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ABSTRACT
We use N-body simulations to study the evolution of cuspy cold dark matter (CDM) haloes in the gravitational potential of a
massive host. Tidal mass-losses reshape CDM haloes, leaving behind bound remnants whose characteristic densities are set by
the mean density of the host at the pericentre of their respective orbit. The evolution to the final bound remnant state is essentially
complete after ∼5 orbits for nearly circular orbits, while reaching the same remnant requires, for the same pericentre, ∼25
and ∼40 orbits for eccentric orbits with 1:5 and 1:20 pericentre-to-apocentre ratios, respectively. The density profile of tidal
remnants is fully specified by the fraction of mass lost, and approaches an exponentially truncated Navarro–Frenk–White profile
in the case of heavy mass-loss. Resolving tidal remnants requires excellent numerical resolution; poorly resolved subhaloes
have systematically lower characteristic densities and are more easily disrupted. Even simulations with excellent spatial and
time resolution fail when the final remnant is resolved with fewer than 3000 particles. We derive a simple empirical model that
describes the evolution of the mass and the density profile of the tidal remnant applicable to a wide range of orbital eccentricities
and pericentric distances. Applied to the Milky Way, our results suggest that 108–1010 M� haloes accreted ∼ 10 Gyr ago on
1:10 orbits with pericentric distance ∼ 10 kpc should have been stripped to 0.1–1 per cent of their original mass. This implies
that estimates of the survival and structure of such haloes (the possible hosts of ultra-faint Milky Way satellites) based on direct
cosmological simulations may be subject to substantial revision.
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1 IN T RO D U C T I O N

It is well established that structure in a universe dominated by
cold dark matter (CDM) evolves hierarchically and leads to the
formation of non-linear systems spanning an enormous range in
mass (White & Rees 1978; Frenk & White 2012). The basic units of
this clustering hierarchy are CDM haloes, virialized entities that form
largely through the accretion, disruption, and merging of thousands of
smaller subunits (e.g. Wang et al. 2020, and references therein). This
complex merging process leaves behind an embedded population of
‘subhaloes’; i.e. the remnants of accreted subunits, many of which,
despite shedding a large fraction of their initial mass, survive as
recognizable self-bound entities for many orbital times (Tormen,
Bouchet & White 1997; Ghigna et al. 1998; Klypin et al. 1999;
Moore et al. 1999).

It is now accepted that this halo substructure is a basic falsifiable
prediction of the CDM paradigm, and underpins a number of
observational efforts designed to probe the nature of dark matter
on sub-galactic scales. Indeed, the role of substructure is critical to
the interpretation of observational studies including, for example, (i)
possible ‘gaps’ in the tidal streams of disrupting globular clusters
(e.g. Ibata et al. 2002; Johnston, Spergel & Haydn 2002; Erkal &
Belokurov 2015); (ii) perturbations in strongly lensed images of
distant objects (e.g. Vegetti & Koopmans 2009; Despali & Vegetti
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2017); (iii) the number and long-term survival of faint satellite
galaxies in the Galactic potential (e.g. Peñarrubia, Navarro &
McConnachie 2008; Sanders, Evans & Dehnen 2018; Li et al. 2018);
and (iv) the ‘boost factor’ of a potential dark matter annihilation
signal (e.g. Tasitsiomi & Olinto 2002; Diemand, Kuhlen & Madau
2007a; Lavalle et al. 2007; Springel et al. 2008b; Stref, Lacroix &
Lavalle 2019).

Because of its complex origin, substructure in CDM haloes is
best studied via direct cosmological simulations, which have over
the years converged on a basic outline of its basic properties. In
the absence of baryons, for example, substructure is expected to
be approximately self-similar, in the sense that the subhalo mass
function, scaled to the host mass, rises steeply towards small masses
and is similar for all virialized haloes (Kravtsov, Gnedin & Klypin
2004; Boylan-Kolchin et al. 2010; Wang et al. 2012; Jiang & van den
Bosch 2016b). It is also widely accepted that substructure makes up
only a small fraction (∼5–10 per cent) of the total mass of a halo,
and that the subhalo spatial distribution and orbital properties are
roughly independent of subhalo mass, especially at the low-mass
end (Springel et al. 2008a; Ludlow et al. 2009).

Despite these advances, many substantive questions remain, espe-
cially those pertaining to the long-term survival of CDM subhaloes
and to the role of the central galaxy in aiding their tidal disruption
(e.g. Johnston et al. 2002; Hayashi et al. 2003; D’Onghia et al. 2010;
Errani et al. 2017; Garrison-Kimmel et al. 2017; van den Bosch &
Ogiya 2018). Also unclear is the final structure of heavily stripped
CDM subhaloes, and the influence of numerical limitations on these
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Asymptotic tidal remnants of CDM subhaloes 19

results. These are important questions to resolve, as they may affect
sensitively the theoretical interpretation of ongoing dark matter direct
and indirect searches (see e.g. Green 2005, and references therein).

The issue of the long-term survival of CDM subhaloes has been
addressed in the past. While early work advocated for full subhalo
disruption under certain conditions (see e.g. Hayashi et al. 2003),
more recent work has argued that, if the density profile of CDM
haloes is indeed cuspy (i.e. dln ρ/dln r = −1 at the centre) as in the
Navarro–Frenk–White profile (Navarro, Frenk & White 1996, 1997,
hereafter NFW), then subhaloes would rarely be fully disrupted
and some form of bound remnant would almost always survive
(e.g. Peñarrubia et al. 2010; van den Bosch et al. 2018). This
is motivated by the fact that cuspy haloes contain a substantial
population of particles with extremely short orbital time-scales
(Errani & Peñarrubia 2020), which would always be ‘adiabatically
protected’ (Weinberg 1994) from the effects of tides.

Although there is growing consensus about this result, we note that
it is unlikely to lead to a radical revision of the global properties of
CDM substructure described above, which is dominated by subhaloes
affected only moderately by tidal effects. However, it may have
important consequences for some detailed applications, especially
those concerning substructure in the inner regions of a halo, where
crossing times are short, where tides are most important, and where
many observational studies focus on.

A related issue is the structure of tidally disrupted CDM subhaloes,
and, in particular, that of the final bound remnant, if indeed one
survives. Prior work suggests that, as tides gradually truncate a
subhalo, its characteristic parameters (i.e. radius, density, and circular
velocity) evolve along well-defined ‘tidal tracks’ (Peñarrubia et al.
2008). There is, however, less consensus on how to describe the
density profile of tidally stripped subhaloes; on how the final remnant
properties depend on the strength of the tidal field; or on how long (i.e.
number of orbits) it would take a subhalo to approach its asymptotic
final state.

These are the issues we address here using idealized N-body
simulations to follow the tidal loss/disruption of NFW haloes in
the potential of a massive host. The emphasis of our work is on the
structure of the asymptotic tidal remnant of such haloes, and on the
time-scale on which the process evolves. This paper is structured
as follow. Section 2 introduces the numerical setup, including the
host and subhalo models, as well as the initial conditions used
in the simulations. The convergence of tidally stripped subhaloes
towards an asymptotic remnant is discussed in Section 3.2, the
effects of orbital eccentricity in Section 3.3, while the tidal evolution
of structural parameters and density profile shape are discussed in
Sections 3.4 and 3.5, respectively. The time evolution of bound
remnants is discussed in Section 3.6. We describe simple applications
of our modelling and compare with earlier work in Section 4. We
end with a brief summary of our main conclusions in Section 5.
For completeness, numerical convergence issues are discussed in the
Appendix.

2 N U M E R I C A L M E T H O D S

We describe below the numerical setup of the simulations analysed
in this work. We assume, for simplicity, that the host halo may
be approximated by a static, spherical potential, and that a CDM
subhalo may be approximated by an NFW N-body model with mass
much smaller than the host. We examine orbits that span a range of
pericentric radii and eccentricities, and exercise care to monitor and
exclude spurious results due to numerical limitations.

2.1 Host halo

The host halo is represented by static, spherical isothermal potential,

�host(r) = V 2
0 ln (r/r0) , (1)

where V0 = 220 km s−1 is the circular velocity and r0 is an arbitrary
reference radius. The choice of a static, spherical potential ensures
that the subhalo is subject to the same tidal field at each pericentric
passage. The corresponding circular velocity profile is flat and is
chosen to match approximately the potential inferred for the Milky
Way (see e.g. Eilers et al. 2019). The density profile is ρhost(r) =
ρ0(r/r0)−2 (steeper than that of NFW haloes at the centre; see
equation 2), with V 2

0 = 4πGρ0r
2
0 . These parameters correspond to

a virial1 mass, M200 = 3.7 × 1012 M�, and a virial radius, r200 =
325 kpc, at redshift z = 0.

