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Tilings of the hyperbolic plane of substitutive origin as subshifts of finite type on Baumslag-Solitar groups BS(1, n)

We present a technique to lift some tilings of the discrete hyperbolic plane -tilings defined by a 1D substitution-into a zero entropy subshift of finite type (SFT) on non-abelian amenable Baumslag-Solitar groups BS(1, n) for n ≥ 2. For well chosen hyperbolic tilings, this SFT is also aperiodic and minimal. As an application we construct a strongly aperiodic SFT on BS(1, n) with a hierarchical structure, which is an analogue of Robinson's construction on Z 2 or Goodman-Strauss's on H2.

Introduction

Given a finitely generated group G and a finite alphabet A, the set A G can be endowed with the pro discrete topology. The group G acts -from the leftby translation on A G , and a classical result states that with this topology, the set A G is a compact set. Elements of A G are called configurations, and can be thought of as colorings of the group G with colors chosen among the finite set A. Symbolic dynamics on G studies subshifts, i.e. sets of configurations of G that are both invariant under the action of G, and closed for the product topology. Equivalently, subshifts can be defined as sets of configurations that avoid some set of finite patterns -this set of forbidden patterns not necessarily being finite. If the set of forbidden patterns can be chosen finite, the subshift is called a subshift of finite type (SFT for short). SFTs are of particular interest for two reasons. First, because they can be used to model real-life phenomena defined through local interactions. Second, because their finite description allows to ask complexity and computability questions Among questions related to SFTs, an open problem is to characterize groups G which admit a strongly aperiodic SFT, i.e. an SFT such that all its configurations have a trivial stabilizer. The same question for general subshifts 1 arXiv:2012.11037v1 [math.DS] 20 Dec 2020 -non SFT-has been answered positively [START_REF] Gao | A coloring property for countable groups[END_REF][START_REF] Aubrun | Realization of aperiodic subshifts and uniform densities in groups[END_REF]. Free groups cannot possess strongly aperiodic SFTs [START_REF] Muller | The theory of ends, pushdown automata, and second-order logic[END_REF], and a finitely generated and recursively presented group with an aperiodic SFT necessarily has a decidable word problem [START_REF] Jeandel | Aperiodic subshifts of finite type on groups[END_REF]. Groups that are known to admit a strongly aperiodic SFT are Z 2 [START_REF] Robinson | Undecidability and nonperiodicity for tilings of the plane[END_REF] and Z d for d > 2 [CK96], fundamental groups of oriented surfaces [START_REF] Bruce | Strongly aperiodic subshifts on surface groups[END_REF], hyperbolic groups [START_REF] Bruce Cohen | Strongly aperiodic subshifts of finite type on hyperbolic groups[END_REF], discrete Heisenberg group [START_REF] Sahin | A strongly aperiodic shift of finite type for the discrete heisenberg group[END_REF] and more generally groups that can be written as a semi-direct product G = Z 2 φ H, provided G has decidable word problem [START_REF] Barbieri | A generalization of the simulation theorem for semidirect products[END_REF], and amenable Baumslag-Solitar groups [START_REF] Esnay | Weakly and Strongly Aperiodic Subshifts of Finite Type on Baumslag-Solitar Groups[END_REF].

There are several techniques to produce aperiodicity inside tilings, but in the particular setting of SFTs, two of them stand out. The first goes back to Robinson [START_REF] Robinson | Undecidability and nonperiodicity for tilings of the plane[END_REF]: the aperiodicity of Robinson's SFT follows from the hierarchical structure shared by all configurations. Indeed, in every configuration one sees different levels of squares, where all squares of a given level are arranged according to a lattice, and are gathered by four to produce a square of higher level. Since there are arbitrarily large squares, no non-trivial translation can keep the configuration unchanged. The second technique goes back to Kari [START_REF] Kari | A small aperiodic set of wang tiles[END_REF]: a very simple aperiodic dynamical system is encoded into an SFT, so that configurations correspond to orbits of the dynamical system. Aperiodicity of the SFT comes from both the aperiodicity of the dynamical system and the clever encoding.

In this article we focus on the particular case where G is a Baumslag-Solitar group. Baumslag-Solitar groups are examples of HNN extensions, a fundamental construction in combinatorial group theory that plays for instance a key role in the proof of Higman embedding theorem [START_REF] Lyndon | Combinatorial Group Theory[END_REF]. There are described by the two generators and one relation presentation BS(m, n) := a, t | t -1 a m t = a n , where m, n are two positive integers. The whole class of BS(m, n) is clearly separated into two subclasses with radically different behaviors: the groups BS(1, n) are solvable hence amenable, while the BS(m, n) groups with m, n > 1 contain free subgroups and are consequently non amenable. Each of these two subclasses is also well-understood from a geometrical point of view, since it is known under which condition two BS(m, n) are quasi-isometric:

• groups BS(1, n) and BS(1, n ) are quasi-isometric if and only if n and n have a common power [START_REF] Farb | A rigidity theorem for the solvable Baumslag-Solitar groups[END_REF] -and in this case, the two groups are even commensurable;

• groups BS(m, n) and BS(m , n ) are quasi-isometric as soon as 2 ≤ m < n and 2 ≤ m < n [START_REF] Whyte | The large scale geometry of the higher Baumslag-Solitar groups[END_REF].

In [START_REF] Aubrun | Tiling Problems on Baumslag-Solitar groups[END_REF] the example of aperiodic SFT that is given is a construction adapted from [START_REF] Kari | A small aperiodic set of wang tiles[END_REF]. This SFT is proved to be weakly aperiodic -all configurations have infinite orbit-in [START_REF] Aubrun | Tiling Problems on Baumslag-Solitar groups[END_REF] for all Baumslag-Solitar groups, and not strongly aperiodic for the non amenable ones. In [START_REF] Esnay | Weakly and Strongly Aperiodic Subshifts of Finite Type on Baumslag-Solitar Groups[END_REF] the authors show that this SFT is actually strongly aperiodic for amenable Baumslag-Solitar groups.

In this article, we will only consider non abelian amenable Baumslag-Solitar groups BS(1, n) with n ≥ 2. Our main result consists in a construction that allows to lift some particular tilings of the discrete hyperbolic plane -tilings defined from a 1D substitution-into an SFT on BS(1, n) (Theorem 5.2). If the substitution is well chosen, then the SFT is moreover minimal, strongly aperiodic and has zero entropy (Propositions 6.1, 6.3 and 6.4). As an application, we construct a strongly aperiodic SFT on BS(1, n) with a hierarchical structure, that goes back to Robinson's construction on Z 2 [Rob71] and Goodman-Strauss's construction on the discrete hyperbolic plane [START_REF] Goodman-Strauss | A hierarchical strongly aperiodic set of tiles in the hyperbolic plane[END_REF]. We strongly believe that this hierarchical SFT will also serve as a basis for more sophisticated constructions.

1 Subshifts on amenable Baumslag-Solitar groups

Subshifts on finitely generated groups

In this article A denotes a finite set, and G is a finitely generated group. The identity of G is denoted 1 G . Endowed with the prodiscrete topology, the set A G is a compact and metrizable space. Elements of A G are called configurations, and can be though of as colorings of the group G by the finite alphabet A. The shift map is the natural left action of G on A G by translation

S : G × A G → A G (g, x) → S g (x)
where S g (x) is the configuration such that (S g (x)) h = x g -1 •h for every h ∈ G.

The dynamical system A G , S is called a full-shift. Subshifts are subsystems of the full-shift, i.e. subsets of A G that are both closed for the prodiscrete topology and invariant under the shift action. Interestingly this dynamical definition of subshifts coincides with a combinatorial one. A pattern if a finite configuration p ∈ A S , where S is a finite subset of G called the support of p. A pattern p ∈ A S appears in a configuration x ∈ A G if there exists a group element g ∈ G such that p h = (S g (x)) h for every h ∈ S. Otherwise we say that x avoids p. Given a set of patterns F, define X F as the set of configurations that avoid all patterns in F. A set of configurations Y is a subshift if and only if there exists some F such that Y = X F . A subshift of finite type -SFT for short-is a subshift for which the set of forbidden patterns F can be chosen finite. A sofic subshift is a subshift which is the image of an SFT under a continuous and shift commuting map -such maps are called morphisms.

