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Abstract

We introduce the complete box-ball system (cBBS), which is an integrable cellular au-
tomaton on 1D lattice associated with the quantum group Uq(Òsln). Compared with the
conventional (n − 1)-color BBS, it enjoys a remarkable simplification that scattering of
solitons is totally diagonal. We also submit the cBBS to randomized initial conditions
and study its non-equilibrium behavior by thermodynamic Bethe ansatz and generalized
hydrodynamics. Excellent agreement is demonstrated between theoretical predictions
and numerical simulation on the density plateaux generated from domain wall initial
conditions including their diffusive broadening.
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1 Introduction

The box-ball system (BBS) [1] and its generalizations are paradigm examples of integrable
cellular automata on 1D lattice connected to Yang-Baxter solvable vertex models [2], Bethe
ansatz [3], crystal base theory of quantum groups at q = 0 [4], ultradiscretization and tropical
geometry etc. See for example the review [5] and the references therein.

In this paper we introduce a new version of BBS associated with Uq(Òsln), which we call
the complete box-ball system (cBBS). It possesses a number of distinguished features compared
with the conventional BBS with (n− 1) kinds of balls. We also consider a protocol where the
cBBS is initially prepared in some random initial conditions corresponding to two different
ball densities in the left and in the right halves. The associated non-equilibrium behavior is
then studied by thermodynamic Bethe ansatz [6, 7] and generalized hydrodynamics [8–10].
The results generalize the earlier work [11] for n = 2, where the cBBS itself reduces to the
original one [1].

Let Bk,l be the set of semistandard tableaux on the k × l rectangular Young diagram over
the alphabet {1, 2, . . . , n} [12,13]. It is a labelling set of the basis of the irreducible sln module
corresponding to the mentioned Young diagram. By the definition only 1 ≤ k < n is relevant
and the simplest B1,1 is identified with the set {1, 2, . . . , n}. A typical or conventionally most
studied BBS with (n− 1) kinds of balls [14] is a dynamical system on

· · · ⊗B1,1 ⊗B1,1 ⊗B1,1 ⊗ · · · , (1.1)

where ⊗ can just be regarded as the product of sets in this paper. One interprets it as an array
of boxes which is empty for 1 ∈ B1,1 or contains a color a ball for a = 2, 3, . . . , n ∈ B1,1.
All the distant boxes are assumed to be 1 = empty. By using the crystal theory of Uq(Òsln),
one can formulate an integrable dynamics on such states yielding solitons [15, 16].1 Here is

1In this paper we will not use the crystal theory of Uq(Òsln) extensively since it is not the main theme, and only
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an example with n = 4, where t is the discrete time variable (the symbol ⊗ is omitted for
simplicity):

t = 0: 111122221111113321114311111111111111111111111111111111
t = 1: 111111112222111113321143111111111111111111111111111111
t = 2: 111111111111222211113321431111111111111111111111111111
t = 3: 111111111111111122221113324311111111111111111111111111
t = 4: 111111111111111111112222113243311111111111111111111111
t = 5: 111111111111111111111111222132243311111111111111111111
t = 6: 111111111111111111111111111221132243321111111111111111
t = 7: 111111111111111111111111111112211132214332111111111111
t = 8: 111111111111111111111111111111122111132211433211111111
t = 9: 111111111111111111111111111111111221111132211143321111

The incoming solitons 2222, 332 and 43 get close and undergo messy collisions, but eventually
they come back nicely in the very original amplitude (or size) 2, 3 and 4. Solitons possess inter-
nal degrees of freedom. They have changed nontrivially as 2222×332×43→ 22×322×4332
like the interchange of quarks in hadron collisions. Thus, the scattering in this model is non-
diagonal meaning that the internal labels of solitons are not conserved and change nontrivially.

The cBBS we propose and study in this paper is obtained, among other things, by replacing
(1.1) with

· · · ⊗B ⊗B ⊗B ⊗ · · · , with B = B1,1 ⊗B2,1 ⊗ · · · ⊗Bn−1,1. (1.2)

Apparently it looks more involved than (1.1) since now each site has a larger internal structure
B than B1,1 for n ≥ 3. However, it turns out to enjoy much simpler and elegant features than
the conventional BBS as we explain below.

First, solitons in cBBS can be labeled just with color a ∈ {1, 2, . . . , n − 1} and amplitude
i ∈ Z≥1 as S(a)

i
. Moreover they exhibit totally diagonal scattering S(a)

i
× S(b)

j
→ S

(b)
j
× S(a)

i
whose nontrivial effect is integrated into a phase shift on their asymptotic trajectories. This
is a drastic simplification compared with the conventional BBS. For example in the notation
explained in Sec. 2, scattering of S(1)

3 = 1
22 ⊗ 1

22 ⊗ 1
22 and S(2)

4 = 1
13 ⊗ 1

13 ⊗ 1
13 ⊗ 1

13 for n = 3 under

a time evolution T (1)

l
with l ≥ 3 looks as follows (a bank signifies the vacuum background 1

12 ):
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The initial solitons S(1)
3 and S(2)

4 have speed 3 and 0, and they do regain the original forms
after the collision except the phase shift −3. See around (2.40) for the definition and the
neat general formula of the phase shift. More examples with n = 4 are available in Example
2.4–2.6.

Second, cBBS can accept a full family of commuting time evolutions
T
(r)

l
(r ∈ {1, 2, . . . , n−1}, l ∈ Z≥1) naturally without introducing an artificial “barrier" which

was necessary for the conventional BBS to prevent balls from escaping from the system for
r ≥ 2. See a remark after [17, eq. (3)]. This is assured by the stability (2.23) which is another
benefit of the choice of B in (1.2).

quote relevant results casually.
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Third, the complete set of conserved quantities of cBBS are given as an (n − 1)-tuple of
Young diagrams µ(1), . . . ,
µ(n−1), and they all admit most transparent meaning; µ(a) is nothing but the list of ampli-
tude i of the color a solitons S(a)

i
. Such a direct interpretation of the conserved Young dia-

grams in terms of solitons was possible only for the first one µ(1) in the conventional BBS. Our
cBBS puts all of µ(1), . . . , µ(n−1) on an equal footing achieving the democracy of the conserved
Young diagrams.

Given all these fascinating features which have escaped notice so far, we regard cBBS
as the most natural as well as decent generalization of the original BBS [1] along Uq(Òsln)
differing from the conventional ones for n ≥ 3. The nomenclature “complete” BBS is meant
to indicate that the complete list B1,1, B2,1, . . . , Bn−1,1 of (the labeling set of the basis of)
the fundamental representations of sln have been gathered into B (1.2) at each site. Put
in the other way, the somewhat unsatisfactory aspects of the conventional higher rank BBS
mentioned in the above may be attributed to the “incomplete” choice of B. We expect similar
stories also in integrable cellular automata associated with the other quantum affine algebras.

After clarifying the nature of cBBS in Sec. 2, the rest of the paper is devoted to the study
of a randomized version of cBBS by thermodynamic Bethe ansatz (TBA) and generalized hy-
drodynamics (GHD) extending the previous work on n = 2 case [11]. Randomized means
here that some measures over random initial conditions are considered, but we stress that for
a given initial microscopic configuration the dynamics remains completely deterministic. We
focus on the i.i.d. (independent and identically distributed) randomness including (n−1) tem-
perature generalized Gibbs ensemble (3.15). It corresponds to assigning (relative) fugacities
z1, z2, . . . , zn to the letters 1, 2, . . . , n in the semistandard tableaux. We formulate the TBA and
GHD equations on the so-called Y-function, the string/hole densities and the effective speed of
solitons under any time evolution. They are fully solved in terms of the Schur functions with
fugacity entries z1, z2, . . . , zn. These results provide a quantitative description of the cBBS
soliton gas in a homogeneous system.

One of the central ideas in GHD is that the TBA Y-variable plays the role of normal mode
in the Euler-scale hydrodynamics of an “integrable fluid”. We apply it to the non-equilibrium
dynamics of the cBBS soliton gas started from domain wall initial conditions. This is a typical
setting in Riemann problem called partitioning protocol. See [10, 18, 19] and the references
therein. As with the n = 2 case [11], density profile of solitons exhibits a rich plateaux struc-
ture depending on the type of solitons, time evolutions and the fugacity controlling the inhomo-
geneity of the system. We derive their position and height including the diffusive broadening
by synthesizing all the ingredients in the preceding sections. They are shown to agree with
extensive numerical simulations.

Let us comment on some other extensions of the basic setting (1.1) than (1.2) in the litera-
ture. The best known example is · · ·⊗B1,li−1⊗B1,li⊗B1,li+1⊗· · · , which is the BBS with boxes
having (possibly inhomogeneous) general capacities [15]. The case · · ·⊗Bk,1⊗Bk,1⊗Bk,1⊗· · ·
has also been investigated in [20]. The closest model to our cBBS is · · · ⊗ (B1,1 ⊗Bn−1,1)⊗
(B1,1 ⊗ Bn−1,1) ⊗ (B1,1 ⊗ Bn−1,1) ⊗ · · · , which yields, with an elaborate decoration at the
boundary, the BBS with reflecting end [21]. Although the time evolution is designed differently
there, the state space of the bulk part coincides with that of cBBS for the smallest choice n = 3.
In all these examples except the lowest rank situation, scatterings of solitons are non-diagonal,
which testifies the novelty of cBBS. As for the recent progress on probabilistic and statistical
aspects of the randomized BBS (non-complete BBS except n = 2), see also [17,22–27].

The outline of the paper is as follows. In Sec. 2 we introduce cBBS and explain its basic
properties such as the commuting family of time evolutions, complete set of conserved quan-
tities, solitons and their scattering rule, and the inverse scattering formalism. A key role is
played by the Bethe ansatz structure which is realized as soliton/string correspondence. In Sec.
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3 we proceed to the randomized version of cBBS. Explicit solutions are presented for the TBA
equation (3.19) in (3.24), and string/hole densities in (3.52)-(3.53). They are expressed by
the special combination (3.36) of the Schur function (3.6). These results can also be viewed
as the solution to the variant of the limit shape problem of rigged configurations [17] adapted
to cBBS. In Sec. 4 we apply GHD to the randomized cBBS. We present the speed equation of
solitons for any time evolution (4.1) and its explicit solution in (4.7). The former coincides
with [23, eq.(11.7)] for n = 2 and T (1)

∞ dynamics. The formulation of the GHD equations in
matrix forms in Sec. 4.2 is useful to recognize the characteristic Bethe ansatz structure. In Sec.
5 we study the density plateaux generated from domain wall initial conditions by GHD. Each
plateau is formed by particular subsets of solitons from two sides of the domain wall. These
subsets, which we call soliton contents, show some intriguing patterns. Sec. 6 is devoted to
summary and conclusions.

Appendix A recalls the algorithm for obtaining the image of the combinatorialR in the most
general case. Appendix B includes the explicit piecewise linear formulas for the combinatorial
R for n = 2 and 3. Appendix C is a brief exposition of the KSS bijection in the situation used
in this paper.

2 Complete box-ball system

Throughout the paper we use the notation

[a, b] = {a, a+ 1, . . . , b} (a ≤ b ∈ Z), I = {(a, i) | a ∈ [1, n− 1], i ∈ Z≥1}. (2.1)

2.1 Preliminaries

Consider the classical simple Lie algebra sln (n ≥ 2). We denote its Cartan matrix by (Cab)
n−1
a,b=1

,
where

Cab = 2δa,b − δ|a−b|,1. (2.2)

Let $1, . . . , $n be the fundamental weights and α1, . . . , αn be the simple roots. They are re-
lated byαa =

∑n
b=1Cab$b. LetÒsln be the non-twisted affinization of sln [28] andUq = Uq(Òsln)

be the quantum affine algebra (without derivation operator) [29,30]. There is a family of ir-
reducible finite-dimensional representations {W (k)

l
| (k, l) ∈ [1, n − 1] × Z≥0} of Uq called

Kirillov-Reshetikhin (KR) module2 named after the related work on the Yangian [31]. As a
representation of Uq(sln), W

(k)

l
is isomorphic to the type 1 irreducible highest weight module

V (l$k) with highest weight l$k. W (k)

l
is known to have a crystal base Bk,l [4,32]. Roughly

speaking, it is a set of basis vectors of the W (k)

l
at q = 0. Practically in this paper we only

need its combinatorial definition as a set and the operation called combinatorial R. They are
described in the next subsection.

2.2 Combinatorial R

For (k, l) ∈ I, let Bk,l be the set of semistandard tableaux of k× l rectangular shape over the
alphabet {1, 2, . . . , n}. Let b = (tij), where tij is the entry at the i th row from the top and
the j th column from the left. By the definition, t1j < t2j < · · · < tkj and ti1 ≤ ti2 ≤ · · · ≤ til
hold for any i ∈ [1, k] and j ∈ [1, l]. The array row(b) = tk . . . t2t1 with ti = ti1ti2 . . . til is

2The actual KR modules carries a spectral parameter. In this paper it is irrelevant and hence suppressed.
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called the row word of b. For instance, we have

b = 1 2 3
2 4 5 ∈ B

2,3, row(b) = 245123, c =
1 2
2 3
4 5

∈ B3,2, row(c) = 452312. (2.3)

For tableaux S and T , their product is defined in the following two ways which are known
to be equivalent:

S · T = (· · · ((S ← u1)← u2)← · · · )← ul (row(T ) = u1u2 . . . ul) (2.4)

= v1 → (v2 → (· · · (vm → T ) · · · )) (row(S) = v1v2 . . . vm). (2.5)

Here← denotes the row insertion and→ does the column insertion [12].

Row insertion S ← x:

1. Start at the top row of S.

2. If x is larger than or equal to the rightmost number in the current row, add x to the right
of the row, which is the end of the insertion.

3. Otherwise, replace the leftmost element y of the row such that x < y by x and go to
step (1) starting at the next row, now with y to be inserted.

Column insertion x→ S:

1. Start at the leftmost column of S.

2. If x is larger than the bottom number in the current column, add x to the bottom of the
column, which is the end of the insertion.

3. Otherwise, replace the smallest element y of the column such that x ≤ y by x and go to
step (1) starting at the next column, now with y to be inserted.

In the above example one has

b · c =
1 1 2 2 5
2 2 3
3 4
4 5

, c · b =
1 1 2 2 3
2 2 4 5
3 5
4

. (2.6)

Now we are ready to explain the combinatorial R and the local energy H , which are es-
sential ingredients in our cBBS. These notions were introduced in the crystal base theory [33]
as the proper analogue of the quantum R matrices at q = 0, motivated by the corner transfer
matrix method [2]. The concrete description given below is due to [34]. The combinatorial R
is the bijection

R : Bk,l ⊗Bk′,l′ → Bk′,l′ ⊗Bk,l; b⊗ c 7→ c̃⊗ b̃, (2.7)

whose image c̃⊗ b̃ = R(b⊗ c) is characterized by the condition c · b = b̃ · c̃. Here and in what
follows, ⊗ is used to mean just the product of sets. It should not be confused with the product
· of tableaux. Note that the dependence on k, k′, l, l′ has been suppressed in R. For example,
from

1 2 2
2 4 5 ·

1 3
2 4
3 5

=

1 1 2 2 3
2 2 4 5
3 5
4

, (2.8)

6
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which agrees with the right tableau in (2.6), we find

R : 1 2 3
2 4 5 ⊗

1 2
2 3
4 5

7→
1 3
2 4
3 5

⊗ 1 2 2
2 4 5 . (2.9)

This is a particular case of R : B2,3 ⊗ B3,2 → B3,2 ⊗ B2,3. The algorithm to find b̃ and c̃
satisfying the condition b̃ · c̃ = c · b is described in Appendix A following [35, p55].

The local energy H is the function defined by

H : Bk,l ⊗Bk′,l′ → Z≥0; b⊗ c 7→ H(b⊗ c), (2.10)

H(b⊗ c) = number of boxes strictly below the max(k, k′)-th row of the tableau c · b.
(2.11)

In our working example (2.3), max(k, k′) = max(2, 3) = 3, hence from (2.6) we have
H(b⊗ c) = 1.

Let uk,l ∈ Bk,l be the particular tableau whose entries in the i th row from the top are all
i. It corresponds to the highest weight element in the representation of Uq(sln). Some small
examples are

u1,1 = 1 , u2,1 =
1
2 , u3,1 =

1
2
3
, u1,2 = 1 1 , u2,2 =

1 1
2 2 , u3,2 =

1 1
2 2
3 3

.

(2.12)

It is easy to see

R(uk,l ⊗ uk′,l′) = uk′,l′ ⊗ uk,l, (2.13)

H(b⊗ uk′,l′) = 0 (∀b ∈ Bk,l) (2.14)

for any k, k′, l, l′.
IfR in (2.7) andH in (2.10) are denoted byRBk,l⊗Bk′,l′ andHBk,l⊗Bk′,l′ respectively, they

satisfy

RBk,l⊗Bk,l = idBk,l⊗Bk,l , (2.15)

RBk,l⊗Bk′,l′RBk′,l′⊗Bk,l = idBk′,l′⊗Bk,l , (2.16)

HBk′,l′⊗Bk,l ◦RBk,l⊗Bk′,l′ = HBk,l⊗Bk′,l′ (2.17)

by the definition. In spite of the simplification (2.15), the local energy HBk,l⊗Bk,l(b ⊗ c) still
depends on b ⊗ c nontrivially . The relation in (2.16) is called the inversion relation, which
implies that R(b⊗ c) = c̃⊗ b̃ is equivalent to R(c̃⊗ b̃) = b⊗ c. In view of this we write these
relations also as b⊗ c ' c̃⊗ b̃.

The most important property of the combinatorial R is the Yang-Baxter equation [2]. It
includes R as the classical part and H as the affine part. To unify them into a single equation,
we introduce an infinite set Aff(Bk,l) = {b[α] | b ∈ Bk,l, α ∈ Z} and extend R to the map R̂
defined by

R̂ : Aff(Bk,l)⊗ Aff(Bk′,l′)→ Aff(Bk′,l′)⊗ Aff(Bk,l)

b[α]⊗ c[β] 7→ c̃[β +H(b⊗ c)]⊗ b̃[α−H(b⊗ c)],
(2.18)

where c̃ ⊗ b̃ = R(b ⊗ c) as in (2.7). The integer α attached to b in b[α] is called a mode.
It is a reminiscent of the spectral parameter in quantum R matrices. Note that the shift of
the mode H(b ⊗ c) in (2.18) is equally presented as H(c̃ ⊗ b̃) since they coincide owing to

7
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(2.17). This guarantees that R̂ also satisfies the inversion relation. Thus we also write (2.18)
as b[α] ⊗ c[β] ' c̃[β + H(b ⊗ c)] ⊗ b̃[α − H(b ⊗ c)] putting the two sides on a more equal
footing.

