from ideas proven
efficient in watermarking, and vice-versa.

This paper contributes to the same spirit by investigating what both steganog-
raphy and steganalysis bring to the the “cat-and-mouse” game of adversarial
examples. There are two natural ideas:
Steganalysis aims at detecting weak perturbations in images. This field is cer-
tainly useful for the defender.
Steganography is the art of modifying an image while being non-detectable.
This field is certainly useful for the attacker.

These two sides of the same coin allow to mount a defense and to challenge
it in return, as done in other studies [6, 1, 39]. This paper aims at revealing the
status of the game between the attacker and the defender at the time of writing,
i.e. when both players use up-to-date tools: state-of-the-art image classifiers with
premium steganalyzers, and best-in-class steganography embedders. As far as we
know, this paper proposes three first time contributions:

– Assess robustness of recent models EfficientNet [35] and its robust ver-
sion [43],

– Apply one state-of-the-art steganalyzer (SRNet [5]) for forensics purposes,
i.e. to detect adversarial images,

– Use the best steganographic schemes to craft counter-forensics perturba-
tions reducing the detectability: HILL [20] uses empirical costs, MiPod [31]
models undetectability from a statistical point of view, while GINA [21, 42]
synchronizes embeddings on color channels.

Section 2 reviews the connections between forensics, steganography, and adver-
sarial examples. Our main contribution on counter-forensics and experimental
results are detailed in Sect. 3 and 4.

2 Related Works

2.1 Steganalysis for forensic purposes

Steganalysis has always been bounded to steganography, obviously. Yet, a recent
trend is to resort to this tool for other purposes than detecting whether an image
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conceals a secret message. For instance, paper [27] claims the universality of SRM
and LBP steganalyzers for forensic purposes detecting image processing (like
Gaussian blurring, gamma correction) or splicing. The authors of [12] used this
approach during the IEEE IFS-TC image forensics challenge. The same trend
holds as well on audio forensics [23]. As for camera model identification, the
inspiration from steganalysis (co-occurrences, color dependencies, conditional
probabilities) is clearly apparent in [41].

This reveals a certain versatility of steganalysis. It is not surprising since
the main goal is to model and detect weak signals. Modern steganalyzers are
no longer based on hand-crafted features like SRM [14]. They are no more no
less than Deep Neural Networks like Xu-Net [44] or SRNet [5]. The frontier
between steganalysis and any two-class image classification problem (such as
image manipulation detection) is blurred. Yet, these networks have a specific
structure able to focus on weak signal detection: They avoid subsampling or
pooling operations in order to preserve high frequency signals, they need large
databases combined with augmentation techniques and curriculum learning [45].

However, this general-purpose strategy based on steganalysis method has
some drawbacks. It lacks fine-grained tampering localization, which is often an
issue in forensics [11]. Paper [8] goes a step further in the cat-and-mouse game
with an counter-forensic method: knowing that the defender uses a steganalyzer,
the attacker modifies the perturbation (accounting for a median filtering or a
contrast enhancement) to become less detectable.

As for adversarial images detection, this method is not new as well. The
authors of [30] wisely see steganalysis detection as a perfect companion to ad-
versarial re-training. This last mechanism fights well against small perturbations.
It however struggles in correctly classifying coarser and more detectable attacks.
Unfortunately, this idea is supported with a proof of concept (as acknowledged
by the authors): the steganalyzer is rudimentary, the dataset is composed of tiny
images (MNIST). On the contrary, the authors of [22] outline that steganaly-
sis works better on larger images like ImageNet (ILSVRC-2016). They however
use a deprecated classifier (VGG-16 [33]) with outdated steganalyzers based on
hand-crafted features (SPAM and SRM).

