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ABSTRACT
We present a Bayesian hierarchical modelling approach to infer the cosmic matter density field, and the lensing and the matter
power spectra, from cosmic shear data. This method uses a physical model of cosmic structure formation to infer physically
plausible cosmic structures, which accounts for the non-Gaussian features of the gravitationally evolved matter distribution
and light-cone effects. We test and validate our framework with realistic simulated shear data, demonstrating that the method
recovers the unbiased matter distribution and the correct lensing and matter power spectrum. While the cosmology is fixed
in this test, and the method employs a prior power spectrum, we demonstrate that the lensing results are sensitive to the true
power spectrum when this differs from the prior. In this case, the density field samples are generated with a power spectrum that
deviates from the prior, and the method recovers the true lensing power spectrum. The method also recovers the matter power
spectrum across the sky, but as currently implemented, it cannot determine the radial power since isotropy is not imposed. In
summary, our method provides physically plausible inference of the dark matter distribution from cosmic shear data, allowing
us to extract information beyond the two-point statistics and exploiting the full information content of the cosmological fields.

Key words: gravitational lensing: weak – methods: data analysis – cosmology: large-scale structure of Universe.

1 IN T RO D U C T I O N

As light from distant galaxies propagates through the Universe, it
is deflected by the gravitational field induced by the large-scale
structures. This deflection results in a coherent distortion of observed
galaxy images, inducing small changes in the ellipticity of observed
galaxies, which is known as cosmic shear. The weak gravitational
lensing effect is sensitive to the geometry of the Universe and the
growth of cosmic structures, making it a powerful probe to study the
matter distribution and the nature of dark matter and dark energy (see
e.g. Kilbinger 2015, for a review).

The next-generation surveys like Euclid (Euclid Collaboration
2020), Roman Space Telescope (Spergel et al. 2015), and the
Rubin Observatory (LSST Science Collaboration 2009) will provide
unprecedented precision in cosmic shear measurements, performing
wide-field cosmic shear surveys and measuring large and small
scales. Harvesting the information from these datasets will present
a challenge. Many of the current cosmic shear analyses focus on
extracting information from the correlation function or the associated
power spectrum (Kitching, Heavens & Miller 2011; Heymans et al.
2013; Kitching et al. 2014; Kitching, Heavens & Das 2015; Alsing
et al. 2016; Kitching et al. 2016; Hildebrandt et al. 2017; Troxel
et al. 2018; Hikage et al. 2019; Taylor et al. 2019). These analyses
capture the two-point statistics, but they do not fully capture the
non-Gaussian information encoded in the filamentary features of
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the matter distribution (Bernardeau, van Waerbeke & Mellier 1997;
Jain & Seljak 1997; van Waerbeke, Bernardeau & Mellier 1999;
Schneider & Lombardi 2003; Takada & Jain 2003; Vafaei et al.
2010; Kayo, Takada & Jain 2013). While some approaches to
access the non-Gaussian information are based on measuring high-
order correlations (Bernardeau, van Waerbeke & Mellier 2003; Pen
et al. 2003; Jarvis, Bernstein & Jain 2004; Semboloni et al. 2011;
van Waerbeke et al. 2013; Fu et al. 2014), peak counts (Jain &
van Waerbeke 2000; Dietrich & Hartlap 2010; Maturi, Fedeli &
Moscardini 2011; Marian et al. 2012; Pires, Leonard & Starck 2012;
Cardone et al. 2013; Lin & Kilbinger 2015; Liu et al. 2015b, a;
Kacprzak et al. 2016; Petri et al. 2013; Peel et al. 2017) or using
machine learning (Gupta et al. 2018), they rely on summary statistics
that do not capture all the information and whose distributions are
not well known.

Capturing the full information content of the large-scale structure
requires a field-based approach to infer the matter distribution from
observations. Böhm et al. (2017) presented a maximum likelihood
estimator to reconstruct the matter density field from cosmic shear
data, assuming a lognormal distribution for the density. The log-
normal distribution reproduces the one- and two-point statistics but
fails to reproduce higher-order statistics. Alsing et al. (2016), Alsing,
Heavens & Jaffe (2017) presented a Bayesian hierarchical inference
scheme to jointly infer shear maps and the corresponding power
spectra, assuming Gaussian statistics of the shear field. From a
Bayesian perspective, assuming a Gaussian distribution for the shear
field is a well motivated prior since it constitutes the maximum
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entropy prior once the mean and covariance are specified. However,
more information coming from physics is available, and the Gaussian
assumption is suboptimal. In this work, we address this limitation by
including a gravity model in the Bayesian hierarchical model. For
this, we build on the Bayesian Origin Reconstruction from Galaxies
(BORG, Jasche & Kitaura 2010a; Jasche & Wandelt 2013a; Lavaux,
Jasche & Leclercq 2019) framework, which employs a physical
description of the dark matter dynamics and allows us to sample from
the initial conditions, which are accurately described by Gaussian
statistics. With this more complex data model, we get a better
representation of the data, and we can extract information beyond
the two-point statistics, exploiting the full information content of the
shear fields.