Now the Yang-Baxter equation is presented as

(R̂⊗ id)(id⊗ R̂)(R̂⊗ id) = (id⊗ R̂)(R̂⊗ id)(id⊗ R̂), (2.19)

which is an equality of the maps Aff(Bk,l)⊗Aff(Bk′,l′)⊗Aff(Bk′′,l′′)→ Aff(Bk′′,l′′)⊗Aff(Bk′,l′)⊗
Aff(Bk,l) for arbitrary (k, l), (k′, l′), (k′′, l′′) ∈ I. Here is an example for (k, k′, k′′, l, l′, l′′) = (1,
2, 3, 3, 2, 1), where the modes are indicated as the indices in the bottom right of the tableaux.

1 4 4 α ⊗
1 3
2 4 β

⊗
1
2
3 γ

	 R

1 1
3 4 β+1

⊗ 2 4 4 α−1 ⊗
1
2
3 γ

? ?

1 1
3 4 β+1

⊗
1
2
4 γ

⊗ 2 3 4 α−1

1 4 4 α ⊗
1
3
4 γ

⊗ 1 2
2 3 β

1
3
4 γ

⊗ 1 4 4 α ⊗
1 2
2 3 β

R 	1
3
4 γ

⊗ 1 1
2 4 β+1

⊗ 2 3 4 α−1

In general, we will write b1 ⊗ · · · ⊗ bL ' b′1 ⊗ · · · ⊗ b′
L

if the elements b1 ⊗ · · · ⊗ bL and
b′1 ⊗ · · · ⊗ b′L are transformed to each other by successively applying the combinatorial R to
the neighboring components as above.

The relation b[α]⊗ c[β] ' c̃[β + h]⊗ b̃[α− h] (2.18) or its classical part (2.7) without the
mode will be depicted as (h = H(b⊗ c))

-

?

b[α]

c[β]

b̃[α− h]

c̃[β + h]

-

?

b

c

b̃

c̃
(2.20)

As the examples shown so far indicate, one can always forget the modes without destroying
the relations on the classical parts. For readers convenience, we include explicit formulas of
R and H for n = 2, 3 cases in Appendix B.

2.3 Vacuum state and stability

Collecting all the l = 1 cases in (2.12) for a given n, we set

vac = u1,1 ⊗ u2,1 ⊗ · · · ⊗ un−1,1 ∈ B, B = B1,1 ⊗B2,1 ⊗ · · · ⊗Bn−1,1. (2.21)

For instance, vac looks as

1 (n = 2), 1 ⊗ 1
2 (n = 3), 1 ⊗ 1

2 ⊗
1
2
3

(n = 4). (2.22)
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The special element vac is referred to as vacuum, which will be used in the background con-
figuration in our complete BBS. The set B is the tensor product of (crystals of) the complete
list of fundamental representations of Uq(sln). Using the KSS bijection in Appendix C, one can
show a stability

Bk,l ⊗B⊗L 3 b⊗ vac⊗L ' v1 ⊗ · · · ⊗ vm ⊗ vac⊗L−m ⊗ uk,l ∈ B⊗L ⊗Bk,l (∀b ∈ Bk,l) ,
(2.23)

when L gets sufficiently large for some m and v1, . . . , vm ∈ B.
As we will discuss in detail in Sec. 2.4, in the equation above we may interpret b as the

initial state of a ‘carrier’. The system contains L boxes that are initially in the vaccum state.
The equality describes the change of the state of the system after the carrier has passed across
the system, from left to right. It indicates that for large enough L only a finite number (at
most m) of boxes on the left side get modified, while the others remain in the vacuum state
vac. The output state of the carrier is also the vacuum uk,l. Here is an example (k, l) = (1, 3)
with n = 3:

2 3 3 1 2 3 1 2 2 1 1 2 1 1 2 1 1 1 1 1 1

1 1 1
1
2

1
2

1
2

-
?

-
?

-
?

-
?

-
?

-
?

3 1
3

2 1
2

2 1
2

Here b = 2 3 3 and L = 3. The diagram is constructed by concatenating (2.20). Another
example for (k, l) = (2, 3) with n = 3 is

1 2 2
2 3 3

1 1 2
2 3 3

1 1 1
2 2 3

1 1 1
2 2 3

1 1 1
2 2 2

1 1
1
2

1
2

-
?

-
?

-
?

-
?

2 2
3

1 1
3

In the (right) distance, all the combinatorial R’s tend to the situation (2.13).

2.4 Time evolutions and conserved quantities

Now we define the complete BBS (cBBS). It is a dynamical system on B⊗L. An element
b1 ⊗ · · · ⊗ bL ∈ B⊗L is called a state where each bi ∈ B is a local state at site i. Thus
there are #B =

�

n
1

��

n
2

�

· · ·
�

n
n−1

�

local states which have an internal structure as in (2.21).
We assume that L is sufficiently large and impose the boundary condition that the “distant”

local states are all vac in (2.21). This is compatible with the dynamics that we are going to
introduce below. For any (r, l) ∈ I in (2.1), we define the time evolution T (r)

l
: B⊗L → B⊗L

as follows:

T
(r)

l
(b1 ⊗ · · · ⊗ bL) = b′1 ⊗ · · · ⊗ b′L (bi ∈ B), (2.24)

ur,l ⊗ b1 ⊗ · · · ⊗ bL ' b′1 ⊗ · · · ⊗ b′L ⊗ ur,l . (2.25)

The relation (2.25) is obtained by successively applying the combinatorial R sending Br,l

throughB⊗L to the right. Like the previous examples, the procedure can be shown graphically
as

-
? ? ? ? ? ? ? ?

ur,l

b1

b′1

b2

b′2

bL

b′
L

ur,l

(2.26)
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Here the boundary condition implies bj = bj+1 = · · · = bL = vac for L� L− j � 1. Then,

thanks to the stability (2.23), we always end up with ur,l in the right. In short, T (r)

l
is obtained

by going from NW to SE in (2.26). Thanks to the inversion relation (2.16), one can reverse
the procedure to define the inverse (T

(r)

l
)−1 : b′1 ⊗ · · · ⊗ b′L 7→ b1 ⊗ · · · ⊗ bL by going from SE

to NW under the boundary condition b1 = b2 = · · · = bm = vac for 1� m� L.
The key to the above construction is Br,l attached to the horizontal arrow in the diagram

(2.26). It induces the time evolution T
(r)

l
via the interactions with the local states by the

combinatorial R. This degrees of freedom is called carrier [36], and especially ur,l is referred
to as the vacuum carrier.

A local state may be labeled with its deviation from vac. For instance when n = 3, the 9
local states in B = B1,1 ⊗B2,1 can be displayed as

vac = 1 ⊗ 1
2 = , 1 ⊗ 1

3 = , 1 ⊗ 2
3 = ,

2 ⊗ 1
2 = , 2 ⊗ 1

3 = , 2 ⊗ 2
3 = ,

3 ⊗ 1
2 = , 3 ⊗ 1

3 = , 3 ⊗ 2
3 = ,

(2.27)

where the entries common with vac are colored white. In general one may regard a local state
as an arrangement of n − 1 kinds of balls in n − 1 columns each obeying the semistandard
condition. Then the combinatorial R specifies the rule under which the balls are exchanged
between the carrier and a box. The complete BBS is a nomenclature emphasizing that the
complete list of the possible column length 1, 2, . . . , n − 1 have been built in each local state
as in (2.21). See also a remark after (2.22). We will see that this will lead to a remarkable
simplification of solitons and their scattering.

The time evolution T
(r)

l
is associated with the energy E(r)

l
: B⊗L → Z≥0. Its quickest

definition is to declare that the mode of the carrier in (2.26) is shifted as follows:

-
? ? ? ? ? ? ? ?

ur,l[α]

b1

b′1

b2

b′2

bL

b′
L

ur,l[α− E(r)

l
(b1 ⊗ · · · ⊗ bL)].

(2.28)

To be more detailed, suppose the local states have the form bi = c(n−1)(i−1)+1⊗· · ·⊗c(n−1)i ∈ B =

B1,1⊗· · ·⊗Bn−1,1 so that b1⊗· · ·⊗bL = c1⊗· · ·⊗c(n−1)L. The carriers u1, . . . , u(n−1)L ∈ Br,l

in the intermediate steps are determined from the initial condition u0 = ur,l and the recursion

uj−1 ⊗ cj ' c′j ⊗ uj (1 ≤ j ≤ (n− 1)L), (2.29)

for some c′j . From the defining behavior of the mode in (2.18), the energy E(r)

l
is expressed

as the sum of local energies attached to (2.29) as

E
(r)

l
(b1 ⊗ · · · ⊗ bL) =

(n−1)L
∑

j=1

H(uj−1 ⊗ cj) ∈ Z≥0. (2.30)

As j gets large, uj tends to ur,l by the stability (2.23) under the boundary condition. Then
(2.14) assures that the sum (2.30) converges to a finite value which is independent of L if it
gets large enough.

The time evolution and the energy enjoy the properties

commutativity : T
(k)

l
T
(k′)
l′

= T
(k′)
l′

T
(k)

l
, (2.31)

conservation : E
(k)

l
T
(k′)
l′

= E
(k)

l
(2.32)
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on any state and for arbitrary (k, l), (k′, l′) ∈ I. This is a simple consequence of the Yang-
Baxter equation. In fact, write s = b1 ⊗ · · · ⊗ bL for short and consider

uk,l[α]⊗ uk′,l′ [β]⊗ s ' uk,l[α]⊗ T (k′)
l′

(s)⊗ uk′,l′ [β − E(k′)
l′

(s)]

' T (k)

l
T
(k′)
l′

(s)⊗ uk,l[α− E(k)

l
(T

(k′)
l′

(s))]⊗ uk′,l′ [β − E(k′)
l′

(s)] (2.33)

by using (2.28) successively. On the other hand, one may first apply uk,l[α]⊗uk′,l′ [β] ' uk′,l′ [β]
⊗ uk,l[α] which is a consequence of (2.13) and (2.14). It tells that (2.33) is also equal to

T
(k′)
l′

T
(k)

l
(s)⊗ uk′,l′ [β − E(k′)

l′
(T

(k)

l
(s))]⊗ uk,l[α− E(k)

l
(s)]

' T (k′)
l′

T
(k)

l
(s)⊗ uk,l[α− E(k)

l
(s)]⊗ uk′,l′ [β − E(k′)

l′
(T

(k)

l
(s))] . (2.34)

Comparing (2.33) and (2.34), one obtains (2.31) and (2.32).

Remark 2.1. The composition of the combinatorial R’s achieving B ⊗ B 7→ B ⊗ B is the
identity. Therefore if vac is put in place of ur,l at the left in the diagram (2.26), we have
b′1 = vac, b′2 = b1,

b′3 = b2, . . .. It follows that the composition T (1)
1 T

(2)
1 · · ·T (n−1)

1 is the translation to the right
by one lattice unit.

Remark 2.2. Both the time evolution T
(k)

l
and the associated energy E(k)

l
have the well-

defined limit as l→∞. A simple explanation of this fact is provided by the inverse scattering
scheme (2.48), which translates T (k)

l
as in (2.49) and E(k)

l
as in (2.50) and (C.10). In partic-

ular, if γk denotes the maximal amplitude of color k solitons that will be defined in the next
subsection, one has T (k)

l
= T

(k)
γk and E(k)

l
= E

(k)
γk for all l ≥ γk.

2.5 Solitons and their scattering

This subsection is the place where things start to differ significantly from the conventional
(non-complete) BBS. The claims can be proved by invoking the inverse scattering method
explained in Sec. 2.6.

We observe the cBBS in terms of the deviation of the states from the background configu-
ration vac⊗L. The first question is to find the “collective modes” or “quasi particles” which are
stable localized patterns having a constant speed under any time evolution when isolated from
the other patterns different from vac. They deserve to be called solitons if the stability under
multi-body collisions, a much more stringent postulate, is further obeyed. This turn out to be
the case for the cBBS reflecting the existence of the n− 1 families of the conserved quantities
E

(1)

l
, . . . , E

(n−1)
l

(l ∈ Z≥1). In what follows we present a complete list of solitons together
with their scattering rule.

First we introduce the elementary excitations s1, s2, . . . , sn−1 ∈ B by

n = 2 : s1 = 2 , (2.35)

n = 3 : s1 = 2 ⊗ 1
2 , s2 = 1 ⊗ 1

3 , (2.36)

n = 4 : s1 = 2 ⊗ 1
2 ⊗

1
2
3
, s2 = 1 ⊗ 1

3 ⊗
1
2
3
, s3 = 1 ⊗ 1

2 ⊗
1
2
4
. (2.37)

They are different from vac ∈ B in (2.22) by only one entry at the bottom of one tableau.
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General definition is this:

sa = u1,1 ⊗ · · ·ua−1,1 ⊗

1

2
...

a−1

a+1

⊗ ua+1,1 ⊗ · · · ⊗ un−1,1 ∈ B (a ∈ [1, n− 1]). (2.38)

Using sa as the building block we next introduce

S
(a)
i

=

i
︷ ︸︸ ︷

sa ⊗ · · · ⊗ sa ∈ B⊗i ((a, i) ∈ I) (2.39)

and call it soliton of color a and length (or amplitude or size) i, or type (a, i) for short. They
have the following properties.

(I) When isolated, a soliton S(a)
i

proceeds to the right with the velocity δarmin(i, l) under

T
(r)

l
.

(II) Solitons are stable under collisions. A collision of solitons of type (a, i) and (b, j) induces
the displacement ∆ in their asymptotic trajectories which is common in the magnitude
and opposite in the direction.

S
(b)
j

�∆ -∆

S
(a)
i

Here time grows from the top to the bottom. The quantity ∆, we call it phase shift, is
given by

∆ = Cabmin(i, j), (2.40)

where (Cab)1≤a,b≤n−1 is the Cartan matrix (2.2). Note that ∆ can be either positive or
negative or even zero.

(III) By applying time evolutions sufficiently many times, any state can be decomposed into
isolated solitons. Such asymptotic states can be taken, for example, as

. . . (color 1 solitons) . . . . . . (color 2 solitons) . . . . . . . . . (color n− 1 solitons) . . . ,
(2.41)

where . . . denotes vac’s. Distance of the neighboring islands can be made as large as one
wishes. Each (color a solitons) has the form

. . . (S(a)
1 ’s) . . . . . . (S(a)

2 ’s) . . . . . . . . . (S(a)
γa ’s) . . . , (2.42)
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where γa is the maximal length of the color a solitons as mentioned in Remark 2.2.
Again the distance of (S(a)

k
’s) and (S(a)

k+1
’s) can be made arbitrarily large. Each (S(a)

i
’s)

can be brought into the form

. . . S
(a)
i
. . . S

(a)
i
. . . . . . . . . S

(a)
i
. . . . (2.43)

In contrast to (2.41) and (2.42), the separation . . . of the neighboring S(a)
i

’s remains
constant under time evolutions, but it is at least i everywhere, namely, vac⊗d with d ≥ i.

(IV) The energy E(r)

l
of the asymptotic states (hence all those connected to it by time evolu-

tions) described in (2.41) – (2.43) is given by

E
(r)

l
=

γr
∑

i=1

min(i, l)m
(r)
i
, (2.44)

where m(a)
i

is the number (multiplicity) of type (a, i) solitons in (2.43).

By inverting (2.44) one can obtain the m(r)
i

, that is the soliton content of the state, from

the conserved energies E(r)

l
. In addition, by using the local energies (2.30), one gets the local

contribution to m(r)
i

, which is therefore a soliton density. This is how the soliton densities are
computed in the simulations in Sec. 5.3.

Remark 2.3. Denote the Cartan matrix (2.2) by Cn exhibiting the dependence on n temporar-
ily. In view of the inverse (C−1n )ab = min(a, b) − ab

n , the phase shift Cabmin(i, j) in (2.40)
is the matrix element of Cn ⊗ C−1∞ . This originates in the x = 0 Fourier component of the
TBA kernel Âij

ab
(x)M̂ab(x) for the level ` Uq(Òsln) RSOS model in [37, eq.(14.14)] in the limit

`→∞.

Reflecting the commutativity (2.31), the phase shift ∆ is independent of the choice of the
time evolution T (r)

l
as long as the two solitons have different bare speeds in (I) under it so

that they eventually collide.
Let us present a few examples of (II) concerning collisions. We take n = 4.

Example 2.4. Collision of S(a)
3 and S(a)

1 under the time evolution by successive applications

of T (a)

l
with any a = 1, 2, 3 and l ≥ 3.

, , sa, sa, sa, , , , sa, , , , , , , , , , ,
, , , , , sa, sa, sa, , sa, , , , , , , , , ,
, , , , , , , , sa, , sa, sa, sa, , , , , , ,
, , , , , , , , , sa, , , , sa, sa, sa, , , ,

A blank , , signifies the vacuum vac. See (2.22). The larger (resp. smaller) soliton S(a)
3 (resp.

S
(a)
1 ) is pushed forward (resp. pulled backward) by 2 sites compared from its free motion.

This agrees with the phase shift Caamin(3, 1) = 2 in (2.40). Note that we count B having
the internal structure as one lattice unit. In this example, no local state other than vac and
sa is generated by the collision. In general if solitons of only one color are present, cBBS is
equivalent to the very original BBS [1] corresponding to n = 2

Example 2.5. Successive collisions of S(3)
3 with S(1)

1 and S(2)
2 under the time evolution T (3)

l

with l ≥ 3. We write s2 in (2.37) for example as 1
12

133
to save the space.
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, ,
1

12
124

,
1

12
124

,
1

12
124

, , , , ,
1

12
223

, , ,
1

12
133

,
1

12
133

, , , , , , , , ,

, , , , ,
1

12
124

,
1

12
124

,
1

12
124

, ,
1

12
223

, , ,
1

12
133

,
1

12
133

, , , , , , , , ,

, , , , , , , ,
1

12
124

,
1

12
224

,
1

12
124

, ,
1

12
133

,
1

12
133

, , , , , , , , ,

, , , , , , , , ,
1

12
223

, ,
1

12
124

,
1

12
144

,
1

12
133

, , , , , , , , ,

, , , , , , , , ,
1

12
223

, , , ,
1

13
144

,
1

12
124

, , , , , , , ,

, , , , , , , , ,
1

12
223

, , , , ,
1

12
133

,
1

12
134

,
1

12
124

,
1

12
124

, , , , ,

, , , , , , , , ,
1

12
223

, , , , ,
1

12
133

,
1

12
133

, , ,
1

12
124

,
1

12
124

,
1

12
124

, ,

The solitons S(1)
1 and S(2)

2 do not move by themselves as their bare speed is zero under T (3)

l
.