2.2 Adversarial examples

This paper focuses on white-box attacks where the attacker knows all imple-
mentation details of the classifier. To make things clearer, the classifier has the
following structure: a pre-processing T maps an image Io ∈ {0, 1, . . . , 255}n (with
n = 3LC, 3 color channels, L lines and C columns of pixels) to xo = T(Io) ∈ Xn,
with X := [0, 1] (some networks also use X = [−1, 1] or [−3, 3]). This pre-
processing is heuristic, sometimes it just divides the pixel value by 255, some-
times this normalization is channel dependent based on some statistics (empirical
mean and standard deviation). After normalization, xo feeds the trained neural
network to produce the estimated probabilities (p̂k(xo))k of being from class
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k ∈ {1, . . . ,K}. The predicted class is given by:

ĉ(xo) = arg max
k

p̂k(xo). (1)

The classification is correct if ĉ(xo) = c(xo), the ground truth label of image Io.
An untargeted adversarial attack aims at finding the optimal point:

x?a = arg min
x:ĉ(x) 6=c(xo)

‖x− xo‖, (2)

where ‖ · ‖ is usually the Euclidean distance.
Discovering this optimal point is difficult because the space dimension n is

large. In a white-box scenario, all attacks are sub-optimal iterative processes.
They use the gradient of the network function efficiently computed thanks to
the back-propagation mechanism to find a solution xa close to x?a. They are
compared in terms of probability of success, average distortion, and complexity
(number of gradient computations). This paper considers well-known attacks
ranked from low to high complexity: FGSM [16], PGD [25], DDN [29], CW [7].

As outlined in [4], definition (2) is common in literature, yet it is incorrect.
The final goal of the attacker is to create an adversarial image Ia in the pixel
domain, not xa in Xn. Applying the inverse mapping T−1 is not solving the
issue because this a priori makes non integer pixel values. Rounding to the
nearest integer, Ia = [T−1(xa)], is simple but not effective. Some networks are so
vulnerable (like ResNet-18) that T−1(xa)−Io is a weak signal partially destroyed
by rounding. The impact is that, after rounding, Ia is no longer adversarial. DDN
is a rare example of a powerful attack natively offering quantized values.

Paper [4] proposes a post-processing Q on top of any attack that makes sure
Iq = Q(T−1(xa)) is (i) an image (integral constraint), (ii) remains adversarial,
and (iii) has a low Euclidean distortion ‖Iq − Io‖. This paper follows the same
approach but adds another constraint: (iv) be non-detectable.

Figure 1 shows the characteristic function measuring the probability of suc-
cess of an attack [4] as a function of the distortion budget (L2-norm) against
landmark classifiers in the history of ImageNet challenge. The characteristic
function starts at 1 − η, where η is the accuracy of the classifier: a proportion
1 − η of original images are naturally adversarial since there are misclassified.
As we know, the accuracy of the networks increases as time goes by: AlexNet
(2012) [19] < VGG-16 (2015) [33] < GoogLeNet (2015) [34] < ResNet-50 [18]
(2016) < EfficientNet-b0 [35] (2019). On the other hand, the robustness to this
attack can be measured by the average distortion necessary for hacking the im-
ages (cf. Table 1). This reveals a different hierarchy: ResNet-50 and VGG-16 are
quite fragile contrary to the old AlexNet. Overall, the recent EfficientNet is both
more accurate and more robust.

2.3 Defenses

The literature proposes four types of defenses or counter-attacks against adver-
sarial examples white-box attacks:
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Fig. 1. Characteristic function of attack [4] (PGD in best effort with quantization)
against well known (vanilla) classifiers for ImageNet.