One of the main challenges in the analysis of cosmic shear based
on estimating the power spectrum is accounting for the masked
regions within the survey area (see, e.g. Chon et al. 2004; Brown,
Castro & Taylor 2005; Smith 2006). Our forward modelling approach
circumvents these difficulties associated with the survey mask.
Although the data do not provide information about the fields in
the masked regions, the dynamical model still provides probabilistic
information about the shear and density fields that are physically
possible in those regions. In our method, the masked regions are
treated as pixels with infinite noise, circumventing the need to treat
unobserved areas as being cut from the analysis.

The paper is organised as follows. Section 2 describes the data
model for the cosmic shear and the likelihood. Section 3 gives an
overview of the Bayesian inference framework, BORG, as required
for this work. In Section 4, we described the simulated data employed
in testing and validating the method. The results are presented in
Section 5, showing that the method provides unbiased matter density
fields. In Section 7, we discuss the effect of the prior power spectrum
in the results. Finally, Section 8 summarises the results.

2 TH E DATA MO D EL

The effect of weak gravitational lensing on a source can be described
by two sky fields: the spin-2 shear, γ , which describes the distortion
in the shape of the image, and the scalar convergence field, κ , which
describes the change in angular size. These two fields are related to
the lensing potential, φ, by

κ = 1
2 ∂∂̄φ, (1)

γ = γ1 + iγ2 = 1
2 ∂∂φ, (2)

(see e.g. Kilbinger 2015), where γ 1 and γ 2 are the components of the
shear distortion parallel and at π /4 to the coordinate axes, and ∂ =
∂x + i∂y is the complex derivative on the sky, assuming the flat-sky
approximation.

To connect the shear fields to the 3D dark matter distribution,
we implemented a line-of-sight integration using the Born approx-
imation, integrating along unperturbed paths. First, we generate
convergence fields by integrating along the line-of-sight with the
corresponding lensing weights as

κ(θ ) = 3H 2
0 �m

2c2

∫ rlim

0

rdr

a(r)
q(r)δf (rθ, r), (3)

where θ is the position on the sky, r is the comoving distance, rlim is
the limiting comoving distance, δf is the final density field and

q(r) =
∫ rlim

r

dr ′n(r ′)
r ′ − r

r ′ , (4)

where n(r) is the source galaxy distribution. In our discrete imple-
mentation, this becomes

κb
mn = 3H 2

0 �m

2c2

N2∑
j=0

δ
f

mnj

⎡
⎣ N2∑

s=j

(rs − rj )

rs

nb(rs)
rs

⎤
⎦ rj
rj

aj

. (5)

The index b labels the tomographic bin and the subindices mn
indicate the 2D pixel on the sky, whose size is chosen to include
typically many sources. The sum index j indicates the slice in the
radial direction, at a comoving distance rj. N2 is the total number of
voxels along the radial axis. The voxels have a length of 
rj. δf is the
3D dark matter overdensity at a scale factor a. The comoving radial
distance rs indicates the distance to the source plane. The redshift
distribution of sources for each tomographic bin is given by nb(zs). In
this initial proof-of-concept work, we focus on testing the inference
and investigating the extent to which the 3D density field, and the
3D matter power spectrum, can be inferred from 2D shear maps.
For these tests, we used a simplified scenario, assuming flat-sky and
distant observer approximations. In future work, we will drop these
approximations and consider the projection effects.

In the flat-sky approximation, we can obtain the shear values from
the convergence field. On a flat-sky, the shear and the convergence
are related in Fourier space. We, therefore, use a discrete Fourier
transform (DFT) to obtain the shear values as

γ b
mn = DFT−1

[
(lx + ily)2

l2
x + l2

y

DFT
(
κb

mn

)]
, (6)

where �l = (lx, ly) is the wave-vector written as a complex quantity.
Since the convergence is also computed as part of the hierarchical
model, this method has the advantage that it can analyse reduced
shear,

g = γ

1 − κ
, (7)

which, rather than the shear alone, controls the shape distortion.
To analyse cosmic shear observations in our Bayesian framework,

we now built a likelihood based on this data model. We assume
Gaussian pixel noise for the shear, corresponding to a negative log-
likelihood, L = − log P (γ̂ |δf ), that can then be written as

L =
∑

b

∑
mn

[
γ̂ b

1,mn − γ b
1,mn(δf )

]2 + [
γ̂ b

2,mn − γ b
2,mn(δf )

]2

2σ 2
b

, (8)

where γ̂ = γ̂1 + iγ̂2 is the observed data. This is an estimate of the
shear in the pixel, with a variance σ 2

b , which is determined from
the shape noise and number of sources per pixel as σ 2

ε /Nsources. We
note that even if the ellipticity distribution is not Gaussian, provided
many sources contribute to each pixel average the noise will become
Gaussian according to the central limit theorem. An alternative would
be to sample from the distribution in another level of the hierarchy,
but this would be expensive, so we simplify this stage by using
summary statistics of estimated shear and their variance.