Although we quote below results for subhaloes in solar masses,
kpc, and km s−1, these are only given for illustration and for ease
of comparison with Milky Way subhaloes. Gravitational effects are
scale free, of course, and our results may be applied to any other
value of V0, or r0, after proper scaling.

2.2 Orbits

We explore tidal mass-losses of subhaloes on orbits with pericentre-
to-apocentre ratios of 1:1, 1:5, 1:10, and 1:20. This eccentricity
range includes those derived from Gaia proper motions for the
orbits of (classical) Milky Way dwarf galaxies (Gaia Collaboration
et al. 2018; Fritz et al. 2018) and ultra-faint dwarfs (Simon 2018).
All eccentric orbits are chosen to have an apocentric distance of
rapo = 200 kpc, and the subhaloes are injected at apocentre. The
evolution of subhaloes on circular orbits is studied as well, for orbital
radii r = 40 kpc and r = 80 kpc, respectively.

2.3 N-body subhaloes

Subhaloes are modelled as N-body realizations of the NFW profile,

ρNFW(r) = ρs

(r/rs) (1 + r/rs)
2 , (2)

where rs is a scale radius and ρs is a characteristic density. The
corresponding circular velocity of this profile peaks at Vmx ≈
1.65 rs (Gρs)1/2 at a radius rmx ≈ 2.16 rs. We shall adopt values
measured at rmx as reference parameters in the analysis that follows.
At that radius, the circular orbit time, Tmx, and characteristic mean
enclosed density, ρ̄mx, may be written as

Tmx = 2π
rmx

Vmx
=

(
3π

Gρ̄mx

)1/2

. (3)

Similarly, we define the mass Mmx ≡ M(< rmx) enclosed within rmx,
and shall hereafter refer to rmx, Tmx, and Mmx as the ‘characteristic
radius’, ‘characteristic crossing time’, and ‘characteristic mass’ of
the subhalo, for short.

The NFW density profile has diverging total mass, so we expo-
nentially truncate the profile outside 10 rs. We generate isotropic,
equilibrium models by sampling from the corresponding distribu-
tion function, obtained through Eddington inversion. We use the
implementation described in Errani & Peñarrubia (2020), which is

1We define the virial boundary of a halo as the radius where the mean enclosed
density equals 200 × the critical density for closure, ρcrit = 3H 2

0 /8πG, with
H0 = 67 km s−1 Mpc−1 (Planck Collaboration VI 2020). Virial quantities are
denoted with ‘200’ subscripts.
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20 R. Errani and J. F. Navarro

available online.2 Most of our realizations have N = 107 particles,
but we have varied this parameter extensively to check for numerical
convergence. See the Appendix for details on numerical convergence
tests.

To limit the impact of orbital decay due to tidal mass-losses (see
e.g. White 1983; Hernquist & Weinberg 1989, or more recently Fujii,
Funato & Makino 2006; Fellhauer & Lin 2007; Miller et al. 2020),
we choose an initial subhalo mass, Mmx0 ≡ M(< rmx0) = 106 M�,
much smaller than the host virial mass, and for which we have
verified that the pericentric (rperi) and apocentric (rapo) distances do
not change appreciably even after substantial tidal mass-loss.

We are mainly interested in the regime where considerable tidal
mass-loss is expected, so we consider mainly cases where the initial
characteristic density of a subhalo does not exceed the mean enclosed
density of the host at pericenter. More precisely, we consider mainly
cases where the initial characteristic crossing times, Tmx0, compared
with the circular time at pericentre, Tperi = 2πrperi/V0, satisfies
Tmx0/Tperi � 2/3. We shall refer to this hereafter as the ‘heavy mass-
loss regime’. We also report, for completeness, results for models
with Tmx0/Tperi � 2/3 in Section 3.6.3. Overall, we have performed,
for each orbit, simulations that span the range of characteristic
crossing times, 0.2 < Tmx/Tperi < 2.

2.4 Particle-mesh and time integration

We follow the evolution of N-body subhaloes in the tidal field of
the host potential using the particle-mesh code SUPERBOX (Fellhauer
et al. 2000). This code employs three cubic grids of 1283 cells each,
two of them co-moving with the subhalo and centred on its centre
of density. The highest-resolving co-moving grid has a resolution
chosen to resolve the subhalo well, with grid size �x ≈ rmx0/128,
where rmx0 is the subhalo initial characteristic radius. The second
co-moving grid has lower resolution, with grid size ten times larger,
≈ 10 rmx0/128. The third grid has grid size ≈ 500 kpc/128, is fixed
in space, and is centred on the host potential.

The time-integration is done using a leapfrog scheme with single
and constant time-step �t = min (Tmx0, Tperi)/400. With these
choices, a circular orbit at the finest grid resolution (r ≈ rmx0/128) is
resolved with (at least) ≈16 time-steps.

2.5 Self-bound remnant

This study focuses on the properties of self-bound dark matter
substructures. We identify bound particles by (i) computing the
centre of the subhalo via the shrinking sphere method (Power
et al. 2003); (ii) computing the potential and kinetic energy of
particles in a reference frame co-moving with the subhalo centre;
(iii) discarding unbound particles in the co-moving frame; and
iterating until convergence is reached or until the number of bound
particles differs by less than one per cent from the previous
iteration.

The properties of the self-bound remnant change abruptly as the
subhalo passes through pericentre. Therefore, in what follows we
choose to measure properties such as remnant density profiles, bound
mass fractions, etc., at apocentre, where such properties are less
subject to transient effects.

2https://github.com/rerrani/nbopy

Figure 1. Tidal debris of CDM subhaloes on four different orbits evolved
in a spherical, isothermal potential (equation 1). All subhaloes have initial
characteristic mass Mmx0 = 106 M�, and crossing time Tmx0 = 0.9 Tperi. The
snapshots shown correspond to the 20th apocentric passage of each subhalo
and show the debris on the orbital plane. The surviving bound remnant
position is marked by an open circle. The projected density of tidally stripped
material is colour coded, and normalized to the average projected density,
�mx = Mmx/πr2

mx, of the bound remnant. The immediately preceding (and
subsequent) orbital path of the remnant is shown by the dashed line in each
panel.

3 R ESULTS

3.1 General overview

Fig. 1 shows the tidal debris of NFW subhaloes placed on four
different orbits of varying eccentricity and pericentric distance.
The subhaloes are shown at the 20th apocentric passage, with the
immediately preceding (and following) orbital path indicated with
dashed lines. The debris clearly stretches along the orbit, as expected
for systems where the subhalo mass is negligible compared with
the host. The colour scheme has been normalized to the maximum
surface density of the bound remnant, which differs substantially
from panel to panel because of the varying bound mass fraction of
the remnant.

As expected, orbits with smaller pericentres lead to larger mass-
loss. This mass-loss appears to continue as the subhalo continues to
orbit the host, as shown in Fig. 2, where the bound remnant of one
subhalo is shown at various apocentric passages of the evolution for
two orbits with the same pericentric distance, rperi = 40 kpc. The top
row corresponds to a circular orbit while the bottom row corresponds
to an orbit with 1:5 pericentre-to-apocentre ratio.

Fig. 2 illustrates a few interesting results. One is that, although for a
given pericentre mass-loss progresses faster in the case of a circular
orbit (as expected), the remnant is qualitatively indistinguishable
from that on the eccentric orbit after approximately the same mass
fraction has been lost. Indeed, the circular orbit remnant after 2
orbital periods looks similar to the 1:5 orbit remnant after 10 orbits;
in both cases, the bound remnant has retained roughly 6–7 per cent
of the initial Mmx. Ditto for the top-row remnant after five orbits and
the bottom-row remnant after 20 orbits, when the bound remnant has
been reduced in both cases to ∼2–3 per cent of the initial mass.
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Asymptotic tidal remnants of CDM subhaloes 21

Figure 2. Projected structure of two bound remnants at various stages of their tidal evolution. The top row shows the projected densities of a subhalo on a
circular orbit with r = 40 kpc in an isothermal potential after 1, 2, . . . , 20 orbital periods. The subhalo has an initial characteristic mass Mmx0 = 106 M� and
crossing time Tmx0 = 0.88 Tperi, i.e. an initial characteristic radius and circular velocity of rmx0 = 0.48 kpc and Vmx0 = 3.0 km s−1, respectively. The bound
mass fraction is listed in the legend of each panel. The bottom row shows the same subhalo on an eccentric orbit with rperi = 40 kpc and rapo = 200 kpc. It takes
considerably longer to strip the subhalo on the eccentric orbit compared to the circular case. The projected density (normalized to the average projected density
of the bound remnant, �mx = Mmx/πr2

mx) is colour coded.

