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Abstract

Polarimetric SAR (PolSAR) image time series have been employed for the analysis of temporal patterns of natural features
in terms of the extended polarimetric scattering properties. However, the time series provide a rich scattering information that
can be used for tracking and analyzing the evolution of targets, individuating smooth and/or abrupt changes. In this work we
propose a wavelet framework that exploits the information from polarimetric features and analyze them to both mitigate the
speckle effect on the multi-temporal information and improve the targets homogeneity using the multi-temporal information. The
framework combines the powerful description from the main polarimetric decomposition features and the temporal analysis using
geometrical wavelet transform. The analysis is applied on a multi-temporal polarimetric dataset of Radarsat-2 images acquired
over the Argentière glacier site.

Index Terms

Polarimetric SAR, Time series, Incoherent Polarimetric Decomposition, Wavelet Temporal Operator, Multi-temporal Analysis,
Geometrical wavelet

I. INTRODUCTION

In the last decade, large datasets of multi-temporal SAR and Polarimetric SAR (PolSAR) images have been delivered to
the scientific community. This led to a large interest in the use of multi-temporal data for robust classification [1], for change
detection (CD) [2] and for the multi-temporal analysis of natural features (e.g., snow monitoring [3], soil moisture analysis [4],
glacier displacement [5]). A large part of the SAR literature tackled the CD considering a bi-temporal problem, with different
approaches [6]–[9]. A smaller part has been devoted to the analysis of PolSAR image time series for the discrimination of
both abrupt and gradual changes [10].

Wavelet transform is a very important tool of analysis for tracing and individuating the characteristics of the signal in terms
of low and high frequencies. In SAR image analysis, the frequencies have been typically considered in the spatial domain
(i.e., multi-scale CD analysis [11], SAR texture analysis [12]). A few of works considered the application of wavelets in the
temporal domain, which can characterize changes with different temporal behavior on a image time series [5]. However, the
literature has mainly considered the application of the standard wavelet to features characterized by statistics on both coherent
and incoherent imaging principles (i.e., additive and multiplicative noise for optical and PolSAR intensity data, respectively).
These differences may affect the performance of the wavelet decomposition. Thus, an alternative wavelet formulation (i.e.,
geometrical wavelet) under the assumption of multiplicative noise has been derived in [5], but it has not been exploited yet in
the PolSAR image analysis. This wavelet framework represents a powerful tool for characterizing the variability of polarimetric
features indicating power information [13].

In this work, we propose the use of the geometrical wavelet framework for the multi-temporal analysis of polarimetric features
from full-polarimetric SAR image time series. In particular, the features result from the Yamaguchi polarimetric decomposition
[13], which maps the different scattering mechanisms. The analysis considers the application of the wavelet framework along
the temporal domain, in order to characterize the pixel-based temporal evolution of the target in terms of the polarimetric
features. The framework aims at both: i) mitigating the speckle effect on the multi-temporal change information, which can be
later used for change detection applications; and ii) characterizing the temporal evolution of the change along the time series.
Experimental results on a multi-temporal PolSAR dataset, acquired from Radarsat-2 on the Argentière glacier area (France),
show the effectiveness of the proposed framework.

The paper is structured as follows: in Section II we describe the polarimetric features and the wavelet strategies considered
for the analysis. Section III illustrates the experimental results on a multi-temporal PolSAR dataset. Finally, in Section IV we
trace the conclusions and the future developments of this work.
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II. METHODOLOGY

Let us consider a time-series of N PolSAR images It, t = 1, ..., N . As the natural targets present incoherent scattering,
polarimetric information of each image is represented with second-order scattering information of Coherency matrix T .

T =
1

L

∑
L

kP k
H
P (1)

being k = [SHH + SV V , SHH − SV V , 2SHV ] /
√

2 the complex scattering vector in the Pauli basis and L the number of
looks. T matrix is an hermitian matrix with a sparse information content. Incoherent polarimetric decompositions provide
a representation of the physical information of T in terms of few features. The literature provides two large decomposition
classes: model-based and eigenvector-based decompositions. Among the model-based ones, Yamaguchi proposed a composition
of contributions of surface (s), double bounce (d), volume (v) and helix scattering (h).

T =
∑
n

fnTn (2)

being fn, Tn the power coefficient and the coherency matrix associated to the scattering mechanism n, n ∈ s, d, v, h, respec-
tively. Tn is modeled based on the polarimetric properties assumed for the target. From here, power associated to the different
mechanisms can be derived as Pd = fd(1 + |α|2), Ps = fs(1 + |β|2), Pv = fv and Ph = fh, being α, β complex model
parameters. The power sum corresponds to the span of the matrix T [13].