See (I). One observes that the phase shift of S(3)
3 vs S(1)

1 collision isC31min(3, 1) = 0, whereas

the one for S(3)
3 vs S(2)

2 collision is C32min(3, 2) = −2 in agreement with (2.40). The inter-
mediate states contain the non-vacuum local states 1

12
224

,
1

12
144

,
1

13
144

,
1

12
134

which are not included in

the elementary excitations s1, s2, s3 in (2.37).

Example 2.6. Let us demonstrate how a generic state is decomposed into solitons as indicated
in (III). We pick the state on the top line and first apply T (3)

l
with l ≥ 1 repeatedly to get

, ,
1

13
134

,
1

23
134

, , , , , , , ,

, ,
1

12
133

,
1

32
143

,
1

12
134

, , , , , , ,

, ,
1

12
133

,
2

13
134

,
1

12
133

,
1

12
124

, , , , , ,

, ,
1

12
133

,
1

12
133

,
1

13
234

, ,
1

12
124

, , , , ,

, ,
1

12
133

,
1

12
133

,
1

12
233

,
1

12
134

, ,
1

12
124

, , , ,

, ,
1

12
133

,
1

12
133

,
1

12
233

,
1

12
133

,
1

12
124

, ,
1

12
124

, , ,

, ,
1

12
133

,
1

12
133

,
1

12
233

,
1

12
133

, ,
1

12
124

, ,
1

12
124

, ,

The two color 3 solitons S(3)
1 are separated. Their distance is 1 which is indeed not less than

their common length in agreement with the last claim in (III). The two solitons can be taken
away to the right by further applying T (3)

l
without changing their mutual distance. It allows

us to focus on the remaining left part of the state. Applying T (2)

l
with l ≥ 3 to it successively,

we find

, ,
1

12
133

,
1

12
133

,
1

12
233

,
1

12
133

, , , , , , , , , , , , , , , , ,

, , , ,
1

12
323

, ,
1

12
133

,
1

12
133

,
1

12
133

, , , , , , , , , , , , , ,

, , , ,
1

22
133

, , , , ,
1

12
133

,
1

12
133

,
1

12
133

, , , , , , , , , , ,

, , , , ,
1

12
233

, , , , , , ,
1

12
133

,
1

12
133

,
1

12
133

, , , , , , , ,

, , , , ,
1

12
223

,
1

12
133

, , , , , , , , ,
1

12
133

,
1

12
133

,
1

12
133

, , , , ,

, , , , ,
1

12
223

, ,
1

12
133

, , , , , , , , , , ,
1

12
133

,
1

12
133

,
1

12
133

, ,

Thus the color 2 solitons S(2)
1 and S(2)

3 are separated to the right leaving the color 1 soliton

S
(1)
1 in the left. These procedures achieve (2.41)–(2.43).

Remark 2.7. Instead of (2.41) one can achieve the asymptotic decomposition

. . . (color a1 solitons) . . . . . . (color a2 solitons) . . . . . . . . . (color an−1 solitons) . . .
(2.45)
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for arbitrary permutation a1, a2, . . . , an−1 of 1, 2, . . . , n− 1. As indicated by Example 2.6, it is
done by applying (T

(a1)
∞ )M1(T

(a2)
∞ )M2 · · · (T (an−1)

∞ )Mn−1 with M1,M2, . . . ,Mn−1 � 1.

Remark 2.8. The tableaux letter a ∈ [1, n] carries the sln weight $1−α1−· · ·−αa−1. In this
counting, the elementary excitation sa in (2.38) has the extra weight −αa compared from the
background vac (2.21). Thus the soliton S(a)

i
(2.39) carries the weight −iαa.

In terms of letters in the boxes of semistandard tableaux, the presence of a soliton S
(a)
i

changes the letter a into a + 1 for i times compared with the vacuum background. On the
other hand, vac in (2.21) contains a letter a for (n−a) times. Therefore the number λa of the
letter a in the L site system is

λa = L(n− a)−
∞
∑

i=1

im
(a)
i

+
∞
∑

i=1

im
(a−1)
i

(a ∈ [1, n]), (2.46)

where m(a)
i

the number of solitons S(a)
i

and m(0)
i

= 0 by convention.3 This formula is nothing
but (C.14)4 with (C.10) under the special choice N = (n − 1)L and ki ≡ i ∈ Zn−1 with
i ∈ [1, n−1]. In terms of ρ(a)

i
and ε(a)

i
that will be introduced in (3.16) and (3.17), the density

%a := λa/L of the tableau letter a is given by

%a = n− a−
∞
∑

i=1

iρ
(a)
i

+
∞
∑

i=1

iρ
(a−1)
i

= n− a− ε(a)∞ + ε
(a−1)
∞ (a ∈ [1, n]), (2.47)

where ρ(0)
i

= ε
(0)
∞ = 0.

2.6 Inverse scattering method

In Appendix C a brief exposition is given on the KSS bijection Φ between the set of highest
paths P+(B, λ) and rigged configurations RC(B, λ). States of our cBBS satisfying the boundary
condition are examples of the former with B = B⊗L. See the remark in the end of Appendix
C. The array λ = (λ1, . . . , λn) specifies that the number of letter a in a state is λa. On the other
hand, a rigged configuration is a combinatorial object like (C.12) visualizing the collection of
strings which are triplets (color, length, rigging) as in S0 (C.11).

The time evolution T (k)

l
of the BBS induces that of rigged configurations via the commu-

tative diagram:5

P+(B, λ) Φ−−−−→ RC(B, λ)
T

(k)

l





y





y
T

(k)

l

P+(B, λ) Φ−−−−→ RC(B, λ)

. (2.48)

A remarkable feature of this scheme is that it achieves the linearization [38]:

T
(k)

l
: {(ai, ji, ri)} 7→ {

�

ai, ji, ri + δk,ai min(l, ji)
�

}, (2.49)

3The formula (2.46) is obvious for asymptotic states. General case follows from it and the fact that m(a)

i ’s are
conserved quantities.

4The formula (C.14) is given for rigged configurations, but it is known to agree with (C.1) under the KSS
bijection.

5We use the same notation T (k)

l
to also represent the time evolution of the rigged configurations since they are

to be identified via the bijection Φ.
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where rigged configurations are represented as multisets as in (C.7). It implies that the partial
data {(ai, ji)} forms the complete set of conserved quantities (action variables) and the rig-
gings undergo a straight motion (angle variables). In short, rigged configurations are action-
angle variables of our cBBS, and the maps Φ and Φ−1 are direct and inverse scattering trans-
formations. The scheme (2.48) achieves the solution of the initial value problem of cBBS by
the inverse scattering method as T (k)

l
= Φ−1 ◦ T (k)

l
◦ Φ.

Take a state b1⊗· · ·⊗bL of cBBS and letm(a)
j

be the number of color a length j strings in the

rigged configuration Φ(b1⊗· · ·⊗bL). We set E(a)
j

= E(a)
j

(b1⊗· · ·⊗bL) =
∑

k≥1min(j, k)m
(a)

k

according to (C.10). Since m(a)
j

is determined only by the action variables {(ai, ji)}, the

quantity E(a)
j

is conserved under the time evolution. On the other hand recall the conserved

energy of a state E(k)

l
= E

(k)

l
(b1 ⊗ · · · ⊗ bL) introduced in (2.30). The two are known to

coincide:

E
(k)

l
= E(k)

l
. (2.50)

Due to the invariance under the time evolution, the proof reduces to the doable case of asymp-
totic states where solitons are all far apart. See for example [39].

Recall that m(a)
j

in E(k)

l
(2.44) was the number of color a length j solitons contained in

a state, whereas the one in E(k)
l

is the number of color a length j strings. Therefore (2.50)
implies the soliton/string correspondence [38]

soliton = string.

It has played a key role in the Bethe ansatz study of the randomized BBS [11,17].
To illustrate, consider the state on the top line of Example 2.6 in the previous subsection:

s =
1
12
123
⊗

1
12
123
⊗

1
12
123
⊗

1
13
134
⊗

1
23
134
⊗

1
12
123
⊗

1
12
123
⊗

1
12
123

∈ P+(B⊗8, (23, 13, 10, 2)), (2.51)

where a few vac =
1

12
123

are supplied in the front and in the tail and displayed explicitly. Such
operators do not influence the relevant rigged configurations essentially. See the explanation
in the end of Appendix C. From the demonstration in the previous subsection, we know that
s “consists of” solitons S(3)

1 , S
(3)
1 of color 3, solitons S(2)

3 , S
(2)
1 of color 2 and a soliton S(1)

1 of
color 1 including multiplicity. This indeed matches the image of the map Φ:

Φ(s) = 5 0
3

3
3 , (2.52)

where the precise meaning of the above graphical representation for the rigged configuration
is detailed in Appendix C.2.

3 Randomized cBBS

3.1 Generalized Gibbs ensemble

Now we introduce the randomized version of cBBS which corresponds to the distribution of the
initial states according to the generalized Gibbs ensemble (GGE). The GGE partition function
for size L system B⊗L is the sum of the Boltzmann factor exp(−

∑

r,l β
(r)

l
E

(r)

l
) over all the
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states of the cBBS, where E(k)

l
is the conserved energy. See (2.30), (2.44), (2.50) and (C.10)

for the definition and the properties. Especially from (2.44), the system can really be regarded
as a gas of interacting solitons with various colors and lengths. The parameter β(r)

l
is the

inverse temperature associated with E
(r)

l
. We are interested in the asymptotic behavior as

L→∞.
At this stage a nontrivial question arises as how to incorporate properly the boundary

condition that all the distant local states are vac (2.20). Here we propose that it is done by
restricting the state sum to the highest ones that are defined in Appendix C.1. Similar treatment
has been done in [11,17,27], where more detailed justification was made especially in the first
reference. Thus the GGE partition function of our concern is

ZL({β(r)l
}) =

∑

highest states ∈B⊗L
exp(−

∑

(r,l)∈I
β
(r)

l
E

(r)

l
). (3.1)

By synthesizing various results it can be rewritten as follows:

ZL({β(r)l
}) =

∑

λ

∑

s∈P+(B⊗L,λ)

exp(−
∑

(r,l)∈I
β
(r)

l
E

(r)

l
(s)) (definition (C.5))

=
∑

λ

∑

S∈RC(B⊗L,λ)

exp(−
∑

(r,l)∈I
β
(r)

l
E(r)
l

(S))

((2.50) and 1:1 correspondence (C.17))

=
∑

λ

∑

{m(a)
j
}

(λ) exp(−
∑

(r,l)∈I
β
(r)

l

∑

j≥1
min(j, l)m

(r)
j

)
∏

(a,j)∈I

�p
(a)
j

+m
(a)
j

m
(a)
j

�

(from (C.10), (C.16))

=
∑

{m(a)
j
}

exp(−
∑

(r,l)∈I
β
(r)

l

∑

j≥1
min(j, l)m

(r)
j

)
∏

(a,j)∈I

�p
(a)
j

+m
(a)
j

m
(a)
j

�

.

(3.2)

Here the vacancy p(a)
i

defined in general by (C.10) takes the form

p
(a)
i

= L−
∑

(b,j)∈I
Cabmin(i, j)m

(b)
j
, (3.3)

for our cBBS reflecting the fact that the states belong to B⊗L with B given by (2.21). The
constraint (C.8) is taken into account by setting

�

K
J

�

= 0 unless J ∈ [0,K]. In (3.2) we are

summing over the number m(a)
j

of solitons S(a)
j

. In this sense ZL({β(r)l
}) is a GGE partition

function for the grand canonical ensemble of solitons.

Remark 3.1. The appearence of the phase shift∆ = Cabmin(i, j) (defined in (2.40)) in (3.3)
is not a coincidence. It is indeed a general property in Bethe ansatz integrable systems that
such a shift appears in the relation between the hole and particle densities and is related to
the TBA kernel (see also Remark 2.3).

3.2 I.I.D. randomness

From here we concentrate on the situation where local states b ∈ B = B1,1 ⊗ · · · ⊗ Bn−1,1

obey an i.i.d. randomness. More specifically we consider an i.i.d. measure P(b ∈ B) including
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the parameters z1 > z2 > · · · > zn > 0 as follows:

P(b = c1 ⊗ · · · ⊗ cn−1 ∈ B) = P(1)(c1) · · ·P(n−1)(cn−1), (3.4)

P(k)
�

c = (a1, . . . , ak) ∈ Bk,1
�

=
za1 · · · zak

∑

c∈Bk,1 za1 · · · zak
, (3.5)

where ai denotes the entry of the tableau c ∈ Bk,1 in the i th box from the top. The formula
(3.5) implies that the probability of occurrence of a ∈ [1, n] is proportional to za. In this
sense, z1, . . . , zn are tableau variables representing the fugacities of the letters 1, . . . , n. Their
ambiguity due to the invariance of (3.5) under the change za → uza for a constant u will be
fixed in the rightmost condition in (3.7) below. The denominator of (3.5) is the k th elementary
symmetric function which is Q(k)

1 in the notation (3.10).
For a partition ν = (ν1, ν2, . . . , νn), let sν = sν(z1, . . . , zn) denote the Schur polynomial6

[13]:

sν(z1, . . . , zn) =
det(zνi+n−i

j
)ni,j=1

det(zn−i
j

)n
i,j=1

. (3.6)

Partitions are identified with Young diagrams as usual. Schur polynomials are irreducible
characters of finite dimensional gln modules which can be restricted to those for sln modules.
Reflecting this fact we will use further sets of variables wa, xa related to za as follows:

za = w−1a−1wa (1 ≤ a ≤ n), w0 = wn = 1, z1z2 · · · zn = 1, (3.7)

wa = e$a = z1z2 · · · za (0 ≤ a ≤ n), $0 = $n = 0, (3.8)

xa = e−αa = z−1a za+1 =
n−1
∏

b=1

w−Cab
b

(1 ≤ a ≤ n− 1). (3.9)

The variableswa and xa are formal exponential of the fundamental weight$a and the negated
simple root −αa regarded as parameters. See Sec. 2.1. The last relation in (3.7) leads to
sν = sν̃ where ν̃ = (ν1 − νn, . . . , νn−1 − νn, 0). We use a special notation for rectangle ν ’s as

Q
(a)
i

= s(ia)(z1, . . . , zn). (3.10)

It satisfies the Q-system [31,37]

(Q
(a)
i

)2 = Q
(a)
i−1Q

(a)
i+1

+Q
(a−1)
i

Q
(a+1)
i

, (3.11)

for (a, i) ∈ I withQ(0)
i

= Q
(n)
i

= 1. To validate (3.11) also at i = 0 withQ(a)
0 = 1, we employ

the convention Q(a)
−1 = 0.

Let us show that the i.i.d. measure (3.4) is the special (n− 1)-parameter reduction of the
GGE in Sec. 3.1. Denote the weight of a state s ∈ B⊗L in the sense of (C.1) by wt(s) = (λ1, . . . ,
λn). Then the formulas (3.4) and (3.5) mean that s is realized with the probability proportional
to zλ11 · · · z

λn
n . Since the KKS bijection is weight preserving (see (C.17)), the RHS of (C.1) and

(C.14) may be identified. Thus the factor
∏n

a=1 z
λa
a is proportional to

∏n
a=1 z

−E(a)∞ +E(a−1)
∞

a ,
where we have dropped

∑N
i=1 θ(ki ≥ a) in (C.14) since it is the constant (n − a)L for our

states in B⊗L. (Note E(0)
j

= E(n)
j

= 0 as mentioned there.) We can further replace E(a)∞ by

E
(a)
∞ thanks to (2.50). Therefore the probability of the state s is proportional to

z−E
(1)
∞

1 z−E
(2)
∞ +E

(1)
∞

2 · · · z−E
(n−1)
∞ +E

(n−2)
∞

n−1 zE
(n−1)
∞

n =
n−1
∏

a=1

�za+1

za

�E
(a)
∞

= exp
�

−
n−1
∑

a=1

αaE
(a)
∞
�

.

(3.12)

6The Schur polynomial sν should not be confused with sa in (2.38).
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Comparing this with (3.1) we see that the i.i.d. measure (3.4) corresponds to the special case
of GGE in which the inverse temperatures β(a)

l
is zero except

β
(a)
∞ = αa (a ∈ [1, n− 1]). (3.13)

Thus the inverse temperatures (with index∞) can be identified with the simple roots. We will
nonetheless allow co-existence of the symbols β(a)∞ and αa in what follows. The identification
(3.13) will also be reconfirmed after (3.25). From (3.9), the regime of parameters we consider
is also specified in the variables za, αa, xa as

z1 > · · · > zn > 0 (z1 · · · zn = 1), α1, . . . , αn−1 > 0, x1, . . . , xn−1 < 1. (3.14)

In particular xa → 0 and xa → 1 correspond to the zero and infinite limit of the temperature
1/β

(a)
∞ , respectively.

Remark 3.2. The dilute limit where no soliton is allowed is given by z1 � z2 � · · · � zn or
equivalently x1, . . . , xn → 0. In fact, P(k)(c) → δc,uk,1 in (3.5) hence P(b) → δb,vac in (3.4)

hold in this limit. One also has Q(a)
i
/zia → 1. See (2.12) and (2.21) for the definition of uk,1

and vac.

Now the partition function (3.2) is reduced to

ZL({β(r)∞ }) =
∑

{m(a)
j
}

∏

(a,j)∈I
exp(−β(a)∞ jm

(a)
j

)

�p
(a)
j

+m
(a)
j

m
(a)
j

�

. (3.15)

3.3 Thermodynamic Bethe ansatz

In the large L limit, the dominant contribution in the sum (3.15) comes from those {m(a)
j
}

having the L-linear asymptotic behavior

m
(a)
i
' Lρ(a)

i
, p

(a)
i
' Lσ(a)

i
, E(a)

i
' Lε(a)

i
, (3.16)

σ
(a)
i

= 1−
n−1
∑

b=1

Cab ε
(b)
i
, ε

(a)
i

=
∑

j≥1
min(i, j)ρ

(a)
j
, (3.17)

where the second line follows from the first by (3.3). The relation (3.17) is a spectral parameter
free version of the Bethe equation in terms of the string density ρ(a)

i
and the hole density σ(a)

i
.