The second point to note from Fig. 2 is that, although mass-loss is
continuous, it slows down as the evolution progresses. For example,
the eccentric-orbit subhalo takes only ∼1 orbit to lose half of its mass
at the beginning, but takes ∼10 orbits to reduce its bound mass by
the same factor between 10 and 20 Torb. This suggests that a subhalo
on an orbit with fixed pericenter is stripped until it converges to a
well-defined self-bound ‘asymptotic tidal remnant’. We explore this
idea further below.

3.2 Asymptotic tidal remnants

The effects of tidal mass-loss are easily appreciated in Fig. 3, where
we show the circular velocity profiles of two subhaloes, placed on
circular orbits with r = 40 kpc (left) and r = 80 kpc (right). The
subhalo on the 40 kpc orbit is the one shown previously in the top
panel of Fig. 2 with a ratio of crossing times of Tmx0/Tperi = 0.88,
while the subhalo on the 80 kpc orbit has Tmx0/Tperi = 2/3. Curves
are spaced by one orbital period, and each curve is normalized to the
initial values of rmx and Vmx, which are {0.48 kpc, 3.0 km s−1} and
{0.63 kpc, 2.6 km s−1} for the subhalo on the 40 and 80 kpc orbits,
respectively.

The gradual convergence to a well-defined asymptotic remnant
structure is quite clear; after ∼10 orbits there is little further change
in the mass profile of the remnant. The final characteristic density
appears set by the mean density of the host at pericentre: more
precisely, the subhalo is stripped gradually until its characteristic
crossing time approaches a fixed fraction of the circular time at
pericentre; Tmx ≈ Tperi/4, or, equivalently, until its characteristic
density is ∼16 × the mean host density at pericentre. This is a
general result of our simulations in the heavy mass-loss regime.

We illustrate this in Fig. 4, which shows the evolution of the
characteristic crossing time of subhaloes in circular orbit at two
different radii from the centre of the host: 40 kpc (red) and 80 (blue)
kpc, respectively. Each curve corresponds to subhaloes with different
initial characteristic densities, and follows a system for 20 orbital

times, or until its Mmx has been reduced to about 0.3 per cent of its
initial value, when numerical limitations begin to dominate (see the
Appendix). This mass reduction is equivalent to a reduction of nearly
∼16 in the initial rmx or, alternatively, a factor of ∼5 in Vmx or ∼3 in
Tmx.

As is clear from Fig. 4, all subhaloes are stripped until their char-
acteristic crossing times are reduced to Tmx ≈ Tperi/4, independent
of the initial properties of the subhalo. This is true of all our runs in
the ‘heavy mass-loss regime’, where the initial characteristic density
of the subhalo is low compared with the host density at pericenter
(or, more precisely, when Tmx0/Tperi > 2/3).

For comparison, we have computed characteristic crossing times
of selected subhaloes on circular orbits in the public DASH sim-
ulation suite (Ogiya et al. 2019), and observe that also there,
tidal evolution decelerates, consistent with an evolution towards an
asymptotic remnant.

3.3 The effect of orbital eccentricity

Circular orbits are rare in a cosmological setting, so it is important to
explore how the results discussed above are modified for subhaloes
on eccentric orbits. As hinted at when discussing Fig. 2, for given
pericentre, tides are expected to operate on a longer time-scale for
eccentric orbits, mainly because tidal forces are strongest during
pericentric passage and subhaloes spend less time near pericentre
the more eccentric the orbit. Is the tidal evolution on highly eccentric
orbits just delayed, but otherwise similar to that on circular orbits?

We see that this is indeed the case in Fig. 5, where we show
the evolution of Tmx for a subhalo on four orbits with the same
pericentre but different eccentricities. The subhalo has, initially,
Tmx0 = (2/3) Tperi. The filled blue circles correspond to a subhalo
that evolves on a circular orbit. Open circles correspond to results
for other orbital eccentricities, after scaling each in time by a factor,
fecc = 5, 6.5, and 8 for orbits with pericentre-to-apocentre ratios of
1:5, 1:10, and 1:20, respectively. The excellent agreement between
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22 R. Errani and J. F. Navarro

Figure 3. Circular velocity profiles of the bound remnants of two subhaloes on circular orbits, normalized to their initial characteristic radius and velocity.
Grey curves correspond to all subhalo mass, blue curves to the self-bound remnant. Curves are spaced by one orbital period, for a total of 20 orbital periods.
The left-hand panel shows the evolution of the same subhalo as in the top panel of Fig. 2 (rmx0 = 0.48 kpc, Vmx0 = 3.0 km s−1) on an orbit with r = 40 kpc and
Tmx0/Tperi = 0.88. The right panel shows a different subhalo (rmx0 = 0.63 kpc, Vmx0 = 2.6 km s−1) on an orbit with r = 80 kpc, which implies Tmx0/Tperi = 2/3
(for circular orbits Tperi = Torb). The evolution of {rmx, Vmx} follows well-defined tidal tracks (red dashed curves), which we discuss further in Section 3.4. In
both cases, the evolution of the remnant slows down as Tmx approaches Tperi/4. The final structure of a subhalo in the heavy mass-loss regime (i.e. Tmx0/Tperi >

2/3) is set solely by the properties of the host at pericentre.

Figure 4. Evolution of the characteristic crossing time, Tmx, of subhaloes
on circular orbits with two different radii; r = 40 kpc (red curves) and
r = 80 kpc (blue curves). Black curves highlight the two cases shown in
Fig. 3. All subhaloes are in the heavy mass-loss regime, with initial crossing
times in the range 2/3 < Tmx0/Tperi < 2, where Tperi = Torb for circular
orbits. Subhaloes are followed until their structure becomes compromised by
numerical limitations, which become manifest when Tmx has been reduced
to less than ∼1/3 of its initial value for our 107 –particle realizations. See the
Appendix for further discussion on numerical convergence. All subhaloes are
seen to approach an asymptotic value of Tmx set solely by the host properties
at the orbital pericentre.

the various curves confirms that the main effect of orbital eccentricity
is simply a ‘delay’.

In other words, it takes five times more orbits for a subhalo on a
1:5 orbit to evolve to the same stage as a subhalo on a circular orbit.
Longer delays accompany higher eccentricities, but the delay factor
appears to nearly saturate for eccentricities as high as 1:10 or 1:20,
the highest value explored in our runs. We find that this is also a

Figure 5. Evolution of the characteristic crossing time, Tmx, (or, equivalently,
of the characteristic density, scale on right) of a subhalo placed on orbits
with fixed pericentric distance and varying eccentricities with pericentre-
to-apocentre ratios 1:1, 1:5, 1:10, and 1:20. The evolution is similar in all
cases, but occurs on longer time-scales with increasing orbital eccentricity.
At equal pericentre, the main effect of orbital eccentricity is to ‘delay’ the
tidal evolution of a subhalo. All subhaloes evolve in the same way after
scaling times by an eccentricity-dependent factor fecc, listed in the legend.
For example, it takes fecc = 8 times longer for a subhalo to be stripped to the
same extent on a 1:20 orbit than on a circular orbit with the same pericentric
radius.

general result of our runs: all results obtained for circular orbits are
generally applicable to other eccentricities simply by scaling time by
the appropriate factor fecc.

The following function may be used to interpolate between our
four measured values of fecc for a given apocentre-to-pericentre ratio:

fecc ≈ [2x/(x + 1)]3.2 where x = rapo/rperi . (4)
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Asymptotic tidal remnants of CDM subhaloes 23

Figure 6. Subhalo structural parameters (rmx, Vmx, normalized to their initial
values) evolve along a well-defined tidal track that is nearly independent of
orbital eccentricity. Filled circles correspond to measurements for all of our
well-resolved N-body models, while the dashed black curve shows the fit
given by equation (5). Constant remnant mass fractions, Mmx/Mmx0, and
constant crossing time fractions, Tmx/Tmx0, are shown by black dashed lines.
The original tidal track of Peñarrubia et al. (2008) is shown by the black dotted
curve, while the tracks of Green & van den Bosch (2019) for subhaloes of
concentration c = r200/rs = 10 are shown by a grey dotted curve.

A fitted exponent of ≈3.2 reproduces the measured factors fecc at
their respective ratios of rapo/rperi within 5 per cent.

Note that these factors are measured from simulated subhaloes
on orbits in an isothermal potential approximating the Milky Way
(equation 1). These factors may take slightly different numerical
values in potentials with a substantially different radial dependence
of the tidal forces.

We emphasize again that, while more pericentric passages are
needed for a subhalo on an eccentric orbit to be tidally stripped to
the same extent as on a circular orbit, the characteristic crossing
time (density) of the asymptotic remnant (in the ‘heavy mass-loss
regime’) is independent of orbital eccentricity and appears set solely
by the circular time (density) of the host halo at pericentre.