Let X be one of the polarimetric features above illustrated, X ∈ {Ps, Pv, Pd, Ph}. In the literature, wavelet-based analysis
has proved to be an effective tool for pattern analysis, being applied on spatial and/or temporal domain. In this work, we focus
the analysis on the temporal direction only, with a corresponding pixel-based spatial analysis. Thus, for each set of image
spatial coordinates (r, c) of the feature X , a multi-temporal vector Xt = Xt(r, c), t = 1, ..., T is derived.

The application of the wavelet transform on Xt yields two components, associated to approximation and detail. These are
derived as convolution of the input signal with two filter responses WA,WD. Without loss of generality, the wavelet is assumed
not considering the decimation step (i.e., Stationary Wavelet, SW). The application of the classical (i.e., arithmetical) wavelet
transform, assuming the noise affecting the signal as additive, considers the classical convolution operation ~ between the
input and the wavelet filter response Wb(·).

X
(Wab)
t =

L−1∑
l=0

Wb(l)Xt−l = Wb ~Xt (3)

being X
(Wab)
t the temporal sequence of the wavelet component b for the feature X , computed with arithmetical wavelet

and b an indicator for the approximation (i.e., b = A) and detail component (i.e., b = D), respectively. On the other hand,
a geometrical convolution operation } is considered for geometrical wavelets [5], in order to better take into account the
presence of multiplicative noise on the signal.

X
(Wgb)
t = exp

[
L−1∑
l=0

Wb(l) log (Xt−l)

]

=

L−1∏
l=0

(Xt−l)
Wb(l) = Wb }Xt

(4)

being X(Wgb)
t the temporal sequence of the wavelet component b for the feature I , computed with geometrical wavelet.

In this work, a single scale level for the wavelet analysis has been considered. However, a multi-scale analysis can be
considered for signals with large length, by defining the X as the approximation component at scale 0 and applying the
wavelet filtering to the approximation component at each scale level. For a set of K+ 1 scales, this provides an approximation
component (computed at scale K) and a set of K detail components.

Several wavelet families have been defined in the literature for signal processing (e.g. Symlet, Daubechies). Among them,
the Haar-1D has a large importance, because of the easiness of representation for its filter responses, with coefficients
WA = [1, 1] /C0 and WD = [1,−1] /C0 for the approximation and detail component respectively, where the normalization
constant C0 is either 2 or

√
2. When applied to a temporal series, the Haar approximation output represents the temporal

geometrical mean of the two subsequent images. This is an information that can be exploited for filtering of unchanged areas
[14] (see eq. 6). On the other hand, the detail output can be associated to the multi-temporal comparison of values at consequent
time instants. In particular, for Haar-1D, the output represents the pixel-based image ratio, widely used for the multi-temporal
SAR image analysis [2] (see eq. 7).

X
(Wg)
t = {X(WgA)

t , X
(WgD)
t } (5)
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X
(WgA)
t = WA }Xt = exp

[
log (Xt−1) + log (Xt)

C0

]
(6)

X
(WgD)
t = WD }Xt = exp

[
log (Xt−1)− log (Xt)

C0

]
(7)

III. EXPERIMENTAL RESULTS

In order to prove the effectiveness of the proposed information representation for PolSAR image time series, a multi-temporal
dataset of full-pol images with size 1024 × 1024 was considered. The dataset has been acquired by Radarsat-2 mission in
the area of the Argentière glacier (France) in the period between January 29 and June 29, 2009. The area is characterized by
changes associated to glacier evolution. The dataset includes 7 full-polarimetric SAR images, each with a geometrical resolution
of 8 meters and incidence angle of 32°(see Fig. 1a-1b). A preliminary processing of the image set has been conducted in
terms of radiometric calibration, generation of the coherency matrix T and polarimetric image despeckling (i.e., Refined Lee
filter 7× 7) and co-registration, respectively. For this dataset, 6 regions of interest have been selected for a local quantitative
assessment based on prior knowledge of the scene, defined as {R1, ..., R6}.
For each image, polarimetric features have been derived with the power-based Yamaguchi decomposition on a local window

(a) (b)

Fig. 1: Pauli false color composition for times: t1 (a); t5, (b). Corresponding dates: January 29, May 05, 2009 with 6 regions
of interest. HH + VV: Blue; HH - VV: Red; HV: Green.

using ESA Sentinel Toolbox software. The window size has been set to 5 × 5 as a tradeoff between scene homogeneity and
preservation of local edges. For each of the Yamaguchi features, the framework has been applied on a pixel basis, selecting
Haar-1D as wavelet family. Both geometrical (GW) and arithmetical (AW) wavelets have been tested on the dataset. Qualitative
and quantitative analysis were then focused on the set of regions {R1, ..R6}, selected based on prior knowledge of the area.