One should seek ρ = (ρ
(a)
i

) that minimizes the free energy per site

F [ρ] =
n−1
∑

a=1

β
(a)
∞

s
∑

i=1

iρ
(a)
i
−
n−1
∑

a=1

s
∑

i=1

�

(ρ
(a)
i

+ σ
(a)
i

) log(ρ
(a)
i

+ σ
(a)
i

)− ρ(a)
i

log ρ
(a)
i
− σ(a)

i
log σ

(a)
i

�

.

(3.18)

This is (−1/L) times logarithm of the summand in (3.15) to which Stirling’s formula has been
applied. The scaling (3.16) is consistent with the extensive property of the free energy, which
has enabled us to remove the system size L as a common overall factor. We have introduced
a temporary cut-off s for the length i of solitons. It will be taken to infinity properly later.
Accordingly the latter relation in (3.17) should be understood as ε(a)

i
=
∑s
j=1min(i, j)ρ

(a)
j

.
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From
∂σ

(b)
j

∂ρ
(a)
i

= −Cabmin(i, j), one finds that the condition ∂F [ρ]

∂ρ
(a)
i

= 0 is expressed as a TBA

equation

−iβ(a)∞ + log(1 + (y
(a)
i

)−1) =
n−1
∑

b=1

Cab

s
∑

j=1

min(i, j) log(1 + y
(b)
j

), (3.19)

in terms of the ratio7

y
(a)
i

=
ρ
(a)
i

σ
(a)
i

. (3.20)

The corresponding maximal value F of the free energy per site F [ρ] (3.18) is obtained by
using (3.17), (3.19) and (3.20). The result reads

F = −
n−1
∑

a=1

s
∑

i=1

log(1 + y
(a)
i

). (3.21)

The TBA equation (3.19) is equivalent to the constant Y-system

(1 + (y
(a)
i

)−1)2

(1 + (y
(a)
i−1)

−1)(1 + (y
(a)
i+1

)−1)
=

n−1
∏

b=1

(1 + y
(b)
i

)Cab (1 ≤ i ≤ s), (3.22)

with the boundary condition

(y
(a)
0 )−1 = 0, 1 + (y

(a)
s+1)

−1 = eβ
(a)
∞ (1 + (y

(a)
s )−1). (3.23)

The Y-system (3.22) follows from the Q-system (3.11) by the substitution (cf. [37, Prop. 14.1])

y
(a)
i

=
Q

(a−1)
i

Q
(a+1)
i

Q
(a)
i−1Q

(a)
i+1

, 1 + (y
(a)
i

)−1 =
n−1
∏

b=1

(Q
(b)
i
)Cab , 1 + y

(a)
i

=
(Q

(a)
i

)2

Q
(a)
i−1Q

(a)
i+1

. (3.24)

As for the boundary condition (3.23), the first relation is valid due to the convention Q(a)
−1 = 0

mentioned after (3.11). On the other hand the second relation is translated into

eβ
(a)
∞ =

n−1
∏

b=1

 

Q
(b)
s+1

Q
(b)
s

!Cab

. (3.25)

At this point we let s tend to infinity. The result [40, Th. 7.1 (C)] tells that lims→∞(Q
(a)
s+1/Q

(a)
s ) =

e$a in the regime eα1 , , . . . , eαn−1 > 1 under consideration. Thus the large s limit of (3.25)

leads to eβ
(a)
∞ =

∏n−1
b=1 (e

$b)Cab = eαa by (3.9). This is consistent with (3.13). We also remark

that lims→∞(Q
(a)
s+1/Q

(a)
s ) = e$a and the last relation in (3.24) tells that limi→∞ y

(a)
i

= 0,

therefore (3.20) indicates limi→∞ ρ
(a)
i

= 0 which is indeed necessary for the convergence of

ε
(a)
∞ =

∑∞
i=1 iρ

(a)
i

.
Substituting the last expression in (3.24) into the free energy density (3.21), we get

F = −
n−1
∑

a=1

log

 

Q
(a)
1 Q

(a)
s

Q
(a)
s+1

!

s→∞−→ −
n−1
∑

a=1

logQ
(a)

1 , (3.26)

Q
(a)

i = e−i$aQ(a)
i

= 1 + · · · ∈ Z≥0[x1, . . . , xn−1]. (3.27)

7This y(a)i is the inverse of Y (a)

i in [17, eq.(52)].
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The quantityQ
(a)

i is the normalized character of the irreducible sln module with highest weight
i$a.

From (3.17) one sees that ε(a)∞ =
∑

i≥1 iρ
(a)
i

is the total density of color a solitons. Let

ε1, . . . , εn−1 be the expectation values of ε(1)∞ , . . . , ε
(n−1)
∞ . From (3.1), they are to be derived

from the free energy density by the standard prescription εa = ∂F
∂β

(a)
∞

. Further substitution of

(3.26) into this leads to the equation of state of our cBBS as follows:

εa = −
n−1
∑

b=1

∂ logQ
(b)

1

∂αa
= xa

∂

∂xa
log
�

Q
(1)

1 · · ·Q
(n−1)
1

�

(a ∈ [1, n− 1]), (3.28)

where we have written β(a)∞ as αa by (3.13) to express the RHS purely in terms of representa-
tion theoretical data. An analogous result on “non-complete BBS" was given in [17, eq. (66)].

Example 3.3. In the simplest case n = 2, z2 = z−11 , x1 = z−21 . Thus we have

Q
(1)
1 = z1 + z2, Q

(1)

1 = 1 + x1, ε1 =
x1

1 + x1
=

z2
z1 + z2

, (3.29)

which agrees with the density of total number of “balls" 2. Similarly for n = 3, one has

Q
(1)
1 = z1 + z2 + z3, Q

(1)

1 = 1 + x1 + x1x2, ε1 =
x1(1 + x2)

1 + x1 + x1x2
+

x1x2
1 + x2 + x1x2

,

(3.30)

Q
(2)
1 = z1z2 + z1z3 + z2z3, Q

(2)

1 = 1 + x2 + x1x2, ε2 =
x2(1 + x1)

1 + x2 + x1x2
+

x1x2
1 + x1 + x1x2

.

(3.31)

In this way one can relate the densities and the inverse temperatures.

To summarize so far, we have obtained the solution {y(a)
i
} to the TBA equation (3.19)|s=∞

in (3.24), (3.10) and (3.6). They depend on n−1 independent parameters which may be taken
either as the inverse temperatures β(a)∞ = αa (1 ≤ a < n) or the fugacities za (1 ≤ a ≤ n)
as in (3.7)–(3.9). They can further be related to the prescribed expectation values εa of
ε
(a)
∞ =

∑

i≥1 iρ
(a)
i

(1 ≤ a < n) by the equation of state (3.28).

The remaining task is to express the string and hole densities ρ(a)
i

and σ
(a)
i

in terms of

these variables. From (3.20) and (3.17), it suffices to determine ε(a)
i

. It is characterized by
the second order difference equation and the boundary condition

(y
(a)
i

)−1(−ε(a)
i−1 + 2ε

(a)
i
− ε(a)

i+1
) +

n−1
∑

b=1

Cab ε
(b)
i

= 1, (3.32)

ε
(a)
0 = 0, ε

(a)
∞ = xa

∂

∂xa
log
�

Q
(1)

1 · · ·Q
(n−1)
1

�

. (3.33)

The equation (3.32) is just the first relation in (3.17), where the first term is a disguised form
of σ(a)

i
. The last relation in (3.33) is the postulate from the equation of state (3.28).

At this point we invoke [17, Th. 5.1]. In the setting of this paper, it states that for any
(r, l) ∈ I, the unique solution h(a)

i
= h

(a)
i

(r, l) to

(y
(a)
i

)−1(−h(a)
i−1 + 2h

(a)
i
− h(a)

i+1
) +

n−1
∑

b=1

Cab h
(b)
i

= δa,rmin(i, l), (3.34)

h
(a)
0 = 0, h

(a)
∞ = xa

∂

∂xa
logQ

(r)

l (3.35)
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is given by

h
(a)
i

(r, l) =

∑

ν=(ν1,...,νn)
(
∑n
j=max(a,r)+1 νj)sν

s(ia)s(lr)
(= h

(r)

l
(a, i)), (3.36)

where the outer sum in (3.36) runs over those Young diagrams ν labeling the irreducible
gln modules appearing in the decomposition of the tensor product of those corresponding to
the rectangles (ia) and (lr). We note that the irreducible decomposition of two rectangles is
multiplicity free.

Example 3.4. For generic n, the Littlewood-Richardson rule [13] leads to

h
(1)
i

(1, l) =
1

s(i)s(l)

min(i,l)
∑

j=1

js(i+l−j,j), (3.37)

h
(2)
i

(1, l) =
1

s(i,i)s(l)

min(i,l)
∑

j=1

js(i+l−j,i,j), (3.38)

h
(2)
i

(2, l) =
1

s(i,i)s(l,l)

∑

j,j′

(2l − 2j − j′)s(i+j+j′,i+j,l−j,l−j−j′), (3.39)

h
(a)
i

(r, 1) =
1

s(ia)s(1r)

min(r,n−a)
∑

j=1

js((i+1)r−j ,ia−r+j ,1j) (1 ≤ r ≤ a), (3.40)

=
1

s(ia)s(1r)

min(a,n−r)
∑

j=1

js(i+1)a−j ,ij ,1r−a+j) (a ≤ r ≤ n). (3.41)

The sum (3.39) is taken over j, j′ ≥ 0 such that j + j′ ≤ l and max(l − i, 0) ≤ j ≤ l. Given
n, the sums (3.37)–(3.39) should be truncated so that the length of the partitions appearing
in the indices of the Schur functions does not exceed n. For instance when n = 3, (3.39) is
reduced to (s(i,i)s(l,l))

−1∑
0≤j<l(l − j)s(i+l,i+j,l−j). For n = 4 (3.40) and (3.41) read

h
(1)
i

(1, 1) =
s(i,1)

s(i)s(1)
, h

(1)
i

(2, 1) =
s(i,1,1)

s(i)s(1,1)
, h

(1)
i

(3, 1) =
s(i,1,1,1)

s(i)s(1,1,1)
, (3.42)

h
(2)
i

(1, 1) =
s(i,i,1)

s(i,i)s(1)
, h

(2)
i

(2, 1) =
s(i+1,i,1) + 2s(i,i,1,1)

s(i,i)s(1,1)
, h

(2)
i

(3, 1) =
s(i+1,i,1,1)

s(i,i)s(1,1,1)
,

(3.43)

h
(3)
i

(1, 1) =
s(i,i,i,1)

s(i,i,i)s(1)
, h

(3)
i

(2, 1) =
s(i+1,i,i,1)

s(i,i,i)s(1,1)
, h

(3)
i

(3, 1) =
s(i+1,i+1,i,1)

s(i,i,i)s(1,1,1)
.

(3.44)

Comparing the two systems (3.32), (3.33) and (3.34), (3.35), we find that the solution to
the former is constructed as the superposition of the latter as

ε
(a)
i

=
n−1
∑

r=1

h
(a)
i

(r, 1). (3.45)

From (3.40)-(3.41) we obtain the solution to (3.32), (3.33) as

ε
(a)
i

=
1

s(ia)

n−1
∑

r=1

1

s(1r)

min(a,r,n−a,n−r)
∑

k=1

k s((i+1)min(a,r)−k,ia+k−min(a,r),1r+k−min(a,r)), (3.46)

where z1 · · · zn = 1 (3.7) is imposed on the Schur funciton (3.6).
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Example 3.5. For small n, (3.46) reads as

n = 2; ε
(1)
i

=
s(i,1)

s(i)s(1)
=

x1(1− xi1)
(1 + x1)(1− xi+1

1 )
, (3.47)

n = 3; ε
(1)
i

=
1

s(i)

�

s(i,1)

s(1)
+
s(i,1,1)

s(1,1)

�

, ε
(2)
i

=
1

s(i,i)

�

s(i,i,1)

s(1)
+
s(i+1,i,1)

s(1,1)

�

, (3.48)

n = 4; ε
(1)
i

=
1

s(i)

�

s(i,1)

s(1)
+
s(i,1,1)

s(1,1)
+
s(i,1,1,1)

s(1,1,1)

�

, (3.49)

ε
(2)
i

=
1

s(i,i)

�

s(i,i,1)

s(1)
+
s(i+1,i,1)

s(1,1)
+

2s(i,i,1,1)

s(1,1)
+
s(i+1,i,1,1)

s(1,1,1)

�

, (3.50)

ε
(3)
i

=
1

s(i,i,i)

�

s(i,i,i,1)

s(1)
+
s(i+1,i,i,1)

s(1,1)
+
s(i+1,i+1,i,1)

s(1,1,1)

�

. (3.51)

The result (3.47) reproduces [11, eq. (3.24)] with a = z = x1.

Finally the densities ρ(a)
i

and σ(a)
i

are obtained from (3.17), (3.20) and (3.45) as

ρ
(a)
i

=
n−1
∑

r=1

(−h(a)
i−1(r, 1) + 2h

(a)
i

(r, 1)− h(a)
i+1

(r, 1)) = (y
(a)
i

)−1σ
(a)
i
, (3.52)

σ
(a)
i

= 1−
n−1
∑

b,r=1

Cabh
(b)
i
(r, 1). (3.53)

4 Generalized hydrodynamics

4.1 Effective speed in homogenous system

According to Sec. 2.5, the configurations S(a)
i

defined by (2.39) and (2.38) with (a, i) ∈ I
provide the complete list of solitons. Under the time evolution T (r)

l
, a soliton S(a)

i
possesses

the bare speed δarmin(i, l) and acquires the phase shift (2.40) in a collision with S(b)
j

. Let

v
(a)
i

= v
(a)
i

(r, l) denote the effective speed of S(a)
i

under T (r)

l
. Then the speed equation in the

sense of [41–43] takes the form

v
(a)
i

= δarmin(i, l) +
∑

(b,j)∈I
Cabmin(i, j)(v

(a)
i
− v(b)

j
)ρ

(b)
j
. (4.1)

Here ρ(a)
i

is density ofS(a)
i

given either by ρ(a)
i

= −ε(a)
i−1+2ε

(a)
i
−ε(a)

i+1
or ρ(a)

i
= y

(a)
i

(1−
∑n−1
b=1 Cab

ε
(b)
i
) due to (3.17) and (3.20). It is independent of T (r)

l
and the coincidence of the two ex-

pressions is assured by (3.32). For n = 2 and T
(1)
∞ dynamics, the equation (4.1) reduces

to [23, eq.(11.7)].
From (3.17), the first term in the sum in (4.1) is equal to v(a)

i

∑n−1
b=1 Cabε

(b)
i

= v
(a)
i

(1−σ(a)
i

).

Substitution of this into the speed equation (4.1) causes a cancellation of v(a)
i

, after which the

result is expressed neatly in terms of the combination ν(a)
i

as follows:

ν
(a)
i

+
∑

(b,j)∈I
Cabmin(i, j)y

(b)
j
ν
(b)
j

= δarmin(i, l), (4.2)

ν
(a)
i

= ν
(a)
i

(r, l) = σ
(a)
i
v
(a)
i

(r, l). (4.3)
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The equation (4.2) coincides with (3.34) under the identification h(a)
i

=
∑

j≥1min(i, j)y
(a)
j
ν
(a)
j

.
Therefore it has a solution

ν
(a)
i

(r, l) = δarmin(i, l)−
n−1
∑

b=1

Cabh
(b)
i
(r, l) (4.4)

= (y
(a)
i

)−1(−h(a)
i−1(r, l) + 2h

(a)
i

(r, l)− h(a)
i+1

(r, l)). (4.5)

From the first formula (4.4) with l = 1 and (3.53) we have

σ
(a)
i

=
n−1
∑

k=1

ν
(a)
i

(k, 1). (4.6)

Combining (4.3) and (4.6) we obtain the effective speed

v
(a)
i

(r, l) =
ν
(a)
i

(r, l)
∑n−1
k=1 ν

(a)
i

(k, 1)
, (4.7)

in terms of ν(a)
i

(r, l) in (4.4)–(4.5) with h
(a)
i

(r, l) given by (3.36). The result leads to the
relation

n−1
∑

r=1

v
(a)
i

(r, 1) = 1, (4.8)

which is consistent with Remark 2.1.
Among the family of time evolutions T (r)

l
, typical ones are T (1)

∞ , . . . , T
(n−1)
∞ . The corre-

sponding limit of the numerator liml→∞ ν
(a)
i

(r, l) in (4.7) can be evaluated compactly as

ν
(a)
i

(r,∞) = δari−
n−1
∑

b=1

Cabh
(b)
i
(r,∞) = δari−

n−1
∑

b=1

Cabh
(r)
∞ (b, i)

(3.35)
= δari−

n−1
∑

b=1

Cabxr
∂

∂xr
log(e−i$bQ(b)

i
) = xr

∂

∂xr
log

 

Q
(a−1)
i

Q
(a+1)
i

(Q
(a)
i

)2

!

.

(4.9)

Example 4.1. Considern = 2 case. The variables in (3.7)–(3.9) are related as z1 = z−12 = w1 =

x
− 1

2

1 . The Schur function is given by s(ν1,ν2)(z1, z2) = (zd+1
1 − z−d−11 )/(z1 − z−11 ) with

d = ν1 − ν2. From (4.4) and (3.37) we have

ν
(1)
i

(1, l) = i− 2

s(i)s(l)

i
∑

k=1

ks(i+l−k,k) = i
(1 + x1+i1 )(1 + x1+l1 )

(1− x1+i1 )(1− x1+l1 )
−

2x1(1− xi1)(1 + x1+l1 )

(1− x1)(1− x1+i1 )(1− x1+l1 )

(4.10)

for i ≤ l. In view of the symmetry ν(1)
i

(1, l) = ν
(1)

l
(1, i) (see (3.36)), general case is obtained

by replacing i with j := min(i, l) and l with m := max(i, l) in this formula. In particular,

ν
(1)
i

(1, 1) =
(1− x1)(1 + x1+i1 )

(1 + x1)(1− x1+i1 )
(4.11)

24

https://scipost.org
https://scipost.org/SciPostPhys.10.4.095


Select SciPost Phys. 10, 095 (2021)

holds for i ≥ 1. Now the effective speed (4.7) is evaluated as

v
(1)
i

(1, l) =
ν
(1)
i

(1, l)

ν
(1)
i

(1, 1)
=

1 + x1+m1

1− x1+m1

�

j
1 + x1
1− x1

− 2x1(1 + x1)(1− xj)
(1− x1)2(1 + x1+j1 )

�

. (4.12)

This reproduces [11, eq.(D.2)] with a = z = x1. Let us also check (4.9) which says

ν
(1)
i

(1,∞) = −2x1
∂

∂x1
log

x
i+1
2

1 − x−
i+1
2

1

x
1
2

1 − x
− 1

2

1

= i
1 + xi+1

1

1− xi+1
1

−
2x1(1− xi1)

(1− x1)(1− xi+1
1 )

. (4.13)

In the regime (3.14) under consideration, this indeed coincides liml→∞ ν
(1)
i

(1, l) derived from
(4.10).

