
Asymmetric metric learning for knowledge transfer

Mateusz Budnik Yannis Avrithis
Inria, IRISA, Univ Rennes, CNRS

Abstract

Knowledge transfer from large teacher models to smaller student models has
recently been studied for metric learning, focusing on fine-grained classification.
In this work, focusing on instance-level image retrieval, we study an asymmetric
testing task, where the database is represented by the teacher and queries by the
student. Inspired by this task, we introduce asymmetric metric learning, a novel
paradigm of using asymmetric representations at training. This acts as a simple
combination of knowledge transfer with the original metric learning task.
We systematically evaluate different teacher and student models, metric learning
and knowledge transfer loss functions on the new asymmetric testing as well as the
standard symmetric testing task, where database and queries are represented by the
same model. We find that plain regression is surprisingly effective compared to
more complex knowledge transfer mechanisms, working best in asymmetric testing.
Interestingly, our asymmetric metric learning approach works best in symmetric
testing, allowing the student to even outperform the teacher.

1 Introduction

Originating in metric learning, loss functions based on pairwise distances or similarities [18, 70, 46,
71, 5] are paramount in representation learning. Their power is most notable in category-level tasks
where classes at inference are different than classes at learning, for instance fine-grained classification
[46, 71], few-shot learning [68, 61] local descriptor learning [19] and instance-level retrieval [16, 52].
There are different ways to use them without supervision [31, 79, 6] and indeed, they form the basis
for modern unsupervised representation learning [44, 21, 8].

Powerful representations come traditionally with powerful network models [22, 28], which are
expensive. The search for resource-efficient architectures has lead to the design of lightweight
networks for mobile devices [26, 57, 83], neural architecture search [48, 41] and model scaling [63].
Training of small networks may be facilitated by knowledge transfer from larger networks [23].
However, both network design and knowledge transfer are commonly performed on classification
tasks, using standard cross-entropy.

Focusing on fine-grained classification and retrieval, several recent methods have extended metric
learning loss functions to allow for knowledge transfer from teacher to student models [9, 38, 81, 47].
However, two questions are in order: (a) since transferring a representation from one model to another
is inherently a continuous task, can’t we just use regression? (b) apart from knowledge transfer, is the
original metric learning task still relevant and what is a simple way to combine the two?

In this work, we focus on the task of instance-level image retrieval [49, 51], which is at the core
of metric learning in the sense of using pairwise distances or similarities. In its most well-known
form [16, 52], the task is supervised, but the supervision is originating from automated data analysis
rather than humans. As such, apart from noisy, supervision is often incomplete, in the sense that
although class labels per example may exist, not all pairs of examples of the same class are labeled.
Hence, one has to work with pairs rather than examples, unlike e.g. face recognition [11].

Preprint. Under review.

ar
X

iv
:2

00
6.

16
33

1v
1 

 [
cs

.C
V

] 
 2

9 
Ju

n 
20

20



Our work is motivated by the scenario where a database (gallery) of images is represented and
indexed according to a large model, while queries are captured from mobile devices, where a smaller
model is the only option. In such scenario, rather than re-indexing the entire database, it is preferable
to adapt different smaller models for different end-user devices. In this case, knowledge transfer from
the large (teacher) to the small (student) model is not just helping, but the student should really learn
to map inputs to the same representation space. We call this task asymmetric testing.

More importantly, even if we consider the standard symmetric testing task, where both queries and
database examples are represented by the same model at inference, we introduce a novel paradigm
of using asymmetric representations at training, as a knowledge transfer mechanism. We call this
paradigm asymmetric metric learning. By representing anchors by the student and positives/negatives
by the teacher, one can apply any metric learning loss function. This achieves both metric learning
and knowledge transfer, without resorting to a linear combination of two loss functions.

In summary, we make the following contributions:

• We study the problem of knowledge transfer from a teacher to a student model for the first
time in pair-based metric learning for instance-level image retrieval.

• In this context, we study the asymmetric testing task, where the database is represented by
the teacher and queries by the student.

• In both symmetric and asymmetric testing, we systematically evaluate different teacher and
student models, metric learning loss functions (subsection 3.3) and knowledge transfer loss
functions (subsection 3.4), serving as a benchmark for future work.

• We introduce the asymmetric metric learning paradigm, an extremely simple mechanism to
combine metric learning with knowledge transfer (subsection 3.2).

