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We identify a parametrically light dilaton by studying the perturbations of metastable vacua along a
branch of regular supergravity backgrounds that are dual to four-dimensional confining field theories. The
branch includes also stable and unstable solutions. The former encompass, as a special case, the geometry
proposed by Witten as a holographic model of confinement. The latter approach a supersymmetric solution,
by enhancing a condensate in the dual field theory. A phase transition separates the space of stable
backgrounds from the metastable ones. In proximity of the phase transition, one of the lightest scalar states
inherits some of the properties of the dilaton, despite not being particularly light.
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I. INTRODUCTION

The Higgs particle [1,2] might originate as a
composite dilaton in a new strongly coupled theory.
The literature on the effective field theory description of
the dilaton has an ancient origin [3,4]. It has been
invoked in the context of dynamical electroweak sym-
metry breaking [5-7], of extensions of the standard
model [8-19], and in the interpretation of lattice
data [20-30]. With the advent of gauge-gravity dualities
[31-34], holographic models giving rise to a dilatonic
state have been identified and studied both in the
context of bottom-up [35-49] and top-down construc-
tions derived from supergravity [50-54].

We pursue an alternative approach to the study of the
dilaton, along the program announced in Ref. [55], which is
inspired by Refs. [56-59], but is implemented within the
rigorous framework of supergravity. We generalize the
notion of proximity to the Breitenlohner-Freedman unitar-
ity bound [60]—central to the arguments in Ref. [56]—in
order to explore non-AdS (anti—de Sitter) backgrounds dual
to confining theories, in regions of parameter space near
tachyonic instabilities. We aim at ascertaining whether the
spectrum of bound states includes a light dilaton.

In this paper we consider the toroidal compactifiction
of the maximal supergravity theory in D = 7 dimensions
[61-65], that admits as a background solution the holo-
graphic description of confinement proposed by Witten
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[66]—also used for phenomenological purposes by Sakai
and Sugimoto [67,68]. We compare to the case of Romans
theory [69]—see Refs. [55,70,71].

We focus on three branches of solutions: (i) regular
solutions that include the Witten model and are interpreted
as duals of four-dimensional confining theories, (ii) a
class of supersymmetric solutions, and (iii) a branch of
nonsupersymmetric solutions, that (locally) preserve six-
dimensional Poincaré invariance but are badly singular—
they do not even meet Gubser’s criteria [72]. We compute
the spectrum of fluctuations of the relevant scalar and
spin-2 tensor states, using the gauge-invariant formalism
of Refs. [73-77], hence extending the study of the spectra
performed in Refs. [70,78]. We compare to the result of
applying the probe approximation [79] in order to ascertain
whether any of the scalar states have significant overlap with
the trace of the stress-energy tensor and can hence be
identified with an approximate dilaton.

In a region of parameter space the spectrum contains a
parametrically light dilaton. We study the energetics along
the three branches of solutions, by computing the free
energy using holographic renormalization [80-82], and
employing a simple scale-setting procedure to compare
different backgrounds [83]. We present firm evidence of the
existence of a phase transition in the gravity theory (see
also Ref. [84]). The parametrically light dilaton emerges
along the portion of the regular branch of solutions which
contains metastable solutions, the lifetime of which is not
known (but see Ref. [85]).

II. THE GRAVITY MODEL

We denote with hatted symbols quantities characterizing
the theory in D = 7 dimensions. The action, truncated to

Published by the American Physical Society
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FIG. 1. The potential V;(¢) of the theory. The blue disk is the
¢yy critical point, while the red triangle is the ¢ one.

retain the scalar ¢ coupled to gravity, is the following [79]
(see also Refs. [62,63,70]):

R N
S1= [ Oy - P ogpons-vi|. ()
where the potential (see Fig. 1) is
V,; = ée_%‘ﬁ e A, (2)

This potential admits two critical points. The one with
¢ = ¢yy = 0 will play a central role in this paper, as it
corresponds to a UV fixed point in the dual field theory. It
yields V7(¢Uv) = —2. Another critical point of V; has

¢IR = log( ) for which V7 (¢IR) = —%.