For each feature, two parameters were derived on each region for a numerical assessment. The two parameters consider
alternatively the two wavelet components and investigate the effectiveness of the wavelet approach in: i) enhancing the image
contrast (i.e., approximation component) and ii) following the temporal evolution (i.e., detail component). Both parameters
have been investigated by considering the Coefficient of Variation (CoV) on the regions of interest for both the features and
the corresponding wavelet components. For the feature Y , the CoV is defined as follows.

CoV (Y ) =

√
E{(Y − E{Y })2}

E{Y }
(8)

being the expectation E{·} evaluated as ensemble averaging and Y either the polarimetric feature X or one of its wavelet
components.

A. Approximation Component

As the approximation component conveys information about the temporal mean, it represents a smoothed version of the
temporal trend for the considered feature. Fig. 2a - 2d illustrate the GW approximation component of time pair t = t4, t5 for
the four Yamaguchi polarimetric features. The approximation feature well maps the average of the values of the two single-time
images (see Pauli components in Fig. 1a-1b), mitigating the presence of possible outliers in homogeneous regions. A comparison
between the approximation components from GW and AW has been conducted. Fig. 3a-3d illustrate the histograms of the
approximation components obtained with the two wavelets on the Yamaguchi polarimetric features, reported in logarithmic
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scale. The GW approximation operator yields histograms with larger value interval (e.g., about 45 dB and 30 dB for volume
component with GW and AW, respectively), thus enhancing the image dynamics and favoring image analysis. Smaller mean
value is also observed for the GW, compared to the AW.

(a) (b)

(c) (d)

Fig. 2: GW approximation for surface (a), double bounce (b), volume (c) and helix components (d). Features are evaluated for
time pair t4, t5.

A local analysis has been performed on the six regions of interest. Fig. 4 shows as example the temporal trend of CoV
values for one of the region (i.e., R4). From the plots, the approximation geometrical wavelet (red lines) shows CoV values
globally higher than those for the arithmetic wavelet (blue lines), corresponding to a smaller noise reduction. Looking more in
detail, these values are associated to the reduction of both mean and standard deviation. This effect might be in part explained
by the interaction between the spatial and temporal analysis processes in the two cases, together with the sensitivity of the
framework to the change events present in the time-series and more or less gradually affecting the target [14]. This is associated
to the reduction of the image standard deviation and thus an enhancement of the image contrast, when using the geometric
wavelet instead of the arithmetical one. Globally, the geometrical wavelet seems to typically better follow and enhance the
evolution trend of the polarimetric features compared to those from arithmetical wavelet.

For the numerical assessment of filtering performance, we propose a parameter ∆ called Averaged Difference Variation
Index (ADVI) and defined by:

∆ = CoV
(
XWA

t

)
− CoV (Xt) (9)

where Xt and XSWA
t denote respectively the input time series and their wavelet approximation computed with either the

AW or GW, and (·) represents the average value computed, for each region, along the temporal domain. Table I shows the
ADVI values obtained for the different regions and features, with arithmetical and geometrical approach, respectively. This
table highlights that GW approach, in general, shows more variability than AW approach, with GW values ranging from 1.305
to 5.861, while AW ones from -0.8451 to 0.574 for double-bounce component on the regions of interest. This can be due
to the fact that input time series is associated with a large amount of radiometric changes over the whole test site. Similar
considerations can be traced for the other polarimetric components.

B. Detail Component

The second analysis focused on the wavelet detail component, which provides information about the temporal variation of
the corresponding feature along the temporal axis. Fig. 5a-5d shows the GW detail component of time pair t4, t5, for the
four Yamaguchi features. The detail component highlights well the presence of positive and negative changes in the image
pair, mitigating the effect of speckle noise in the change detection, as other SAR multi-temporal comparison operators. A
comparison of the histograms for GW and AW detail components for the features is illustrated in Fig. 7a - 7d in logarithmic
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(a) (b)

(c) (d)

Fig. 3: Histogram comparison of GW (light blue) and AW (orange) approximation components, reported in log scale, for the
four polarimetric features (pair t4, t5): surface (a); double bounce (b); volume (c) and helix (d).

TABLE I: ADVI ∆ values for the different features on the local regions R1−R6.