Table 1. Robustness of recent classifiers against PGD2 followed by quantization [4]

Acc (%) Psuc (%) L2

Alexnet 57.0 100 104
VGG-16 75.0 100 56.5
GoogLeNet 77.2 99.8 72.9
ResNet-50 80.0 97.2 81
Vanilla EfficientNet-b0 [35] 82.8 99.1 115
Robust EfficientNet [43] 84.3 98.5 192

To detect: Being barely visible does not mean that the perturbation is not sta-
tistically detectable. This defense analyses the image and bypasses the classifier
if detected as adversarial [24]. This is a forensics analysis of adversarial signals.
To reform: The perturbation looks like a random noise that may be filtered out.
This defense is usually a front-end projecting the image back to the manifold of
natural images [26].
To robustify: At learning, adversarial images are included in the training set
with their original class labels. Adversarial re-training robustifies a ‘vanilla’
trained network [25].
To randomize: At testing, the classifier depends on a secret key or an alea.
This blocks pure white-box attacks [37, 38].

This paper evaluates steganalysis as a candidate for the first line of defense
against white-box attacks targeting vanilla or robust networks.
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2.4 Steganographic costs

Undetectability is usually tackled by the concept of costs in the steganographic
literature: each pixel location i of a given cover image is assigned a set of costs
(wi(`))` that reflects the detectability of modifying the i-th pixel by ` quan-
tum. Usually, wi(0) = 0, wi(−`) = wi(`), and wi(|`|) is increasing. The goal
of the steganographer is to embed a message m while minimizing the empirical
steganographic distortion:

D(`) :=

n∑
i=1

wi(`i). (3)

This is practically achieved using Syndrome Trellis Codes [13]. This paper pro-
poses to use the steganographic distortion (instead of L1, L2 or L∞ norms in
adversarial literature) in order to decrease detectability.

Note that this distortion is additive, which is equivalent to consider that each
pixel modification yields a detectability independent from the others. Yet, one
strategy takes into account potential interactions between neighboring modifi-
cations: The image is first decomposed into disjoint lattices to be sequentially
embedded where costs are then updated after the embedding over one lattice [21].

This work uses three families of steganographic costs. The first one, HILL [20],
is empirical and naive, but has nevertheless been widely used in steganography
thanks to its simplicity. The cost map w associated to ±1 is computed using
two low-pass averaging filters L1 and L2 of respective size 3× 3 and 15× 15 and
one high pass filter H: (∗ means convolution)

w =
1

|I ∗H| ∗ L1
∗ L2,with H =

−1 2 −1
2 −4 2
−1 2 −1

 . (4)

The second one, derived from MiPod [31], assumes that the residual signal
is distributed as N (0, σ2

i ) for the original image, and N (`i, σ
2
i ) for the stego

image. The variance σ2
i is estimated on each pixel using Wiener filtering and a

least square approximation on a basis of cosine functions. The cost is the log
likelihood ratio between the two distributions evaluated at 0, i.e.:

wi(`i) = `2i /σ
2
i . (5)

Unlike HILL, this model handles modifications other than ±1.
The last one is a cost updating strategy favoring coherent modifications be-

tween pixels within a spatial or color neighborhood. It is called GINA [42] and
it is derived from CMD [21]. It splits the color images into 4 disjoint lattices
per channel, i.e. 12 lattices. The embedding performs sequentially starting by
the green channel lattices. The costs on one lattice is updated according to the
modifications done on the previous ones as:

w′i (`i) =
1

9
wi (`i) , if sign(`i) = sign(µi), (6)

with µi the average of the modifications already performed in the spatial or
colour neighborhood of location i.
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2.5 Looking at Adversarial Examples with Stega Glasses

First, note that adversarial images recently became a source of inspiration for
steganography: paper [36] proposes the concept of steganography with an ad-
versarial embedding fooling a DNN-based steganalyzer. References [3] and [32]
propose both to cast the problem of adversarial embedding as a game-theoretical
problem. A protocol to train efficiently new adversaries and to generate less de-
tectable stego contents using a min max strategy is presented in [3]. The refer-
ence [32] solves the game between one embedder and one steganalyst using both
different levels of adversarial perturbations.