This likelihood is then implemented into the large-scale structure
sampler of the BORG framework. The corresponding physical
forward modelling approach is illustrated in Fig. 1 and proceeds
as follows. Using realisations of the three-dimensional field of
primordial fluctuations, the dynamical structure formation model
evaluates nonlinear realisations of the dark matter distribution,
accounting for the light-cone effects inherent to deep observations.
Using these 3D dark matter field realisations and the data model,
BORG predicts shear fields that are compared to the observed data
via the likelihood in equation (8).
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Figure 1. Hierarchical representation of the BORG inference framework for
the analysis of cosmic shear data. Primordial fluctuations δic encoded in a a set
of Fourier modes at z ≈ 1000 are obtained from the prior P(δic|�), where �

represents the cosmological parameters. These initial conditions are evolved
using the gravity model M(δic), which provides the evolved density δf. The
evolved density and the redshift distribution of sources nb(z) are then used
to compute the convergence field for each tomographic bin b, κb(δf, nb(z)).
From the convergence, we compute the cosmic shear γ b

1 , γ b
2 in the flat-sky

approximation. γ̂ b
1 , γ̂ b

2 indicate the observational data. Purple boxes indicate
deterministic transition while green boxes are probability distributions.

3 TH E B O R G F R A M E WO R K

This work extends the previously developed BORG algorithm to
analyse the spatial matter distribution underlying cosmic shear
observations. In this section, we provide a summary of the algorithm.
A more detailed description of the BORG framework can be found
in Jasche & Wandelt (2013a), Jasche, Leclercq & Wandelt (2015),
Lavaux & Jasche (2016), Jasche & Lavaux (2019), Lavaux et al.
(2019).

The BORG framework is a Bayesian inference method aiming
at inferring the nonlinear spatial dark matter distribution and its
dynamics from cosmological datasets. The underlying idea is to
fit full dynamical gravitational and structure formation models to
observations. By using nonlinear structure growth models, the BORG
algorithm can exploit the full statistical power of high-order statistics
of the matter distribution imprinted by gravitational clustering. This
dynamical model links the primordial density fluctuations to the
present large-scale structures. Therefore, the forward modelling
approach allows the translation of the problem of inferring nonlinear
matter density fields into the inference of the spatial distribution
of the primordial density fluctuations, which are well described
by Gaussian statistics (Planck Collaboration 2019). The BORG
algorithm, therefore, infers the initial matter fluctuations, the dark
matter distribution, and its dynamical properties from observations.

Motivated by inflation theory and observational data, the BORG
algorithm employs a Gaussian prior for the initial density contrast at
an initial cosmic scale factor of a � 10−3, time for which density per-
turbations are linearly growing. Initial and evolved density fields are
linked by deterministic gravitational evolution mediated by various
physics models of structure growth. Specifically, BORG incorporates
several physical models based on Lagrangian Perturbation Theory

(LPT), fully nonlinear particle-mesh models (Jasche & Lavaux
2019), a model based on spatial COmoving Lagrangian Acceleration
framework (Leclercq et al. 2020), and a semiclassical analogue to
LPT (Porqueres et al. 2020). Any of these dynamical models can
be straightforwardly employed within the flexible block sampling
illustrated in Fig. 1. To test the inference method, in this work,
we used LPT to approximately describe the gravitational clustering.
However, in a future application of the method to real datasets, we
will use the fully nonlinear particle-mesh (Jasche & Lavaux 2019) to
have a better description of the matter density at small spatial scales,
which undergo nonlinear dynamics. Though the particle mesh will be
more costly, it will still be tractable. Tassev, Zaldarriaga & Eisenstein
(2013) showed that the LPT begins to show significant deviations at
k > 0.2 h/Mpc, but using the tCOLA modification of the equation
of motion we can push the precision of an LPT-like simulation close
to a full N-body simulation in a few time-steps, at the field level.
Typically, it can be reached in at least as little as ten time-steps to
reach 90 per cent correlation at k = 1hMpc−1 with a full N-body
simulation such as one provided by Gadget-2 (Springel 2005).

At its core, the BORG framework employs MCMC techniques.
This method allows inference of the full posterior distribution from
which we can quantify the uncertainties in our results. However,
the inference of the density field typically involves O(107) free
parameters, corresponding to the discretised volume elements of the
initial conditions. To explore this high-dimensional parameter-space
efficiently, the BORG framework uses a Hamiltonian Monte Carlo
(HMC) method, which exploits the information in the gradients and
adapts to the geometry of the problem. We need, therefore, the adjoint
gradient of the data model, which transforms the error vector from
the likelihood space to the initial conditions. For the case of weak
lensing, we derive this gradient in Appendix A. More details about
the HMC and its implementation are described in Jasche & Kitaura
(2010b) and Jasche & Wandelt (2013b).