Let x ∈ A G be a configuration. The orbit of x is the set of configurations orb S (x) = {S g (x) | g ∈ G}, and the stabilizer of x is the subgroup stab

S (x) = { g ∈ G | S g (x) = x}. A subshift X ⊆ A G is weakly aperiodic if for every configuration x ∈ X, |orb S (x)| = ∞. A subshift X ⊆ A G is strongly aperiodic if for every configuration x ∈ X, stab S (x) = {1 G }.
The subshift X is minimal if it does not contain a proper subshift or, equivalently, if the orbit of each configuration x ∈ X is dense.

Baumslag-Solitar groups

Given two positive integers m and n, define the finitely presented group

BS(m, n) := a, t | t -1 a m t = a n ,
known as the Baumslag-Solitar group with parameters m, n. In this article we are only interested in the case m = 1, which makes these groups solvable hence amenable. For the class of amenable Baumslag-Solitar groups, there exists a short normal form, as stated below in Proposition 1.1.

Proposition 1.1. Every element of BS(1, n) can be uniquely written as one of the following words • a j t -k with k ≥ 0 and j ∈ Z,

• or t i a j with i > 0 and j ∈ Z,

• or t i a j t -k with i > 0, k > 0 and n j.

Proof. Using the relation at = ta n , one deduces that t -1 a = a n t -1 . Combining these two rewriting rules, any word on {a, a -1 , t, t -1 } can be rewritten as some t i a j t -k with i, k ≥ 0 and j ∈ Z. If i = 0 or k = 0 then we are done. Otherwise if i, k > 0 and j = nj , write t i a j t -k = t i-1 a j t -k+1 and iterate the process as soon as i, k > 0 and n|j.

It remains to prove uniqueness. Note that for a given g, all words w in a, a -1 , t, t -1 that represent g should share the same quantity |w| t -|w| t -1 . So if g can be written as w = t i a j t -k and w = t i a j t -k with i, i , k, k ≥ 0, and j, j ∈ Z, then either i = i = 0 and k = k , or k = k = 0 and i = i , or i, k, i , k > 0 and n j, n j and ik = ik . In the two first cases, we have directly i = i , j = j and k = k . In the third case, assume that i = i + and k = k + with ≥ 0. Then necessarily t a j t -= a j with n j and n j . This is not possible unless = 0, so we finally get i = i , j = j and k = k , and the normal form is unique.

Remark that this normal form does not have minimal length: for instance the element t 2 a n 2 -1 could have been written using less generators as a -1 t 2 a.

Consider the semi-direct product Z[ 1 n ] f Z given by f : Z → Aut Z[ 1 n ] k → x → n k • x .
Using the normal form of Proposition 1.1, we prove that BS(1, n) and

Z[ 1 n ] f Z are isomorphic, through Φ : BS(1, n) → Z[ 1 n ] f Z t i a j t -k → j • n -i , k -i .
Remark 1.2. The application Φ is well-defined. Suppose an element g ∈ BS(1, n) can be written as w = t i a n α j t -k for some α ≥ 1 and n j. Using that a n α j = t -α a j t α , we deduce the word w = t i-α a j t -k+α also represents the element g. And since

Φ(t i a n α j t -k ) = n α j • n -i , k -i = j • n -(i-α) , (k -α) -(i -α) = Φ(t i-α a j t -(k-α) ) = Φ(g),
so that Φ is well-defined.

Proposition 1.3. The map Φ is an isomorphism.

Proof. We first check that Φ is a group morphism. Take g, h two group elements in G, and assume they can be written as g = t i a j t -k and h = t i a j t -k . Remind that the law for the semi-direct product is (h

1 , k 1 )•(h 2 , k 2 ) = (h 1 + f (k 1 )(h2), k 1 + k 2 ) for (h i , k i ) ∈ Z[ 1 n ] f Z. Then on the one hand Φ(gh) = Φ t i a j t -k • t i a j t -k = Φ t i a j t i • t -k a j t -k = Φ t i+i a jn i • a j n k t -k-k = (jn i + j n k )n -(i+i ) , k + k -i -i
where the last equality comes from Remark 1.2, and on the other hand

Φ(g)Φ(h) = j • n -i , k -i • j • n -i , k -i = j • n -i + n k-i • j n -i , k + k -i -i = Φ(gh),
which proves that Φ is a group morphism. Assume g = t i a nj+r t -k and h = t i a nj +r t -k and suppose Φ(g) = Φ(h) with 0 ≤ r, r < n -r = 0 if i, j > 0 and r = 0 if i , j > 0. Then

(nj + r) • n -i , k -i = (nj + r ) • n -i , k -i ,
which directly leads to i = i , j = j and k = k , hence g = h.

Structure of BS(1, n)

The Cayley graph of BS(1, n) with generating set {a, t, a -1 , t -1 } is made of several sheets that merge n by n, so that the global structure these sheets are arranged looks like an (n+1)-regular tree. Each of these sheet is quasi-isometric to the hyperbolic plane H 2 . From now on, we only consider the case n = 2, but the attentive reader will be convinced that the rest of the article easily transpose to the general case n > 2 .

We call rectangle any finite subset of BS(1, 2) of the form

R k, := t a i t -j | i ∈ [0; (k + 1) • 2 -1 -1] and j ∈ [0; ] . • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • t t a a a • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Figure 1: The rectangle R 2,4 in BS(1, 2)
. The leftmost sheet is pictured in blue, the rightmost in red. The 2 4 -2 = 14 sheets in between are not pictured.

These rectangles are a classical example of a Følner sequence for BS(1, 2). As so, they will be used in the next section to define the topological entropy for subshifts on BS(1, 2).

Proposition 1.4. The sequence (R k, ) k, ∈N is a Følner sequence.

Entropy

The language of size (k, ) of a subshift X ⊆ A BS(1,2) is the set of patterns with support R k, that appear in some configuration of X

L k, (X) := p ∈ A R k, | ∃x ∈ X, g ∈ BS(1, 2) s.t. ∀h ∈ R k, , x gh = p h .
The language of a subshift X ⊆ A BS(1,2) is given by

L(X) := k, ∈N L k, (X),
and is the set of globally admissible patterns; i.e. finite patterns that can be extended into a valid configuration.

The entropy of a subshift X ⊆ A BS(1,2) is given by

h(X) := lim k, →∞ log ( L k, (X)) |R k, | . 
Since BS(1, 2) is amenable, this limit exists and does not depend on the choice of the Følner sequence [START_REF] Ornstein | Entropy and isomorphism theorems for actions of amenable groups[END_REF]. Moreover, we have that

h(X) = lim sup k, →∞ log ( L k, (X))
|R k, | .

Substitutions and their tilings

A -non-deterministicsubstitution is σ = (A, R), with A = {a 1 , . . . , a n } a finite alphabet of size n and R ⊂ A × A * the set of rules of σ. A substitution σ is deterministic if for every letter a ∈ A, there exists only one rule (a, σ(a)) ∈ R. In the deterministic setting, we associate to a substitution σ its incidence matrix M σ ∈ M n (N) given by M σ (i, j) = |σ(a i )| aj the number of occurrences of a j inside the word σ(a i ). A substitution σ is primitive if there exists a power of M σ for which all the entries are positive. Perron Frobenius theorem implies that the incidence matrix of a primitive substitution admits an expanding eigenvalue, i.e. an eigenvalue λ which is real, greater than one and greater than the modulus of all the other eigenvalues. Similarly, and following [START_REF] Aubrun | The Domino Problem is Undecidable on Surface Groups[END_REF], we say that a non-deterministic substitution σ = (A, R) has an expanding eigenvalue if there exists a real λ > 1 and a vector v : A → R + * such that, for every (a, w) ∈ R :

λ • v(a) = |w| i=1 v(w i ).
In the sequel we treat only the case of deterministic substitutions in order to simplify notations, but all results presented still hold for non-deterministic substitutions.