Followmg the notation in Refs. [70,79], we reduce to
D =5 dimensions by adopting the following ansatz:

dS% — e—2;(ds§ + e3;(—2a)dl72 + €3X+2mdé’2, (3)
where the metric ds% takes the domain wall form
ds? = 62A<’)dx%.3 +dr?, (4)

and the background profiles ¢(r), ¥(r), w(r), and A(r)
depend only on the radial coordinate r. The angles 0 < 7,
{ < 2n parametrize a torus. We apply the change of
variables dp = e™#dr. The domain-wall (DW) ansatz in
D = 7 dimensions is recovered by imposing the constraints
w=0and A=A- ;( A 5 3y, and hence the AdS,
solution has 9,4 = 1, 8,,;( 1, and 9,A =2. The bulk
action in D = 5 dlmensmns is the following:

MN

= /dsx\/—QS [%—QTG“;,GM(D“E)NQ” % s (5)

where V = e=%V;, ®¢ = {¢, w, x}, and the sigma-model
metric is G, = diag(}.1,%2). We verified that

S; = /dndé[55+/d5xﬁM G\/——gngNaN;()]. (6)

III. CLASSES OF SOLUTIONS

All the solutions of interest approach ¢ = ¢yy = 0 at
large p. We write them as a power series of the small
coordinate z = ¢/2, as follows

1845% log(z)> 4

H) = + (¢4— -

162 63743 9
+ (P Rop(a) - R
o(z) = wy +wez2® + -+, (8)
2 274 675
x(2) ZZU—glog(Z) ¢ +%(L)(6 150w

+ 72543 log(z) —6V/543 —2o¢2¢4> B4 (9)

5 135
~y=Stog(a) - 1 (135

A
(2) 3 270 30w

+144¢5¢3log<z>—1zﬁ¢;—4o¢2¢4) B,
(10)

They are characterized by seven integration constants:
G2y s, 0y, we, ¥us X6, and Ay. The DW solutions have
wy =wg =y =0and yy = %AU, leaving Ay, ¢, and ¢y
as independent nontrivial free parameters. What we will
call confining solutions have y, = 0.

We find it convenient to define a scale A as follows [83]:

A_l = /oo dpe)((/ﬁ_A(/))’

Po

(11)

with p, as the end of space. While other choices might be
admissible, this has the advantage of being applicable to all
the solutions of interest.

A. SUSY solutions

The supersymmetric (SUSY) DW solutions satisfy the
following first-order differential equations:

2
0,A= —§W1, 0, =20,W,. (12)
The superpotential W, = —4 e_%d’ - e%‘/) solves the defin-

ing equation Vp =1G*(9,W)? —B=IW? for D =1.
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30
After performing the change of variables 0, = e »50,, we
find the exact solutions

4
P(r) = 7§arctanh(

with the warp factor given by

2(r— Tn)), (13)

1

A( ) Ao + 10g[COSh(T - T())Slnh4(T - To)] (14)
where A, and 7, are real integration constants.

The IR expansion of these solutions in terms of the radial

coordinate p and the new constants p, and A; = Ay +

log(2) can be written explicitly in the following form

2(p — 16(p=p,)°
and
8 _ 5
Ap) = A +loglp—p) + 2P (1

Their holographic interpretation involves an operator of
dimension A = 4 developing a vacuum expectation value
in the dual field theory.

The conjugate superpotential entering the calculation of
the free energy is known as a perturbative expansion:

5 2 3 3 2

where k is scheme dependent.

B. Singular DW solutions

A class of singular DW solutions is characterized by the
harmless A;, the end of space p,, and the nontrivial ¢5. As
anticipated, these solutions are badly singular: their Ricci
scalar tensor R, diverges, and the potential is not bounded
from above, violating the requirement from Ref. [72]. The
IR expansion of solutions of this class reads as follows:

P(p) :ﬁlogg(p—po) Fs(p—p,)
135<37‘f¢5 242°/4/5) (p=p, )4+, (18)

log(p — 4
Alp)=A;+ Og(€6 o) +3\¢;5§(/)—p0)

1 3
- /4 2\ (5 \3/4
+27OO(192>< 10°/% =2155¢32) (p—p, )" +

5/8

(19)

C. Confining solutions

The regular solutions of this class obey the constraint
A= % x + o. They depend on two harmless constants y;
and w;, besides p, and ¢;. The IR expansion of these
solutions reads as follows:

0y

— v 2 s 36\/_(/1, +2e2\/—(/), +1
b(p) =1 — 2f(p Po)ie V3(— )
o (20)
log(p=p,
mm:@—iiy—l
1
i po)2e A (8eV3H 182V 1) 1 ...
(21)
log(p —p,
x(p) =x1+%
1
- H 2eV3b1 _ 5602501
o0 po)te V5 (32e 56¢
+22463V50 4 324050 —7) 4 (22)

We restrict attention to solutions flowing from the UV
critical point, which requires ¢; > ¢r. The invariants R,

R R7™ s
constraint w; =

and R,” o Ra PMN 2 are finite. We impose the

% 1 in order to avoid a conical singularity.