2 Related work

Metric learning Historically, metric learning is about unsupervised learning of embeddings ac-
cording to a pairwise distances [64] or similarities [58, 3]. Modern deep metric learning is mostly
supervised, with pair labels specifying a set of positive and negative examples per anchor exam-
ple [77]. Standard loss functions are contrastive [18] and triplet [77, 70], operating on one or two
pairs, respectively. Global loss functions rather operate on an arbitrary number of pairs [46, 71, 5],
similarly to learning to rank [7, 76]. The large number of potential tuples gives rise to mining [20, 74]
and memory [72, 75] mechanisms. At the other extreme, extensions of cross-entropy operate on
single examples [69, 11]. We focus on pair-based functions in this work, due to the nature of the
ground truth [52, 53]. Unsupervised metric learning is gaining momentum [31, 79, 6], but we focus
on the supervised case, given that it requires no human effort [52, 16].

Image retrieval Instance-level image retrieval, either using local features [65] or global pool-
ing [36], has relied on SIFT descriptors [43] for more than a decade. Convolutional networks quickly
outperformed shallow representations, using different pooling mechanisms [55, 67] and fine-tuning
on relevant datasets, initially with cross-entropy on noisy labels from the web [2] and then with
contrastive [52] and triplet [16] loss on labels generated from the visual data alone. While the best
performance comes from large networks [22, 51], we focus on small networks [57, 63] for the first
time. Our asymmetric test scenario is equivalent to that of prior studies [27, 59], but with different
motivation and settings. Feature translation [27] is meant for retrieval system interoperability, so both
networks may be large and none is adapted. The recent backward-compatible training (BCT) [59] is
meant to avoid re-indexing of the database like here, but the new model used for queries is actually
more powerful than the old one used for the database, or trained on more data.

Small networks While large networks [22, 28] excel in performance, they are expensive. One
solution is to compress existing architectures, e.g. by quantization [15] or pruning [42]. Another is to
manually design more efficient networks, e.g. by using bottlenecks [30], separable convolutions [26],
inverted residuals [57] or point-wise group convolutions [83]. MobileNetV2 [57] is such a network
that we use as a student in this work. More recently, neural architecture search [48, 41, 62, 25] is
making this process automatic, although expensive. Alternatively, a small model can first be designed
(or learned) and then its architecture scaled by adding depth [22], width [82], resolution [29] or

2



a compound of the above [63]. We use the latter as another student in this work. We show that
pruning [73] cannot compete designed or learned architectures.

Knowledge transfer Rather than training a small network directly, it is easier to optimize the same
small network (student) to mimic a larger one (teacher), essentially transferring knowledge from the
teacher to the student. In classification, this can be done e.g. by regression of the logits [1] or by
cross-entropy on soft targets, known as knowledge distillation [23]. BCT [59] fixes the classifier (last
layer) of the student to that of the teacher, similarly to [24]. Such ideas do not apply in this work, since
there is no parametric classifier. Metric learning is mostly about pairs rather than individual examples,
and indeed recent knowledge transfer methods are based on pairwise distances or similarities. This
includes e.g. learning to rank [9] and regression on quantities involving one or more pairs like
distances [81, 47], log-ratio of distances [38], or angles [47]. The most general form is relational
knowledge distillation (RKD) [47]. Direct regression on features is either not considered or shown
inferior [81], but we show it is much more effective than previously thought. We also show that the
original metric learning task is still beneficial when training the student and we introduce a very
simple mechanism to combine with knowledge transfer.

Asymmetry Asymmetric distances or similarities are common in approximate nearest neighbor
search, where queries may be quantized differently than the database, or not at all [12, 17, 34, 32, 45,
10]. In image retrieval, there are efforts to reduce the asymmetry of k-nearest neighbor relations [35],
or use asymmetry to mitigate the effect of quantization [33], or handle partial similarity [84] or
alignment [66]. In classification, it is common to use asymmetric image-to-class distances [4] or
region-to-image matching [37]. In metric learning, asymmetry has been used in sample weight-
ing [40], different mappings per view [80], or hard example mining [78]. Asymmetric similarities
are used between cross-modal embeddings [14, 39, 13], but not for knowledge transfer. They are
also used over the same modality to adjust embeddings to a memory bank [21] or to treat a set of
examples as a whole [68], but again not for knowledge transfer.

3 Asymmetric metric learning

3.1 Preliminaries

Let X ⊂ X be a training set, where X is an input space. Two sources of supervision are considered.
The first is a set of labels: a subset of all pairs of examples in X is labeled as positive or negative
and the remaining are unlabeled. Formally, for each anchor a ∈ X , a set P (a) ⊂ X of positive
and a set N(a) ⊂ X of negative examples are given. The second is a teacher model g : X → Rd,
mapping input examples to a feature (embedding) space of dimensionality d. The objective is to
learn the parameters θ of a student model fθ : X → Rd, such that anchors are closer to positives
than negatives, the teacher and student agree in some sense, or both. When labels are not used, an
additional set of examples U(a) may be used for each anchor a, e.g. a neighborhood of a space or
the entire set X \ {a}. The teacher is assumed to have been trained on X using labels only.