Example 2.1. The deterministic substitution given by σ(a) = aab and σ(b) = ba has an expanding eigenvalue λ

= 3+ √ 5 2 and associated eigenvector v = 1+ √ 5 2 , 1 .
Let σ : A → A be a primitive substitution with an expanding eigenvalue λ > 1. The substitutive subshift Z σ ⊂ A Z is a two-sided one-dimensional subshift defined by

Z σ := z ∈ A Z | ∀w z, ∃a ∈ A and n ∈ N s.t. w σ n (w) .
We now describe orbits of substitutions as tilings of R 2 , as previously done in [START_REF] Aubrun | The Domino Problem is Undecidable on Surface Groups[END_REF]. A tile is a compact subset of R 2 with non-empty interior. If T is a set of tiles, not necessarily finite, a T -tiling or tiling by T is a collection of translated copies of tiles which have pairwise disjoint interiors and whose union is the entire R 2 .

Let σ be a primitive substitution with an expanding eigenvalue λ > 1 and let v ∈ (R + ) |A| be an associated eigenvector. For every letter a ∈ A, define the a-tile in position (x, y) ∈ R 2 as the square polygon with |w| + 3 edges pictured in 2, where σ(a) = w 1 . . . w k (horizontal edges are curved to be more visible, but are in fact just straight lines).

• • • • • • • a i -tile (x, y) (x, y -log 2 (λ)) v(a i ) • 2 y log 2 (λ) 1 λ v(w 1 ) • 2 y 1 λ v(w 2 ) • 2 y . . . . . . . . . 1 λ v(w k ) • 2 y σ(a i ) = w 1 . . . w k Figure 2: An a i -tile for some letter a i ∈ A with σ(a i ) = w 1 . . . w k .
Remark 2.2. The length of the top edge and the sum of lengths of bottom edges of this tile are the same. Since

M σ • v = λ • v, one has k j=1 1 λ v(w i ) • 2 y = 2 y λ • λ • v(a) = v(a) • 2 y , so that the bottom right vertex (x + 1 λ (v(w 1 ) + • • • + v(w k )) 2 y , y -log 2 (λ)) is indeed (x + v(a) • 2 y , y -log 2 (λ)).
Proposition 2.3 ([ABM19], Proposition 5). If a substitution σ has an expanding eigenvalue, then there exists a σ-tiling.

If τ is a σ-tiling of R 2 , it can be seen as a mapping τ : R 2 → A with additional properties. Since A R 2 is a compact space, from any sequence of σ-tilings one can extract a sequence that converges to some mapping f : R 2 → A. Proposition 2.4.

• • • • • • 1+ √ 5 2 2 y log 2 3+ √ 5 2 √ 5-1 2 2 y √ 5-1 2 2 y 3- √ 5 2 2 y a-tile • • • • • b-tile 2 y 3- √ 5 2 2 y √ 5-1 2 2 y
If (τ n ) n∈N is a sequence of σ-tilings of R 2 converging to some f : R 2 → A, then τ is a σ-tiling of R 2 .
Proof. Let (τ n ) n∈N be a sequence of σ-tilings of R 2 converging to some f : R 2 → A. By definition, for every k ∈ N, there exists a N k ∈ N which satisfies that

for every n ≥ N k , (τ n ) |[-k;k] 2 = f |[-k;k] 2 .
Define a collection τ of σ-tiles as follows: an a i -tile in position (x, y) is in τ iff τ N k contains an a i -tile in position (x, y), where

k := max (|x|, |y|, |y -log 2 (λ)|, |x + v i • 2 y |) .
One can easily check that this collection τ is a tiling of R 2 , and that τ seen as a mapping : R 2 → A coincide with f .

3 σ-tilings as a subshift on BS(1, 2)

For all this section we fix A a finite alphabet with at least two letters |A| ≥ 2 and σ : A → A * a primitive substitution with an expanding eigenvalue λ > 1.

We denote M σ the matrix associated with σ and v ∈ (R + ) |A| an eigenvector associated with λ, so that

M σ • v = λ • v.
In the sequel we will need a technical additional assumption, that we now describe.

First note that for every k ∈ N * , the substitution σ k has expanding eigenvalue λ k > 1 and the same eigenvector v. Thus choosing k big enough and since λ > 1, we can have log 2 (λ k ) ≥ 3. We then modify σ to its kth power σ k , and to shorten the notation we also denote it σ. Second, since Cv also satisfy M (Cv) = λ(Cv) for every C > 0, we may assume without loss of generality that v(a) ≥ 3 for every letter a ∈ A. If this holds and that moreover λ ≥ 8, we say that σ and v have the unique size property.

We then introduce the notion of Φ(g)-box for a group element g ∈ BS(1, 2), and list some useful properties on these boxes. If g ∈ BS(1, 2) and g has normal form g = t i a j t -k , the Φ(g)-box is the rectangle Φ

(g) + [0, 2 -i [×] -1, 0] in R 2 . A Φ-box is simply a Φ(g)-box for some group element g ∈ BS(1, 2).
Remark 3.1. The set of the Φ(g)-boxes for all elements g from a same sheet of

BS(1, n) is a partition of R 2 .
This remark is an important ingredient of the construction of Section 4. Indeed, it is enough to know the content of all Φ-boxes from the same sheet to know the content of the entire plane.

Remark 3.2. For a given σ-tiling, every Φ(g)-box contains exactly one among • a vertical line of the σ-tiling;

• an horizontal line of the σ-tiling;

• a cross (intersection of a vertical and an horizontal lines) of the σ-tiling;

• a T (a vertical line that start immediately below an horizontal line) of the σ-tiling;

• nothing. Proof. The first two items are direct consequences of the definitions of Φ-boxes and σ-tiles. The third one is a little bit more subtile. Assume that an a-tile intersects N Φ-boxes on its bottom. Denote α := N 2 h and β := N 2 h+1 so that α and β are the unique non-negative integers such that

α < N 2 h ≤ α β < N 2 h+1 ≤ β.
Note that multiplying by 2 the line immediately above leads to α = 2β. So either the a-tile vertically intersects h Φ-boxes, and then it horizontally intersects α Φ-boxes on its top, or the a-tile vertically intersects h + 1 Φ-boxes, and then it horizontally intersects β Φ-boxes on its top. So the second item in Proposition 3.3 thus implies that

v(a) ≤ α < 2v(a) v(a) ≤ β < 2v(a).
But since α = 2β, one cannot have both at the same time and only one holds, which gives the number of Φ-boxes vertically intersected by the a-tile.

From now on we assume σ and v have the unique size property. Define the subshift Y σ ⊂ A BS(1,2) as

Y σ := y ∈ A BS(1,2) | ∃τ a σ-tiling s.t. y g = τ (Φ(gat)) ∀g ∈ BS(1, 2) .
One may have expected to read τ (Φ(g)) = π(x g ) instead of τ (Φ(gat)) = π(x g ) in the definition of Y σ . This is due to the definition of Φ-box : if a Φ(g)-box can see for instance the top left corner of a σ-tile (tiles t 1 or t 2 ), then gat -i.e. the bottom right corner of the Φ(g)-box-is the only element that is certainly covered by this σ-tile in the σ-tiling.

Proposition 3.4. The set Y σ is a subshift.