Example 4.2. Consider n = 3 case. Explicit formulas for the effective speed v
(a)
i

(r, l) are

messy for generic z1, z2, z3 and l. Here we treat v(a)
i

(r,∞) for the one parameter specializa-
tion (z1, z2, z3) = (q−1, 1, q) with 0 < q < 1, which satisfies (3.14). This is the so called
principal specialization reducing the Schur function to the q-dimension as s(λ1,λ2,λ3) =
qλ3−λ1 (1−qλ1−λ2+1)(1−qλ1−λ3+2)(1−qλ2−λ3+1)

(1−q)2(1−q2) . To calculate the denominator of (4.7) we substi-
tute

h
(1)
i

(1, 1) =
s(i,1)

s(i)s(1)
, h

(2)
i

(1, 1) =
s(i−1,i−1)

s(i,i)s(1)
, h

(1)
i

(2, 1) =
s(i−1)

s(1,1)s(i)
,

h
(2)
i

(2, 1) =
s(i,i−1)

s(i,i)s(1,1)
(4.14)

into (4.4), i.e., ν(1)
i

(1, 1) = 1 − 2h
(1)
i

(1, 1) + h
(2)
i

(1, 1), ν(2)
i

(1, 1) = h
(1)
i

(1, 1) − 2h
(1)
i

(1, 1),

ν
(1)
i

(2, 1) = −2h(1)
i

(2, 1) + h
(2)
i

(2, 1), ν(2)
i

(2, 1) = 1 + h
(1)
i

(2, 1)− 2h
(1)
i

(2, 1) to find

ν
(1)
i

(1, 1) = ν
(2)
i

(2, 1) =
(1− q)2(1 + qi+1)(1− qi+3)

(1− q3)(1− qi+1)(1− qi+2)
, (4.15)

ν
(1)
i

(2, 1) = ν
(2)
i

(1, 1) =
q(1− q)2(1− qi)(1 + qi+2)

(1− q3)(1− qi+1)(1− qi+2)
. (4.16)

Thus the denominator of (4.7) is factorized as

ν
(1)
i

(1, 1) + ν
(1)
i

(2, 1) = ν
(2)
i

(1, 1) + ν
(2)
i

(2, 1) =
(1− q)(1− q2)(1− q2i+3)

(1− q3)(1− qi+1)(1− qi+2)
. (4.17)

Similar calculations of (4.4)–(4.5) lead to

ν
(1)
i

(1,∞) = ν
(2)
i

(2,∞) = i
1 + qi+1 + qi+2

(1− qi+1)(1− qi+2)
− q(1− qi)(2 + 3q + qi+3)

(1− q2)(1− qi+1)(1− qi+2)
, (4.18)

ν
(1)
i

(2,∞) = ν
(2)
i

(1,∞) = −i q
i+1(1 + q + qi+2)

(1− qi+1)(1− qi+2)
+
q(1− qi)(1 + 3qi+2 + 2qi+3)

(1− q2)(1− qi+1)(1− qi+2)
. (4.19)

These are related by ν(1)
i

(2,∞) = −ν(1)
i

(1,∞)
�

�

q→q−1 . Finally the effective speed is given by

v
(1)
i

(1,∞) = v
(2)
i

(2,∞) = i
(1− q3)(1 + qi+1 + qi+2)

(1− q)(1− q2)(1− q2i+3)
− q(1− q3)(1− qi)(2 + 3q + qi+3)

(1− q)(1− q2)2(1− q2i+3)
,

(4.20)

v
(1)
i

(2,∞) = v
(2)
i

(1,∞) = −iq
i+1(1− q3)(1 + q + qi+2)

(1− q)(1− q2)(1− q2i+3)

+
q(1− q3)(1− qi)(1 + 3qi+2 + 2qi+3)

(1− q)(1− q2)2(1− q2i+3)
. (4.21)
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Again they are related by v(1)
i

(2,∞) = −v(1)
i

(1,∞)
�

�

q→q−1 . The speeds (4.20) and (4.21) are
positive for 0 < q < 1.

4.2 Matrix form

It is convenient to formulate the results in the previous subsection in a matrix form whose
indices range over I in (2.1). We introduce the matrices

I = (δabδij)(a,i),(b,j)∈I , M = (Cabmin(i, j))(a,i),(b,j)∈I , (4.22)

y = (δabδijy
(a)
i

)(a,i),(b,j)∈I , v = v(r, l) = (δabδijv
(a)
i

(r, l))(a,i),(b,j)∈I (4.23)

and the vectors

I = (1)(a,i)∈I , κ = κ(r, l) = (δarmin(i, l))(a,i)∈I , (4.24)

ρ = (ρ
(a)
i

)(a,i)∈I , σ = (σ
(a)
i

)(a,i)∈I , y = (y
(a)
i

)(a,i)∈I , (4.25)

v = v(r, l) =
�

v
(a)
i

(r, l)
�

(a,i)∈I , ν = ν(r, l) = σ ∗ v :=
�

σ
(a)
i
v
(a)
i

(r, l)
�

(a,i)∈I , (4.26)

where the component-wise (or Hadamard) product ∗ is commutative and will be used also for
other vectors. For example we have ρ = y ∗ σ.8 In view of (4.1), the vector κ(r, l) is the bare
speed of solitons under the time evolution T (r)

l
. Note that I and I are different.

Now the equations (3.17) and (4.2) regarded as the ones for σ and ν are presented as
follows:

σ +Mρ = (I +My)σ = I, (4.27)

σ ∗ v(r, l) +M(ρ ∗ v(r, l)) = (I +My)ν(r, l) = κ(r, l). (4.28)

In general we define the “dressing” ηdr of a vector η by

ηdr = η −Myηdr, (4.29)

namely, ηdr = (I +My)−1η. Then (4.27) and (4.28) are rephrased as

σ = Idr, ν(r, l) = Idr ∗ v(r, l) = κ(r, l)dr. (4.30)

In particular the effective speed is given by

v(r, l) =
κ(r, l)dr

Idr
=

(I +My)−1κ(r, l)
(I +My)−1I

, (4.31)

where the division is component-wise. From ρ = y ∗ σ we also have

ρ = (y−1 +M)−1I, ρ ∗ v(r, l) = (y−1 +M)−1κ(r, l). (4.32)

Remark 4.3. Regard the effective speed (4.31) as a function of {y(a)
i
| (a, i) ∈ I}. Then

from Cramer’s formula and the fact that y (4.23) is diagonal, it follows that v(p)s (r, l) does not
depend on the variable y(p)s for any (p, s) ∈ I. This property will be used to ensure (5.5).

Remark 4.4. In the dilute limit explained in Remark 3.2, one has y(a)
i

= 0 and ρ(a)
i

= 0 from
(3.24) and (3.20) for all (a, i) ∈ I. Therefore the dressing (4.29) trivializes into ηdr = η. This
brings the effective speed back to the bare speed, i.e., v(r, l) = κ(r, l) in (4.31).

8The y in (4.25) is a vector which should be distinguished from the diagonal matrix y in (4.23).
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4.3 Stationary currents

Let us define the (density of) color a stationary current under the time evolution T (r)

l
as

J (a)(r, l) =
∑

i≥1
iJ

(a)
i

(r, l), J
(a)
i

(r, l) = ρ
(a)
i
v
(a)
i

(r, l). (4.33)

In view of Remark 2.8, this is a component of the weight current −
∑n−1
a=1 J

(a)(r, l)αa trans-
ported by solitons. It is expressed as a quadratic form of the bare velocities as

J (a)(r, l) = κ(a,∞)Tρ ∗ v(r, l) = κ(a,∞)T(y−1 +M)−1κ(r, l) (4.34)

due to (4.32), where ηT signifies a row vector obtained by the transpose of a column vector η.
As an additional remark, one can also express J (a)(r, l) in a form that generalizes [11,

eq.(4.4)] naturally. Let m(a)
i

be the number of soliton S(a)
i

(2.39) in the system. We assume

m
(a)
i

= 0 for i sufficiently large. Using (3.3) one can rewrite the speed equation (4.2) as

p
(a)
i
v
(a)
i

+
∑

(b,j)∈I
Cabmin(i, j)m

(b)
j
v
(b)
j

= Lδarmin(i, l). (4.35)

Let Î = {(a, i, α) | (a, i) ∈ I, α ∈ [1,m
(a)
i

]} be an extension of the index set I in (2.1).

The extra component α may be viewed as labeling individual solitons S(a)
i

of color a and

length i. The cardinality of Î is
∑

(a,i)∈Im
(a)
i

which is finite by the assumption. With a vector

η = (η
(a)
i

)(a,i)∈I we associate a similar extension η̂ = (η
(a)
i

)(a,i,α)∈Î . It repeats the same

element η(a)
i

for m(a)
i

times which is the size of the (a, i) block. Introduce the matrix9

B =
�

p
(a)
i
δabδijδαβ + Cabmin(i, j)

�

(a,i,α),(b,j,β)∈Î . (4.36)

These definitions enable us to present the speed equation (4.35) as

Bv̂(r, l) = Lκ̂(r, l). (4.37)

Similarly the current (4.33) is expressed as a quadratic form:

J (a)(r, l) =
1

L

∑

i≥1
im

(a)
i
v
(a)
i

(r, l) =
1

L
κ̂(a,∞)Tv̂(r, l) = κ̂(a,∞)TB−1κ̂(r, l). (4.38)

This formula is a natural generalization of the n = 2 case in [11, eq.(4.4)], where a fur-
ther connection to the period matrix of the tropical Riemann theta function was explored. At
present, time averaged current of the n-color cBBS on a circle is yet to be obtained. However
we expect the result should coincide with (4.38) supported by the n = 2 case established
in [11].

4.4 Dynamics in an inhomogeneous system

Let us study an inhomogeneous system, with the hypothesis that it can be locally described by
using the above formalism, but with the densities that have acquired a dependence on space
(x = j/L, j = lattice site number) and time (t = j/L, j= time step). The main assumption is

9B appeared in [44, eq.(4.6)] for a non-complete multi-color BBS with a periodic boundary condition with the
vacancy p(a)i different from (3.3) reflecting the “non-completeness”. Of course this B should not be confused with
B in (2.21).
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that the soliton current J (a)
i

(r, l) in (4.33) associated with S(a)
i

obeys the continuity equation

∂tρ
(a)
i

+ ∂xJ
(a)
i

(r, l) = 0 for any time evolution T (r)

l
.10 In the matrix notation it reads

∂tρ+ ∂x(ρ ∗ v(r, l)) = 0. (4.39)

Substituting (4.32) and using ∂α(y−1+M)−1 = β∂αy(y−1+M)−1 with β = (y−1+M)−1y−2

for α = t, x, we get ∂ty(y−1 +M)−1I+ ∂xy(y−1 +M)−1κ(r, l) = 0. By utilizing (4.32) again
and noting that y and v in (4.23) are diagonal, the result becomes

∂ty + v(r, l)∂xy = 0. (4.40)

This is a collection of separated equations for each (a, i) ∈ I meaning that y(a)
i

’s are the normal
modes of the generalized hydrodynamics [10].

Remark 4.5. Replacing ρ = (ρ
(a)
i

)(a,i)∈I in (4.39) by (f
(a)
i

(y
(a)
i

)ρ
(a)
i

)(a,i)∈I with any function

f
(a)
i

leads to the same equation (4.40). In particular, taking f (a)
i

(y
(a)
i

) = y
(a)
i

leads to the
conservation of the hole current ∂tσ + ∂x(σ ∗ v(r, l)) = 0.

5 Domain wall initial condition

Let us embark on the study of transient behaviors of the randomized cBBS started from the do-
main wall initial condition. This will give the possibility to check some of the previous results
obtained by using TBA and GHD with direct numerical simulations. Recall that an i.i.d. dis-
tribution is specified by the fugacity (z1, . . . , zn) as explained in (3.4)–(3.9). We prepare the
system initially in the i.i.d. distribution with fugacity (z1L, . . . , znL) in the left domain x < 0
and a different fugacity (z1R, . . . , znR) in the right domain x > 0. Then at time t = 0, we
begin running a dynamics T (r)

l
for some (r, l) ∈ I, and observe the long time non-equilibrium

behavior in the mixture of the soliton gas. This kind of setting is called partitioning protocol,
which has been studied in the recent literature. See [10, 18, 19] and the references therein.
We shall present our GHD analysis first in a ballistic picture (Sec. 5.1) and then its diffusive
correction (Sec. 5.2) followed by numerical verifications using simulations (Sec. 5.3).

5.1 Ballistic picture

The first approximation we employ is the ballistic scaling which implies that the normal mode
y
(a)
i

(x, t) (see Sec. 4.4) depends on x, t only through the ray variable ζ = x/t as y(a)
i

(ζ). Then
(4.40) is reduced to

�

ζ − v(a)
i

(r, l)
�

∂ζy
(a)
i

(ζ) = 0 ((a, i) ∈ I). (5.1)

Since the set of velocities v(a)
i

(r, l) is discrete in our setting, it follows that y(a)
i

(ζ), hence
the local state of the system itself, is piecewise constant and uniform when observed via the
variable ζ.1112 Thus the plot of any local quantity, typically density of solitons S(a)

i
, against ζ

10The associated time variable could also be denoted by t(r)
l

, which is however avoided for notational simplicity.
11One can show that y(a)i (ζ) can change discontinuously across ζ = v

(a)

i (r, l)± 0 without violating the current
conservation. The proof is formally identical with [11, Sec. 5.3].

12A short comment is here in order about the word state. So far we have been using state to represent a single
microscopic ball configuration. However, in the present GHD context, the (local) state of the system must be
understood in a thermodynamic or probabilistic sense, as a measure over microscopic configurations.

28

https://scipost.org
https://scipost.org/SciPostPhys.10.4.095


Select SciPost Phys. 10, 095 (2021)

collapses onto a single (and “static") curve as t→∞, which is a collection of plateaux having
sharp edges as follows:

6

local quantity

. . .

P

P ′
. . .

-

......
ζ∗

ζ = x/t
(5.2)

Obviously heights in such a plot depend on the local quantity to consider but the locations of
the plateau edges are common for all of them.

In general the normal mode y(a)
i

(ζ) can take two values y(a)
iL

or y(a)
iR

which are determined
from the fugacity (z1L, . . . , znL) or (z1R, . . . , znR) by (3.24) and (3.10). In the mixed inhomo-
geneous system under consideration, we have the boundary condition y(a)

i
(−∞) = y

(a)
iL

and

y
(a)
i

(∞) = y
(a)
iR

. For the neighboring plateaux P and P ′ as in (5.2), the relation (5.1) indicates
that there is a subset J ⊂ I such that the following hold13:

y
(a)
i

(ζ∗ − 0) = y
(a)
i

(ζ∗ + 0) (= y
(a)
iL

or y
(a)
iR

) for (a, i) ∈ J , (5.3)

y
(a)
i

(ζ) =

¨

y
(a)
iL

ζ < ζ∗

y
(a)
iR

ζ > ζ∗
for (a, i) ∈ J , (5.4)

v
(a)
i

(r, l)P = v
(a)
i

(r, l)P ′ for (a, i) ∈ J . (5.5)

Here v(a)
i

(r, l)P , v
(a)
i

(r, l)P ′ , denote the effective speed of S(a)
i

in P,P ′ which can be computed
from the respective normal mode y by (4.31). The equality (5.5) can be derived from (5.3) by
using Remark 4.3. Put plainly, J is the set such that (5.1) holds as 0×∞ = 0 if (a, i) ∈ J and
as (finite nonzero) × 0 = 0 if (a, i) ∈ J . From the consistency with this picture, we expect
that the value (5.5) coincides with ζ∗ for all (a, i) ∈ J .

As we will see, J is not necessarily a single element set. In fact the point ζ∗ = 0 in the
figure 2 corresponds to the infinite set J = {(2, i) | i ∈ Z≥1}.

Let us label a plateau P with a subset P ⊆ I (denoted by the same symbol) such that

y
(a)
i

(ζ) =

¨

y
(a)
iL

(a, i) ∈ P,
y
(a)
iR

(a, i) ∈ P.
(5.6)

Then the transition rule (5.3)–(5.4) from P to P ′ across the edge ζ = ζ∗ is stated as

P t J = P ′. (5.7)

The boundary condition means that P → ∅ as ζ → −∞ and P → I as ζ → ∞. Thus a
plateau configuration can be viewed as specifying a monotonic growth pattern of the label P .
One starts from P = ∅ in the far left and proceeds to the right inductively to eventually get
P = I in the far right. In the inductive step, we assume that a plateau P and the associated
data {v(a)

i
(r, l)P | (a, i) ∈ I} are at hand. Then its right edge ζ∗ as in (5.2) and the set J

which specifies the next plateau P ′ by (5.7) are determined as

ζ∗ = min
(a,i)∈P

{v(a)
i

(r, l)P}, (5.8)

J = {(a, i) ∈ P | v(a)
i

(r, l)P = ζ∗}. (5.9)

13For any subset K ⊆ I, we let K denote the complement I \ K.
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This inductive procedure to trace the plateau profile is convenient to arrange GHD based nu-
merical calculations.

It is worth mentioning that the two alternatives of the normal mode variable y(a)
i

= y
(a)
iL

or

y
(a)
iR

on a plateau can be interpreted as whether the solitons S(a)
i

there originate in the domain

x < 0 or x > 0. This is indicated in (3.20) which equates y(a)
i

to the density ρ(a)
i

of S(a)
i

up

to the factor σ(a)
i

reflecting the interaction effect. Thus we may interpret physically a plateau
label P as the soliton content meaning that it is the region of ζ where

solitons {S(a)
i
| (a, i) ∈ P} originating in the right domain have not gone away yet, (5.10)

solitons {S(a)
i
| (a, i) ∈ P} originating in the left domain have already reached. (5.11)

In what follows we will signify the solitons in (5.10), (5.11) as S(a)
iR

, S(a)
iL

and refer to P also
as soliton content. If the initial domain is empty14 for x < 0 or x > 0, then (5.11) or (5.10)
becomes void, respectively.