Training can be formulated as minimizing the error function

J(X; θ) :=
∑
a∈X

`(a; θ) (1)

with respect to parameters θ over X . There is one loss term per anchor a ∈ X , which however may
depend on any other example in X; hence, J is not additive in X . The loss function ` may depend
on the labels or the teacher only, discussed respectively in subsection 3.3 and subsection 3.4; it may
depend on the teacher indirectly via a similarity function, as discussed in subsection 3.2.

At inference, a test set Z ⊂ X and a set of queries Q ⊂ X are given, both disjoint from X . For each
query q ∈ Q, a set P (q) ⊂ Z of positive examples is given. Symmetric testing is the task of ranking
positive examples P (q) before all others in Z by descending similarity to q in the student space, for
each query q ∈ Q. Asymmetric testing is the same, except that similarities are between queries in the
student space and test examples in the teacher space.

3



, , : anchor, positive, negative (student). , , : anchor, positive, negative (teacher).
fθ: student (with parameters θ). g: teacher (fixed). , : distance measurements.

, : attraction, repulsion (mutual). , : attraction, repulsion (unilateral).

fθ(a)

fθ(p)

fθ(n)

g(a)

g(p)

g(n)

fθ(a)

fθ(p)

fθ(n)

g(a)

g(p)

g(n)

fθ(a)

fθ(p)

fθ(n)

g(a)

g(p)

g(n)

fθ(a)

fθ(p)

fθ(n)

g(a)

g(p)

g(n)

(a) symmetric (b) regression (c) relational (d) asymmetric (this work)

Figure 1: Metric learning and knowledge transfer. (a) Symmetric: Positive (negative) pairs of
examples mutually attracted (repulsed) in student space; teacher not used.(b) Regression (absolute
ML+KD [81]): Examples in student space attracted to corresponding examples in teacher space; labels
not used. (c) Relational (relative ML+KD [81] or distance-wise RKD [47]): Distances encouraged to
be the same in both spaces; labels not used. (d) Asymmetric (this work): Anchors in student space
attracted to (repulsed from) positives (negatives) in teacher space; both labels and teacher used.

3.2 Asymmetric similarity

We use cosine similarity in this work: sim(v,v′) := 〈v,v′〉 /(‖v‖ ‖v′‖) for v,v′ ∈ Rd. The
symmetric similarity ssymθ (a, x) between an anchor a ∈ X and a positive or negative example
x ∈ P (a) ∪N(a) is obtained by representing both in the feature space of the student:

ssymθ (a, x) := sim(fθ(a), fθ(x)). (2)
This is the standard setting in related work in metric learning.

By contrast, we introduce the asymmetric similarity sasymθ (a, x), where the anchor a is represented
by the student, while positive and negative examples x are represented by the teacher:

sasymθ (a, x) := sim(fθ(a), g(x)). (3)
In this setting, g(x) is fixed for all x ∈ X , because the teacher is fixed.

Figure 1 illustrates the idea. When used with loss functions discussed in subsection 3.3, (3) (Fig-
ure 1(d)) uses both the labels and the teacher, essentially combining metric learning and knowledge
transfer. With the same loss functions, (2) (Figure 1(a)) uses the labels only, focusing on metric
learning only. Instead, as discussed in subsection 3.4, relational distillation [81, 47] uses the teacher
only, focusing on knowledge transfer only (Figure 1(b,c)). In practice, these other solutions require a
linear combination of two error functions for metric learning and knowledge transfer.

3.3 Loss functions using labels

When using the labels, we have access to positive and negative examples P (a) and N(a) per anchor
a. The teacher g may be used in addition to labels or not by using the asymmetric (3) or symmetric (2)
similarity, respectively. We write either as sθ(a, x) below.

Contrastive The contrastive loss [18] encourages independently positive examples p to be close to
the anchor a and negative examples n farther from a by margin m in the student space:

`contr(a; θ) := −
∑

p∈P (a)

sθ(a, p) +
∑

n∈N(a)

[sθ(a, n)−m]+. (4)

Triplet The triplet loss [70] encourages positive examples p to be closer to the anchor a than
negative examples n by margin m in the student space:

`triplet(a; θ) :=
∑

(p,n)∈L(a)

[sθ(a, n)− sθ(a, p) +m]+, (5)

where typically L(a) := P (a)×N(a). Positive and negative examples are not used independently:
if similarities are ranked correctly, the corresponding loss term is zero.