Proof. We first prove that the set of configurations Y σ is S-invariant. Let y ∈ Y σ , then there exists τ a σ-tiling of R 2 such that y g = τ (Φ(gat)) for every g ∈ BS(1, 2). Let h ∈ BS(1, 2) and denote z := S h (y). Then

z g = (S h (y)) g = y h -1 •g = τ Φ(h -1 • gat) = τ (α + 2 β x, β + y) where Φ(h -1 ) = (α, β) and Φ(gat) = (x, y) = S Φ(h -1 ) (τ ) (g),
where S is the R 2 -action given by

S : R 2 × R 2 → R 2 ((α, β), (x, y)) → (α + 2 β x, β + y) .
Since τ := S Φ(h -1 ) (τ ) is also a σ-tiling if τ is, we have that z g = τ (Φ(gat)) for every g ∈ BS(1, 2) and thus z = S h (y) is also in Y σ .

We now check that Y is closed. Take (y n ) n∈N a sequence of configurations of Y σ that converges toward some y ∈ A BS(1,2) . Assume that for every n ∈ N, τ n is a σ-tiling such that τ n (Φ(g)) = (y n ) g for every g ∈ BS(1, 2). By compactness of A R 2 , there exists φ an extraction such that the subsequence τ φ(n) is converging toward some τ : R 2 → A. Moreover Proposition 2.4 implies that τ is a σtiling of R 2 . Define now the configuration z ∈ Y by τ (Φ(gat)) = z g for every g ∈ BS(1, 2). One can check by a standard compactness argument that y = z. Finally the set Y σ is S-invariant and closed, hence it is a subshift.

The subshift Y σ is for sure effectively closed, since one can enumerate, by increasing size, the complement of the language L(Y σ ). Note also that for some substitutions σ, the subshift Y σ is not an SFT. This is the case for Example 3.5.

Example 3.5. Let A = {0, 1} and σ the length 3 substitution given by σ(0) = 010 and σ(1) = 101. This substitution has two fixpoints ω = (01) Z and ω = (10) Z , and σ is not recognizable: ω = . . . 010101.0101010 . . . can be parsed either as . . . (010)(101).(010)(101)(0 . . . or as . . . 0)(101)(01.0)(101)(010) . . . and thus has two different pre-images under σ. We use this property to show that Y σ is not an SFT. By contradiction assume that Y σ is an SFT, and F ⊂ A Rm,n is a finite set of forbidden patterns that defines it: Y σ = X F . Then for j > n, the identity and the element t j at -j cannot be both inside a same rectangle g • R m,n .

We construct two configurations x and y in Y σ , that arise from the two σ-tilings τ and τ pictured on Figure 5 (left): the σ-tilings τ and τ coincide on the bottom half plane R × R -, but the choice to de-substitute the fixpoint ω immediately above that is different, so that τ and τ never match again on the top half plane R × R + . These two configurations x and y thus coincide on every group element h = t i a j t -k with i > k and only there, see Figure 5 (middle).

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1
σ-tilings τ and τ (common part pictured in black) configurations x and y in Y σ (common part pictured in black)

• 1 G • g configuration z in X F but not in Y σ • 1 G • g Figure 5:
The substitution given by σ(0) = 010 and σ(1) = 101 is not recognizable, hence the subshift Y σ is not SFT.

We now fix some j > n, define g := t j at -j and a new configuration z ∈ {0, 1} BS(1,2) by

z h := y h if h = g • a k • t -for some k ∈ Z and ∈ N; z h := x h otherwise.
Then this configuration z belongs to the subshift X F , since every pattern z |h•Rm,n that appears in z also appears in either y, if h = g • a k • t -for some k ∈ Z and ∈ N, or x for every other group element h. Nevertheless, the configuration z does not belong to Y σ , since a σ-tiling that would correspond to z should be at the same time τ and τ , which is impossible. Hence the subshift Y σ is not SFT.

In the rest of the article, we wonder what more can be said about Y σ . In Section 4, we define an SFT cover X σ for Y σ . Section 5 is devoted to prove that the construction of X σ is correct. In Section 6 we then discuss dynamical properties of Y σ .

4 An SFT on BS(1, 2) to encode σ-tilings

We now describe an SFT X σ on BS(1, 2) that encodes σ-tilings, i.e. it is an SFT cover for the subshift Y σ . The SFT is made so that a σ-tiling corresponds to a configuration in X σ and vice-versa (see Theorem 5.2). We first define integers h and w a for every letter a ∈ A by

• h := log 2 (λ) -1;
• for every a ∈ A, w a := v(a) -1.

Since we have chosen λ ≥ 8, we have h ≥ 2. Similarly since the eigenvector v was chosen so that v(a) ≥ 3 for every a ∈ A, we get that w a ≥ 2 for every letter a ∈ A.

Description of the alphabet Denote M := max a∈A |σ(a)|. We define a finite alphabet R that contains letters like t 1 (b, j, a, i), m 3 (a, i) or b 2 (a, i). More precisely, we consider the alphabet R = T ∪ M ∪ B, where T stands for top, B for bottom and M for middle, where

T := t 1 ∪ t 2 ∪ t 3 ∪ t 4 M := m 1 ∪ m 2 ∪ m 3 ∪ m 4 ∪ m 5 B := b 1 ∪ b 2 ∪ b 3 with α := {α(b, j, a, i) : a, b ∈ A, i, j = 1 . . . M } β := {β(a, i) : a ∈ A, i = 1 . . . M } for α ∈ {t 1 , m 2 } and every β ∈ {t 2 , t 3 , t 4 , m 1 , m 3 , m 4 , m 5 , b 1 , b 2 , b 3 }.
The letters themselves are the pentagonal Wang tiles described below.

T • • • • • t 1 (b, j, a, i) (b, j) (a, i) • • • • • t 2 (a, i) (a, i) • • • • • t 3 (a, i) (a, i) • • • • • t 4 (a, i) (a, i) M • • • • • m 1 (a, i) (a, i) • • • • • m 2 (b, j, a, i) (a, i) (b, j) • • • • • m 3 (a, i) (a, i) • • • • • m 4 (a, i) (a, i) • • • • • m 5 (a, i) (a, i) B • • • • • b 1 (a, i) (a, i) • • • • • b 2 (a, i) (a, i) • • • • • b 3 (a, i) (a, i)
In the case of a letter t 1 (b, j, a, i) or m 2 (b, j, a, i), we adopt the convention that (a, i) is associated with the rightmost shaded area, and (b, j) with the leftmost one.

Intuition on the alphabet Informally, every letter in r ∈ R gives some local information about the σ-tiling encoded. Assume x ∈ X σ and g ∈ BS(1, 2) with normal form g = t i a j t -k , so that Φ(g) = (j • 2 -i , ki). Then the letter r = x g describes what the Φ(g)-box geometrically captures from the σ-tiling (which σ-tile is seen, and where it is with horizontal error 2 k-i ) and also tells in which position the σ-tile in from the other σ-tile immediately above it.

The letter r may code the presence of a vertical line (letters m 1 , m 2 and b 1 ), of an horizontal line (letters t 3 and t 4 ), of a corner (letters t 1 and t 2 ) or the absence of borders of σ-tiles (letters m 3 , m 4 , m 5 , b 2 and b 3 ). Figure 6 should be interpreted this way: if a letter r ∈ R codes the presence of an element (corner, vertical or horizontal line), it must be located somewhere inside the green shaded area. For instance, the fact that x g ∈ t 1 is equivalent to the presence of a top left corner somewhere in Φ(g) + [2 k-i ; 2 k-i+1 [×] -1; 0]. Similarly, the fact that x g ∈ m 2 is equivalent to the presence of a vertical line {j

•2 i +x}×[k -i, k -i+1[ with x ∈ [2 k-i ; 2 k-i+1
[. It follows that going down -following generator tinside a configuration x ∈ X σ gives a better approximation of where σ-tiles are.

Description of the local rules Denote W := max a∈A w a + 1. The set A σ of allowed patterns defining X σ ⊂ R BS(1,2) that we describe below is actually a subset of R R 3M,3(h+1) . For the purpose of clarity, we do not present directly the set A σ , but instead list some local rules that describe which patterns are in A σ 1. colors should match on edges along generators a, a -1 , t and t -1 -this condition is nearest neighbor;

x g = t 1 (., ., a, .)