3.4 Tidal evolutionary tracks

As may be seen in Fig. 3, the structural parameters rmx and Vmx

of the subhaloes evolve along clearly defined ‘paths’, indicated by
the dashed red line in each panel. This is consistent with earlier
work, which has shown that, as subhaloes lose mass to tides, their
characteristic parameters evolve along well-defined ‘tidal tracks’.
The position along the track depends only on the total amount of
mass lost, and is largely independent of the eccentricity of the orbit
and/or of the elapsed number of orbits. This was first discussed in
Peñarrubia et al. 2008, hereafter P + 08 (and confirmed in later work;
see e.g. Green & van den Bosch 2019).

We explore this further in Fig. 6, where we show, for all of our
runs, the evolution of the subhalo structural parameters {rmx, Vmx},
normalized to their initial values {rmx0, Vmx0}, and coloured by the
eccentricity of the orbit. It is clear that a unique track describes well

all runs, which may be parametrized by a simple function,

Vmx/Vmx0 = 2α (rmx/rmx0)β
[
1 + (rmx/rmx0)2

]−α
, (5)

with α = 0.4, β = 0.65. Note that this parametrization is slightly
different from the one proposed by P + 08 (shown with a black dotted
line), an update made possible by the higher numerical resolution of
our present runs, which give robust results for subhaloes that retain
as little as 0.3 per cent of their initial characteristic mass, Mmx.

An interesting feature of the tidal track is its clear curvature for
modest mass-losses (i.e. for rmx/rmx0 > 1/3, or Mmx/Mmx0 > 0.1) and
a power-law behaviour for heavier mass-losses (Mmx/Mmx0 < 0.1),
where the relation becomes

Vmx/Vmx0 ∝ (rmx/rmx0)0.65, (6)

consistent with the power-law fits in Errani & Peñarrubia (2020). As
we discuss below, the reason for this change is that heavily stripped
NFW haloes converge to a new mass profile shape after substantial
tidal mass-loss. The curvature in the tidal track corresponds to the
transition from the initial NFW mass profile to the new profile; once
this is established further mass-loss is ‘self-similar’ and results in a
simple power-law scaling between rmx and Vmx.

We emphasize again that the tidal track in Fig. 6 applies equally
well to all of our runs, regardless of pericentric radii and/or orbital
eccentricity. This is true provided that the remnant can be adequately
resolved. As we discuss in the Appendix, poor numerical resolution
leads to systematic deviations from the tidal track, usually towards
artificially low values of Vmx and/or artificially large values of
rmx. These deviations result in characteristic crossing times longer
than those of well-resolved subhaloes, making the poorly resolved
remnants prone to further tidal mass-loss and eventual disruption.
In what follows, we shall focus only on well-resolved systems,
which we may define as those whose characteristic crossing times,
Tmx, deviate by less than 10 per cent from the tidal track given by
equation 5. See the Appendix for further discussion.

3.5 Evolution of the density profile

As subhaloes lose mass to tides, the shape of their mass profiles
evolves from the original NFW shape adopted as initial conditions,
and approaches a different profile shape after substantial mass-loss
has occurred. We show this in Fig. 7, where the left-hand panel
shows the circular velocity profiles of a number of subhaloes on 1:5
eccentric orbits, coloured by their remaining bound mass fraction,
and scaled to their current values of rmx and Vmx. Similar results are
obtained for all types of orbits; we choose here subhaloes on 1:5
orbits only as illustration.

The NFW profile is shown in Fig. 7 by the solid black line, and it
agrees, by construction, with the initial subhalo profile (red curve).
As a subhalo loses mass, the Vc profile of its bound remnant becomes
noticeably ‘narrower’, with less mass in the outer regions, but also
less mass in the regions inside rmx relative to the initial NFW profile.
Gradually, this profile approaches a new asymptotic shape, which we
indicate with the dashed black curve in Fig. 7.

The transition from the initial NFW density profile (equation 2) to
the asymptotic shape may be described by an exponential truncation
of the initial profile, as follows:

ρ(r) = ρNFW(r) × exp(−r/rcut) / (1 + rs/rcut)
κ , (7)

where rs denotes the scale radius of the initial NFW profile, and κ =
0.3 is chosen to match the ‘tidal track’ evolution discussed above
in Section 3.4. For rcut/rs → ∞, this description recovers the initial
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24 R. Errani and J. F. Navarro

Figure 7. Mass profiles of stripped NFW subhaloes. The left-hand panel shows circular velocity profiles, normalized to their current values of rmx and Vmx, and
coloured by the remaining self-bound mass fraction of the remnant (see colour bar in middle panel). The middle panel shows the density profiles of the same
subhaloes, normalized in a similar manner. Both of these panels show that the structure of a heavily stripped NFW subhalo approaches a new, exponentially
truncated density profile whose shape is well approximated by equation (7). The right-hand panel shows circular velocity curves for selected simulation snapshots
at remnant bound masses of Mmx/Mmx0 = 1, . . . , 1/100 scaled to the initial values {rmx0, Vmx0}. Radii at which the circular velocity may be affected by
resolution limitations according to the criteria of the Appendix are shown using open circles, while filled circles correspond to radii unaffected by resolution.
Exponentially truncated NFW profiles, with truncation radii rcut selected to match the measured Mmx (see Fig. 8), are shown using black dashed curves.

NFW profile, whereas for rcut/rs → 0, the density profile converges
to an exponentially truncated cusp.

For heavy mass-losses, i.e. rcut/rs → 0, equation (7) reduces to an
exponentially truncated cusp,

ρasy(r) = ρcut (r/rcut)
−1 exp(−r/rcut) , (8)

where ρcut = ρs (rcut/rs)κ − 1, and rs and ρs denote the scale radius
and scale density of the initial NFW profile, respectively. The
asymptotic profile of equation (8) has a convergent total mass of
Mtot = 4πr3

cutρcut, and a circular velocity curve which peaks at a
radius rmx ≈ 1.8 rcut with a characteristic mass of Mmx ≈ 0.5 Mtot.
Consequently, this profile is consistent with the power-law tidal
tracks Vmx ∝ rβ

mx, where β = (1 + κ)/2 ≈ 0.65 for a value of κ

≈ 0.3.
For intermediate amounts of mass-loss equation (7) describes well

the profile of the remnant, with a value of rcut/rs that depends only on
the current bound mass fraction. While the relation of truncation
radius rcut and remnant bound mass Mmx follows directly from
integrating equation (7), we present for ease of use the following
fit, which reproduces well the relation shown in Fig. 8 (and is
consistent with our simulations for the resolved range of remnant
masses, Mmx/Mmx0 � 1/300):

rcut

rmx0
≈ 0.44 ×

(
Mmx

Mmx0

)0.44
[

1 −
(

Mmx

Mmx0

)0.3
]−1.1

. (9)

Here, rmx0 ≈ 2.16 rs is the characteristic radius of the initial NFW
profile. The functional form of equation (9) ensures that (i) for
Mmx/Mmx0 → 1, rcut/rmx0 → ∞, i.e. the profile prior to mass-loss is
an NFW profile, and (ii) for Mmx/Mmx0 → 0, the correct asymptotic
bound mass of equation (8) is recovered.3 The right-hand panel of
Fig. 7 compares the results of this fitting formula with the profiles
of simulated subhaloes spanning two decades in mass-loss, with
excellent results.

3In the asymptotic regime, integrating equation (8) with ρcut =ρs (rcut/rs)κ − 1

and rs ≈ rmx0/2.16 yields rcut/rmx0 ∝ (Mmx/Mmx0)1/(2 + κ) with exponent 1/(2
+ κ) ≈ 0.44.

Figure 8. For the tidally truncated profile of Fig. 7 (see equation 7), the
truncation radius rcut follows directly from the remnant bound mass fraction,
Mmx/Mmx0. A truncation radius of rcut/rmx0 → ∞ recovers NFW, while for
rcut/rmx0 → 0, the profile converges to an exponentially truncated cusp. While
the relation of Mmx/Mmx0 and rcut/rmx0 follows directly from equation (7),
the dashed curve (equation 9) provides a simple fit for ease of use.

The model of equation (7) may be directly compared to that of
Green & van den Bosch (2019, hereafter G + 19), who propose a
‘transfer function’, ρ/ρNFW, to model the structural changes to NFW
profiles during tidal evolution, fitted to simulation snapshots of the
DASH simulation series (Ogiya et al. 2019) . The transfer function
corresponding to equation (7) is compared in Fig. 9 to that of G + 19.
Note that our model leads to higher central densities at equal fractions
of remnant bound mass Mmx/Mmx0. The main difference lies in the
normalization of the density profile, and not in its shape, as shown
by the gradual divergence in the G + 19 tidal track from ours seen
in Fig. 6. Note, however, that even for the most highly stripped
subhalo considered ‘resolved’ in this work (Mmx/Mmx0 ∼ 1/300), the
differences are rather small. Indeed, the G + 19 track differs from
ours there by less than 0.1 dex in Vmx, or, equivalently, by less than
0.2 dex in rmx.