Paper [30] stresses however one fundamental difference between steganogra-
phy and adverarial examples: Steganalysis has two classes, where the class ‘cover’
distribution is given by Nature, whereas the class ‘stego’ distribution is a conse-
quence of designed embedding schemes. On the other hand, a perfect adversarial
example and an original image are distributed as by the class ĉ(xa) or c(xo),
which are both given by Nature.

We stress another major difference: Steganographic embedding is essentially a
stochastic process. Two stego-contents derived from the same cover are different
almost surely with STC [13]. This is a mean to encompass the randomness of the
messages to be embedded. This is also the reason why steganographic embedders
turns the costs (wi(`))` into probabilities (πi(`))` of modifying the i-th pixel by
` quantum. These probabilities are derived to minimize the detectability under
the constraint of an embedding rate given by the source coding theorem:

R = −n−1
∑
i

∑
`i

πi(`i) log2 (πi(`i)) bits. (7)

In contrast, an attack is a deterministic process always giving the same adver-
sarial version of one original image. Adversarial imaging does not need these
probabilities.

3 Steganographic Post-Processing

This section presents the use of steganography in our post-processing Q mounted
on top of any adversarial attack.

3.1 Optimal post-processing

Starting from an original image, we assume that an attack has produced xa
mapped back to Ia = T−1(xa). The problem is that Ia ∈ [0, 255]n, i.e. its pixel
values are a priori not quantized. Our post-processing specifically deals with that
matter, outputting Iq = Q(Ia) ∈ {0, . . . , 255}n. We introduce p the perturbation
after the attack and q the perturbation after our post-processing:

p := Ia − Io ∈ Rn, (8)

` := Iq − Io ∈ Zn. (9)
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The design of Q amounts to find a good `. This is more complex than just
rounding perturbation p.

We first restrict the range of `. We define the degree of freedom d as the
number of possible values for each `i, 1 ≤ i ≤ n. This is an even integer greater
than or equal to 2. The range of `i is centered around pi. For instance, when
d = 2, `i ∈ {bpic, dpie}. In general, the range is given by

Li := {dpie − d/2, . . . , dpie − 1, dpie, . . . , dpie+ d/2− 1}. (10)

Over the whole image, there are dn possible sequences for `.
We now define two quantities depending on `. The classifier loss at Iq =

Ia − p + `:

L(`) := log(p̂co(Ia − p + `))− log(p̂ca(Ia − p + `)), (11)

where co is the ground truth class of Io and ca is the predicted class after the
attack. When the attack succeeds, it means that Ia is classified as ca 6= co
because p̂ca(Ia) > p̂co(Ia) so that L(p) < 0. Our post-processing cares about
maintaining this adversariality. This constrains ` s.t. L(`) < 0.

The second quantity is the detectability. We assume that a black-box al-
gorithm gives the stego-costs (wi(`))` for a given original image. The overall
detectability of Iq is gauged by D(`) as given by (3). In the end, the optimal
post-processing Q minimizes detectability while maintaining adversariality:

`? = arg min
`:L(`)<0

D(`). (12)

3.2 Our proposal

The complexity for finding the solution of (12) a priori scales as O(dn). Two
ideas from the adversarial examples literature help reducing this cost. First, the
problem is stated as an Lagrangian formulation as in [7]:

`λ = arg minD(`) + λL(`). (13)

where λ ≥ 0 is the Lagrangian multiplier. This means that we must solve this
problem for any λ and then find the smallest value of λ s.t. L(`λ) < 0.

Second, the classifier loss is linearized around Ia, i.e. for ` around p: L(`) ≈
L(p) + (`− p)>g, where g = ∇L(p). This transforms problem (13) into

`λ = arg min

n∑
i=1

wi(`i) + λ(pi − `i).gi. (14)

The solution is now tractable because the functional is separable: we can solve
the problem pixel-wise. The algorithm stores in d× n matrix W the costs, and
in d × n matrix G the values ((pi − `i).gi)i for `i ∈ Li (10). For a given λ, it
computes W + λG and looks for the minimum of each column 1 ≤ i ≤ n. In
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other words, it is as complex as n minimum findings, each over d values, which
scales as O(n log d).