⇔ • Φ(g) a-tile x g = t 2 (a, .) ⇔ • Φ(g) a-tile x g = t 3 (a, .) ⇔ • Φ(g) a-tile x g = t 4 (a, .) ⇔ • Φ(g)
a-tile

x g = b 1 (a, .) ⇔ • Φ(g) a-tile x g = b 2 (a, .) ⇔ • Φ(g) a-tile x g = b 3 (a, .) ⇔ • Φ(g) a-tile x g = m 1 (a, .) ⇔ • Φ(g) a-tile x g = m 2 (a, .) ⇔ • Φ(g) a-tile x g = m 3 (a, .) ⇔ • Φ(g) a-tile x g = m 4 (a, .) ⇔ • Φ(g) a-tile x g = m 5 (a, .) ⇔ • Φ(g) a-tile
Figure 6: Signification of the letter x g that appears in position g ∈ BS(1, 2) inside a configuration x ∈ X σ . The black rectangle with top left corner labeled by Φ(g) is the Φ(g)-box.

• g (b, j)

• g • a (a, i) (b, j) x g = m 5 (b, j) x g•a = m 2 (b, j, a, i) is allowed • g (b, j) (a, i) • g • t (a, i) x g = t 1 (b, j, a, i) x g•t = m 4 (a, i)
is allowed 2. the type of letter of the first coordinate (T , M or B) is uniform on the set g • a k : k ∈ Z for every g ∈ BS(1, 2) -this condition is nearest neighbor;

• g (a, i) (b, j) • g • a (c, k) (a, i) x g = t 1 (b, j, a, i) x g•a = m 2 (a, i, c, k)
is forbidden (even if colors match)

3. the dimensions of the connected shaded zones are bounded in coherence with the substitution σ. More precisely: there are two possible heights for shaded zones: h and h -1, independently from the letter a ∈ A coded.

The top width of a shaded zone does depend on the letter a ∈ A coded, and can only take values from (w a -1) to (2w a -1).

4. the letters in g, gtat -1 and gta -1 t -1 are synchronized:

(a) (a, i)

x g = t 1 (b, j, a, i) ⇒ x g•tat -1 = t 2 (a, i) x g•ta -1 t -1 = t 4 (b, j) (b) x g = b 1 (a, i) ⇒ x g•bab -1 = b 1 (a, i) or x g•ta -1 t -1 = b 1 (a, i) (c) x g = b 3 (a, i) ⇒ x g•bab -1 = b 3 (a, i) or x g•ba -1 t -1 = b 3 (a, i) (d) x g = m 1 (a, i) ⇔ x g•ta -1 t -1 = m 2 (b, j, a, i) • • • g g • tat -1 g • ta -1 t -1 (b, j) (b, j) (a, i) (a, i) (a) x g = t 1 (b, j, a, i) ⇒ x g•tat -1 = t 2 (a, i) x g•ta -1 t -1 = t 4 (b, j) (a, i) • • • g g • tat -1 g • ta -1 t -1 (a, i) (a, i) • • • g g • tat -1 g • ta -1 t -1 (a, i) (b) x g = b 1 (a, i) ⇒    x g•bab -1 = b 1 (a, i) or x g•ta -1 t -1 = b 1 (a, i) (a, i) (b, j) • • • g g • ta -1 t -1 (a, i) (d) x g = m 1 (a, i) ⇔ x g•ta -1 t -1 = m 2 (b, j, a, i) (a, i) • • • g g • tat -1 g • ta -1 t -1 (a, i) (a, i) • • • g g • tat -1 g • ta -1 t -1 (a, i) (c) x g = b 3 (a, i) ⇒    x g•bab -1 = b 3 (a, i) or x g•ba -1 t -1 = b 3 (a, i)
(a 1 , 1) (a 2 , 2) (a 3 , 3) (a 4 , 4)
We have now completely defined an SFT X σ ⊂ R BS(1,2) . In the next section, we prove that a σ-tiling corresponds to a configuration in X σ and vice-versa, which is the statement of Theorem 5.2. The example depicted on Figures 7 and8 should help to understand configurations in X σ . 

• g • gt 3 a 4 t -3 • gt 3 a 2 t -3 • gt 3 a 6 t -3 • gt 3 at -3 • gt 3 a 5 t -3 • gt 3 a 3 t -3 • gt 3 a 7 t -3 • gt • gt 2 a 2 t -2 • gt 3 at -2 • gt 3 a 3 t -2 • gt 2 • gt 3 at -1 • gt 3 Figure 7: Example of configuration x in X σ . (a, 2) (b, 3) (a, 1) (a, 2) (a, 1) (b, 3) (b, 1) (a, 2) (a, 2) (b, 3) (a, 1) (a, 1) (a, 1) (a, 1) (b, 3) (a, 1) (a, 1) (b, 3) (a, 1) (a, 1) (b, 3) (a, 1) (a, 1) (b, 3) (b, 3) (a, 1) (a, 1) (a, 1) (a, 1) (a, 1) (a, 1) (a, 2) (a, 2) (a, 2) (a, 2) (a, 2) (a, 2) (a, 2) (b, 3) (b, 3) (b, 3) (b, 3) (b, 1) (b, 1) (b, 1) (b, 1) (a, 2) (a, 2) (a, 2) (a, 2) (a, 2) (a, 1) (a, 1) (a, 2) (a, 2) (b, 3) (a, 1) (b, 1) (a, 2) (b, 3) (b, 3) (a, 1) (a, 1) (a, 1) (a, 2) (a, 2) (a, 2) (b, 3) (a, 2) (a, 2) (b, 3) (a, 2) (a, 2) (b, 3) (b, 3) (b, 3) (a, 1) (a, 1) (a, 1) (a, 1) (a, 1) (a, 1) (a, 2) (a, 2) (a, 2) (a, 2) (a, 2) (a, 2) (a, 2) (b, 3) (b, 3) (b, 3) (b, 3) (b, 1) (b, 1) (b, 1) (b, 1) (a, 2) (a, 2) (a, 2) (a, 2) (a, 2) (a, 1) (a, 1) (a, 2) (b, 3) (b, 1) (a, 1) (a, 1) (b, 3) (b, 1) (a, 1) (a, 1) (a, 2) (a, 2) (b, 3) (a, 1) (a, 1) (a, 2) (b, 3) (a, 1) (a, 1) (a, 2) (a, 2) (b, 3) (a, 1) (a, 1) (a, 2) (b, 3) (a, 1) (a, 2) (b, 3) (a, 2) (a, 1) (a, 1) (b, 1) (a, 2) (a, 2) (a, 2) (a, 2) (b, 3) (a, 2) (a, 2) (a, 2) (b, 1) (a, 2) (a, 2) (a, 1) (b, 3) (a, 1) (a, 2) (a, 1) (a, 2) (b, 1) (a, 2) (a, 2) gt 3 a 7 t -3 • gt 3 a 6 t -3 • gt 3 a 5 t -3 • gt 3 a 4 t -3 • gt 3 a 3 t -3 • gt 3 a 3 t -3 • gt 3 at -3 • g •

The SFT X σ encodes σ-tilings

Remind that π : R → A is the mapping defined by π ((r, (a, i))) = a π ((r, (a, i), (b, j))) = b that only keeps from a letter r ∈ R the letter a ∈ A of the a-tile it encodes. Denote by p ,a,i the pattern with support {1, a, . . . , a -1 } such that

(p ,a,i ) 1 = (b 1 , (a, i)); (p ,a,i ) a j = (b 2 , (a, i)) for every 1 ≤ j ≤ -2; (p ,a,i ) a -1 = (b 3 , (a, i)). (a, i) • g • g • a 9
Figure 9: The pattern p 10,a,i on the bottom of the g-cone C g,10,1 .

The pattern p ,a,i is locally admissible if and only if 2 h-1 (w a -3) + 2 ≤ ≤ 2 h (2w a -1). For , m ∈ N, denote

C g, ,m := g • a i t -j | 0 ≤ i ≤ -1, 0 ≤ j ≤ m
the g-cone of base and height m.