4



Multi-similarity The multi-similarity loss [71] treats positives and negatives independently:

`MS(a; θ) :=
1

α
log

1 +
∑

p∈P (a)

e−α(sθ(a,p)−m)

+
1

β
log

1 +
∑

n∈N(a)

eβ(sθ(a,n)−m)

 . (6)

Here, multiple examples are taken into account together by a nonlinear function: positives (negatives)
that are farthest from (nearest to) the anchor receive the greatest relative weight.

3.4 Loss functions using the teacher only

When not using the labels, the only source of supervision is the teacher model g. Symmetric
similarity (2) is not an option here; we either use use (3) or other ways to compare the two models.
Given anchor a, the loss may depend on a alone, or also the additional examples U(a). We write
S(a, x) := sim(g(a), g(x)) for the similarity of a and some x ∈ U(a) in the teacher space.

Regression The simplest option is regression, encouraging the representations of the same input
example a by the two models to be close by using asymmetric similarity (3):

`reg(a; θ) := −sasymθ (a, a) = − sim(fθ(a), g(a)). (7)

For each anchor, it does not depend on any other example. It is the same as the absolute version
of metric learning knowledge distillation (ML+KD) [81] and as contrastive loss (4) on asymmetric
similarity (3) (using only the anchor as a positive for itself ).

Relational distillation Given an anchor a and one or more other vectors x, . . . ∈ Rd, relational
knowledge distillation (RKD) [47] is based on a number of relational measurements ψ(a,x, . . . ).
One such ψ(a,x, . . . ) is the distance ‖a− x‖ for x ∈ Rd. Another is the angle sim(a− x,a− y)
formed by a,x,y, for x,y ∈ Rd. The loss is called distance-wise and angle-wise, respectively. The
RKD loss encourages the same measurements by both models,

`RKD(a; θ) :=
∑

(x,... )∈U(a)n

r(ψ(fθ(a), fθ(x), . . . ), ψ(g(a), g(x), . . . )), (8)

where n is e.g. 1 for distance and 2 for angle and r is a regression loss, taken as Huber [47]. RKD
encompasses regression by ψ taken as the identity mapping on the anchor feature alone and r taken
as − sim. It also encompasses the relative setting of ML+KD [81] by ψ(a,x) := ‖a− x‖ and the
direct match baseline of DarkRank [9] by ψ(a,x) := ‖a− x‖2 .

DarkRank Let V (a, x) := {y ∈ U(a) : S(a, y) ≤ S(a, x)} be the set of examples in U(a) that
are mapped farther away from anchor a than x in the teacher space. For each x ∈ U(a), DarkRank [9]
encourages those examples to be farther away from a than x in the student space:

`DR(a; θ) := −
∑

x∈U(a)

ssymθ (a, x)− log
∑

y∈V (a,x)

es
sym
θ (a,y)

 (9)

It is an application of the listwise loss [7, 76], where the ground truth ranking is obtained by the
teacher rather than some form of annotation.

4 Experiments

4.1 Setup

Datasets We use the SfM dataset [53] for training, containing 133k images for training and 30k
images for validation. We use the revisited ROxford5k and RParis6k datasets [51] for testing,
each having 70 query images. All datasets depict particular architectural landmarks under very
diverse viewing conditions. We follow the standard evaluation protocol, using the medium and hard
settings [51]. We report mean average precision (mAP), including mean precision at 10 (mP@10) in
the supplementary material. Comparisons are based on mAP. To compare with pruning [73], we also
use the original Oxford5k [49] and Paris6k [50] datasets, reporting mAP only.

5



STUDENT TEACHER LAB LOSS SELF POS NEG MINING
SYMMETRIC TESTING ASYMMETRIC TESTING

ASYM MEDIUM HARD MEDIUM HARD
ROxf RPar ROxf RPar ROxf RPar ROxf RPar

MobileNetV2 VGG16

X Contr (4) X X hard X 57.3 67.1 31.1 41.3 38.3 49.8 18.4 23.8
X Contr (4) X X X hard X 57.3 68.4 31.5 42.2 42.9 55.9 22.6 31.4
X Contr (4) X hard X 55.9 66.7 31.1 40.6 34.1 47.3 17.0 24.5
X Contr (4) X X hard X 55.5 67.0 30.4 40.9 38.2 52.2 15.3 28.9

Reg (7) X – X 53.3 67.5 28.9 40.9 48.0 57.9 26.5 32.6

Table 1: Contrastive–regression ablation. Symmetric and asymmetric testing mAP onROxford5k
and RParis6k [51]. LAB: using labels in student model training. POS, NEG: Using positives,
negatives. SELF: Using anchor (by teacher) as positive for itself (by student). ASYM: Using
asymmetric similarity (3) at training. The second row is an option that we call Contr+. GeM pooling
and learned whitening [53] used in all cases.