4 TH E MO C K DATA

To test the inference framework, we generated mock observations of
cosmic shear with 30 sources per arcmin2 as expected for the Euclid
survey, with four tomographic bins and a nontrivial survey mask. In
this section, we describe the properties of the synthetic data.

Mock data are constructed by first generating Gaussian initial
conditions on a Cartesian grid of size 1h−1 Gpc × 1h−1 Gpc ×
4h−1 Gpc with 128 × 128 × 256 voxels. To generate primordial
Gaussian density fluctuations we used a cosmological matter power
spectrum including the baryonic wiggles calculated according to the
prescription provided by Eisenstein & Hu (1998, 1999). We further
assumed a standard CDM cosmology with the following set of pa-
rameters: �m = 0.31, � = 0.69, �b = 0.049, h = 0.6711, σ8 =
0.8, ns = 0.9624. Here H0 = 100h km s−1 Mpc−1.

To generate realisations of the nonlinear density field, we evolve
the Gaussian primordial fluctuations via LPT. This involves simulat-
ing displacements for 2562 × 512 particles in the LPT simulation,
accounting for light-cone effects inherent to deep observations. Final
density fields are constructed by estimating densities via the cloud-
in-cell scheme from simulated particles on the Cartesian grid. A
cosmic shear field is generated by applying the data model described
in Section 2, assuming the redshift distributions for tomographic bins
shown in Fig. 2. Finally, we added Gaussian pixel-noise to the shear
with variance corresponding to 30 sources per arcmin2, as expected
to be obtained from the Euclid survey (Laureijs et al. 2011), and
with an error on intrinsic ellipticity given by σ ε = 0.3 (Kilbinger
2015). The total of 30 sources per arcmin2 is then equally distributed
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Figure 2. Redshift distributions of sources for the four tomographic bins
considered in this analysis.

Figure 3. Mask used to generate the mock data. The masked regions, with
no contributing sources, are indicated in black. There are two different scales,
corresponding to unobserved regions and bright stars.

between the bins, corresponding to 7.5 galaxies per arcmin2 for each
tomographic bin. This corresponds to a signal-to-noise ratio of S/N
= 0.5. We added a nontrivial survey mask, shown in Fig. 3. Since
the data provides no direct information in the masked regions, these
are treated as pixels with infinite noise.

5 R ESULTS

Here, we present the results of applying our algorithm to simulated
cosmic shear data. We show that our method infers unbiased density
fields and corresponding power spectra at all scales considered in
this work. We also perform a posterior predictive test for the shear,
showing that the inferred densities can explain the data within the
noise uncertainty.

Figure 4. Burn-in of the posterior initial matter power spectra. The colour
scale shows the evolution of the matter power spectrum with the number
of samples. The dashed lines indicate the underlying power spectrum and
the 1- and 2-σ cosmic variance limits. The Markov chain is initialised with a
Gaussian initial density field scaled by a factor 10−3 and the amplitudes of the
power spectrum systematically drift towards the fiducial values, recovering
the true matter power spectrum at the end of the warm-up phase.

5.1 The warm-up phase of the sampler

In this first Bayesian approach, we keep the cosmology fixed, and
specify a prior on the initial power spectrum. However, the power
spectrum of the inferred matter distribution is conditioned by the
data, and we can use the posterior P(k) as a diagnostic for the
effectiveness of the inference since the power spectrum of the
posterior samples may differ from the prior. To monitor the initial
warm-up phase of the Markov sampler, we follow a similar approach
to our previous works (Jasche & Wandelt 2013a; Jasche & Lavaux
2017; Ramanah et al. 2019; Jasche & Lavaux 2019; Porqueres et al.
2019a, b): we initialised the Markov chain with an overdispersed state
and traced the systematic drift of inferred quantities towards their
preferred regions in the parameter space. Specifically, we initialised
the Markov chain with a random Gaussian initial density field scaled
by a factor 10−3 and monitored the drift of corresponding posterior
power spectra during the warm-up phase. Fig. 4 presents the results
of this exercise, showing successive measurements of the posterior
power spectrum during the initial warm-up phase. The amplitudes of
the posterior power spectrum show a systematic drift towards their
fiducial values. By the end of the warm-up phase, the sampler has
found an unbiased representation of the initial power spectrum at all
Fourier modes considered in this work. Starting the sampler from
an over-dispersed state, therefore, provides us with an important
diagnostics to test the validity of the sampling algorithm.