So far our description of the plateaux is quite general. Now we propose a simplifying
conjecture based on numerical experiments.

Conjecture. For any fugacity (z1L, . . . , znL) and (z1R, . . . , znR) satisfying (3.14), the fol-
lowing properties are valid:

1. Actually realized soliton contents P ⊆ I are limited to the following form for some d:

P(d) = {(a, i) | 1 ≤ i ≤ da, a ∈ [1, n− 1]}, d = (d1, . . . , dn−1) ∈ (Z≥0)n−1.
(5.12)

2. The effective speeds are nonnegative for any time evolution and on any plateau, i.e.,

v
(a)
i

(r, l)P(d) ≥ 0 (∀(a, i), (r, l) ∈ I). (5.13)

Nonnegativity of the velocities is not obvious since the solitons S(a)
i

with a 6= r have the

vanishing bare speed under T (r)

l
(see Sec. 2.5 (I)), and they may receive a “recoil effect”

from the march of color r solitons. For instance there is a minus sign in (4.21) although these
velocities are indeed positive for 0 < q < 1. Due to (5.13) all the solitons are right movers,
therefore the domain ζ < 0 is not influenced by the domain ζ > 0. This feature allows us to
replace one of the boundary condition y(a)

i
(−∞) = y

(a)
iL

by y(a)
i

(−0) = y
(a)
iL

. Consequently, the
plateaux can be numbered as 0, 1, 2, . . . from the left to the right, where the leftmost 0 covers
the entire ζ < 0 region at least.

Thanks to (5.12) a plateau can be labeled by a vector d ∈ (Z≥0)n−1, which corresponds
to the soliton content

S
(1)
1R
, . . . , S

(1)

d1R
, S

(1)

d1+1L
, S

(1)

d1+2L
, . . . ,

S
(2)
1R
, . . . , S

(2)

d2R
, S

(2)

d2+1L
, S

(2)

d2+2L
, . . . ,

· · ·
S
(n−1)
1R

, . . . , S
(n−1)
dn−1R

, S
(n−1)
dn−1+1L

, S
(n−1)
dn−1+2L

, . . .

(5.14)

For each color a, it is like a Dirac sea of level i = da without a hole. Obviously P(d) ⊆ P(d′)
holds if and only if d ≤ d′, i.e. d′ − d ∈ (Z≥0)n−1. Thus one can describe a plateau configu-
ration just by an increasing sequence as (0, . . . , 0) = d0 ≤ d1 ≤ d2 ≤ · · · ∈ (Z≥0)n−1 which
should tend to (∞, . . . ,∞).

14Only vac (2.21) without a soliton, which corresponds to the dilute limit as mentioned in Remark 3.2 and
Remark 4.4.
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Example 5.1. Consider the cBBS with n = 2, which is nothing but the ordinary single color
BBS studied in [11]. We have the time evolutions T (r=1)

l
with l = 1, 2, . . ., and the plateaux

are associated with 0 = d0 ≤ d1 ≤ d2 ≤ · · · specifying their solitons contents. A typical
setting is to let the initial domain in x > 0 or x < 0 be empty. Examples of the ball density
plot in such cases are available in [11, Fig. 4]. In either case, there are exactly l + 1 plateaux
P(d0),P(d1), . . . ,P(dl) where dj is given by

dj = j (0 ≤ j < l), dl =∞. (5.15)

Analytic formulas have also been obtained for many quantities in [11, Sec. 5.6-5.7], which are
compatible with the above conjecture.

5.2 Diffusive correction

As we shall demonstrate in the next subsection, the actual plateau edges exhibit broadening
for finite t whose main cause is the diffusive effect [10, 11, 45, 46]. To describe it quanti-
tatively, consider the adjacent plateaux P and P ′ as in (5.2). We assume that the soliton
contents of P and P ′ differ only by one kind of solitons S(p)

s for some (p, s) ∈ I, namely
J = {(p, s)} andPt{(p, s)} = P ′ in (5.7). In terms of (5.12) we haveP = P(d),P ′ = P(d′)
where d = (d1, . . . , dn−1) and d′ = (d′1, . . . , d

′
n−1) are only different in the p th component as

dp = s− 1, d′p = s.
Then the same argument as [11] (see also [46]) can be applied to obtain the envelope of

an averaged local quantity Q(x, t) including the diffusive correction. Here we just mention a
few key formulas used in the derivation:

∂2F [ρ]

∂εα∂εβ
= δαβ

ρασα
ρα + σα

, εα := − log yα, (5.16)

∂Gαβ

∂εγ
= δαγGαβ −GαγGγβ, G := (1 +My)−1, (5.17)

∂vα
∂εβ

=Mdr
αβ

ρβ

σα
(vβ − vα), Mdr := (1 +My)−1M. (5.18)

See (3.18), (3.20), (4.22), (4.23) and (4.29) for the relevant definitions. We have written
yα, εβ etc to mean y(a)

i
, ε

(b)
j

for α = (a, i), β = (b, j) ∈ I for simplicity.15 The final result is

expressed in terms of the complementary error function erfc(u) = 2√
π

∫∞
u

e−u
2
du as

〈Q(x, t)〉 = 1

2

�

Q(P)−Q(P ′)
�

erfc

�s

t

2

x/t− ζ
ΣP,P ′

�

+Q(P ′), (5.19)

in the vicinity of x/t = ζ. The symbols Q(P) and Q(P ′) denote the (averaged) values of Q
on the plateau P and P ′, respectively. The most essential quantity in (5.19) is the constant
ΣP,P ′(> 0) which controls the width of the edge broadening. It is given by

(ΣP,P ′)
2 =

1

(σ
(p)
s )2

∑

(b,j)∈P

�

Mdr
(p,s),(b,j)

�2|v(p)s − v(b)j |σ
(b)
j
y
(b)
j

(1 + y
(b)
j

), (5.20)

where σ(a)
i
, v

(a)
i
, y

(a)
i

hence Mdr are those on the plateau P .
The error function form (5.19) and the above quantity ΣP,P ′ will be compared quantita-

tively with the step broadening obtained in the simulations, at the end of the next section.

15The εα in (5.16) should not be confused with the one in (3.28).
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5.3 Simulations

In this section we present some numerical simulations of the domain wall problem in the
n = 3 model, and we compare the results with the GHD predictions. The method we use
to simulate the BBS dynamics is similar to that of Ref. [11]. We consider a large but finite
system with L sites, each having a B1,1 tableau and a B2,1 semistandard tableau. The sys-
tem has open boundary conditions and is initially divided into three regions: the ‘left’ cor-
respond to x ∈ [−L/3,−1], the ‘right’ corresponds to x ∈ [0, L/3 − 1], and the ‘buffer’ to
x ∈ [L/3, 2L/3− 1].

As already mentioned at the beginning of Sec. 5, at time t = 0 the left part is initialized
in some random i.i.d. state characterized by fugacities z1,L, z2,L and z3,L. The right part is
initialized in some random i.i.d. state characterized by fugacities z1,R, z2,R and z3,R. As for
the buffer, it is initially in the vacuum state. The role of this buffer region is to ensure that
no soliton emanating from the left or the right has had enough time to reach the last site
(x = 2L/3 − 1) at the end of the simulation at t = tmax (we typically take tmax = 1000, but
some simulations have been carried out up to t = 3000). It is also important to check that
the fastest solitons starting from the leftmost sites of the system have not had enough time to
reach the left/right boundary (x = 0) at the end of the simulation. These conditions ensure
that the finite size does not influence the behavior of the system in the region x ∈ [0, L/3− 1]
at least up to time tmax. To match these conditions we need to scale the system size L as tmax

times the largest effective velocity.
The time evolution is computed by successive applications of a transfer matrix T (a)

l
with

some large l (unless specified otherwise we used l = 100), and a = 1 or a = 2. We also report
some results obtained using the product T (1)

l
T
(2)

l
. The application of such a transfer matrix

on a given configuration is done using the combinatorial R defined in App. B. At a few specific
times the local densities ρ(a)

k
(x, t) of solitons of size k and color a (using the local versions of

the energies defined in App. B) as well as the mean box occupancies (%i=1,2,3) are recorded. In
practice these densities are estimated by some average over a large number Nsamples of initial
conditions. We typically use Nsamples ≥ 300000.

The Figs. 1, 2, 3 and 4 display the six soliton densities ρ(a=1,2)

k=1,2,3
(x, t) at time t = 600 and

t = 1000 as a function of ζ = x/t. In all cases the curves associated with different times are
almost on top of each other, which indicates the ballistic nature of the transport. The above
figures correspond to different initial states: the right part is empty in Fig. 1 and 4, the left
part is empty in Fig. 2, and both sides are in a nontrivial state in Fig. 3. In all cases we observe
that the soliton densities are in good agreement with the GHD prediction (Sec. 5.1). It can
also be observed that in the vicinity of each transition between two consecutive plateaux the
numerical curves do not form steep steps and have a finite slope. In addition the results are
not exactly on top of each other, and the curves appear to become steeper when increasing t.
This is a manifestation of the diffusive broadening discussed in Sec. 5.2. We will come back to
this point below when discussing Fig. 10.

Fig. 1 offers an illustration of the evolution of the soliton content from one plateau to the
next, as discussed in Sec. 5.1. In this particular example the right half is initially empty, and
all the y(a)

iR
therefore vanish. So, if a soliton type (i, a) belongs to the set P of a given plateau,

then this species is absent in this plateau, its density ρ(a)
i

vanishes. In Fig. 1 the first step is

located at ζ(1) ' 0.23815, and beyond this value of ζ the solitons S(2)
1 are absent. At this

transition we have J = {(a = 2, i = 1)}. The second transition (ζ(2) ' 0.30285) is the place
where the S(1)

1 solitons disappear, hence J = {(a = 1, i = 1)} for this step. The third step is

located at ζ(3) ' 0.53924. Beyond this value of ζ the S(2)
2 soliton are absent and this step is

characterized by J = {(a = 2, i = 2)}. At the fourth step, ζ(4) ' 0.80940, the S(2)
3 soliton
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Figure 1: Numerical results for several S(a)

k
-soliton densities (with sizes k = 1, 2, 3

and ‘color’ a = 1, 2) as a function of ζ = x/t for t = 600 and t = 1000 and for
the T (1)

l=100
dynamics. The red line indicates the GHD prediction for t = ∞. The

initial state is defined by the following fugacities in the left half: z1,L = 1 z2,L = 0.7
and z3,L = 0.3. The right half is initially in the vacuum state. Parameters of the
simulations: system size L = 300000 and number of random initial conditions
Nsamples = 400000.

density drops to zero and J = {(a = 2, i = 3)}. Next we have ζ(5) ' 0.84452, where the
S
(1)
2 soliton disappear (J = {(a = 1, i = 2)}). So far all this information can be read out

from Fig. 1, by looking at the values of ζ where one soliton density drops to zero. Using the
notations of (5.12) this translates into: d0 = (0, 0), d1 = (0, 1), d2 = (1, 1), d3 = (1, 2),
d4 = (1, 3), d5 = (2, 3).

To go further in the description of the next plateaux one needs to look at the densi-
ties of solitons with larger (> 3) amplitude, and at larger values of ζ (data not shown).
Such an analysis shows that for this particular initial condition the soliton content follows
a somewhat irregular pattern up to the 12th plateau: d6 = (2, 4), d7 = (2, 5), d8 = (2, 6),
d9 = (2, 7), d10 = (2, 8), d11 = (2, 9), d12 = (3, 9). And then the sequence becomes reg-
ular: dn≥12 = (3, n − 3). After this first infinite series of plateaux a second series begins.
The plateaux of the second series are free of color-2 solitons and they are characterized by:
d∞+1 = (4,∞), d∞+2 = (5,∞), · · · , d∞+n = (n+ 3,∞).

The evolution of the soliton content is qualitatively different in the example of Fig. 2, where
the initial state is the vacuum in the left half. There, the leftmost plateau P0 which starts at
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Figure 2: Numerical results for several S(a)

k
-soliton densities (with sizes k = 1, 2, 3

and ‘color’ a = 1, 2) as a function of ζ = x/t for t = 600 and t = 1000 and for the
T
(1)

l=100
dynamics. The red line indicates the GHD prediction for t = ∞. The initial

state is defined by the following fugacities in the right half: z1,R = 1 z2,R = 0.7
and z3,R = 0.3, and the left half is initially in the vacuum state. Parameters of
the simulations: system size L = 300000 and number of random initial conditions
Nsamples = 400000.

ζ = −∞ is empty, and in this region any test color-2 soliton would have a vanishing velocity
for the T (r=1) dynamics considered in this example. We thus have a situation where several
velocities are degenerate: ∀i v(2)

i
(r = 1, l)P0 = 0. The edge of P0 is thus at ζ = ζ(1) = 0

and all the color-2 soliton densities jump from 0 to some nonzero value at this point, as can be
seen in the lower panels of Fig. 2. One can also notice some density spikes at ζ = 0, where the
all S(2)

k
soliton densities jump from zero to some nonzero value. This phenomenon appears

generically at the edge of a vacuum plateau and it also occurs in the n = 2 model [11].
Fig. 3 shows the soliton densities in a situation where both the left and the right are in

a nontrivial i.i.d. state at t = 0 (the left and right fugacities for this example are given in
the figure caption). Here again the comparison between the simulations and the densities
obtained from GHD are in very good agreement.

In Fig. 4 we go back to a situation where the initial state is the vacuum for the right part, but
the dynamics is generated by the product T (1)

l=100
T
(2)

l=100
. In the GHD framework this means that

the bare velocity v(a)
i,bare of the S(a)

i
solitons is the sum of its value δ1,amin(i, l) (see (4.1)) for
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Figure 3: Numerical results for several S(a)

k
-soliton densities (with sizes k = 1, 2, 3

and ‘color’ a = 1, 2) as a function of ζ = x/t for t = 500 and t = 2000 and for
the T (1)

l=100
dynamics. The red line indicates the GHD prediction for t = ∞. The

initial state is defined by the following fugacities in the left half: z1,L = 1 z2,L = 0.7
and z3,L = 0.3, and the following fugacities in the right: z1,R = 1 z2,R = 0.9 and
z3,R = 0.1 Parameters of the simulations: system size L = 640000 and number of
random initial conditions Nsamples = 200000.

T
(r=1)

l
and its value δ2,amin(i, l) for T (r=2)

l
. We thus have v(a)

i,bare = min(i, l) for T (1)

l=100
T
(2)

l=100
.

Contrary to the case where the dynamics is generated by T (1)

l
or T (2)

l
, there is no infinite series

of narrow plateaux which accumulate in the vicinity of some finite value of ζ.
Fig. 5 represents the ‘letter’ densities of ‘1’, ‘2’ and ‘3’, for the same parameters as Fig. 1. By

specializing (2.47) to the case n = 3 we can express these letter densities using the soliton den-
sities: %1 = 2−A, %2 = 1+A−B and %3 = B with A =

∑∞
i=1 iρ

(a=1)
i

and B =
∑∞
i=1 iρ

(a=2)
i

.
In Fig. 5 an infinite number of very narrow plateaux are observed to accumulate in the vicinity
of ζ = ζc ' 1.88708. When approaching this limiting value ζc from below, color-2 solitons
of increasing size gradually disappear. Beyond that limiting velocity only color-1 solitons are
left. In terms of (5.12) the vectors describing the soliton content for ζ > ζc take the form
d = (k,∞). A very similar infinite series of narrow plateaux are observed for the T (2)

l=3
dy-

namic, as illustrated in Fig. 6. Fig. 7 illustrates this phenomenon for the same initial state but
with a few other values of l. In other words, this phenomenon does not disappear when taking
a small carrier capacity l. Such an infinite series is also present with the T (2)

l=100
dynamics, as
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Figure 4: Numerical results for several S(a)

k
-soliton densities (with sizes k = 1, 2, 3

and ‘color’ a = 1, 2) as a function of ζ = x/t for t = 600 and t = 1000 and for
the T (1)

l=100
T
(2)

l=100
dynamics. The dotted lines indicate the GHD prediction for the

step positions. The initial state is defined by the following fugacities in the left half:
z1,L = 1 z2,L = 0.7 and z3,L = 0.3. The right half is initially in the vacuum state.
Parameters of the simulations: system size L = 300000 and number of random initial
conditions Nsamples = 300000.

illustrated in Fig. 8. In that case the color-1 solitons are absent for ζ beyond the accumulation
point (found at ζc ' 0.80019).

It should finally be noted that such a phenomenon is absent in the simpler n = 2 model
[11]. It is also absent if one considers the n = 3 complete BBS with the same initial state but
with the T (1)

l=100
T
(2)

l=100
dynamics (Fig. 4).