We turn our attention now to the time evolution of the characteristic
parameters of the profile. Since the characteristic radius (rmx) and ve-
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Asymptotic tidal remnants of CDM subhaloes 25

Figure 9. Transfer function ρ/ρNFW (top panel) as well as density profiles
(bottom left) and circular velocity curves (bottom right) of the model of
equation (7) for different fractions of bound mass Mmx/Mmx0. The model
of equation (7) (‘this work’, solid lines) is compared against the Green &
van den Bosch (2019) model for initial subhalo concentrations c = r200/rs =
5 (‘G + 19’, dotted lines) and 10 (dashed lines). Note that the model of
equation (7) predicts higher central densities at equal bound mass fraction,
and results in tidal tracks with a different asymptotic slope (see Fig. 6).

locity (Vmx) are linked by the tidal track shown in Fig. 6 (equation 5),
we only need to consider the evolution of one characteristic structural
parameter to describe the full evolution. We choose the crossing time,
Tmx, for this exercise next.

3.6 Time evolution

We explore next how subhaloes approach the asymptotic remnant
stage as a function of time. This is illustrated in the top panel of
Fig. 10, which shows the evolution of Tmx as a function of time for
subhaloes on circular orbits at r = 40 kpc from the centre of the host.
Times are scaled to the orbital time, Torb, and Tmx is shown in units
of the host circular time at pericentre, Tperi. Although, of course,
Torb = Tperi for circular orbits, this choice of scaling is useful, as it
will enable us to extend the comparison to eccentric orbits, where
the orbital time can be much longer than Tperi. We consider first only
subhaloes in the heavy mass-loss regime, i.e. Tmx0/Tperi > 2/3.

The top panel of Fig. 10 shows that all subhaloes approach the
same asymptotic remnant value, Tasy. As discussed in Section 3.5,
one may identify two phases in the evolution, one that applies to early
times, when the subhalo mass profile shape changes rapidly from
NFW-like to a new shape, and another one as all subhaloes approach
the same asymptotic remnant stage. During the first stage subhaloes
with larger values of Tmx0/Tperi evolve more rapidly, but they all seem
to approach the same asymptotic behaviour after roughly ∼10 orbits.

Figure 10. Top: Time evolution of the characteristic crossing time of
subhaloes on circular orbits in the heavy mass-loss regime. The evolution
is shown in logarithmic units for a number of subhaloes with initial crossing
times of Tmx0/Tperi > 2/3 in order to highlight the long-term behaviour of the
subhaloes, all of which approach at late times the same asymptotic power-law
trend, highlighted by the red dashed curve and parametrized by equation (10).
Short horizontal segments indicate the value of Tmx to which bound remnants
converge in our simulations, Tperi/4, which differs slightly from the fitted
‘true asymptotic’ value (i.e. applicable for t = ∞), Tasy ≈ 0.22 Tperi. Bottom:
Results for three subhaloes of different initial, Tmx0/Tperi, placed on different
orbits and compared with the empirical model parametrized by equation (12).
Circular orbits are shown with open circles; filled circles correspond to 1: 5
eccentric orbits with the same pericentric radius. Eccentric orbit times have
been scaled by fecc = 5, as discussed in Section 3.3. Aside from this delay,
equation (12) describes very well the results of all simulations.

3.6.1 Heavy mass-loss regime: late asymptotic behaviour

The asymptotic behaviour may be approximated by a simple power
law (red dashed line in Fig. 10),

Yasy(t) ≡ (Tmx(t) − Tasy)/Tperi = (t/τasy)−1. (10)

With Tasy ≈ 0.22 Tperi and τasy ≈ 0.65 Torb, this equation describes
well the late stages of all of our runs in the heavy mass-loss regime.
This power law is the solution to the differential equation

dYasy(t)/dt = −Y 2
asy(t)/τasy, (11)

hence the asymptotic evolution of a subhalo’s crossing time is such
that the slope dYasy(t)/dt depends on the instantaneous value of
Yasy(t) alone, consistent with the observation that the subhalo profile
shape converges: once the profile shape has converged, the subhalo
structure is fully determined by the single parameter Tmx(t). This
late evolution may be thought of as ‘self-similar’ in the sense that
it is independent of the initial conditions, and progresses at a rate
governed only by the instantaneous value of Tmx − Tasy.
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26 R. Errani and J. F. Navarro

3.6.2 Heavy mass-loss regime: general description

The early evolution deviates from the asymptotic power-law be-
haviour discussed above. The following empirical formula describes
well the general evolution in the heavy mass-loss regime:

Y (t) = (Tmx(t) − Tasy)/Tperi = Y0 [1 + (t/τ )η]−1/η, (12)

where Y0 = (Tmx0 − Tasy)/Tperi is determined by the initial conditions,
and η is a free parameter that may be inferred from the simulation
results.

With this parametrization, the fact that all subhaloes in Fig. 10
approach the same late evolution implies that the time-scale τ is
inversely proportional to Y0, i.e.

τ = τasy/Y0. (13)

Least-squares fits to the simulation data show that η � 1, and that
η correlates with Y0, within ten per cent of the following empirical
function:

η ≈ 1 − exp(−2.5 Y0) . (14)

The bottom panel of Fig. 10 compares fits using equation (12) with
simulation results. For clarity, we show only three different subhaloes
on circular orbits (open circles), but include also the results for orbits
with 1:5 pericentre-to-apocentre ratio (filled circles). As expected
from our discussion in Section 3.3, open and filled circles overlap
after the eccentric orbital times are scaled by fecc = 5. Aside from
this eccentricity-dependent ‘delay’, equation (12) describes well the
overall evolution of all runs, regardless of orbital eccentricity.

A simple implementation of this model for the tidal evolution of
subhaloes is made available online.4 The implementation takes as
inputs the initial subhalo structural parameters {rmx0, Vmx0} as well
as host halo crossing time Tperi at pericentre, orbital period Torb and
pericentre-to-apocentre ratio, and returns the time evolution of the
subhalo structural parameters {rmx(t), Vmx(t)}.

3.6.3 Modest mass-loss regime

Subhaloes with characteristic densities substantially higher than the
host density at the pericentre of their orbits will be only modestly
affected by tides. In this regime (i.e. when Tmx0/Tperi < 2/3), the
remnant is not expected to have the same characteristic density as
the asymptotic tidal remnant discussed in the preceding subsection.
Their characteristic densities must somehow in this case reflect their
initial values.

Fig. 11 shows the evolution of Tmx for subhaloes on circular orbits
with r = 80 kpc, and 0.2 < Tmx0/Tperi < 2. The evolution of subhaloes
with Tmx0/Tperi > 2/3 (i.e. in the heavy mass-loss regime or ‘regime
I’, shown with blue curves) are analogous to those discussed above,
and are seen to approach remnants with the same asymptotic crossing
time, ∼Tperi/4.

On the other hand, subhaloes with Tmx0/Tperi < 2/3 are shown
using red curves. Tidal effects on these haloes are modest, and the
evolution of Tmx quickly stalls after a few orbits. After 20 full circular
orbital periods the remnants have not yet settled to a final value, but
evolve only weakly thereafter.

We may fit the tidal evolution of these subhaloes using the same
equation (12), with ‘primes’ to distinguish parameters specific to the
modest mass-loss regime (‘regime II’):

Y ′(t) = Y ′
0

[
1 + (t/τ ′)η′

]−1/η′
, (15)

4https://github.com/rerrani/tipy

Figure 11. As Fig. 10, but for circular orbits with r = 80 kpc, and spanning
a wide range of Tmx0/Tperi. Haloes in the heavy mass-loss ‘regime I’ (i.e.
Tmx0/Tperi > 2/3) are shown in blue, those in the modest mass-loss ‘regime
II’ (i.e. Tmx0/Tperi < 2/3) are shown in red. In regime I, all haloes converge
to remnants with the same asymptotic value of Tmx ≈ Tperi/4. In regime
II, haloes approach a remnant whose characteristic crossing time (density)
depends on their initial value. Most subhaloes in a cosmological context fall
in regime I (see Section 3.2 for details).