5.2 Inferred density fields

As discussed above, our method uses a forward modelling approach,
fitting a physical dynamical model to shear data and employs an
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Figure 5. Projections of the ground truth initial (left-hand upper panel), final density field (left-hand lower panel), inferred ensemble mean initial (middle
upper panel) and ensemble mean final (middle-lower panel) density field computed from 500 MCMC samples. Since the information on the radial direction is
not very informative, the density fields are projected on the sky, and the different slices of the 3D density field are weighted with the distribution of sources.
Comparison between these panels shows that the method recovers the structure of the true projected density field with high accuracy. Right-hand panels show
standard deviations of inferred amplitudes of the initial (upper right-hand panel) and final density fields (lower right-hand panel). The regions of high uncertainty
correspond to the masked regions, where there are no contributing sources.

MCMC sampler to explore the parameter space. This provides the
full posterior distribution, from which we draw samples of the initial
matter fluctuations.

Fig. 5 shows projections of the true fields, and the ensemble mean
and variances of inferred three-dimensional fields. The mean and
variance are estimated from 500 samples of the posterior distribution
(the correlation length is ≈80 samples). To compare the ground truth
to the inferred mean density field, we computed the projection of
the density fields on the sky since the radial information is not very
constraining. In this projection, the different slices of the 3D density
field are weighted with the distribution of the lensing sources. A first
visual comparison between ground truth and the inferred ensemble
mean initial and final density fields shows that the algorithm correctly
recovered the large-scale structures from cosmic shear data. As
expected, the mean of the initial density samples exhibits a small
degree of smoothing, a feature that is known from the Wiener filtering
solution for Gaussian fields and Gaussian prior.

The right-hand panels of Fig. 5 show the corresponding standard
deviations of the projected densities, which are estimated from the
posterior samples. The high uncertainty regions correspond to the
masked areas, where there are no contributing sources. While the
data do not provide direct information about the density field in these
masked regions, the dynamical model still provides probabilistic
information about the density fields that are physically plausible
in those regions. These results indicate that the method can deal
with nontrivial survey masks, and account for the uncertainty in the
unobserved areas. The standard deviation of the initial conditions is
homogeneous, apart from mask effect, indicating that the dynamical
model correctly propagates the information between the primordial
matter fluctuations and the final density field.

5.3 Posterior predictive tests

Posterior predictions allow testing whether the inferred density fields
provide accurate explanations of the data (see, e.g. Gelman et al.
2004). Generally, posterior predictive tests provide good diagnostics
about the adequacy of data models in explaining observations and
identifying possible systematic problems with the inference. In this
section, we predicted the shear and convergence fields as the average
computed from 500 posterior samples.

Fig. 6 presents the result of this test for one tomographic bin,
showing that the posterior predicted shear and convergence recover
the features of the true fields. The masked regions show higher
standard deviation, indicating that the method can account for
the uncertainties in the unobserved areas and provide probabilistic
information of the physically plausible shear in those regions. While
Fig. 6 shows a visual comparison, Fig. 7 shows the residuals between
the true and the mean posterior-predicted shear fields. The green
line in the plot indicates the noise distribution, showing that the
distribution of the residuals is narrower than the noise distribution,
and, therefore, the inferred quantities can explain the data at subnoise
level, with the additional constraints coming from the cosmological
prior.

Fig. 8 shows the power spectrum of the posterior-predicted shear,
measured as the average of predicted shear fields from 500 randomly-
drawn samples. The predicted power spectra match the true shear
power spectrum at all scales. We note that we computed the true
power spectrum from the noiseless data as the posterior-predicted
shear does not contain noise. These shear power spectra are pure
E-mode since they are obtained from the lensing equations under the
Born approximation.
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3040 N. Porqueres et al.

Figure 6. Posterior predicted shear and convergence for one tomographic bin. The left-hand column shows the shear data, including noise and masked regions;
the second column shows the true shear and convergence fields, and third and fourth columns show the mean and standard deviation of the posterior-predicted
shear and convergence, computed from 500 posterior samples. The method recovers the true cosmic shear correctly. The regions with higher standard deviation
correspond to the masked regions.

Figure 7. Histogram of the residuals computed as the difference between
the posterior predicted shear and the true shear. We note that the true shear
does not include the noise. The residuals distribution is narrower than the
distribution of pixel noise in the data, indicated in green, showing that the
method recovers the true shear at subnoise level with additional constraints
from the cosmological prior.

Fig. 9 shows the correlation coefficient between the posterior-
predicted shear maps and the true shear. This is readily understood,
as it is similar to the Wiener solution for the posterior of a statistically
homogeneous Gaussian field with signal power S and Gaussian
noise power N, (see e.g Jeffrey, Heavens & Fortio 2018). In this
case the mean posterior has power suppressed by (S−1 + N−1)N−1

and this is the correlation coefficient. As a result, we expect the
tomographic bin centred at the lowest redshift (bin 0) to have a lower
correlation coefficient because the lensing power at low redshift is
smaller.