Note that for λ = 0, Q quantizes Ia,i ‘towards’ Io,i to minimize detectability.
Indeed, if `i = 0 is admissible (0 ∈ Li holds if |pi| ≤ d/2), then Q(Ia,i) = Io,i at
λ = 0.

On top of solving (14), a line search over λ is required. The linearization of
the loss being a crude approximation, we make calls to the network to check
that Q(Ia) is adversarial: When testing a given value of λ, `λ is computed to
produce Iq that feeds the classifier. If Iq is adversarial then L(`λ) < 0 and we
test a lower value of λ (giving more importance to the detectability), otherwise
we increase it. The search is performed over log2(n) steps. The images we used
are of dimension 224×224×3 which gives 18 steps. Optimal λ varies widely in
value between different images.

3.3 Simplification for quadratic stego-costs

We now assume that the stego-costs obey to the following expression: wi(`) =
`2/σ2

i as in (5). This makes the functional of (14) (restricted to the i-th pixel)
equals to `2i /σ

2
i − λgi`i + λpi which minimizer is ˜̀

i = λgiσ
2
i /2.

Yet, this value in general is not an integer belonging to Li (10). This issue
is easily solved because a quadratic function is symmetric around its minimum,
therefore the minimum over Li is its value closest to ˜̀

i as shown in Fig. 2. The
range Li being nothing more than a set of consecutive integers, we obtain a
closed form expression:

`λ,i = min(max([λgiσ
2
i /2], dpie − d/2), dpie+ d/2− 1), (15)

where [·] is the rounding to the nearest integer. The post-processing has now a
linear complexity.

In this equation, the min and max operate a clipping so that `λ,i belongs to

Li. This clipping is active if ˜̀
i /∈ Li, which happens if λ ≥ λ̄i with

λ̄i :=


∣∣∣ 2dpie−dgiσ2

i

∣∣∣
+

if gi < 0∣∣∣ 2dpie+d−2giσ2
i

∣∣∣
+

if gi > 0,
(16)

where |a|+ = a if a > 0, 0 otherwise. This remark is important because it shows
that for any λ > maxi λ̄i, the solution `λ of (15) remains the same due to
clipping. Therefore, we can narrow down the line search of λ to [0,maxi λ̄i].

4 Experimental Investigation

4.1 Experimental setup

Our experimental work uses 18,000 images from ImageNet of dimension 224×224×3.
This subset is split in 1,000 for testing and comparing, 17,000 for training. An
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+ + + + + +

Fig. 2. Rounding the minimizer when the stego-cost is quadratic.

image is attacked only if the classifier predicts its correct label beforehand. This
happens with probability equaling the accuracy of the network Acc. We measure
L2 the average Euclidean distance of the perturbation ` and Psuc the probability
of a successful attack only over correctly labeled images.

We attack the networks with 4 different attacks: FGSM [16], PGD2 [25],
CW [7] and DDN [29]. All these attacks are run in a best-effort fashion with a
complexity limited to 100 iterations. This means that for FGSM and PGD2 the
distortion is gradually increased until the image is adversarial. For more complex
CW and DDN attacks, different parameters are used over a total maximum of 100
iterations. The final attacked version is the adversarial image with the smaller
distortion. Since DDN is the only attack that creates integer images, the other 3
are post-processed either by the enhanced quantization [4], which is our baseline,
or by our method explained in Sect. 3.2.

The adversarial image detectors are evaluated by the true positive rate TPR5

when the false positive rate FPR is fixed to 5%.

4.2 Robustness of recent classifiers: there is free lunch

Our first experiment compares the robustness of the famous ResNet-50 network
to the recent classifiers: the vanilla version of EfficientNet-b0 [35] and its robust
version trained with AdvProp [43]. Note that the authors of [43] apply adversarial
re-training for improving accuracy. As far as we known, the robustness of this
version was not yet established.