Figure 12. Crossing times of subhaloes after n = 5, 10, 15, and 20 orbital
times. The characteristic densities of subhaloes in regime I (i.e. Tmx0/Tperi

> 2/3) converge to an asymptotic value that is set solely by Tperi and is
independent of the initial value Tmx0. Those in regime II (i.e. Tmx0/Tperi <

2/3) converge to characteristic densities that reflect their initial values. Solid
black curves show the empirical results from equation (15) for regime II, and
from equation (12) for regime I.

where Y ′ = (Tmx − T ′
asy)/Tperi. The exponent η

′ = 0.67 may be
fixed by requiring that it should be identical to the exponent of
equation (12) at the boundary between regimes I and II. The
main difference from the previous results is that, in regime II,
the ‘asymptotic’ crossing time T ′

asy depends on the initial Tmx0 of
the subhalo, and not solely on Tperi. We estimate T ′

asy through the
following empirical function,

T ′
asy/Tperi = Tmx0/Tperi

(1 + Tmx0/Tperi)γ
, (regime II) (16)

where the functional form is motivated by the crossing time depen-
dence on initial conditions shown in Fig 12, discussed below. A
choice of γ ≈ 2.2 ensures that at the boundary between regimes I
and II, the fitted asymptote Tasy = 0.22 Tperi of regime I is matched.
Using these constraints, the fitted decay rate τ

′
correlates with the
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Asymptotic tidal remnants of CDM subhaloes 27

Figure 13. Tidal evolution in a cosmological context. The left-hand panel shows {rmx, Vmx} tidal evolutionary tracks (blue solid curves) for subhaloes of bound
mass Mmx = 108 M� and 1010 M� (i.e. virial masses and concentrations of M200 = 3.8 × 108 M�, c = r200/rs ≈ 15 and 3.5 × 1010 M�, c ≈ 11, respectively.)
with initial conditions consistent with the mean z = 0 mass–concentration relation from Ludlow et al. (2014) (yellow shaded bands, for successive ±0.1 dex
scatter in concentration). Ticks along the tracks correspond to intervals of one orbital period Torb for a circular orbit with r = 20 kpc in an isothermal potential
with circular velocity 220 km s−1 (or equivalently to 5 Torb for 1:5 orbits, and 6.5 Torb for 1:10 orbits with the same pericentre). For reference, the crossing times
of asymptotic tidal remnants, Tperi/4, is shown for values of rperi = 5 kpc, 10 kpc, 20 kpc. The panel on the right shows the same tidal tracks, but in terms of
bound mass, Mmx, and crossing time, Tmx.

initial crossing time Tmx0/Tperi roughly as

τ ′/Torb = 1.2(Tmx0/Tperi)
−1/2 . (17)

While these parameters were determined for circular orbits, the
extension to eccentric orbits is straightforward through the delay
factor fecc discussed in Section 3.3.

Fig. 12 compares Tmx measured from N-body snapshots after
n = 5, 10, 15, and 20 orbital periods for different initial crossing
times Tmx0/Tperi against the empirical results of equation (15),
showing good agreement between the model and the simulations.
The functional dependence of the (near) asymptotic crossing time
after n = 20 orbital periods on initial conditions is well described
by a function of the form of equation (16), which imposes that for
Tmx0/Tperi → 0, Tasy → Tmx0. In the regime where the subhalo is
significantly denser than the host halo at pericentre, tidal evolution
becomes negligible, as expected.

4 D ISCUSSION

The results of the previous section may be used to provide some
insight into ongoing discussions regarding substructure in CDM
haloes and, in particular, on the abundance, structure, and spatial
distribution of tidally stripped subhaloes. As discussed in Section 1,
these discussions concern a wide variety of topics, from the ultimate
survival of dark matter dominated systems, such as faint satellite
galaxies, to the interpretation of distortions of strongly lensed
galaxies, to theoretical expectations for a possible annihilation signal
from surviving subhaloes. We plan to address some of these in future
contributions, but provide here a first application to a few topical
issues as illustration.

4.1 Tidal remnants in Milky Way-like systems

Our discussion so far has dealt with subhaloes with arbitrary
values of rmx and Vmx, but these parameters are expected to be

strongly correlated because of the redshift-dependent �CDM mass–
concentration relation (see e.g. Ludlow et al. 2014, and references
therein). This is shown, for illustration, in the left-hand panel of
Fig. 13, where the solid red line indicates the mean relation at z =
0 and the shaded bands correspond to successive ±0.1 dex scatter
in concentration. We also indicate, for completeness, the expected
mean relation at z = 5 with a dashed red line.

�CDM subhaloes are constrained to move along the tidal track
discussed in Section 3.4, two examples of which are shown by the
blue curves in Fig. 13. One of them corresponds to a halo with
initial Mmx = 1010 M� and the other to Mmx = 108 M�. Assuming
that these haloes were placed on circular orbits in a potential like that
of the Milky Way (represented crudely by equation 1) at r = 20 kpc,
these subhaloes would be quickly stripped of mass (each tickmark
on the tracks corresponds to one orbital period), and would gradually
approach the asymptotic remnant stage, where Tmx ≈ Tperi/4 (shown
by the thick black line). We see from this that a 1010 M� halo
would leave behind an asymptotic remnant with less than 105 M�, a
characteristic radius of rmx ∼ 30 pc and a maximum circular velocity
of Vmx ∼ 2 km s−1.

Such remnants are essentially impossible to properly resolve in
direct cosmological simulations; indeed, a 1010 M� subhalo would
be resolved with fewer than ∼106 particles in even some of the
highest resolution simulations ever completed, such as those from
the Aquarius project (Springel et al. 2008b). As discussed in the
Appendix, a subhalo with 106 particles starts to deviate from the
correct tidal track after being reduced to about than 1/100 of its
initial mass, becoming increasingly prone to full (and artificial) tidal
disruption. This implies that essentially no surviving 105 M� haloes
would be direct descendants of systems with initial mass of order
1010 M�, as such systems would be most likely fully disrupted.

We note that this does not mean that the abundance of surviving
105 M� haloes has been severely underestimated in simulations like
Aquarius. Indeed, the abundance of low-mass subhaloes is vastly
dominated by recently accreted low-mass subhaloes that have been
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28 R. Errani and J. F. Navarro

Figure 14. Initial versus final bound mass of �CDM subhaloes accreted
at different times into an isothermal halo with circular velocity 220 km s−1.
Panels show the bound mass of subhaloes at z = 0 as a function of their mass
at infall, for four different infall redshifts (z = 0.2, 0.5, 1.0, 2.0), and orbital
eccentricities of 1:5 and 1:10. Subhaloes follow the mass–concentration
relation at infall redshift, with shaded bands corresponding to ±0.1 dex
scatter in concentration. The apocentre of the subhalo orbit rapo is chosen to
correspond to the virial radius r200 of the host halo at infall, as given in the
legends. Note that subhaloes of bound mass 108 < Mmx/M� < 1010, accreted
10 Gyr ago, have been stripped to less than 0.1 per cent of their initial mass on
orbits with rperi = 20 kpc. Many such remnants would have been artificially
disrupted in direct cosmological simulations.

only modestly stripped; in other words, there are simply too few
1010 M� systems to change the abundance of 105 M� subhaloes much
(Springel et al. 2008b).

We also note that the comments above refer to the asymptotic
tidal remnant of a subhalo, which is only reached after completing
a fairly large number of orbits. In reality, most subhaloes have only
had time to complete a few orbits, depending on their accretion time
and their apocentric distance. We may use the time evolution model
described in Section 3.6 to take this into account and to estimate
the present-day mass of subhaloes accreted at different times during
the evolution of a Milky Way-like halo. Since our main goal is to
illustrate possible applications of our results, rather than to provide
detailed predictions, we shall assume for this exercise that the host
halo remains unchanged throughout and that it is well approximated
by equation (1).

With this assumption, the virial radius of the host evolves ‘pas-
sively’ from r200 ∼ 100 kpc at z = 2 to ∼300 kpc at present (‘preudo-
evolution’, see Diemer, More & Kravtsov 2013). Assuming that the
apocentric distance of subhaloes accreted at given redshift equals the
host’s current virial radius, Fig. 14 shows the predicted masses at
z = 0 for subhaloes accreted at z = 2, 1, 0.5, and 0.2. Two curves
are shown, for 1:5 (blue) and 1:10 (red) pericentre-to-apocentre
ratios, respectively. ‘Error bands’ indicate the dispersion expected
from the scatter in the mass–concentration relation (±0.1 dex in
concentration).

In this illustration, most subhaloes accreted at z ∼ 0.2 (the top
left-hand panel of Fig. 14) have had time to complete at most

one pericentric passage, and have therefore remained more or less
unchanged since accretion. In contrast, subhaloes with infall mass
Mmx = 1010 M� accreted at z = 1 have been stripped down to less
than ∼ 109 M�, and those accreted at z = 2 to less than 108 M�.