Networks All models are pre-trained for classification on ImageNet [56] and then fine-tuned
for image retrieval on SfM, following the setup of the same work. We use VGG-16 [60] and
ResNet101 [22] as teacher models with the feature dimensionality d of 512 and 2048, respectively. We
use MobileNetV2 [57] and EfficientNet-B3 [63] as student networks, removing any fully connected
layers and stacking one 1 × 1 convolutional layer to match the dimensionality of the teacher. All
networks use generalized mean-pooling (GeM) [53] on the last convolutional feature map.

Implementation details The image resolution is limited to 362× 362 at training (fine-tuning). At
testing, a multi-scale representation is used, with initial resolution of 1024× 1024 and scale factors
of 1, 1√

2
and 1

2 . The representation is pooled by GeM over the features of the three scaled inputs. We
use supervised whitening, trained on the same SfM dataset [53]. In asymmetric testing, whitening is
learned in the teacher space. Our implementation is based on the official code of [53] in PyTorch,1 as
well as [71, 47, 9]. Teacher models are taken from [53].

Training and hyper-parameters We follow the training setup of [53] for loss functions that use
labels. We use the validation set to determine the hyperparameter values and the best model. We train
all models using the SGD with learning rate decay of 0.99 per epoch. Symmetric training (2) takes
place for 100 epochs or until convergence based on the validation set. For asymmetric training (3),
this is extended to 300 epochs. Each epoch consists of 2000 tuples. A mini-batch has 10 tuples, each
composed of 1 anchor, 1 corresponding positive and 5 negatives. For unsupervised losses we create
tuples of the same overall size. We use weight decay of 10−6 in each experiment.

Loss functions For contrastive loss (4), we set the margin m = 0.7 and the initial learning rate η to
10−5 and 10−3 for symmetric and asymmetric training, respectively. For triplet (5), we set m = 0.1
and η = 10−8 . For multi-similarity (6) we set m = 0.6, α = 1, β = 1 and η = 10−8 for all setups.
For regression (7), we set η = 10−3. We use the DA variant or RKD [47] (8), with the angle-wise
and distance-wise loss weighted by a factor of 2 and 1 respectively, and η = 10−2. For DarkRank
(DR) (9), we set η = 10−6 for the VGG16 teacher; for ResNet101, η = 10−5 for MobileNetV2 and
η = 10−7 for EfficientNet-B3. We do not discriminate between the student training being supervised
or not, since labels are already used for teacher training.

Mining When using labels, we use hard negative mining as a default, following [53]. Negatives
are mined each epoch from a random subset of 22k images of the training set. The negatives closest
to the anchor (according to (2) or (3), depending on the setting) are selected. There is no mining for
positives, because there are only few (1-2) positives per anchor. When not using labels, we draw
additional examples uniformly at random as a default. There is no mining for regression.

4.2 Results

Contrastive–regression ablation As will be shown in the following results, contrastive loss and
regression turn out be most effective in general. Moreover, by comparing (4) with (7), contrastive
with asymmetric similarity (3) encompasses regression by setting each anchor as a positive for itself,

1https://github.com/filipradenovic/cnnimageretrieval-pytorch

6

https://github.com/filipradenovic/cnnimageretrieval-pytorch


STUDENT d TEACHER LAB LOSS MINING
SYMMETRIC TESTING ASYMMETRIC TESTING

ASYM MEDIUM HARD MEDIUM HARD
ROxf RPar ROxf RPar ROxf RPar ROxf RPar

VGG16 [53] 512 X Contr (4) hard 60.9 69.3 32.9 44.2
ResNet101 [53] 2048 X Contr (4) hard 65.4 76.7 40.1 55.2

MobileNetV2 512 X Contr (4) hard 53.6 66.4 28.8 39.7
2048 X Contr (4) hard 56.1 68.5 30.3 42.0

EfficientNet-B3 512 X Contr (4) hard 53.8 70.9 26.2 46.0
2048 X Contr (4) hard 59.6 75.1 33.3 51.9