6 D I S T R I BU T I O N O F TH E C O N V E R G E N C E
FIELD

Previous Bayesian approaches (Alsing et al. 2016) rely on a Gaussian
prior for the shear data. The Gaussian prior is well justified when
only the mean and variance are known since it is the least informative
prior. It is important to understand that the samples are not Gaussian
fields, since they are conditioned on the data, so non-gaussianity in
the field may be imposed by the data. However, we can make use of
the fact that we have more information available from knowledge of
gravitational physics and, for this reason, we include a gravity model
in our Bayesian hierarchical model. The advantage here is that we
sample from the initial field, which we know to be Gaussian, so rather
than relying on an uninformative prior for the final shear fields, we
use the correct Gaussian distribution for the initial conditions. What
we do not yet do in this model is to vary the prior parameters of
the power spectrum (as Alsing et al. (2016) do), and this will be the
subject of future work. As described in Section 2, we obtained the
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Bayesian forward modelling of cosmic shear 3041

Figure 8. Posterior power spectrum of the shear field compared to the power spectrum of the true shear for each tomographic bin. The posterior power spectrum
is the averaged of the power spectrum measured in 500 posterior samples. The orange line shows the noise power spectrum. The bottom plots show the ratio
between the posterior and the true power spectrum, showing that the method recovers the true shear power spectrum at all scales.

Figure 9. Correlation coefficient between the posterior-predicted and true
shear fields, from 500 posterior samples. This shows the expected Wiener-
filter-like suppression of power where the noise is high.

shear on a flat-sky from the convergence, which is computed from the
nonlinear density field. Using our forward model, we have computed
the convergence field in a wider range of tomographic bins, centred at
different redshifts but with the same bin width (σ = 0.1), to illustrate
more clearly how non-Gaussianity in the 1-point distribution evolves.
Fig. 10 shows the distribution of these convergence fields. While
the convergence shows a Gaussian distribution for tomographic
bins centred at z > 0.5, it is skewed for tomographic bins at
lower redshifts. This indicates that the Gaussian approximation
is accurate at large redshift, but it is suboptimal for low-redshift
bins.

Figure 10. Distribution of the convergence field for tomographic bins centred
at different redshifts. For comparison, a Gaussian with the same mean
and variance is plotted on top. The convergence distribution is skewed for
tomographic bins centered at z > 0.5.

7 PRI OR TEST

As discussed in Section 5.1, in this approach, we keep the cosmology
fixed, and specify a prior on the initial power spectrum. Although our
method does not sample the power spectrum, the power spectrum of
the posterior samples is conditioned by the data. This means that, if
the data require it, the posterior power spectrum deviates from the
prior, and the density samples have a power spectrum that differs
from the prior. To demonstrate that, we tested our method with mock
data generated with h = 0.6, σ 8 = 0.55, �m = 0.7 and analyse
these data with h = 0.677, σ 8 = 0.8, �m = 0.3, such that �mh2

changes by a factor 2. These changes in the cosmological parameters
give a different shape and amplitude of the power spectrum, as can
be seen in Fig. 11. The resolution, total number of sources per
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Figure 11. Burn-in phase of the dark matter power spectra for the prior test.
We show the power spectrum for the modes parallel to the line-of-sight, k�
(upper panel), and the perpendicular modes, k⊥ (lower panel), i.e. in the plane
of the sky. The dotted line indicates the prior matter power spectrum, and the
truth is indicated by the red dashed line. The colour scale indicates the sample
number in the Markov chain. After the burn-in phase, the method recovers
the correct matter power on the plane of the sky. However, the data is not
constraining in the radial direction and the prior dominates. We note that as
currently implemented, isotropy is not a requirement.

square arcmin, the mask and tomographic bins remain as described in
Section 4.

Fig. 11 presents the evolution of the power spectrum for this
test, showing the burn-in phase of the Markov chain. In the plane
of the sky, the posterior power spectrum agrees with the truth,
demonstrating that the method is sensitive to the true power spectrum
even when this differs from the prior. However, in the line-of-sight
direction, the data is not constraining, and the prior dominates. These
results are consistent with Simon, Taylor & Hartlap (2009). As
currently implemented, isotropy is not required, and the method
cannot determine the radial power accurately. The recovered matter
power spectrum, however, suffices to explain the data, obtaining
shear residuals below the noise level, as can be seen in Fig. 12.
Fig. 13 shows the lensing power spectrum, indicating that the
method recovers the correct lensing power at large scales where
the noise is low. However, the small scales have lower S/N, and
the posterior power spectrum drifts towards the prior. To avoid
this prior sensitivity, we need to sample from the power spec-
trum as well as the field. This will be the subject of a future
paper.