Fig. 9 shows the velocities v(a=1,2)
i=1···10 and soliton densities ρ(a=1,2)

i=1···10 in the four first plateaux

of the domain wall problem where the dynamics is generated by T (r=1)

l=3
, and the initial state

is characterized by z1,L = 1 z2,L = 0.7 and z3,L = 0.3 and is empty in the right (same as in
Fig. 6). The upper panels illustrate the fact that the velocity is not necessarily a monotonic
function of the soliton size. In this example the velocity of color-1 solitons is growing for
i = 1, 2, 3 and then it decreases and approaches a finite limit when i → ∞. As for the color-
2 solitons, their velocties turn out to be increasing functions of the size. In the lower panels
(densities) on can check that i) the density of S(2)

1 solitons vanishes in the plateau k ≥ 1 (since

they are the slowest species in the plateau 0), ii) the density of S(2)
2 solitons vanishes in the
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Figure 5: Densities %i=1,2,3 of boxes with the entry i, as a function of ζ = x/t for

t = 1000 and for the T (1)

l=100
dynamics. Note that by construction %1 + %2 + %3 = 3,

since each site contains 3 boxes (one in the tableau B1,1 and two in the tableau
B2,1). The vertical red dotted line indicate the locations ζ(k) of the steps between
the different plateaux, as predicted by GHD. The orange, yellow and blue lines are
%1, %2 and %3 from GHD (at t = ∞). The initial state is defined by the following
fugacities in the left half: z1,L = 1 z2,L = 0.7 and z3,L = 0.3. The right half is
initially in the vacuum state. A large number of very narrow plateaux are observed
to accumulate in the vicinity of ζc ' 1.88708. Note that additional plateaux are
present for ζ > 4 (not shown) and the system is still not in the vacuum state at the
right of the figure (contrary to Fig. 6). Parameters of the simulations: system size
L = 300000 and number of random initial conditions Nsamples = 300000.
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Figure 6: Same as Fig. 5 but for the T (1)

l=3
dynamics. We again have an infinite series

of narrow plateaux which accumulate in the vicinity of ζ ' 0.81586. The last step
is located at ζ = 3, beyond this point the system is in the vacuum state (i.e %1 = 2,
%2 = 1 and %3 = 0). Notice the density spike just before ζ = 3. The soliton speeds
and densities in the three four plateaux are displayed in Fig. 9.

plateau k ≥ 2 (since they are the slowest species with non-zero density in the plateau 1), and
iii) the density of S(1)

1 solitons vanishes in the plateau k ≥ 3 (since they are the slowest species
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Figure 7: Ball densities %i=1,2,3 obtained from GHD calculations and plotted as a
function of ζ. The different colors correspond to different values of the parameter l
in T (1)

l
. The initial state is defined by the fugacities z1,L = 1 z2,L = 0.7, z3,L = 0.3

and with the vacuum state in the right part. For l = 8 the results of simulations (at
t = 1000 and Nsamples = 3.105) are also shown. The sum of the three densities is
equal to 3 by construction (notice the different vertical scales in the different panels).
Three regions can be distinguished: i) In the region ζ < ζc(l) some soliton of color
1 and color 2 are present. An infinity of narrow plateaux develop when ζ → ζc(l),
where the color-2 solitons of increasing size gradually disappear. ii) For ζc(l) < ζ < l
only color-1 solitons are present. There is a finite number (of order l) of plateaux
in this region. iii) For l < ζ the system is in the vacuum state. The critical values
of ζ are: ζc(2) ' 0.57484, ζc(3) ' 0.81586, ζc(4) ' 1.02025, ζc(8) ' 1.55262,
ζc(100) ' 1.88708, and they can be identified in the right panel as the points where
%3 vanishes.
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Figure 8: Same as Fig. 5 but for the T (2)

l=100
dynamics. We again have an infinite series

of narrow plateaux, they accumulate here in the vicinity of ζc ' 0.80019.
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Figure 9: Soliton velocities v(a=1,2)
i=1···10 (top panels) and soliton densities ρ(a=1,2)

i=1···10 (bot-
tom panels) plotted as a function of soliton size i in the four first plateaux. These
curves are obtained from GHD calculations and for the same parameters as in Fig. 6,
that is with the T (r=1)

l=3
dynamics, fugacities z1,L = 1 z2,L = 0.7, z3,L = 0.3 and with

the vacuum state in the right part at t = 0.

with non-zero density in the plateau 2). For this particular initial state we have checked for
the T (r=1)

l
dynamics with l = 2, 3, · · · , 6 that the fastest color-1 soliton has size l.

Finally Fig. 10 shows that the widths of the steps between consecutive plateaux scale like
t1/2, in agreement with the diffusive corrections calculated in Sec. 5.2. This figure represents
some soliton densities in vicinity of the step k = 1, 2, 3, plotted as a function of (x/t−ζ(k))t1/2.
The fact that the data measured at different times almost fall onto the same error function
curve demonstrates the diffusive nature of the step broadening. Moreover, the data are in good
agreement with the GHD prediction (5.19) calculated in Sec. 5.2, including the quantitative
value of the parameter ΣP,P ′ . It should in particular be noted that the red curves in Fig. 10
are the GHD predictions and contain no adjustable parameter. In the bottom right panel of
Fig. 10 the numerical data appear to be slightly below the GHD curve. The reason for this
mismatch is not clear to us but it should however be noticed that it tends to decrease when
the time increases (compare t = 1000, 2000 and 3000). It is therefore likely due to some
finite-time effect.
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Figure 10: Densities ρ(a)
i=1

of S(a=1,2)
1 solitons in the vicinities of the three first steps

(located at x/t = ζ(1), x/t = ζ(2) and x/t = ζ(3)) and at three different times.
With the choice (x/t − ζ(k))t1/2 for the horizontal scale the curves almost collapse
onto each other. This illustrates the diffusive nature of the step broadening. The
red curves have been obtained without any free parameter (no fit) and represent the
GHD prediction. They take the form of a complementary error function (see Sec. 5.2
and (5.19)). Initial state fugacities: z1,L = 1 z2,L = 0.7 and z3,L = 0.3, z1,R = 1
z2,R = 0.9 and z3,R = 0.1. System size L = 1.2106. Number of random initial condi-
tionsNsamples = 400000. This simulation represents (2 ·L) ·Nsamples · tmax ∼ 0.3 ·1016
applications of the combinatorial R.

6 Summary and conclusions

In this paper we have introduced a new family of box ball systems, dubbed complete BBS.
The models are indexed by a parameter n ∈ Z>1 and are associated to the quantum group
Uq(Òsln). The cBBS family generalizes the original single-color model [1], which is recovered
for n = 2. Each ‘site’ of the model is made of the n− 1 column shape semistandard tableaux
with length 1, 2, · · · , n−1. The ‘balls’ can have n different ‘colors’ and occupy the boxes of the
above tableaux, respecting the semistandard rules. These states are then equipped with some
integrable dynamics, constructed from the so-called combinatorial R (Sec. 2.2). As for the
simplest BBS, the time evolutions can be viewed as generated by a ‘carrier’ which propagates
through the system at each time step and which takes, moves and deposits ‘balls’ from one
place to another. In the case of the time evolution T (k)

l
(2.26), the load of the carrier is itself

a rectangular tableau of shape k × l with k ∈ {1, . . . , n − 1} and l ∈ Z>0 (Sec. 2.4). The
integrability manifests itself from the fact that all these time evolutions commute (whatever k
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and l) and from the existence of a family of conserved energies (2.30).16 Another consequence
of the integrability is the existence of solitons (Sec. 2.5). Each soliton is characterized by a
‘color’ a and amplitude (or size) i. These solitons interact with each other in some nontrivial
way during collisions. The local structure of each site of the cBBS may look complicated
compared to the other versions of n-color BBS, but, as explained in Sec. 2, it offers a remarkable
simplification: the soliton scattering is completely diagonal, namely each soliton regains its
color and amplitude after collisions. The effect of the interactions is encoded in a simple
phase shift. The end of Sec. 2 presents the inverse scattering scheme for this model, which
is based on the KSS bijection (details in Appendix C), and which allows one to construct the
action-angle variables.

The Sec. 3 discusses the randomized cBBS, where we have considered generalized Gibbs
ensembles of cBBS configurations. We focused on a special family of GGE, called i.i.d., which
are characterized by n fugacities (one for each color) and where all the tableaux are inde-
pendently distributed (Sec. 3.2). The properties of such i.i.d. GGE can be studied using TBA
(Sec. 3.3) and we obtained the free energy, the mean value of the conserved energies and the
associated soliton densities. In Sec. 4 we have presented the generalized hydrodynamics of the
cBBS. The first ingredient is the effective speed of each soliton species in a homogenous state
(see (4.1) and its solution in matrix form (4.31)). This could be obtained thanks to the TBA
approach. Next, the currents carried by the soliton of each color are assumed to be given by the
product of their effective speed and their density (4.33). For a system which is inhomogeneous
but where spatial gradients are sufficiently small so that it can locally be approximated by a
GGE, the continuity equations for the soliton currents give the GHD equations (4.39). These
equations take a particularly simple form when re-written in terms of the Y -variables of the
TBA (4.40), which shows that these variables are the normal modes of the GHD. As a concrete
application of GHD we studied in Sec. 5 the evolution of the n = 3 model starting from a do-
main wall initial state with two different i.i.d. states in the left and in the right halves. In good
quantitative agreement with the GHD prediction, the high-precision simulations showed that
at sufficiently long times the state of the system becomes piecewise constant in the variable
ζ = x/t (5.2). Inside each plateau, the soliton densities and the ball densities measured in
the simulations are in good agreement with the GHD expectations. Compared to the simpler
n = 2 model [11], the additional color degree of freedom leads to a complex evolution of the
soliton content from one plateau to the next, and opens up the possibility to have an infinity of
narrow plateaux which accumulate to some critical point ζc (Figs. 5, 6 and 8). Finally, we have
computed in Sec. 5.2 the diffusion effect that is responsible for the broadening of the steps be-
tween consecutive plateaux. Here again we observed a good quantitative agreement between
the simulations (Fig. 10) and the theoretical results. To our knowledge, this paper achieves
the first systematic and successful application of GHD to an integrable system associated with
a higher rank quantum algebra.

We wish to conclude this article by mentioning a few possible future directions. The equa-
tion (4.1) for the effective velocities is quite fundamental. It would be very interesting to have
a proof of it, in the line of what was done in [11, Sec. 4.2] for n = 2. See also [25] for n = 2. It
would also be appealing to invent and explore other protocols to set the system out of equilib-
rium. This might be done, for example, with a system that is open at its boundaries. One could
also think of more general initial states, homogeneous or inhomogeneous, defined for instance
by some nontrivial weights on the configurations, and look at the evolution toward equilib-
rium. This could be, for instance, a domain wall between two general (non-i.i.d.) GGE. In

16As a comparison, the classical hard rod model [19] (for which the GHD has also been worked out) has an
infinite number of conserved quantities (the numbers of rods of each size) but it lacks the commuting dynamics. A
similar remark also holds, for instance, for the classical cellular automata studied in Refs. [47,48], where domain-
wall problems similar to those studied here have been solved exactly but where commuting transfer matrices are
not known.
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the spirit of what have been done for some simple one-dimensional cellular automata [47,48]
it would be interesting to compute some two-time correlation functions and to relate these
correlations to transport coefficients. Another interesting question would be to explore the
possibility of some anomalous transport in these models. Investigating numerically other val-
ues of n, possibly large ones, might also reveal some new phenomena. It also seems worth
comparing the dynamics of the present cBBS with non-complete n-color BBS [14,17,20]. Fi-
nally, a possible direction would be to include some integrability-breaking perturbations in the
model. We may expect the disappearance of the density plateaux, and it should be possible to
observe numerically and to analyze some possible crossover from the integrable regime to a
chaotic one where solitons are no longer stable but only short-lived. Such a setup could give
rise to some prethermalization [49], possibly described by some GGE.

A Algorithm for the combinatorial R

We use the notation in Sec. 2.2. Given b ⊗ c ∈ Bk,l ⊗ Bk′,l′ , we present an algorithm for
finding the image c̃⊗ b̃ = R(b⊗ c) ∈ Bk′,l′ ⊗Bk,l of the combinatorial R following [35, p55].
As noted after (2.7), the task is to construct the solution to the equation b̃ · c̃ = c · b which is
unique when the tableaux are rectangular.

A skew tableau θ is a part of a semistandard Young tableau having a skew Young diagram
shape. We call θ an m-vertical strip if it contains at most one box on each row and the total
number of the boxes is m.

Let P = c · b be the product tableau [12]. Its shape Young diagram includes a k × l
rectangle. Denote by P ′ the NW part of P corresponding to the k × l rectangle, and by P/P ′

the skew tableau. The number of boxes of these tableaux (denoted by | · |) are given by

|P | = kl + k′l′, |P ′| = kl, |P/P ′| = k′l′. (A.1)

Step 1. Label each box of P/P ′ with {1, 2, . . . , k′l′}.
Let θ1 be the rightmost vertical k′-strip in P/P ′ as upper as possible. Remove θ1 from

P/P ′ and define the vertical k′-strip θ2 in a similar manner. This can be continued until P/P ′

is decomposed into the disjoint union of the vertical k′-strips θ1, θ2, . . . , θl′ . Now the label is
obtained by assigning the boxes of θi with k′(i− 1) + 1, k′(i− 1) + 2, . . . , k′(i− 1) + k′ from
the bottom to the top.

Step 2. Reverse row bumping from P in the order of the label.
Find the semistandard Young tableaux P1, P2, . . . , Pk′l′ and w1, w2, . . . , wk′l′ ∈ [1, n] such

that

P = (P1 ← w1); reverse bumping of the letter in the box 1,

P1 = (P2 ← w2); reverse bumping of the letter in the box 2,

· · ·
Pk′l′−1 = (Pk′l′ ← wk′l′); reverse bumping of the letter in the box k′l′.

(A.2)

Here← stands of the row insertion as in Sec. 2.2. The splitting of Pi−1 into (Pi ← wi) is done
by the reverse row bumping. Starting from the box labeled i in Step 1 and the letter in it, the
bumping goes upwards row by row as follows. Given a letter α in a row, find the box in the
adjacent upper row filled with the largest β such that β < α and the rightmost one in case
more than one β is contained. Then let α occupy the box by bumping out β. Repeating this
procedure one eventually bumps out a letter wi from the top row of Pi−1 thereby getting also
Pi as the remnant tableau. Note that |Pk′l′ | = kl.
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Step 3. The image c̃⊗ b̃ ∈ Bk,l ⊗Bk′,l′ is constructed as

b̃ = Pk′l′ , (A.3)

c̃ = ((· · · (∅ ← wk′l′)← · · · )← w2)← w1. (A.4)

The semistandard tableau (A.4) is known as the P -symbol of the word wk′l′ . . . w2w1.

Example A.1. Consider b ∈ B2,3 and c ∈ B3,2 in (2.3). Their product c · b is the right tableau
in (2.6). The labeling of the boxes of P/P ′ with {1, 2, . . . , 6} according to Step 1 is shown by
the indices in

1 1 2 2633
2 2 4 52
3551
44

. (A.5)

The reverse bumping in Step 2 is done along the order of these indices as follows:

1 1 2 2 3
2 2 4 5
3 5
4

=





1 1 2 2 4
2 2 5 5
3
4

← 3



 , (A.6)

1 1 2 2 4
2 2 5 5
3
4

=





1 1 2 2 5
2 2 5
3
4

← 4



 , (A.7)

1 1 2 2 5
2 2 5
3
4

=





1 1 2 2
2 2 5
3
4

← 5



 , (A.8)

1 1 2 2
2 2 5
3
4

=

�

1 2 2 2
2 3 5
4

← 1

�

, (A.9)

1 2 2 2
2 3 5
4

=
�

1 2 2 3
2 4 5 ← 2

�

, (A.10)

1 2 2 3
2 4 5 =

�

1 2 2
2 4 5 ← 3

�

. (A.11)

Therefore from Step 3 we obtain

b̃ = 1 2 2
2 4 5 , (A.12)

c̃ = (((((∅ ← 3)← 2)← 1)← 5)← 4)← 3 =
1 3
2 4
3 5

. (A.13)

This yields (2.9).

B Combinatorial R and energy H for n = 2, 3

We consider n = 3 case first. The sets B1,l, B2,l of semistandard tableaux are parameterized
as

B1,l = {x = (x1, . . . , xn) ∈ (Z≥0)n | x1 + · · ·+ xn = l}, xi = # of i in tableau, (B.1)

B2,l = {x = (x1, . . . , xn) ∈ (Z≥0)n | x1 + · · ·+ xn = l}, xi = # of columns

without i in tableau. (B.2)
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We extend the indices to Z by xi = xi+n and similarly also forQi(x, y) and Pi(x, y) introduced
below. Then the combinatorial R and the energy H are given by the piecewise linear formulas
as follows (n = 3) [21, eqs. (2.1)-(2.4)]:

RB1,l⊗B1,l′ : B1,l ⊗B1,l′ −→ B1,l′ ⊗B1,l; x⊗ y 7−→ ỹ ⊗ x̃ (B.3)

x̃i = xi +Qi(x, y)−Qi−1(x, y), ỹi = yi +Qi−1(x, y)−Qi(x, y),

Qi(x, y) = min{
k−1
∑

j=1

xi+j +
n
∑

j=k+1

yi+j | 1 ≤ k ≤ n},

HB1,l⊗B1,l′ (x⊗ y) = Q0(x, y). (B.4)

RB1,l⊗B2,l′ : B1,l ⊗B2,l′ −→ B2,l′ ⊗B1,l; x⊗ y 7−→ ỹ ⊗ x̃ (B.5)

x̃i = xi + Pi+1(x, y)− Pi(x, y), ỹi = yi + Pi+1(x, y)− Pi(x, y),
Pi(x, y) = min(xi, yi),

HB1,l⊗B2,l′ (x⊗ y) = P1(x, y). (B.6)

RB2,l⊗B1,l′ : B2,l ⊗B1,l′ −→ B1,l′ ⊗B2,l; x⊗ y 7−→ ỹ ⊗ x̃ (B.7)

x̃i = xi + Pi−1(x, y)− Pi(x, y), ỹi = yi + Pi−1(x, y)− Pi(x, y),
HB2,l⊗B1,l′ (x⊗ y) = P0(x, y). (B.8)

RB2,l⊗B2,l′ : B2,l ⊗B2,l′ −→ B2,l′ ⊗B2,l; x⊗ y 7−→ ỹ ⊗ x̃ (B.9)

x̃i = xi +Qi−1(y, x)−Qi(y, x), ỹi = yi −Qi−1(y, x) +Qi(y, x),

HB2,l⊗B2,l′ (x⊗ y) = Q0(y, x). (B.10)

These formulas do not depend on l, l′ explicitly. When n = 2, the relevant objects are (B.1) ,
(B.3) and (B.4) only, and one can just set n = 2 there.

For instanceQ0(x, y) = min{y2+y3, x1+y3, x1+x2} forn = 3 andQ0(x, y) = min{y2, x1}
for n = 2.

C KSS bijection

C.1 Paths

Consider the product set of the form B = Bk1,1 ⊗ Bk2,1 ⊗ · · · ⊗ BkN ,1 with ki ∈ [1, n − 1]
containing column shape tableaux only. For the definition of Br,s, see Sec. 2.2. States of our
cBBS correspond to the choice ki ≡ i mod n − 1 and N = (n − 1)L. In this appendix, we
do not assume the boundary condition of the BBS, and call the elements of B paths. Our aim
is to explain the special case of the KSS bijection [50] corresponding to the above B along the
convention adapted to this paper.