MobileNetV2

512 VGG16

X Contr+ hard X 57.3 68.4 31.5 42.2 42.9 55.9 22.6 31.4
X Contr (4) hard X 57.3 67.1 31.1 41.3 38.3 49.8 18.4 23.8
X Triplet (5) hard X 37.0 62.4 11.8 36.0 1.8 4.3 0.7 2.8
X MS (6) hard X 36.8 62.8 11.5 36.5 1.9 4.3 0.8 2.7

Reg (7) – X 53.3 67.5 28.9 40.9 48.0 57.9 26.5 32.6
RKD (8) random 46.2 64.3 21.8 37.6 2.0 4.1 0.8 2.6
DR (9) random 45.2 60.6 24.6 33.1 1.7 3.8 0.7 2.4

2048 ResNet101

X Contr+ hard X 63.2 75.0 37.9 52.0 47.1 61.5 21.8 37.7
X Contr (4) hard X 60.8 72.1 36.1 47.6 32.3 51.5 9.6 28.2
X Triplet (5) hard X 45.5 68.0 19.6 43.4 1.3 3.7 0.7 2.4
X MS (6) hard X 44.5 68.1 17.9 43.2 1.4 3.6 0.7 2.3

Reg (7) – X 59.8 73.1 35.7 49.5 49.2 65.0 23.3 40.7
RKD (8) random 56.1 69.8 31.8 44.2 1.6 4.1 0.8 2.5
DR (9) random 48.3 58.0 23.3 31.5 1.3 4.1 0.6 2.7

EfficientNet-B3

512 VGG16

X Contr+ hard X 56.9 69.0 31.1 43.5 44.7 58.0 23.9 32.4
X Contr (4) hard X 56.8 70.4 31.2 45.4 43.8 24.9 23.0 6.1
X Triplet (5) hard X 33.7 64.6 8.0 40.3 1.4 4.0 0.6 2.5
X MS (6) hard X 33.9 64.9 8.1 40.6 1.4 3.9 0.6 2.5

Reg (7) – X 55.0 69.4 27.1 44.5 49.4 58.2 26.0 33.0
RKD (8) random 51.6 67.6 26.2 41.7 1.3 3.8 0.6 2.5
DR (9) random 34.7 61.1 8.5 35.2 1.4 3.9 0.6 2.4

2048 ResNet101

X Contr+ hard X 66.8 77.1 42.5 55.5 45.2 63.7 19.6 40.9
X Contr (4) hard X 66.3 77.4 41.3 55.5 37.4 57.4 10.9 33.7
X Triplet (5) hard X 39.5 69.4 11.6 45.8 1.5 4.0 0.7 2.5
X MS (6) hard X 39.9 69.7 11.7 46.2 1.5 4.0 0.7 2.4

Reg (7) – X 64.9 74.4 40.5 52.4 52.9 65.2 27.8 42.4
RKD (8) random 56.3 73.0 30.5 46.4 1.6 3.8 0.7 2.4
DR (9) random 40.3 69.9 11.8 46.4 1.5 4.0 0.7 2.5

Table 2: Symmetric and asymmetric testing mAP on ROxford5k and RParis6k [51]. LAB: using
labels in student model training. ASYM: Using asymmetric similarity (3) at training (our work).
Contr+ is defined in Table 1. Best result highlighted per teacher-student pair. GeM pooling and
learned whitening [53] used in all cases.

without any other positive or negatives. To better understand the relation between these two loss
functions, we perform an ablation study where we investigate versions of contrastive on (3) having
negatives, or not, and the anchor itself as positive, or not. The results are shown in Table 1 for
VGG16→MobileNetV2. In symmetric testing, it turns out that the best combination is having both
negatives and the anchor itself. The same happens in almost all cases for other teacher and student
models, as shown in the supplementary material. We denote this combination as Contr+ and we
include it in subsequent results. Asymmetric testing is much more challenging. The best is regression
in this case, but Contr+ is still the second best.

Symmetric testing According to the left part of Table 2, Contr+ works best on MobileNetV2,
while on EfficientNet, either contrastive and Contr+ works best, with the two options having little
difference. The difference to other loss functions using labels is large, reaching 20% or even 30% on
ROxford5k. Triplet is known to be inferior to contrastive [53], but the difference is more pronounced
in our knowledge transfer setting. This result is particularly surprising for multi-similarity, which is
state of the art in fine-grained classification [71]. Also surprisingly, regression works best among loss
functions not using labels, including recent knowledge transfer methods RKD [47] and DarkRank [9].
It is second or third best in all cases. This finding is contrary to [81], where the regression baseline is
found inferior. DarkRank is inferior to RKD, in agreement with [47].