IV. GLUEBALL MASSES

We compute the spectrum of fluctuations of the five-
dimensional theory, by employing the gauge-invariant
formalism developed in Refs. [73-77]. We introduce the
IR regulator p; with p, < p;, and the UV regulator p,. The
physical results are recovered in the limits p; — p, and
pr — +oo (see Refs. [70,71,77]). The scalar fluctuations
are written as the gauge invariant combinations

9,9(p)

a’(M, p) 60,A(p)

= (M. p) — h(M.p).  (23)

where M is the mass in the dual theory, ¢ are fluctuations
of the scalars ®@“ and & of the trace of the four-dimensional
portion of the metric. They obey the following linearized
equations and boundary conditions:

=[e*0,(e7%0,) +

(40,A)0, + e* A M?|a® — ¥y .a®,

(24)
30,A
0=e%9,0°0,0'G4,0,a" + [T/ e M5,
AV VN1 ,
3CD <36A8®Gdb+8d)b>]a /}i, (25)

046009-3



ELANDER, PIAI, and ROUGHLEY

PHYS. REV. D 103, 046009 (2021)

FIG. 2. The spectra of scalar masses M as a function of the
parameter ¢; along the confining branch of solutions, normalized
in units of the lightest tensor mass, and using regulators p; =
10~* and p, = 12. The (red) squares represent the spin-2 tensor
modes, the (blue) disks are the scalar, gauge invariant fluctuations
originating from ¢, y, and w. The (black) triangles do not
represent an additional set of states: they denote the same scalars,
but computed in the probe approximation—neglecting the
fluctuation of the background metric. The shading denotes the
stable (leftmost white), metastable (gray), and unstable (right-
most white) backgrounds. We verified that our choices for the two
regulators were sufficiently close to the physical limits (p; — p,,
pr — o) to avoid discernible cutoff effects.

where in all these expressions the quantities A, ®“, and V
are evaluated on the background, and

oV
a — ab
X = c|:G 6d)b]
4 LoV LAY
+3a,,A [af’(b g 0" g O P Cae
16V
9 ®0,D"G,,. 2
+9(8pA)28" 0,9°G), (26)

The gauge invariant spin-2 tensor fluctuations obey the
linearized equation

0=1[02+ (40,A — 0,x)0, + e 2AM*]e*,, (27)

and Neumann boundary conditions 0,e#, | = 0.

The probe approximation for the scalars is defined by
ignoring the term proportional to / in Eq. (24). According
to the dictionary of gauge-gravity dualities, & is the bulk
field associated with the trace of the stress-energy tensor,
which is the field theory operator associated with dilatation,
and sourcing the dilaton. Hence, this approximation holds
for scalar bound states that decouple from the dilatation
operator, and cannot be interpreted as a dilaton. The
equations for the scalar fluctuations greatly simplify, as
only the first term in Eq. (26) survives, and the boundary
conditions reduce to Dirichlet. Note that the probe

approximation is used solely as a diagnostic tool to identify
scalar states which mix nontrivially with the dilaton.

In Fig. 2, we show the spectra of tensors and scalars,
compared to the probe approximation, normalized to the
lightest spin-2 fluctuation. For ¢; < 0 the scalars agree
with Ref. [70]. The new results for ¢p; > 0 show that one of
the scalars becomes parametrically light, and eventually
tachyonic, for positive ¢;. The mass vanishes exactly at
some finite value of ¢;, for which the background geometry
is still describing the dual of a confining field theory, in the
presence of nonvanishing condensates. When this state is
light, or tachyonic, the probe approximation does not
capture it correctly, indicating that the state has a nontrivial
component along A, and hence is sourced by the trace
of the stress-energy tensor, as expected by a dilaton. We
also notice that several of the heavy scalar states are not
well captured by the probe approximation, showing that
mixing effects with the dilaton are not restricted to the
lightest states.