Figure 3 shows the same characteristic function as in Figure 1 with this time
the vanilla EfficientNet-b0 against its robust version. Table 1 gives measurements
Psuc and L2 as a summary of the characteristic function shown in Fig 1. This
confirms that modern classifiers are more accurate and more robust (lower Psuc
and/or bigger L2). This is indeed a surprise: It pulls down the myth of ‘No Free
Lunch’ in adversarial machine learning literature [40, 10] (the price to pay for
robustifying a network is allegedly a lower accuracy).

4.3 Detection with forensics detectors

We use three steganalyzers to detect adversarial images. Their training set is
composed of 15,651 pairs of original and adversarial images. The latter are
crafted with best-effort FGSM against vanilla EfficientNet-b0.
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Fig. 3. Characteristic function of attack [4] (PGD in best effort with quantization)
against Vanilla EfficientNet-b0 and its Robust counterpart.

The first detector is trained on SRM feature vectors [14], with dimensions
34,671. SRM is a model that applies to only one channel. It is computed on the
luminance of the image in our experimental work. The classifier separating these
high-dimensional vectors into two classes is the linear regularized classifier [9].
The second detector is based on the color version of SRM: SCRMQ1 [15] with
dimension 18,157. The classifier is the same. The third detector is SRNet [5],
one of the best detectors in steganalysis. Training is performed on 180 epochs:
The first 100 with a learning rate of 10−3, the remaining 80 with 10−4. Data
augmentation is also performed during training. First, there is a probability
p1 = 0.5 of mirroring the pair of images. Then, there is another probability
p2 = 0.5 of rotating them by 90 degrees.

The attacks: Table 2 shows the results of detection on all 4 attacks. PGD2

achieves a high Psuc at almost a third of the distortion FGSM would obtain. DDN
and CW being harder to optimize attain both lower Psuc and higher distortion
under the given constraints. For the rest of the study we therefore focus on PGD2

to give the best attacking setup with reasonable complexity.
The detectors: Table 2 gives also the TPR5 associated to the detectors.

Although [22] achieves good performances with SRM, we do not obtain the high

Table 2. Detection probabilities (TPR5) with forensics detectors of adversarial images
targeting classifier vanilla EfficientNet-b0 [35]

Psuc L2 SRM(%) SCRMQ1(%) SRNet(%)

FGSM+[4] 89.7 286 72.00 83.3 93.5
PGD2+[4] 98.6 113 65.02 83.1 93.8
CW+[4] 89.7 97 68.78 83.6 94.5
DDN 83.2 186 79.53 91.9 94.8
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Table 3. Undetectability of steganographic embedding on PGD2 against the vanilla
model (Van) and its robust version (Rob).

d Psuc (%) L2 SCRMQ1(%) SRNet(%)
Van Rob Van Rob Van Rob Van Rob

[4] 2 98.6 98.3 101 167 83.1 84.6 93.8 90.1
HILL 2 98.6 98.3 113 177 78.0 76.6 87.6 88.5
HILL 4 98.9 98.5 125 181 76.0 73.3 87.4 88.2
MiPod 2 98.3 98.3 176 242 77.4 76.2 86.6 87.7
MiPod 4 98.7 98.0 164 247 74.4 70.2 84.5 87.7
GINA 2 98.5 98.1 283 337 24.4 32.4 68.3 82.9
GINA 4 98.8 98.2 300 330 18.6 24.3 50.9 85.2

detection rates reported in the reference. This cab be due to both finer attacks
(best effort mode) and quantization. Our results show also that the detectors
generalize well: although trained to detect images highly distorted by FGSM,
they can detect as well and sometimes even better more subtle attacks like
CW. Moreover, SRNet always outperforms SCRMQ1 and is the most accurate
of the three detectors. From table 2, we can also deduce that PGD2+[4] is the
worst-case scenario for defense. The probability of fooling both the classifier
EfficientNet-b0 and the detector SRNet in this setup combines to only 0.88 ×
(1− 0.933) = 5.9%.