For a path p = c1⊗ · · · ⊗ cN ∈ B with cj ∈ Bkj ,1, the n-array λ = (λ1, . . . , λn) defined by

wt(p) = (λ1, . . . , λn) ∈ (Z≥0)n, λa =
N
∑

j=1

(number of letter a contained in cj) (C.1)

is called the weight of p. Let cjl be the l th entry of the tableau cj ∈ Bkj ,1 from the top.
Consider the word

w1w2 . . . wN ′ := c11c12 . . . c1k1c21c22 . . . c2k2 . . . cN1cN2 . . . cNkN , (C.2)
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where N ′ = k1 + · · ·+ kN . The path p is highest if

#1(w1w2 . . . wm) ≥ #2(w1w2 . . . wm) ≥ · · · ≥ #n(w1w2 . . . wm) (∀m ∈ [1, N ′]), (C.3)

where#a(w1w2 . . . wm) stands for the number of occurrences of a in the subwordw1w2 . . . wm.
We introduce the sets of paths

P(B, λ) = {p ∈ B | wt(p) = λ}, (C.4)

P+(B, λ) = {p ∈ P(B, λ) | p is highest}. (C.5)

By the definition, P+(B, λ) is empty unless λ1 ≥ λ2 · · · ≥ λn. An example from P+(B⊗7,
(10, 7, 4)) with B = B1,1 ⊗B2,1 and n = 3 is

p0 = 1 ⊗ 1
2 ⊗ 1 ⊗ 1

2 ⊗ 1 ⊗ 1
2 ⊗ 2 ⊗ 1

3 ⊗ 3 ⊗ 2
3 ⊗ 2 ⊗ 1

2 ⊗ 1 ⊗ 1
3 . (C.6)

C.2 Rigged configurations

We keep B = Bk1,1⊗ · · · ⊗BkN ,1 as above. Consider a multiset (a set allowing multiplicity of
elements)

S = {(ai, ji, ri) ∈ [1, n− 1]× Z≥1 × Z | i = 1, 2, . . .M}, (C.7)

where M ≥ 0 is arbitrary. Each triplet s = (a, j, r) in S is called a string. It carries color,
length and rigging denoted by cl(s) = a, lg(s) = j and rg(s) = r, respectively. S is a rigged
configuration for B (or just a rigged configuration for short) if 0 ≤ ri ≤ p(ai)ji

for all i in (C.7),
i.e.,

0 ≤ rg(s) ≤ p(cl(s))
lg(s)

(∀ string s ∈ S). (C.8)

Here p(a)
j

is the vacancy defined by

p
(a)
j

=
N
∑

i=1

δa,ki −
∑

t∈S
Ca,cl(t)min(j, lg(t)). (C.9)

See (2.2) for the definition of Cab. If the multiplicity of the color a length j strings in S is
denoted by m(a)

j
, the definition (C.9) is rephrased as

p
(a)
j

=
N
∑

i=1

δa,ki −
n−1
∑

b=1

Cab E(b)j , E(a)
j

=
∑

k≥1
min(j, k)m

(a)

k
. (C.10)

From (C.8) it is necessary to satisfy p(cl(s))
lg(s)

≥ 0 for all s ∈ S, which is already a nontrivial con-

straint on the multiset {(ai, ji) | i = 1, . . . ,M} depending on k1, . . . , kN . This is the reason
why the rigged configurations are defined with respect to a givenB = Bk1,1⊗Bk2,1⊗· · ·⊗BkN ,1.
The dependence on k1, . . . , kN comes from (C.8) via the first terms in the RHS of (C.9) or
(C.10).

We regard a string s = (a, j, r) as a length j row with the rigging r attached to its right
side. Collecting such color a strings yields a Young diagram whose rows are assigned with
riggings. Further collecting them for the colors a = 1, 2, . . . , n − 1 leads to a combinatorial
object, which was the original rigged configuration in the literatures [51,52]. For instance for
n = 3,

S0 = {(1, 3, 1), (1, 1, 2), (2, 2, 2), (2, 1, 3), (2, 1, 3)} (C.11)
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is depicted as

1
2

2
3
3 (C.12)

where the left and the right objects represent the collection of color 1 and 2 strings, respectively.
The multiplicity m(a)

j
appearing in (C.10) is given by m(1)

3 = 1,m
(1)
1 = 1,m

(2)
2 = 1,m

(2)
1 = 2.

In general, strings with the same color and length form a rectangular block. Objects obtained
by permuting the riggings attached to them should not be distinguished since originally it is
just the multiset (C.7). Practically, one needs to keep track of the vacancy (C.10) to check (C.8)
and this requires the data B as well. So it is customary and convenient to also include these
information in the graphical representation. For instance if B = B⊗7 with B = B1,1 ⊗ B2,1,
(C.12) is more detailed as

B
�

⊗
�⊗7

(µ(1), r(1))

3
6

1
2

(µ(2), r(2))

2

3

2
3
3 (C.13)

The number assigned in the left of each rectangular block (not a row) is the vacancy. In this
example they are p(1)3 = 3, p

(1)
1 = 6, p

(2)
2 = 2, p

(2)
1 = 3, and the condition (C.8) is certainly

satisfied.
In general we have the Young diagrams µ(1), . . . , µ(n−1) encoding the color and length of

strings, which form the partial data (µ(1), . . . , µ(n−1)) called configuration. It corresponds to
the multiset {(ai, ji) | i = 1, . . . ,M} obtained from (C.7). The symbol r(a) in (C.13) stands
for the rigging attached to µ(a). To compute the vacancy p(a)

j
, it is useful to recognize that E(a)

j

in (C.10) is the number of boxes in the left j columns of µ(a).
The weight of a rigged configuration S for B is an n-array λ = (λ1, . . . , λn) defined by

wt(S) = (λ1, . . . , λn) ∈ (Z≥0)n, λa =
N
∑

i=1

θ(ki ≥ a)− E(a)∞ + E(a−1)∞ , (C.14)

where E(0)
j

= E(n)
j

= 0 is taken for granted and θ(true) = 1, θ(false) = 0. One can show

λ1 ≥ · · · ≥ λn ≥ 0 from ∀p(a)
j
≥ 0 by noting λa − λa+1 = p

(a)
∞ .17 Note that the weight

only depends on the configuration and not on the rigging. Now we introduce the set of rigged
configurations

RC(B, λ) = {S : rigged configuration for B | wt(S) = λ}. (C.15)

Note that the same symbol λ has been used to denote the weight of a path in (C.1) and that of
a rigged configuration in (C.14). This we did intentionally since they are going to be identified
under the KSS bijection (C.17) in the next subsection.

The number of rigged configurations is given by the so called Fermionic formula [3,40,51–
54]:

#RC(B, λ) =
∑

{m(a)
j
}

(λ)
n−1
∏

a=1

∏

j≥1

�p
(a)
j

+m
(a)
j

m
(a)
j

�

, (C.16)

17A slightly nontrivial argument is necessary to derive ∀p(a)j ≥ 0 from p
(cl(s))
lg(s)

≥ 0 for the existing strings s only.
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where the superscript of the sum means the weight constraint (C.14) on {m(a)
j
} via (C.10).

This follows simply from (C.8) since the number of choices of the riggings attached to the color
a length j strings are equal to the number of integers r1, . . . , rm(a)

j

satisfying

0 ≤ r1 ≤ · · · ≤ rm(a)
j

≤

p
(a)
j

, which is the binomial coefficient in (C.16).

C.3 KSS bijection

There is a one to one correspondence between the finite sets P+(B, λ) and RC(B, λ). It was
shown in a more general case of B = Bk1,s1⊗· · ·⊗BkN ,sN in [50] generalizing the pioneering
works [51, 52]. Their original motivation was to provide a bijective (combinatorial) proof of
the so called Fermionic character formula for the finite dimensional representations of quantum
affine algebras. It originates in the string hypothesis in the Bethe ansatz. See the introductions
of [40,53] for the rich history going back to Bethe himself [3]. Here we describe the algorithm
for the bijection

Φ : P+(B, λ) 1:1−→ RC(B, λ). (C.17)

It works recursively with respect to B and λ along the commutative diagram18:

P+(B ⊗Bk,1, λ)
Φ−−−−→ RC(B ⊗Bk,1, λ)

rb





y





y
δ

⋃

ν∈λ− P+(B ⊗Bk−1,1, ν)
Φ−−−−→

⋃

ν∈λ− RC(B ⊗Bk−1,1, ν)

(C.18)

Here λ− = {λ− e1, λ− e2, . . . , λ− en} ∩ (Z≥0)n with ea being the elementary vector whose
only nonvanishing component is 1 at the a th position. The map rb (right box removal) is
defined by

rb(c1 ⊗ · · · ⊗ cN ) =
¨

c1 ⊗ · · · ⊗ cN−1 ⊗ c′N (k > 1),

c1 ⊗ · · · ⊗ cN−1 (k = 1),
(C.19)

where c′
N
∈ Bk−1,1 is obtained from the tableau cN ∈ Bk,1 just by removing its bottom

box and letter. If the letter removed by rb in (C.18) is x, then ν = λ − ex by the definition
(C.1). From (C.3) it is clear that if p is highest, rb(p) is also highest. In the example (C.6),
rb(p0) differs from p0 only by its rightmost component which becomes 1 . The main part
of the algorithm lies in δ in (C.18), which we shall explain below in two ways which fit the
calculation of Φ−1 and Φ. A string (ai, ji, ri) in a rigged configuration is singular if the rigging
attains the allowed maximum, i.e., ri = p

(ai)
ji

.

Algorithm for Φ−1. Given k ∈ [1, n − 1] and a rigged configuration (µ, r) = ((µ(1), r(1)),
. . . , (µ(n−1), r(n−1))) ∈ RC(B⊗Bk,1, λ) on the top right corner of (C.18), we are going to de-
fine rk(µ, r) ∈ [1, n] called rank and a new rigged configuration
δ(µ, r) ∈ RC(B ⊗ Bk−1,1, λ − erk(µ,r)) which is ‘smaller’ than (µ, r). The rank rk(µ, r) is
the letter inscribed in the removed box in (C.19) in the corresponding path Φ−1(µ, r). There-
fore, once we know rk(µ, r) and δ(µ, r), the calculation of the image Φ−1(µ, r) is reduced to
Φ−1(δ(µ, r)). This reduction can be iterated until ∅ = Φ−1(∅) is reached, producing the image
path p ∈ Φ−1(µ, r) letter by letter from the right in the notation of (C.2).

18By Φ we actually mean the totality of the maps (C.17) for all (B, λ).
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(i) Set `(k−1) = 1. Do the following procedure for a = k, k + 1, . . . , n in this order
until stopped. Find the shortest color a singular string (a, l, p

(a)

l
) in (µ(a), r(a)) such that

`(a−1) ≤ l.19 If no such l exists, set rk(µ, r) = a and stop. Otherwise set `(a) = l and
continue with a+1. This procedure certainly ends at most with rk(µ, r) = n since there is no
(µ(n), r(n)).

(ii) Suppose rk(µ, r) = b and let (k, `(k), ∗), (k + 1, `(k+1), ∗), . . . , (b − 1, `(b−1), ∗) be the
so found singular strings, where ∗ denotes the rigging equal to the respective vacancy.

(iii) The new rigged configuration δ(µ, r) is obtained by replacing them with (k, `(k)−1, ]),
(k+1, `(k+1)−1, ]), . . . , (b−1, `(b−1)−1, ]) keeping all the other strings unchanged.20 Here the
riggings ] are taken so that these strings again become singular, namely, they are chosen to be
the respective vacancy in the new environmentB⊗Bk−1,1. When rk(µ, r) = k in particular, we
have no string to replace, hence δ(µ, r) = (µ, r). It is known that δ(µ, r) ∈ RC(B⊗Bk−1,1, λ−
erk(µ,r)).

Algorithm for Φ. Let p ∈ P+(B ⊗ Bk−1,1, λ − ed) be a highest path in the bottom left
corner of (C.18) for some d ∈ [1, n]. Let further p′ ∈ P+(B ⊗ Bk,1, λ) be the highest path
such that rb(p′) = p. Then (C.19) tells that p′ is obtained from p by adding a box containing
d to its ‘bottom right’ component. (Note that d ≥ k holds due to the semistandardness of
the rightmost component tableau of p′.) Given such k ∈ [1, n − 1], d ∈ [1, n] and a rigged
configuration (µ, r) = ((µ(1), r(1)), . . . , (µ(n−1), r(n−1))) = Φ(p), we are going define a new
one (µ′, r′) = Φ(p′) on the top right corner of (C.18). This enables us to go backward vertically
in (C.18) and to translate the growth of the paths into that of rigged configurations starting
from Φ(∅) = ∅. Here the growth means w1, w1w2, w1w2w3, . . . in the notation of (C.2).

(i)’ Set `(d) =∞. Do the following procedure for a = d−1, d−2, . . . , k in this order. Find
the longest color a singular string (a, l, p

(a)

l
) in (µ(a), r(a)) such that l ≤ `(a+1) and continue

with a− 1.21 If there is no such string, set `(a) = 0 and continue with a− 1.22

(ii)’ Let (d−1, `(d−1), ∗), (d−2, `(d−2), ∗), . . . , (k, `(k), ∗) be the so found singular, or ‘length
0’ strings, where ∗ denotes the rigging equal to the respective vacancy.23

(iii)’ The new rigged configuration (µ′, r′) such that δ(µ′, r′) = (µ, r) is obtained by re-
placing them with (d− 1, `(d−1)+1, ]), (d− 2, `(d−2)+1, ]), . . . , (k, `(k)+1, ]) keeping all the
other strings unchanged.24 Here riggings ] are taken so that these strings become singular,
namely, they are chosen to be respective vacancy in the new environment B ⊗ Bk,1, When
k = d in particular, we do not have any string to replace, hence (µ′, r′) = (µ, r).

Example C.1. Let us show Φ(p0) = S0, where p0 is given by (C.6) and S0 is by (C.11) or graph-
ically (C.12). We utilize the detailed representation (C.13) and display how p0 = Φ−1(S0) is
constructed by applying δ successively. In each line, rk(µ, r) is calculated and it is newly in-
scribed in the box of the path in the next line which is just the removed one in B by rb. The
leftmost data B corresponds to the blank boxes of the path which are yet to be determined. The
image of Φ−1 of the rigged configuration on each line is the part of p0 (C.6) that corresponds

19If there are more than one such strings, pick any one of it.
20The selected strings with length `(c) = 1 (if any) are to be just removed.
21If there are more than one such strings, pick any one of it.
22Once this happens, the rest becomes `(a) = `(a−1) = · · · = `(k) = 0 by the definition.
23In case `(a) = 0, ∗ is undefined but it does not matter.
24When `(a) = 0, replacing (a, `(a), ∗) by (a, `(a) + 1, ]) is to create a color a length 1 singular string.
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to the unfilled boxes of the path on the same line.

�

⊗
�⊗6

⊗ ⊗ 3
6

1
2

2

3

2
3
3

�

⊗
�⊗6
⊗ ⊗

�

⊗
�⊗6

⊗ ⊗ 3
6

1
2

3
4

2
3

�

⊗
�⊗6
⊗ ⊗ 3

�

⊗
�⊗6

⊗ 2
5

1
2

3
4

2
3

�

⊗
�⊗6
⊗ ⊗ 1

3

�

⊗
�⊗5

⊗ ⊗ 1
4

1
2

3
4

2
3

�

⊗
�⊗6
⊗ 1 ⊗ 1

3

�

⊗
�⊗5

⊗ ⊗ 2
5

1
2

2
3

2
3

�

⊗
�⊗5
⊗ ⊗ 2 ⊗ 1 ⊗ 1

3

�

⊗
�⊗5

⊗ 1
4

1
2

2
3

2
3

�

⊗
�⊗5
⊗ ⊗ 1

2 ⊗ 1 ⊗ 1
3

�

⊗
�⊗4

⊗ ⊗ 2
3

2
2

2
3

2
3

�

⊗
�⊗5
⊗ 2 ⊗ 1

2 ⊗ 1 ⊗ 1
3

�

⊗
�⊗4

⊗ ⊗ 2
3

2
2

3 2 �

⊗
�⊗4
⊗ ⊗ 3 ⊗ 2 ⊗ 1

2 ⊗ 1 ⊗ 1
3

�

⊗
�⊗4

⊗ 2
2
2

2 2 �

⊗
�⊗4
⊗ ⊗ 2

3 ⊗ 2 ⊗ 1
2 ⊗ 1 ⊗ 1

3

�

⊗
�⊗3

⊗ ⊗ 3 2 3 3
�

⊗
�⊗4
⊗ 3 ⊗ 2

3 ⊗ 2 ⊗ 1
2 ⊗ 1 ⊗ 1

3

�

⊗
�⊗3

⊗ ⊗ 3 2 ∅ �

⊗
�⊗3
⊗ ⊗ 3 ⊗ 3 ⊗ 2

3 ⊗ 2 ⊗ 1
2 ⊗ 1 ⊗ 1

3

�

⊗
�⊗3

⊗ 2 2 ∅ �

⊗
�⊗3
⊗ ⊗ 1

3 ⊗ 3 ⊗ 2
3 ⊗ 2 ⊗ 1

2 ⊗ 1 ⊗ 1
3

�

⊗
�⊗3

∅ ∅
�

⊗
�⊗3
⊗ 2 ⊗ 1

3 ⊗ 3 ⊗ 2
3 ⊗ 2 ⊗ 1

2 ⊗ 1 ⊗ 1
3

(C.20)

After this, we will only get vac⊗3 and end up with p0 in (C.6).

Let us finish with a remark on the situation of our cBBS. The states are elements of B⊗L of
the form vac⊗j−1⊗ bj ⊗· · ·⊗ bl⊗ vac⊗L−l satisfying the boundary condition 1� j � l� L.
Taking j � 1 assures the highest condition (C.3) automatically for any bj ⊗ · · · ⊗ bl. So we
can consider the image of the BBS states by Φ. From the definition of B in (2.21), the va-
cancy (C.10) becomes (3.3). Thus l � L implies ∀p(a)

j
� 1, which allows us to increase the

rigging of Φ(state) without breaking the condition (C.8). As the above example indicates, if
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Φ(p) = (µ, r) ∈ RC(B⊗L, λ), supplement of the vacuum tail does not influence the rigged con-
figuration in the sense that Φ(p⊗vac⊗l) = (µ, r) ∈ RC

�

B⊗L+l, λ+((n−1)l, (n−2)l, . . . , l, 0)
�

.
Similarly, supplement of the vacuum in front just causes a uniform shift of the riggingΦ(vac⊗l⊗p) =
(µ, r + l) ∈ RC

�

B⊗L+l, λ+ ((n− 1)l, (n− 2)l, . . . , l, 0)
�

, where r + l means that the rigging
of every string gets increased by l.
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