The evolution of massive (Mmx � 108 M�) subhaloes that reach
the inner regions of the Milky Way is of particular interest, as
they could potentially host dwarf satellite galaxies that survive
until the present. Fig 16 shows the evolution of subhalo mass
Mmx as a function of time for subhaloes with initial masses of
Mmx0 = 108 M� and Mmx0 = 1010 M�, for fixed pericentre distances
of rperi = 10 kpc and 20 kpc. Most mass is lost within the first few
Gyrs after accretion but even after 10 Gyr of evolution subhaloes as
massive as 1010 M� should leave behind remnants with 107–108 M�
at pericentric distances of order 20 kpc. These would be very poorly
resolved – and maybe even missing – even in the best presently
available cosmological hydrodynamical simulations, where the dark
matter particle mass is typically of order 104 ∼ 105 M� (Oñorbe
et al. 2015; Schaye et al. 2015; Sawala et al. 2016). This may
have significant impact on �CDM predictions about the survival
of faint satellites in the inner regions of the Milky Way, an issue
that has attracted much interest in recent work, using cosmological
simulations (e.g. Garrison-Kimmel et al. 2017; Richings et al. 2020),
controlled simulations (e.g. Errani et al. 2017; Sanders et al. 2018;
van den Bosch & Ogiya 2018; Errani & Peñarrubia 2020) and semi-
analytical approaches (e.g. Stref et al. 2019).

4.2 Comparison with previous work

The tidal evolution of subhaloes in cosmological and controlled
simulations has been studied extensively in previous work, and this
section aims to compare the predictions of the rate of tidal stripping
of the model of Section 3.6 to previous work.

4.2.1 Comparison with orbit-averaged mass-loss rates

The mass-loss rates of subhaloes in cosmological simulations have
been studied by van den Bosch, Tormen & Giocoli (2005), who
marginalize over all subhalo orbits, and propose a parametrization
for the orbit-averaged mass-loss rate of the form (here reproduced
using the notation of Jiang & van den Bosch 2016a):

dm/dt = −A m (m/M)ζ /τdyn , (18)

where m is a measure of the subhalo mass, M is a measure of the host
halo mass, τ dyn is a measure for the crossing time of the host halo,
and A and ζ are dimensionless constants.

For the parameters ζ and A, Jiang & van den Bosch (2016a)
measure values of ζ ∼ 0.07 and A ∼ 1.3, consistent with the
earlier findings of Giocoli, Tormen & van den Bosch (2008). Hence,
the average mass-loss as predicted by equation (18) is close to
exponential, and m → 0 for t → ∞. Using the tidal tracks of
Section 3.4, this also implies Tmx → 0 for t → ∞.

While a direct comparison of the orbit-averaged mass-loss rates
of equation (18) against the orbit-specific rates of the model of
Section 3.6.2 is not straightforward, it is worth noting that the
near exponential mass-loss described by equation (18) stands in
stark contrast to the late-time behaviour described by the model of
equation (12), which predicts surviving remnants of non-zero mass,
characterized by a crossing time of ∼Tperi/4, set by the crossing time
of the host halo at pericentre. With the sole purpose of showing the
qualitative behaviour, Fig. 16 shows as a black dotted curve the mass-
loss rate as predicted from integrating equation (18), setting τ dyn =
Tperi.
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Figure 15. Circular velocity profile Vc (left-hand panel) and enclosed mass
M(< r) (right-hand panel) of a tidal remnant. Data from an N-body model
(‘simulation’ – the top-right snapshot in Fig. 2) is shown using filled circles
where unaffected by resolution, and using open circles where potentially
affected by resolution. The analytical solution for a truncated NFW cusp
(see equation 8) reproducing the measured {rmx, Vmx} is shown using black
dashed curves (‘model’). In the left-hand panel, the characteristic crossing
time of Tperi/4 is shown using a solid black line, while the crossing times for
two different simple definitions of tidal radii (rt1, rt2) are shown using red and
orange dashed lines. The same tidal radii are also marked in the right-hand
panel, showing that beyond the tidal radius lies only a small fraction of the
total bound mass Mtot.

4.2.2 Comparison with tidal radius approaches

Various authors have modelled the rate of mass-loss to be propor-
tional to the mass outside of some effective tidal radius rt (Taylor &
Babul 2001; Zentner & Bullock 2003; van den Bosch et al. 2005;
Peñarrubia & Benson 2005; Diemand, Kuhlen & Madau 2007b, and
more recently van den Bosch et al. 2018), i.e.

dm/dt = −B m(> rt)/Torb (19)

where B is a dimensionless constant. In this context, different recipes
for the computation of the tidal radius have been proposed in the
literature (e.g. Tormen, Diaferio & Syer 1998; Klypin et al. 1999;
Peñarrubia & Benson 2005; Read et al. 2006) and are reviewed in
van den Bosch et al. (2018). To first order, these tidal radii rt are a
measure for the region within the subhalo where the enclosed mean
density is larger by some factor C than the enclosed mean density of
the host halo at pericentre, e.g.

ρ̄sub(< rt ) = C ρ̄peri . (20)

In the following, we use C = 3 and C = 1 to define the two tidal
radii rt1 and rt2, shown in Fig. 15. Using this simple definition
of tidal radius, as well as the mass-loss-dependent parametrization
of the density profile discussed in Section 3.5, the mass evolution
obtained from integrating equation (19) is plotted in Fig. 16 using
blue-dashed curves. A value of B = 6 approximately matches the
initial mass evolution as computed from the model discussed in
Section 3.6, and is consistent with the value measured by Diemand
et al. (2007b). While the rate of mass-loss decelerates as the remnant
bound mass decreases, mass-loss as described by the differential
equation equation (19) in combination with the density profile
evolution of equation (7) still eventually leads to fully disrupted
tidal remnants, m → 0 for t → ∞.

The reason for this asymptotic behaviour is easily understood
by noting that for mass-loss to stall (dm/dt → 0), the differential
equation equation (19) requires there to be no mass left outside
the tidal radius, which is not met by the simple definitions of tidal
radius of equation (20) in combination with the density profile
parametrization of Section 3.5. The mass-loss model of equation (19)
hence requires careful tailoring of the definition of tidal radius to the

Figure 16. Evolution of bound mass on orbits of different eccentricity
(equations 12 and 15). Panels show subhaloes with initial masses of 108 M�
(left column) and 1010 M� (right column) on orbits with pericentric distances
of 10 kpc (top row) and 20 kpc (bottom row). The shaded bands correspond
to ±0.1 dex scatter in the initial (z = 0) mass–concentration relation.
Subhaloes on near-circular orbits with orbital radii of ∼ 10 kpc are stripped
by several decades in mass over 10 Gyrs. Black dotted curves (‘orbit avg.’)
show the orbit-averaged mass-evolution fitted to cosmological simulations
(equation 18, using parameters from Jiang & van den Bosch 2016a), and blue
dashed curves (‘tidal rt1’ and ‘tidal rt2’) show the mass-evolution on circular
orbits as computed from simple tidal radius arguments (equation 19), using
the two tidal radii shown in Fig. 15.

system in question, as discussed e.g. in van den Bosch et al. (2018).
Specifically, to ensure a deceleration of tidal stripping that gives rise
to a well-defined tidal remnant, a tidal radius definition is required
which ensures that the mass beyond the tidal radius approaches zero
sufficiently fast.

4.3 Limitations of the model

Several aspects of the parametrization for tidal stripping discussed in
this work adopt simplifications that should be considered carefully
when applying the model to physical systems:

(i) The rate of mass-loss and the properties of the asymptotic
remnant are set by the crossing time Tperi of the host halo at pericentre.
This is only well defined if one assumes Tperi to be constant. This
assumption is not valid for massive subhaloes, as dynamical friction
would cause their orbits to decay, reducing their pericentric distances.

(ii) Our models describe the rapid tidal evolution towards a rem-
nant with a well-defined characteristic crossing time. Tidal remnants
in our models are resolved with a small number of particles, N(<
rmx) � 3000, and have characteristic radii that are only a few times
the grid size of our finest spatial grid, rmx � 8 �x. These numerical
limitations complicate the interpretation of the long-term evolution
of our models, and prevent us from distinguishing clearly between an
asymptotic time-scale given by Tasy = 0.22 Tperi (suggested by fits of
equation (10) to the combined results of all of our runs) and a slower
‘secular’ evolution beyond this time-scale. Assessing the long-term
evolution of the tidal remnants using direct numerical simulations
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requires better numerical resolution than the one adopted in our
work.

(iii) Tidal stripping itself may cause changes to a subhalo’s orbit
because of asymmetries in the leading and trailing tidal stream and
because of the self-gravity of the stream itself (see e.g. White 1983;
Hernquist & Weinberg 1989, or more recently Fujii et al. 2006;
Fellhauer & Lin 2007; Miller et al. 2020).

(iv) Our simulations are based on a static host halo, without
response to the gravity of the subhalo. While this setup seems well
motivated for systems where the host mass enclosed within rperi is
substantially larger than the mass of the subhalo, taking into account
the host halo response will be important for mergers with larger
host-to-subhalo mass ratios.

(v) The host halo model used in this study is a singular isothermal
sphere, with a circular velocity chosen to approximate the Milky
Way potential (equation 1). Tidal evolution in host haloes with
substantially different radial dependence on the tidal field may affect
the numerical values proposed for the crossing time of the asymptotic
remnant Tasy, the asymptotic decay rate τ asy, and the eccentricity ‘
delay’ factor fecc.