∆ R1 R2 R3 R4 R5 R6
Pd AW -0.636 -0.438 0.574 -0.851 -0.139 -0.085
Pd GW 5.620 3.838 5.154 1.305 3.324 5.861
Ph AW -0.512 -0.280 -0.944 -0.221 -0.659 -0.130
Ph GW -0.690 2.247 0.430 1.577 0.883 3.088
Ps AW -0.298 -1.223 0.430 0.241 -1.083 0.150
Ps Gw 0.373 6.8362 1.912 1.785 4.688 8.959
Pv AW -0.363 -1.070 -0.240 -0.211 -0.638 -0.435
Pv GW 0.307 1.391 0.269 2.212 0.363 0.724

scale. Because of the definition of the AW detail operator, negative values might be present and logarithmic representation
would not be valid. Therefore, the histogram qualitative comparison considered the translation of the AW detail minimum to
zero. AW histograms are characterized by a smaller range, with a non-zero mean in the general case. These aspects confirm
a larger presence of residual speckle in the AW component, compared to that for GW, because of the different representation
of the multi-temporal information. This aspect impacts on the statistical properties and in the change detection performances.

The analysis focused on the set R1, ..., R6. Fig. 6 illustrates the temporal trend of the wavelet detail components together
with that of the corresponding Yamaguchi features on the region R4. The plot highlights how GW is able to better mitigate
the speckle effect and follow the temporal evolution of the feature, while, for AW, the change of the area is wounded by local
residual speckle effects (e.g., see blue curves in Fig. 6). This can be justified by the fact that, under the Wishart assumption
for matrix T , a Gamma distribution can be considered for modeling the different power terms [15].

Numerical assessment has been conducted on six regions by considering a measure of the total temporal gradient. A coefficient
TTG has been defined for the feature X as:

TTG =


∑

t |∇tCoV (Xt)| for Xt∑
t CoV

(
X

(WaD)
t

)
for X(SWaD)

t∑
t CoV

(
X

(WgD)
t

)
for X(SWgD)

t

(10)

Table II shows the values obtained for the different regions on both the features and wavelet detail components. The geometrical
wavelet presents values much closer to those of the polarimetric features, compared to those of the arithmetical wavelet. This
confirms the effectiveness of the geometrical wavelet framework in mitigating speckle effect on multi-temporal information
from Yamaguchi polarimetric features.
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Fig. 4: Temporal trend for polarimetric features and wavelet Approximation (Region R4); Polarimetric Feature (black);
Arithmetical Wavelet (blue); Geometrical Wavelet (red).

(a) (b) (c) (d)

Fig. 5: GW detail for surface (a), double bounce (b), volume (c) and helix components (d) for time pair t6, t7.

IV. CONCLUSIONS

In this work, we proposed the use of a framework based on geometrical wavelet transform for analyzing polarimetric features
from Yamaguchi decomposition. The analysis considered the application of the geometrical wavelet along the temporal domain
for separating the temporal average and the variation information on a polarimetric image time series. Experimental analysis has
been conducted on a multi-temporal polarimetric dataset and focused on local regions of interest, selected based on the prior
knowledge of the scene. The results showed the effectiveness of the temporal framework in tracking the temporal evolution of
the targets and displaying the change information. These aspects might be an immediate benefit to be integrated into change
detection methodologies. Future developments aim in investigating the use of the temporal wavelet analysis for combinations
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Fig. 6: Temporal trend for polarimetric features and wavelet Detail (Region R4); Polarimetric Feature (black); Arithmetical
Wavelet (blue); Geometrical Wavelet (red).

TABLE II: TGG values for the different features on the local regions R1−R6.

TTG R1 R2 R3 R4 R5 R6
Pd Feature 11.22 34.168 24.57 18.67 19.39 30.69
Pd AW 54.39 137.303 143.20 53.53 50.22 95.61
Pd GW 19.71 47.168 38.22 21.53 34.05 44.88
PhFeature 10.34 19.490 7.21 18.25 14.16 11.69
Ph AW 52.07 116.372 76.54 58.95 57.23 106.39
Ph GW 12.84 37.178 62.48 21.57 36.56 41.64

Ps Feature 1.16 11.997 17.68 9.67 9.94 37.72
Ps AW 26.14 44.301 60.91 101.07 62.91 118.61
Ps GW 33.82 31.91 30.10 38.20 35.60 55.68

Pv Feature 3.45 14.33 2.06 6.34 9.01 3.75
Pv AW 443.88 36.31 33.54 59.51 43.92 44.69
Pv GW 17.52 10.05 9.49 14.23 12.73 13.46

of multiple polarimetric features. Moreover, the use of different wavelet filters (e.g., Daubechies) and/or the use of a multi-scale
paradigm applied in the temporal domain would be suitable for highlighting phenomena with different temporal evolution.
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