The superiority of contrastive or Contr+ over regression confirms that, by using our asymmetric
similarity, the original metric learning task is still beneficial. Unlike knowledge distillation on

7



STUDENT %FLOPS %PARAM TEACHER LAB LOSS
mAP

Oxf Par

VGG16 [53] 100 100 X Contr (4) 82.45 81.37
VGG16-PLFP [73] 57.37 61.05 X Contr (4) 76.20 73.18

MobileNetV2
2.44 19.58 VGG16 X Contr (4) 74.14 78.26

Reg (7) 66.58 74.45

3.14 32.97 ResNet101 X Contr (4) 75.30 83.23
Reg (7) 63.57 76.96

Table 3: Symmetric testing mAP on Paris6k and Oxford5k. FLOPS and parameters relative to VGG16.
LAB: using labels in student model training. Using asymmetric similarity (3) in all teacher-student
settings. GeM pooling [53] used in all cases but not learned whitening.

classification tasks, knowledge transfer alone is not the best option. Focusing on the best results
(contrastive or Contr+), we confirm that, with just one exception (VGG16→EfficientNet onRParis6k
hard), knowledge transfer always helps compared to training without the teacher, using the same d.
The gain is more pronounced, reaching 7-10% on ResNet101→MobileNetV2, when the teacher is
stronger and the student is weaker (the exception corresponds to the weakest teacher and strongest
student). MobileNetV2 performs only 2-3% below its teacher. Remarkably, EfficientNet outperforms
its teacher: this happens onRParis6k for VGG16 and on all settings for ResNet101.

Asymmetric testing Here, similarities are asymmetric at testing, with the database being repre-
sented by the teacher and queries by the student. According to the right part of Table 2, regression is
the clear winner in this case. This is contrary to [59], where regression fails. In a sense, this can be
expected since the student should learn to map images to features exactly like the teacher. Contr+
is clearly the second best, with the differences varying between 1-2% on RParis6k and up to 8%
onROxford5k. Contrastive is the third, with a further loss of roughly 5-10% or more. Knowledge
transfer of weak information like relations or ranking fails completely in this case, which is totally
expected. What is unexpected is that triplet and multi-similarity fail too.

When compared with symmetric testing using the corresponding teacher alone, the loss of using the
student on queries is 8-16%. There is no substantial difference in this behavior between MobileNetV2
and EfficientNet. Asymmetric testing is considerably more challenging than symmetric. The closest
work in terms of asymmetric testing is feature translation [27], where a shallow translator is learned
instead of fine-tuning the student end-to-end. This approach performs poorly, with up to 40% mAP
loss. Students are still large networks, so there is no computational gain.

Results on Paris6k and Oxford5k We consider this experiment primarily for comparison with
progressive local filter pruning (PLFP) [73], which performs symmetric testing with a pruned version
of VGG16. For the sake of comparison, there is no whitening in this case. According to Table 3,
MobileNetV2 has substantially lower FLOPS and parameters than the pruned VGG16, yet with either
teacher it performs better on Paris and nearly the same on Oxford. EfficientNet, reported in the
supplementary material, performs best, although it has more parameters.

5 Conclusions

There are certain unexpected or surprising findings in this work. First, regression is particularly effec-
tive in knowledge transfer. It appears that the more the constraints on student mappings (e.g. ranking
→ distance/angle relations→ positions), the better the performance in standard symmetric testing.
Second, the standard contrastive loss is particularly effective with asymmetric similarity at training,
outperforming by a large margin state of the art methods like multi-similarity. A straightforward
combination with regression—treating the anchor itself as positive—performs best on symmetric
testing. In the new asymmetric testing task, regression is unsurprisingly a winner.

We have shown that using the original metric learning task while transferring knowledge is still
beneficial in symmetric testing. It remains to be investigated whether the same can happen in
asymmetric testing. We consider the same dataset in teacher and student training, so the latter is as
supervised as the former. An interesting extension would be to consider a different, unlabeled dataset
in student training. This would be a semi-supervised solution, like data distillation [54].

8



References
[1] Jimmy Ba and Rich Caruana. Do deep nets really need to be deep? In NIPS, 2014.
[2] Artem Babenko, Anton Slesarev, Alexandr Chigorin, and Victor Lempitsky. Neural codes for image

retrieval. In ECCV, 2014.
[3] Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimensionality reduction and data representa-

tion. Neural computation, 15(6), 2003.
[4] Oren Boiman, Eli Shechtman, and Michal Irani. In defense of nearest-neighbor based image classification.