Lemma 5.1. Let x and y be two configurations in X σ such that p ,a,i appears in x and y in position g ∈ BS(1, 2). Then there exists m ∈ {h, h -1} such that x g = y g for every g ∈ C g, ,m .

Proof. We only need to determine that the two configurations x and y coincide on some C g, ,m with m big enough, and the fact that m ∈ {h, h -1} will immediately follow from the local rule 3 given on page 15. We distinguish between several cases that are summarized on Figure 10. With these rules we reconstruct from bottom to top the shaded areas with bottom p ,a,i , by updating the value of at each step as stated on the picture. Since these rules are totally deterministic, and since the case w a -1 ≤ ≤ 2w a -1 is eventually reached, we necessarily obtain a pattern with support C g, ,m with only finite shaded areas on all its sheets. These shaded areas all have the same height m (and m ≥ 2 by item 2 of Proposition 3.3), but their top widths may differ.

Finally since local rules 1 and 4 force a connected shaded component to wear the same information (a, i), all letters x g and y g for g ∈ C g, ,m are totally determined by the fact that pattern p ,a,i appears in x and y in position g, and the lemma is proven.

n even n odd w a -1 ≤ n ≤ 2w a -1 n > 2w a -1 n ← n 2 n ← n 2 n 2 + 1 n ← n 2 n ← n 2 n 2 + 1
Figure 10: The different cases to construct a shaded area starting from its bottom.

Lemma 5.1 ensures that a bottom pattern p n,a,i that appears in some position g ∈ BS(1, 2) forces the entire g-cone C g,n,h or C g,n,h-1 above it.

Define π : R → A the mapping given by π ((r, (a, i))) = a π ((r, (a, i), (b, j))) = b that only keeps from a letter r ∈ R the letter a ∈ A of the a-tile it encodes.

Theorem 5.2. If τ is a σ-tiling, then there exists a configuration x ∈ X σ such that τ (Φ(gat)) = π(x g ) for all g ∈ BS(1, 2). Reciprocally, for every configuration x ∈ X σ , one can associate a σ-tiling τ such that τ (Φ(gat)) = π(x g ) for all g ∈ BS(1, 2).

Before going into the proof of Theorem 5.2, remind that for g ∈ BS(1, 2), the Φ(g)-box is the rectangle Φ

(g) + [0, 2 -i [×] -1, 0] in R 2 .
Remark 5.3. The assumption that v(a) ≥ 3 for every letter a implies that at most one of the Φ(g) and Φ(ga)-boxes may contain one object among vertical line, cross or T .

Remark 5.4. The assumption that log 2 (λ) ≥ 3 implies that at most one of the Φ(g) and Φ(gt)-boxes may contain one object among horizontal line, cross or T .

Remark 5.5. Let g ∈ BS(1, 2) and k ∈ N. Then the rightmost 2 k -1

2 k part of the Φ(g)-box is the leftmost 2 k -1 2 k part of the Φ(gt k at -k )-box.
With all these remarks in mind, we are ready to prove Theorem 5.2. For clarity purpose, we split the theorem into two lemmas.

Lemma 5.6. If τ is a σ-tiling, then there exists a configuration x ∈ X σ such that τ (Φ(gat)) = π(x g ) for all g ∈ BS(1, 2).

Proof of Lemma 5.6. Let τ be a σ-tiling. We define a configuration x ∈ R BS(1,2) , and then prove that x ∈ X σ . First, every group element g ∈ BS(1, 2) is associated the unique letter x g in R such that π(x g ) = τ (Φ(gat)). We now need to determine the letter x g ∈ R, i.e. the type of letter, the letter a ∈ A and the index i (plus maybe another letter b and another index j).

We first define all the x g such that x g ∈ T . To do so, for every group element g, we check whether the Φ(g), Φ(ga), Φ(gt) and Φ(gat)-boxes are in one of the following cases (thanks to Remark 5.3, this list is exhaustive):

1. if the Φ(g)-box contains a cross or a T , and the Φ(gt)-box is empty, set

x g ∈ t 1 ;

2. if the Φ(g)-box contains a cross or a T , and the Φ(gt)-box contains a vertical line, set x g ∈ t 2 ;

3. if the Φ(g)-box contains an horizontal line and the Φ(ga)-box contains an horizontal line, set x g ∈ t 3 ;

4. if the Φ(g)-box contains an horizontal line, the Φ(ga)-box contains a cross or a T , and the Φ(gat)-box is empty, set x g ∈ t 3 ; 5. if the Φ(g)-box contains an horizontal line, the Φ(ga)-box contains a cross or a T and the Φ(gat)-box contains a vertical line, set x g ∈ t 4 .

x g ∈ t 1 = ⇔ • • • • • Φ(g) Φ(gt) x g ∈ t 2 = ⇔ • • • • • Φ(g) Φ(gt) x g ∈ t 3 = ⇔ • • • • • Φ(g) Φ(ga) or • • • • • Φ(g) Φ(ga) x g ∈ t 4 = ⇔ • • • • • Φ(g) Φ(ga)
From now on, no other group element g ∈ BS(1, 2) will be designated a letter from T . We now list all group elements g ∈ BS(1, 2) that will be designated a letter from M \ {m 3 }. Again we check whether the Φ(g), Φ(ga), Φ(gt) and Φ(gat)-boxes are in one of the following cases:

1. if the Φ(g) and Φ(gt)-boxes contain a vertical line, set x g ∈ m 1 ; 2. if the Φ(g)-box contains a vertical line and the Φ(gt)-box is empty, set

x g ∈ m 2 ;

3. if the Φ(g)-box is empty and the Φ(ga) and Φ(gat)-boxes contain a vertical line (note that this is equivalent to have x ga ∈ m 1 ), set x g ∈ m 4 ;

4. if the Φ(g)-box and Φ(gat)-boxes are empty and the Φ(ga)-box contains a vertical line (note that this is equivalent to have x ga ∈ m 2 ), set x g ∈ m 5 .

x g ∈ m 1 = ⇔ • • • • • Φ(g) Φ(gt) x g ∈ m 2 = ⇔ • • • • • Φ(g) Φ(gt) x g ∈ m 4 = ⇔ • • • • • Φ(g) Φ(ga) x g ∈ m 5 = ⇔ • • • • • Φ(g) Φ(ga)
Now we force every element g ∈ BS(1, 2) which has not yet been designated a letter in R and which is such that some g • a k has been designated a letter in M \ {m 3 } to get letter m 3 (we fill in the holes inside M-rows).

We finally list all group elements g ∈ BS(1, 2) that will be designated a letter from B. Again we check whether the Φ(g), Φ(ga), Φ(gt) and Φ(gat)-boxes are in one of the following cases:

1. if the Φ(gt)-box or the Φ(gta)-box contains a cross, set x g ∈ b 1 ; 2. if the Φ(g) and Φ(ga)-boxes are empty and the Φ(gt)-box contains an horizontal line or a T , set x g ∈ b 2 ;

3. if the Φ(g)-box is empty, the Φ(gt)-box contains an horizontal line or a T and the Φ(ga)-box contains a vertical line, set x g ∈ b 3 .

x g ∈ b 1 = ⇔ or • • • • • Φ(g) Φ(gt) • • • • • Φ(g) Φ(gta) x g ∈ b 2 = ⇔ • • • • • Φ(g) Φ(ga) Φ(gt) x g ∈ b 3 = ⇔ • • • • • Φ(g) Φ(ga) Φ(gt)
A carefull observation of all possible cases treated by the three previous lists show that every element g ∈ BS(1, 2) necessarily falls into one of the cases described, so that every element g ∈ BS(1, 2) is now designated a letter from R.