In future work, we will extend our Bayesian hierarchical model
to jointly sample the cosmological parameters and the density
field, using an approach compatible with the one presented in
Ramanah et al. (2019). We expect that this future extension of
the method will constrain the matter power spectrum, also in the

Figure 12. Histogram of the shear residuals for the prior test. The residuals
are computed as the difference between the mean posterior-predicted shear
and true shear. The distribution of shear residuals is narrower than the noise
distribution, indicated in green.

radial direction, through the assumption of isotropy, but we do not
anticipate being able to recover the small-scale radial distribution
at the field level, because of the width of the lensing kernel and the
distance uncertainties. Meanwhile, the test presented here shows that
the posterior power spectrum is conditioned by the data despite using
a fixed cosmology.

8 SUMMARY AND DI SCUSSI ON

We have developed a Bayesian physical forward model to infer the
matter density field and primordial fluctuations from cosmic shear
data. This framework consists of a Gaussian prior for the primordial
fluctuations, a dynamical structure formation model that links the
initial conditions and the evolved density field, and a likelihood based
on a data model of the cosmic shear in the flat-sky approximation.

This forward modelling approach allows us to go beyond the
common analyses of cosmic shear based on two-point statistics.
While many studies of the cosmic shear focus on the power
spectrum or the correlation function, the nonlinear dynamics of
the large-scale structure encode significant information in higher-
order statistics associated with the filamentary structure of the
cosmic web. Our dynamical forward model reproduces the fila-
mentary matter distribution and, in this way, allows using every
data point, rather than relying on summary statistics that do not
capture all the information and whose distributions are not well
known. By employing a more accurate gravity model, our method
also improves over previous Bayesian hierarchical approaches that
assumed a Gaussian distribution of the shear field (Alsing et al.
2016).

We have tested our inference method with simulated data with
four tomographic bins, a survey mask, and 30 sources per arcmin2

as expected for the Euclid survey. These tests demonstrate that our
method recovers the unbiased matter distribution and initial matter
power spectrum from cosmic shear data. Posterior predictive tests
showed that the inferred quantities are known to the sub-noise

MNRAS 502, 3035–3044 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/502/2/3035/6119918 by guest on 16 August 2022



Bayesian forward modelling of cosmic shear 3043

Figure 13. Posterior power spectrum of the shear field compared to the power spectrum of the true shear for the prior test. The grey dotted line indicates the
shear power spectrum computed using the prior cosmology, which differs from the truth. The orange line indicates the power spectrum of the noise. The bottom
plots show the ratio between the posterior, prior, and noise and the true power spectrum, showing that the method recovers the true lensing power spectrum
where the signal-to-noise is high, but is suppressed in the low S/N regions where the prior is low.

level, with additional constraints coming from the cosmological
prior.

Although our framework currently uses a fixed cosmology, we
have shown that the method recovers the true power spectrum
when this differs from the prior where the signal-to-noise is high.
While we do not sample the power spectrum, the posterior power
spectrum deviates from the prior if the data require it. To illustrate
this, we performed a test using different values of H0, σ 8 and
�m to generate the mock data and to analyse them. In this case,
the prior power spectrum, therefore, differs from the true power
spectrum. This test demonstrated that our method is sensitive to
the underlying cosmology, and the power spectrum of the density
samples is conditioned by the data, recovering the true matter power
spectrum across the sky and the lensing power spectrum. However,
in the radial direction, the data is not informative, and the prior
dominates since we have not imposed isotropy. In future work,
we will extend our Bayesian hierarchical approach to sample the
cosmological parameters, through both the geometry and the power
spectrum and its growth. We expect that this extension will also
constrain the matter power spectrum in the radial direction through
the imposition of isotropy, and remove the prior power spectrum
sensitivity.

To summarise, this work demonstrates the feasibility of detailed
and physically plausible inference of the large-scale structure from
cosmic shear data. The proposed approach, therefore, improves the
shear data model from previous methods by including a physical
description of gravity, providing a better representation of the data
and allowing us to extract information beyond the two-point statistics.
In future work, we will explore the constraints on cosmology that
this approach provides by jointly sampling the initial conditions and
the cosmological parameters.
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A P P E N D I X A : A D J O I N T G R A D I E N T O F TH E
DATA MO D EL

The inference of the density field requires inferring the amplitudes of
the primordial density at different volume elements of a regular grid,
commonly between 1283 and 2563 volume elements. This implies 106

to 107 free parameters. To explore this high-dimensional parameter
space efficiently, the BORG framework employs a Hamiltonian
Monte Carlo (HMC) method, which adapts to the geometry of
the problem by using the information in the gradients. Therefore,
this algorithm requires the derivatives of the forward model. In this
appendix, we derive the adjoint gradient of the shear model, which
linearly transforms the error vector from the likelihood space to the
parameter space of initial conditions.