(vi) All subhalo models considered were assumed to be colli-
sionless, spherical, non-rotating, with an initially isotropic velocity
dispersion.

(vii) Our results apply to the accretion of single subhaloes on to
a smooth tidal field, and do not consider group infall: recent studies
indicate that tidal stripping by clumpy tidal fields may increase the
rates of tidal stripping (Stref et al. 2019; Delos 2019).

5 SU M M A RY A N D C O N C L U S I O N S

We have used N-body simulations of the tidal evolution of NFW
haloes in the potential of a much more massive host to investigate
the time evolution of tidal mass-loss, its dependence on orbital
eccentricity and on the number of completed orbits, as well as the
structural properties of the bound remnants. Our study also examines
the effects of numerical limitations on the bound remnant structure,
and the possibility that NFW subhaloes almost always leave behind
a self-bound remnant.

Some of these issues have been addressed by earlier work, but our
conclusions clarify and extend some of the earlier conclusions, and
shed light on the long-term survival of NFW remnants in the regime
of heavy tidal mass-loss. Our main conclusions may be summarized
as follows.

The effect of tides on NFW subhaloes leads to a self-bound
remnant whose asymptotic properties are set solely by initial subhalo
structure and the properties of the host halo at the orbital pericentre.
We identify two regimes, depending on the ratio between the initial
characteristic crossing time (density) of the subhalo, Tmx0, and the
circular orbit time-scale (density) of the host at pericentre, Tperi.
Subhaloes with Tmx0/Tperi < 2/3 lose modest amounts of mass and
approach asymptotically a remnant with a characteristic density set
largely by its initial value.

On the other hand, subhaloes with Tmx0/Tperi > 2/3 lose large
fractions of their initial mass and approach asymptotically a remnant
whose characteristic time-scale is set solely by the host density at
pericentre; i.e. Tasy ≈ Tperi/4 (Fig. 10). This result suggests that NFW
subhaloes are almost never fully disrupted, a result that may have
important consequences on the long-term evolution and survival of
luminous Milky Way satellites, as well as other implications for the
studies of the distribution of dark matter on subgalactic scales.

As in earlier work, we find that the evolution of the characteristic
parameters of the remnant (e.g. rmx and Vmx) depends solely on the

total amount of mass lost, and that these parameters evolve along
well-defined ‘tidal tracks’, independent of orbital eccentricity or
of the number of orbits required to strip the system (Fig. 6). Our
improved numerical resolution allows us to extend and revise the
tidal tracks proposed in earlier studies.

Numerical limitations lead poorly resolved subhaloes to deviate
systematically from this track, making them more susceptible to
tidal mass-loss and possible full disruption. Such deviations may
be used to identify remnants whose structure is not well converged
numerically. Finite spatial resolution (e.g. grid size or ‘softening’;
�x), as well as time resolution (e.g. minimum time-step) impose
obvious limits on the size or characteristic time-scale of subhaloes
that may be resolved. For example, systems where rmx/�x � 8 deviate
from convergence and are prone to artificial disruption, regardless of
the number of particles used.

In otherwise well-resolved systems, the number of particles used
to resolve the subhalo places the ultimate constraint: all subhaloes
in our study start to deviate from convergence once they have been
stripped to fewer than about 3000 particles inside rmx (Fig. A1). This
sets a high bar for the study of substructure in cosmological N-body
simulations.

The shape of the mass profile of a tidally stripped subhalo deviates
from the initial NFW shape, and is well described by an exponentially
truncated NFW density profile (equation 7). The truncation ‘radius’
is set solely by the mass fraction that remains bound to the remnant.
All heavily stripped NFW subhaloes thus converge asymptotically to
the same mass profile shape, an exponentially truncated NFW cusp
(Fig. 7).

The time evolution of the structural parameters of a subhalo may
be well approximated by a simple function (equation 12) with a
few scaling parameters that are well constrained by our simulation
results. The main effect of orbital eccentricity is to ‘delay’ the
evolution relative to subhaloes on circular orbits at equal pericentre.
The delay factor, fecc, is also well constrained by our simulation
results (equation 4).

Our results thus provide a full description of the tidal evolution
of NFW subhaloes, with the caveat that these results apply to the
regime where the orbits have well-defined pericentric distances (i.e.
the potential is approximately spherical and orbits are unaffected
by tidal loss or dynamical friction) and the host potential does not
evolve substantially with time. Although these caveats imply that our
results cannot be used to make direct predictions for the properties of
substructure in a �CDM halo, they can be used to interpret the results
of cosmological simulations, and to identify their deficiencies and/or
limitations. Our results may also be combined with cosmological
simulations to place constraints on the abundance and structure of
surviving subhaloes and on their relation with ultra-faint satellites
and other dark matter-bound structures in the inner regions of the
Galaxy. We plan to apply the lessons learned here to a number of
pressing questions concerning substructure in CDM haloes in future
contributions.
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Peñarrubia J., Navarro J. F., McConnachie A. W., 2008, ApJ, 673, 226
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A P P E N D I X : N U M E R I C A L C O N V E R G E N C E

Numerical resolution imposes strong limits on the ability of simu-
lations to follow the tidal evolution of subhaloes. Most critical are
the finite time-stepping, spatial resolution, and number of particles
used in a simulation. We explore in this Appendix the impact of such
limitations and the constraints they place on our results.

As stated in Section 2.4, our simulations evolve subhaloes with a
single, constant time-step set to �t = 0.025 × min (Tmx0, Tperi). This
time-step is shown as a dashed diagonal line in Fig. 3 (×10 to fit in the
figure) and is clearly much shorter than the subhalo crossing time at
a radius equal to the best grid spatial resolution, ∼rmx0/128. Fixing
the time-step this way reduces the dimensionality of the problem,
leaving only the spatial (grid) resolution and the number of particles
for us to consider.

To do so, we perform two series of simulations: one where we fix
the number of subhalo particles to N = 107, the maximum in our runs,
and vary the grid size systematically from �x ≈ rmx0/128 to rmx0/32;
and another where we fix �x to rmx0/128 and vary the number of
particles from 107 to 105. We choose for these tests subhaloes on 1:
5 eccentric orbits (rperi = 40 kpc) with initial crossing times 0.5 <

Tmx0/Tperi < 2.
The ‘tidal tracks’ that result are shown in Fig. A1. Each symbol

corresponds to parameters measured at a successive apocentric pas-
sage, normalized to the initial values. The left-hand panel shows the
effect of varying the grid size. As the spatial resolution deteriorates,
subhaloes deviate systematically from the converged tidal track
(indicated by the dashed black curve) towards longer crossing times
and lower characteristic densities. The arrows indicate the radius
corresponding to rmx = 8�x, which, in each case, is a good diagnostic
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of the minimum ‘size’ a subhalo must have for its characteristic
parameters to be properly resolved. More precisely, subhaloes with
rmx < 8�x have characteristic time-scales, Tmx, that deviate more
than 10 per cent from the time-scale expected from the tidal
track.

The right-hand panel of Fig. A1 is analogous to the one on the
left, but for the series of runs where the number of particles is varied.
The arrows in this case indicate the location of subhaloes where
the number of particles inside rmx, Nmx = Mmx/mp, drops below
∼3000 (here mp is the mass per particle). This simple criterion again
identifies the minimum number of particles needed to resolve the
characteristic parameters of a tidally affected NFW subhalo, in the
sense than tidal remnants with Nmx < 3000 typically have crossing
times that deviate by more than 10 per cent from the converged tidal
track. The analysis throughout the paper is based on results obtained
for subhaloes that satisfy simultaneously both criteria (i.e. rmx > 8�x
and Nmx > 3000).

For our simulations with N = 107 and �x ≈ rmx0/128, resolution
is mainly limited by the grid size, and the condition rmx > 8�x
implies that numerical limitations begin to dominate once Mmx has
been reduced to about 0.3 per cent of its initial value. This sets the
limits of the most highly stripped system effectively probed by our
simulations: Mmx/Mmx0 ≈ 1/300; or Vmx/Vmx0 ≈ 1/5; or rmx/rmx0 ≈
1/16; or Tmx/Tmx0 ≈ 1/3.

Figure A1. Left: Evolution of rmx and Vmx for 107-particle haloes run
with three different grid sizes for the highest resolution mesh. Note that
systems start to deviate from the tidal track (shown with a dashed black
curve, equation 5) when the characteristic radius of the remnant approaches
rmx ≈ 8 �x. Right: same as left, but for a series of runs with fixed time and
spatial resolution, but varying the number of particles of the initial halo. Note
that remnants artificially deviate systematically from the tidal track when the
remnant is resolved with fewer than ∼3000 particles within rmx.
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