To get a configuration x ∈ R BS(1,2) , it only remains to assign letters from A and indices to shaded connected areas. They are chosen to be identical for all letters in a same shaded area. Consider one shaded area. The top left corner, of type t 1 or t 2 , appears in some position g ∈ BS(1, 2). The corresponding Φ(g)-box contains a top left corner of a σ-tile. Denote a the corresponding letter : assign the letter a to every letter in R belonging to the shaded area. To determine the index i, it is enough to look at the σ-tile immediately above in the σ-tiling. Assume it is a a -tile, and that our shaded area corresponds to the index i such that σ(a ) i = a: assign the index i to every letter in R belonging to the shaded area. For letters in t 1 or m 2 , the additional letter b and index j are chosen to be the letter and index associated with the shaded area immediately to the left.

We now check that this configuration x ∈ R BS(1,2) in actually in X σ (local rules are listed on page 14). By construction, it is straightforward that local rules 1, 2 and 5 are respected. The definition of σ-tiles (see page 8) implies that local rule 3 is satisfied. And a careful reading of Remark 5.5 ensures that local rule 4 always holds. Finally, we can associate to every σ-tiling a valid configuration x ∈ X σ such that τ (Φ(gat)) = π(x g ) for all g ∈ BS(1, 2), so Lemma 5.6 is proven.

Lemma 5.7. For every configuration x ∈ X σ , one can associate a σ-tiling τ such that τ (Φ(gat)) = π(x g ) for all g ∈ BS(1, 2).

Before going into the proof of Lemma 5.7, we focus on the left borders of shaded areas in configurations of X σ . Let D be the transducer depicted on Figure 11. A transition (q, w, q ) in D should be interpreted as: if a letter q appears in some position g in a configuration x from X σ , then the letter q may appear in position g • w in x.

We could have constructed a bigger transducer that would imply all letters from R, but for the purpose of Lemma 5.7 we only need to focus on letters t 1 , t 2 , m 1 , m 2 and b 1 since there are the only ones that may appear on the left border of a shaded area. Note that this transducer D is non deterministic, but for our purpose the uniqueness of the infinite path described in Proposition 5.8 is enough.

Proposition 5.8. Let x be a configuration of X σ . Let g 0 ∈ BS(1, 2) be a group element such that x g0 ∈ t 1 ∪ t 2 . Then there exists a unique infinite path (q i , w i ) i∈N in the transducer D such that Let x ∈ X σ and g 0 ∈ BS(1, 2) such that x g0 ∈ t 1 ∪ t 2 ∪ b 1 ∪ m 1 ∪ m 2 . Assume that g 0 has normal form g 0 = t i a j t -k . Thanks to Proposition 5.8, there exists an infinite path (q i , w i ) i∈N in the transducer D such that x g0• n i=0 wi ∈ q n for every n ∈ N and this path is unique. Define

x g0• n i=0 wi ∈ q n for every n ∈ N. b 1 = m 2 = t 1 = m 1 = t 2 = t,
v(x g0 ) := j • 2 -i + 2 k-i • ∞ =0 δ ta w • 2 --1 ∈ j • 2 -i ; (j + 1) • 2 k-i
to be the position of the vertical line initialized at g 0 in x, where δ r q is the Kronecker symbol that equals 1 if q = r and 0 otherwise. Proposition 5.9. For a given configuration x ∈ X σ and group element g 0 ∈ BS(1, 2), define the finite word h ∈ {ta, t} M as the label of the M first transition of the unique path given by Proposition 5.8. Then v(x g0 ) = v(x g0•h ).

Proof. First note that if (q i , w i ) i∈N is the unique infinite path in the transducer D for g 0 , then (q i+M , w i+M ) i∈N is the unique infinite path in the transducer D for g 0 • h. Then, using the normal form of g 0 and the fact that t -k a = a 2 k t -k , we deduce the normal form for g 0 • h.

g 0 • h = t i • a j • t -k • h 0 . . . h M -1 = t i • a j+2 k-1 •δ ta h 0 • t -(k-1) • h 1 . . . h M -1 = t i • a j+2 k-1 •δ ta h 0 +2 k-2 •δ ta h 1 • t -(k-2) • h 2 . . . h M -1 = t i • a j+ M -1 =0 2 k--1 •δ ta h • t -(k-M )
There are now two cases. If Mk ≤ 0, then we have the normal form for g

0 • h. By definition, v(g 0 • h) = j + M -1 =0 2 k--1 • δ ta h • 2 -i + 2 k-M -i • ∞ =0 δ ta w M + • 2 --1 = j • 2 -i + 2 k-i M -1 =0 2 --1 • δ ta h + ∞ =0 δ ta w M + • 2 -M --1 = j • 2 -i + 2 k-i M -1 =0 2 --1 • δ ta h + ∞ =M δ ta w • 2 --1 = v(g 0 )
and we are done. If Mk ≥ 0, then using the fact that at k = t k a 2 k we get that the normal form for g 0 • h is this time

g 0 • h = t i+M -k • a 2 M -k (j+ M -1 =0 2 k--1 •δ ta h ) and thus v(g 0 • h) = 2 M -k j + M -1 =0 2 k--1 • δ ta h • 2 -i-M +k + 2 -i-M +k • ∞ =0 δ ta w M + • 2 --1 = j • 2 -i + 2 k-i M -1 =0 2 --1 • δ ta h + ∞ =M δ ta w • 2 --1 = v(g 0 )
and the proposition is proven.

Proof of Lemma 5.7. Let x be a configuration in X σ . We proceed in two steps 1. every sheet of x defines a σ-tiling;

2. the σ-tiling defined by one sheet of x is compatible with all the sheets.

Step 1: every sheet of x defines a σ-tiling Consider one sheet in x. Our strategy to define τ a σ-tiling is the following : we first partially describe a tiling through all its vertical lines, then using the fact we want a σ-tiling, we define horizontal lines and the type -i.e. the letter a ∈ Aof every σ-tile.

1. Thanks to Proposition 5.9, every top tile t 1 (. . . , i ≥ 2) or t 2 (. . . , i ≥ 2) in position g defines a semi-infinite vertical line : its horizontal position is completely determined and equals v(x g ), while its vertical position is only known up to some error.

2. Now that all the horizontal positions of semi-infinite vertical lines are known, we deduce the exact position of all tiles composing τ from the definition of σ-tiles (see Figure 3). Note that the type of tile a ∈ A is given by the letter t 1 or t 2 on the top left corner. An a-tile of with left and right borders at horizontal positions x and x r respectively should be at position x , log 2

xr-x v(a)

.

With these two conditions together, the tiling τ we get is indeed a σ-tiling.

Step 2: all sheets define the same σ-tiling We need to check that two different sheets give the same σ-tiling under the construction described immediately above. This is actually ensured by local rule 4 on page 16: this condition forces left border of shaded area to be synchronized between merging sheets, hence the horizontal positions of vertical lines do not depend on the sheet chosen.

Proposition 5.10. The subshift X σ is an SFT cover of Y σ , and this latter is consequently a sofic subshift.

Proof. This is a direct consequence of Theorem 5.2: the onto morphism from X σ to Y σ is the letter-to-letter morphism given by the local map π.

6 Dynamical properties of X σ Proposition 6.1. The subshift X σ is minimal if and only if log 2 (λ) is irrational.

Proof. Assume that log 2 (λ) is irrational. Let x, y be two configurations in X σ . We prove that the orbit of x is dense in X σ , i.e. that for every ε > 0, there exists some g ∈ BS(1, 2) such that S g (x) is close enough to y, i.e. that d(S g (x), y) < ε. We fix ε = 2 -N and we proceed in two steps. First we use that the set { k • log 2 (λ)k • log 2 (λ) | k ∈ Z} is dense in [0; 1], since log 2 (λ) has be assumed irrational. Thus by a shift t k , we can synchronize the tilings τ S t k (x) and τ y so that their sequences of height h and height h + 1 rows coincide at least on the ball of radius N . Second we use that since the substitution σ is primitive, then the subshift Z σ is minimal []. With a shift t n a t -n we can on the ith row of τ . Similarly to h, the sequence h is periodic with period q, but with h 1 = h + 1. So the frequencies of h' and h + 1' in h and h are strictly different, thus x cannot be in the orbit of x. And finally the subshift X σ is not minimal, which terminates the proof.