More specifically, the HMC relies on the availability of a gradient
of the posterior distribution. Therefore, we need to compute the
gradient of the log-likelihood with respect to the initial density
contrast, δic.
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where M(a, δic) is the dynamical forward model.
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stars: variables: Scuti
stars: variables: general
stars: variables: RR Lyrae
stars: variables: S Doradus
stars: variables: T Tauri, Herbig Ae/Be
(stars:) white dwarfs
stars: winds, outflows
stars: Wolf–Rayet

Interstellar medium (ISM), nebulae
ISM: abundances
ISM: atoms
ISM: bubbles
ISM: clouds
(ISM:) cosmic rays
(ISM:) dust, extinction
ISM: evolution
ISM: general
(ISM:) HII regions
(ISM:) Herbig–Haro objects

ISM: individual objects: . . .
(except planetary nebulae)
ISM: jets and outflows
ISM: kinematics and dynamics
ISM: lines and bands
ISM: magnetic fields
ISM: molecules
(ISM:) photodissociation region (PDR)
(ISM:) planetary nebulae: general
(ISM:) planetary nebulae: individual: . . .
ISM: structure
ISM: supernova remnants

The Galaxy
Galaxy: abundances
Galaxy: bulge
Galaxy: centre
Galaxy: disc
Galaxy: evolution
Galaxy: formation
Galaxy: fundamental parameters
Galaxy: general
(Galaxy:) globular clusters: general
(Galaxy:) globular clusters: individual: . . .
Galaxy: halo
Galaxy: kinematics and dynamics
(Galaxy:) local interstellar matter
Galaxy: nucleus
(Galaxy:) open clusters and associations: general
(Galaxy:) open clusters and associations: individual: . . .
(Galaxy:) solar neighbourhood
Galaxy: stellar content
Galaxy: structure

Galaxies
galaxies: abundances

galaxies: bar
galaxies: active

(galaxies:) BL Lacertae objects: general
(galaxies:) BL Lacertae objects: individual: . . .
galaxies: bulges
galaxies: clusters: general

galaxies: disc

galaxies: clusters: individual: . . .
galaxies: clusters: intracluster medium

galaxies: distances and redshifts
galaxies: dwarf
galaxies: elliptical and lenticular, cD
galaxies: evolution
galaxies: formation
galaxies: fundamental parameters
galaxies: general
galaxies: groups: general

galaxies: groups: individual: . . .
galaxies: haloes
galaxies: high-redshift

galaxies: individual: . . .
galaxies: interactions
(galaxies:) intergalactic medium
galaxies: irregular
galaxies: ISM
galaxies: jets
galaxies: kinematics and dynamics
(galaxies:) Local Group
galaxies: luminosity function, mass function
(galaxies:) Magellanic Clouds
galaxies: magnetic fields
galaxies: nuclei
galaxies: peculiar
galaxies: photometry
(galaxies:) quasars: absorption lines
(galaxies:) quasars: emission lines
(galaxies:) quasars: general
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(galaxies:) quasars: individual: . . .
(galaxies:) quasars: supermassive black holes
galaxies: Seyfert
galaxies: spiral
galaxies: starburst
galaxies: star clusters: general

galaxies: star clusters: individual: . . .
galaxies: star formation
galaxies: statistics
galaxies: stellar content
galaxies: structure

Cosmology
(cosmology:) cosmic background radiation
(cosmology:) cosmological parameters
(cosmology:) dark ages, reionization, first stars

(cosmology:) dark energy
(cosmology:) dark matter
(cosmology:) diffuse radiation
(cosmology:) distance scale
(cosmology:) early Universe
(cosmology:) inflation
(cosmology:) large-scale structure of Universe
cosmology: miscellaneous
cosmology: observations
(cosmology:) primordial nucleosynthesis
cosmology: theory

Resolved and unresolved sources as a function of 

Transients

wavelength
gamma-rays: diffuse background
gamma-rays: galaxies
gamma-rays: galaxies: clusters
gamma-rays: general
gamma-rays: ISM
gamma-rays: stars
infrared: diffuse background
infrared: galaxies
infrared: general
infrared: ISM
infrared: planetary systems
infrared: stars
radio continuum: galaxies
radio continuum: general
radio continuum: ISM
radio continuum: planetary systems
radio continuum: stars
radio continuum: transients
radio lines: galaxies
radio lines: general
radio lines: ISM
radio lines: planetary systems
radio lines: stars
submillimetre: diffuse background
submillimetre: galaxies
submillimetre: general
submillimetre: ISM
submillimetre: planetary systems
submillimetre: stars
ultraviolet: galaxies

ultraviolet: general

transients: tidal disruption events
transients: supernovae
transients: novae
(transients:) neutron star mergers
(transients:) gamma-ray bursts
(transients:) fast radio bursts
(transients:) black hole - neutron star mergers
(transients:) black hole mergers

ultraviolet: ISM
ultraviolet: planetary systems
ultraviolet: stars
X-rays: binaries
X-rays: bursts
X-rays: diffuse background
X-rays: galaxies
X-rays: galaxies: clusters
X-rays: general
X-rays: individual: . . .
X-rays: ISM
X-rays: stars D
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