4.4 Post-processing with a Steganographic Embedder

We now play the role of the attacker. We use PGD2 with best effort as the
base attack to compare the detectability of four post-processings: The non-
steganographic insertion [4] as a baseline, HILL (4), MiPod (5), and GINA (6).
GINA uses the quadratic method explained in Sect. 3.3 sequentially over the 12
lattices. Quadratic stego-costs are updated with CMD strategy (6). Each lattice
contributes to a 1/12 of the initial classification loss.

Table 3 illustrates how each strategy is detected by either SCRMQ1 or SR-
Net. Both detectors are trained on FGSM with [4] quantization as ‘stego’ images
crafted on their respective network. Distortion increases with each method and
along the degree of freedom d. The use of Steganographic costs therefore enables
to reduce the detectability while increasing the L2 distortion.

From the attacker perspective, the best strategy to fool the detector PGD2

is GINA costs with d = 4. This scenario now has 48.0% chance of fooling both
Vanilla EfficientNet-b0 and SRNet and 80.4% with SCRMQ1 as the detector.
Fig. 4 shows the two examples with highest distortion on EfficientNet-b0 that
still fool SRNet. The added distortion remains imperceptible to the human eye
even in these cases.

The conclusion on Robust EfficientNet-b0 is however different. Since the
distortion needed to attack the network is higher, it is consequently expected
that the detectors will be more accurate. If SCRMQ1 detects GINA distortion
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‘Angora rabbit’ ‘woolen’

‘hare’, L2 = 488 ‘knot’, L2 = 449

Fig. 4. Top row: Cover images with their label below. Bottom row: adversarial images
with steganographic embedding GINA (d=4). Below them are their new label and the
distortion

slightly better than on Vanilla EfficientNet-b0, SRNet is however very efficient
to detect each strategy even if it was trained on FGSM.

4.5 Training on adversarial images with GINA costs

We finally play the role of the defender again. We want to detect GINA pertur-
bation with the highest possible TPR. To achieve this we retrain our detectors
in the same setups as before, but with images using GINA perturbation as ad-
versarial images. Since table 3 shows that in most cases d = 4 is indeed the
worst-case for the defense side, we attacked the training set of ”cover” images
with PGD2 and GINA costs with d = 4.

The first result we report is that under the same setup, SRNet was never able
to distinct both distributions of images. The average confidence on the whole
test set is roughly 50%. Trying to train SRNet with a finer learning rate did
not lead to any better result. There is probably a set of hyperparameters that
would lead to a more effective training. However this result illustrates that GINA
distortion is harder to detect.

Table 4 shows TPR5 for SCRMQ1 under such training setup. The detector is
able to detect GINA mechanism at a higher rate than in Table 3 but generalizes
poorly on other attacks. A conclusion to this final experiment is that GINA
can be stealthy to general detectors, but it is still better detected after another
iteration of the defender. The detection accuracy is however lower when using
GINA costs, and drops from 83.1% to 68.5%. The price of detecting GINA is
also to become more specific and to lose performance on the other attacks.
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Table 4. Detection on SCRMQ1 after training on adversarial images embedded with
GINA (d=4)

d SCRMQ1(%)
Van Rob

[4] 2 55.9 56.7
HILL 2 53.4 53.6
HILL 4 50.4 53.9
MiPod 2 56.1 55.9
MiPod 4 53.9 54.9
GINA 2 77.7 78.4
GINA 4 68.5 79.7

5 Conclusions

This paper explores both sides of adversarial image detection with stegano-
graphic glasses.