Proposition 6.2. The subshift Y σ is strongly aperiodic if log 2 (λ) is irrational.

Proof. Let y ∈ Y σ , and assume that h is a period for y : for every g ∈ BS(1, 2), one has y g = y h -1 g . If h -1 has normal form h -1 = t a m t -p and gat has normal form gat = t i a j t -k , the fact that y g = y h -1 g is equivalent to

τ (j • 2 -i , k -i) = τ ( j + m • 2 i-p 2 p--i , p -+ k -i)
for a certain σ-tiling τ . Fix i = j = 0 in this equality. Then for every k ∈ N, one has τ (0, k) = τ (m • 2 p-, p -+ k).

Since log 2 (λ) is irrational, there exists some k 0 ∈ N such that τ (0, k 0 ) and τ (m • 2 p-, p -+ k 0 ) do not belong to the same horizontal row of σ-tiles. Thus two different rows of σ-tiles in τ are the same, up to an horizontal translation by m • 2 p-. This is possible only if the translation by m • 2 p-, pis trivial, i.e. h = 1. Finally every configuration y ∈ Y σ has a trivial stabilizer, so the subshift Y σ is strongly aperiodic.

As an immediate consequence of Proposition 6.2 and Proposition 5.10 we get that the SFT X σ is also strongly aperiodic, provided log 2 (λ) is irrational. Proposition 6.3. The SFT X σ is strongly aperiodic if log 2 (λ) is irrational.

Thanks to Lemma 5.1, we can also prove that the SFT X σ has zero entropy. With the enriched tileset obtained by adding decorations from Figure 16 to 

Figure 3 :

 3 Figure 3: The σ-tiles for σ(a) = aab, σ(b) = ba. For this substitution, λ = 3+ √ 5 2

Proposition 3. 3 .

 3 If σ and v have the unique size property, then 1. a σ-tile vertically intersects h or h + 1 Φ-boxes , where h := log 2 (λ) ≥ 3; 2. for every a ∈ A, the top of an a-tile intersects w Φ-boxes horizontally, where 3 ≤ v(a) ≤ w < 2v(a); 3. the number of Φ-boxes horizontally intersected by the bottom of a σ-tile uniquely determines the number of Φ-boxes vertically intersected.

  5. if a shaded area carries information (a, i), then the shaded areas immediately below it must carry information (a 1 , 1), . . . , (a |σ(a)| , |σ(a)|) in this order, with σ(a) = a 1 . . . a |σ(a)| .

Figure 8 :

 8 Figure 8: The configuration x of Figure 7 pictured sheet by sheet this time. The σ-tiling corresponding to x appears in red.

Figure 11 :

 11 Figure 11: The transducer D that summarizes how letters from alphabet R can be arranged to form the left border of shaded areas. The transition in green corresponds to the situation pictured to the right.

Figure 13 :Figure 14 :

 1314 Figure 13: On the left the six tiles from which one gets the whole Robinson's tileset, thanks to rotations and reflections. On the right a pattern made with Robinson's tileset.

Figure 16 :

 16 Figure 16: The additional decorations on tiles A/B/C/D/E to get the hyperbolic Robinson tileset, as they are presented in [GS10] and reproduced by kind permission of the author.
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perform an horizontal shift of 2 -n on τ S t k (x) so that d(S t n a t -n t k (x), y) < ε by minimality of Z σ as required. Thus X σ is minimal.

Conversely, assume log 2 (λ) is rational and can be written as log 2 (λ) = p q with p, q ∈ N * and q p (unless q = 1). Then with q rows of σ-tiles, we get a stripe of height p ∈ N * . Assume that the top of this stripe has integer vertical coordinate y ∈ Z. Then all other stripes of q rows of σ-tiles have integer coordinates. Denote τ this σ-tiling, and x ∈ X σ the corresponding configuration obtained as in the proof of Lemma 5.6. If we consider h := (h i ) i∈Z the sequence of h' and h + 1' where h i is the number of Φ-boxes vertically intersected by a σ-tile on the ith row of τ , we get a periodic sequence with period H = h 1 . . . h q . And so h's and h + 1' have frequencies f h = |{i∈[1;q]|hi=h}| q and f h+1 = 1f h in h. Also since we have chosen that all stripes of q rows of σ-tiles have integer coordinates, we deduce that both h 1 = h and h q = h. σ-tiling τ and x ∈ X σ (f 3 = 1 and

Figure 12: Illustration of the proof that if log 2 (λ) is rational, then X σ is not minimal: two σ-tilings τ and τ that give two configurations x and x both in X σ but not in the same orbit.

Then necessarily δ > 0, otherwise q p. Consider τ the σ-tiling obtained by vertically shifting τ by + δ 2 , and denote x the associated configuration in X σ and h := (h i ) i∈Z the sequence of h' and h + 1' where h i is the number of Φ-boxes vertically intersected by a σ-tile

Consider now a pattern p with support R k, that is in the language of X σ . Then by Lemma 5.1 and Local rule 5, the pattern p is entirely determined by p Bottom∪Left∪Right∪Top . Hence L k, (X σ ) ≤ |R| N and consequently

So the SFT X σ has zero entropy.

7 An application: a hierarchical strongly aperiodic SFT on BS(1, 2)

Robinson hyperbolic tileset

In the classical construction of a strongly aperiodic SFT on Z 2 [Rob71], all valid tilings present a hierarchical structure of squares of increasing size, where the same process is repeated to obtain bigger and bigger squares: four squares of the same size are gathered to form a bigger square. The smallest squares are enforced by bumpy tiles (tiles 1 on Figure 13).

The situation is more complex on H 2 , and instead of bumpy tiles and others, we use the five shapes pictured on Figure 14. These preliminary local rules already impose strong constraints of valid tilings. The global structure of A/B/C/D/E tilings appears on Figure 15. Indeed, first remark that decorations on left and right sides of the tiles impose that horizontal rows are either composed with A/B/C or with D/E. Then a careful study of the corners show an alternation of A/B/C rows and D/E rows, and that inside an A/B/C row, B tiles necessarily appear one time in two.

On Figure 15 is pictured what would be an hyperbolic analogue of a square of level 1 in the Robinson tiling on Z 2 : on the same horizontal row, two nearest neighbor tiles B carry the top left and top right corners of the square; the bottom corners are located two rows below, but the geometry of H 2 imposes that, between these two corners carried by tiles B, we find 5 2 -1 = 24 other tiles B. Figure 15 show that, contrary to the Z 2 case, not all the B tiles carry a corner of a square. Thus we will need many more tiles than on Z 2 . Before we go any further in the description of tiles of the hyperbolic Robinson tiling, one can already notice that constraints imposed by the five shapes of tiles are strong, and almost deterministic in some sense. Denote σ the non-the A/B/C/D/E tiles, we can tile the discrete hyperbolic plane H 2 , and the structure of tilings is schematized on Figure 17.

Figure 17: Schematic view of the first levels of the hierarchy of squares enforced by the hyperbolic Robinson's tileset. hyperbolic squares of level 1, 2 and 3 are pictured in blue, green and red. The structure that appears is an hyperbolic analogue of the one visible on Figure 13.

To obtain a tileset analogue with Robinson's and Goodman-Strauss's on every BS(1, n) with n ≥ 2, it suffices to apply Theorem 5.2 to the σ-tilings with σ the substitution on alphabet {A, B, C, D, E} defined above, and to enrich the SFT X σ with local rules so that the hyperbolic Robinson's tiling is copied out on every sheet of BS(1, n). Theorem 7.2. For every n ≥ 2 there exists a strongly aperiodic SFT on BS(1, n) such that every configuration x of the SFT carries an hyperbolic Robinson tiling on every single sheet of x.