V. FREE ENERGY

To compute the free energy, we write explicitly the
boundary terms of the theory in D = 7 dimensions:

S=8+Y (=) / d4xd§dn\/—7§{§+ﬂ,~]p ()

i=1,2 =Pi

where § denotes the determinant of the pullback of the
induced metric, K is the Gibbons-Hawking-York term and
A; are localized boundary potentials.

The potential terms are chosen according to the same
prescription as in Ref. [55]: in the UV we replace 4, = W,,
which allows one to cancel all the divergences and perform
the program of holographic renormalization [80—82], while
in the IR we impose A, = —30,A(p), in such a way that
the variational problem be well defined in the presence of
the IR boundary at p = p;. The free energy density F is
defined in terms of the complete on-shell action to be

/ dxdednF = - lim lim Sy (29)

P20 PP,

By making use of the equations of motion we arrive at

, (30)

—00
P2 P

F = — lim ¥ @ 0,A + Wz)

which is identical to Eq. (5.22) of Ref. [55].

We make use of the UV expansions of the background
solutions of interest. By replacing the UV expansions in
Eqgs. (7)—(10) into the form of the free energy density in
Eq. (30), supplemented by the specific form of the super-
potential VW, in Eq. (17), we arrive at the expression:

046009-4
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2 &2
FIG. 3. The free energy density F = FA~0 as a function of the
deformation parameter (252 = ¢,A72. The black (dashed), gray
(short dashed), and red (solid) lines represent the stable, meta-
stable and unstable portions of the confining branch of solutions.
In blue (long dashed) we show the singular DW solutions. The

SUSY solutions are represented by the gray disk at the origin of
the plot.

eMu—ru

f = — 120 <20¢2¢4 — 135}(6 + 60606

+ 12543 (—2+%log<¢§>)). (31)

The divergence of the contribution to the free energy
proportional to ¢3 is canceled by W,. This implies that, as
for the circle reduction of the Romans supergravity [55],
the concavity theorems do not apply to . This expression
still contains a residual scheme dependence in the loga-
rithmic term. We set « = ¢#/3, and hence our final
expression for the free energy density is

e4AU—)(U
120
+ 18v/5¢3 log(¢3)). (32)

(20¢hy¢p4 — 13576 + 60w

We also remind the reader that ys = O in the background
solutions of interest.

In Fig. 3 we show the free energy of the three classes of
solutions, as a function of the deforming parameter
(}52 = ¢,A"?, and setting A, = 0 = y,. The parameters
¢4 and wg are response functions, themselves determined
nonlinearly, on each branch of solutions, by the choice of
¢,. The SUSY solutions have F = 0.

The figure shows evidence of the existence of a first-
order phase transition. The confining solutions minimize

for negative ¢,;. For ¢; > ¢§, with ¢§ ~0.039 the critical
value (corresponding to ¢S ~0.281), the singular DW
solutions have lower, finite free energy density F, so that
the solutions along the confining branch are at best
metastable when ¢; > ¢Y, and eventually become unstable,
with one of their fluctuations becoming tachyonic when
¢; 2 0.447. Most interestingly, along the metastable
branch, the lightest state becomes parametrically light,
before becoming tachyonic (see Fig. 2). The probe approxi-
mation fails to capture correctly its mass squared when it is
either small or negative. This eigenstate of the system is
hence an admixture containing a significant contribution
from the trace of the fluctuation of the metric—we interpret
this finding as evidence that the state is approximately a
dilaton.

VI. OUTLOOK

We presented evidence of the emergence of a parametri-
cally light dilatonic state along the metastable portion of a
branch of regular backgrounds of the supergravity system
in D = 7 dimensions that yields also the Witten model, the
first known holographic description of a four-dimensional
confining theory [66]. Furthermore, the results of our
analysis confirm, in the rigorous context of top-down
holography, the expectations from Ref. [59] that along
the stable portion of the regular branch a dilatonic state
persists, but it is not parametrically light.

The metastable vacua, and the accompanying parametri-
cally light dilatonic state, are new findings. Comparison
with Ref. [55] indicates that this is a generic feature, which
emerges in a broad class of theories. It would be interesting
to discover examples in which the phase transition is
weaker, and the spectrum along the stable branch exhibits
a light approximate dilaton. It would also be useful to
identify the requirements a supergravity theory must fulfil
for such features to emerge.
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