On the Attack side, our work using distortions designed for steganographic
purposes is able to reduce the detection rates. Steganographic distortion target
specific regions and pixels of an image to quantize the attack. The L2 distortion
increases w.r.t. the original attack, but remains imperceptible by the human
eye (Fig. 4) and less detectable by a targeted detector. This paper consequently
shows the possibility of tweaking an attack to make it harder to detect while
remaining invisible.

On the Defense side, we use SRNet [5], state-of-the-art in steganalysis to
detect adversarial images. Training it on images attacked with the basic FGSM
shows excellent performance. Detection also generalizes well even on the finest
attacks such as PGD2 [25] and CW [7].

Finally both Attack and Defense are affected by the considered neural net-
work. The effect of adversarial training on EfficientNet-b0 [43] is twofold: it
increases the classification accuracy as well as robustifying the network. An
increased robustness translates into a higher attacking distortion, which itself
translates into a higher detectability.
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- a lesson from multimedia security. In: European Signal Processing Conference
(EUSIPCO). pp. 947–951 (2018)

31. Sedighi, V., Cogranne, R., Fridrich, J.: Content-adaptive steganography by min-
imizing statistical detectability. Information Forensics and Security, IEEE Trans-
actions on 11(2), 221–234 (2016)

32. Shi, X., Tondi, B., Li, B., Barni, M.: Cnn-based steganalysis and parametric ad-
versarial embedding: a game-theoretic framework. Signal Processing: Image Com-
munication p. 115992 (2020)

33. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. In: 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings
(2015), http://arxiv.org/abs/1409.1556

34. Szegedy, C., Wei Liu, Yangqing Jia, Sermanet, P., Reed, S., Anguelov, D., Erhan,
D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: 2015 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). pp. 1–9 (2015)

35. Tan, M., Le, Q.V.: Efficientnet: Rethinking model scaling for convolutional neural
networks. arXiv (2019)

36. Tang, W., Li, B., Tan, S., Barni, M., Huang, J.: CNN-based adversarial embedding
for image steganography. IEEE Transactions on Information Forensics and Security
14(8), 2074–2087 (2019)

37. Taran, O., Rezaeifar, S., Holotyak, T., Voloshynovskiy, S.: Defending against ad-
versarial attacks by randomized diversification. In: IEEE CVPR. Long Beach, USA
(June 2019)



Forensics Through Stega Glasses: the Case of Adversarial Images 17

38. Taran, O., Rezaeifar, S., Holotyak, T., Voloshynovskiy, S.: Machine learning
through cryptographic glasses: combating adversarial attacks by key based diver-
sified aggregation. In: EURASIP Journal on Information Security (January 2020)

39. Tramer, F., Carlini, N., Brendel, W., Madry, A.: On adaptive attacks to adversarial
example defenses (2020)

40. Tsipras, D., Santurkar, S., Engstrom, L., Turner, A., Madry, A.: Robustness may
be at odds with accuracy (2018)

41. Tuama, A., Comby, F., Chaumont, M.: Camera model identification based machine
learning approach with high order statistics features. In: EUSIPCO. pp. 1183–1187
(2016)

42. Wang, Y., Zhang, W., Li, W., Yu, X., Yu, N.: Non-additive cost functions for color
image steganography based on inter-channel correlations and differences. IEEE
Trans. on Information Forensics and Security (2019)

43. Xie, C., Tan, M., Gong, B., Wang, J., Yuille, A., Le, Q.V.: Adversarial examples
improve image recognition. arXiv (2019)

44. Xu, G., Wu, H.Z., Shi, Y.Q.: Structural design of convolutional neural networks
for steganalysis. IEEE Signal Processing Letters 23(5), 708–712 (2016)

45. Yousfi, Y., Butora, J., Fridrich, J., Giboulot, Q.: Breaking ALASKA: Color sep-
aration for steganalysis in jpeg domain. In: Proc. of ACM IH&MMSec ’19. pp.
138–149 (2019)