In CVPR, 2008.
[5] Fatih Cakir, Kun He, Xide Xia, Brian Kulis, and Stan Sclaroff. Deep metric learning to rank. In CVPR,

2019.
[6] Xuefei Cao, Bor-Chun Chen, and Ser-Nam Lim. Unsupervised deep metric learning via auxiliary rotation

loss. arXiv preprint arXiv:1911.07072, 2019.
[7] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. Learning to rank: From pairwise approach

to listwise approach. In ICML, 2007.
[8] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for

contrastive learning of visual representations. arXiv preprint arXiv:2002.05709, 2020.
[9] Yuntao Chen, Naiyan Wang, and Zhaoxiang Zhang. DarkRank: Accelerating deep metric learning via

cross sample similarities transfer. In AAAI, 2018.
[10] Damek Davis, Jonathan Balzer, and Stefano Soatto. Asymmetric sparse kernel approximations for large-

scale visual search. In CVPR, 2014.
[11] Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos Zafeiriou. ArcFace: Additive angular margin loss for

deep face recognition. In CVPR, 2019.
[12] Wei Dong, Moses Charikar, and Kai Li. Asymmetric distance estimation with sketches for similarity

search in high-dimensional spaces. In SIGIR, 2008.
[13] Fartash Faghri, David J Fleet, Jamie Ryan Kiros, and Sanja Fidler. VSE++: Improving visual-semantic

embeddings with hard negatives. arXiv preprint arXiv:1707.05612, 2017.
[14] Andrea Frome, Greg S Corrado, Jon Shlens, Samy Bengio, Jeff Dean, Marc’Aurelio Ranzato, and Tomas

Mikolov. Devise: A deep visual-semantic embedding model. In NIPS, 2013.
[15] Yunchao Gong, Liu Liu, Ming Yang, and Lubomir Bourdev. Compressing deep convolutional networks

using vector quantization. arXiv preprint arXiv:1412.6115, 2014.
[16] Albert Gordo, Jon Almazan, Jerome Revaud, and Diane Larlus. Deep image retrieval: Learning global

representations for image search. ECCV, 2016.
[17] Albert Gordo and Florent Perronnin. Asymmetric distances for binary embeddings. In CVPR, 2011.
[18] Raia Hadsell, Sumit Chopra, and Yann Lecun. Dimensionality reduction by learning an invariant mapping.

In CVPR, 2006.
[19] Xufeng Han, Thomas Leung, Yangqing Jia, Rahul Sukthankar, and Alexander C Berg. MatchNet: Unifying

feature and metric learning for patch-based matching. In CVPR, 2015.
[20] Ben Harwood, Vijay Kumar B G, Gustavo Carneiro, Ian Reid, and Tom Drummond. Smart mining for

deep metric learning. In ICCV, 2017.
[21] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for unsupervised

visual representation learning. arXiv preprint arXiv:1911.05722, 2019.
[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.

In CVPR, 2016.
[23] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv

preprint arXiv:1503.02531, 2015.
[24] Elad Hoffer, Itay Hubara, and Daniel Soudry. Fix your classifier: the marginal value of training the last

weight layer. arXiv preprint arXiv:1801.04540, 2018.
[25] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun Wang,

Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. Searching for MobileNetV3. In ICCV, 2019.
[26] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco

Andreetto, and Hartwig Adam. MobileNets: Efficient convolutional neural networks for mobile vision
applications. arXiv preprint arXiv:1704.04861, 2017.

[27] Jie Hu, Rongrong Ji, Hong Liu, Shengchuan Zhang, Cheng Deng, and Qi Tian. Towards visual feature
translation. In CVPR, 2019.

[28] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger. Densely connected
convolutional networks. In CVPR, 2017.

[29] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Chen, HyoukJoong Lee,
Jiquan Ngiam, Quoc V Le, Yonghui Wu, and Zhifeng Chen. GPipe: Efficient training of giant neural
networks using pipeline parallelism. In NIPS, 2019.

[30] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J Dally, and Kurt Keutzer.
Squeezenet: Alexnet-level accuracy with 50x fewer parameters and <0.5 mb model size. arXiv preprint
arXiv:1602.07360, 2016.

9



[31] Ahmet Iscen, Giorgos Tolias, Yannis Avrithis, and Ondřej Chum. Mining on manifolds: Metric learning
without labels. In CVPR, 2018.

[32] Mihir Jain, Herve Jégou, and Patrick Gros. Asymmetric hamming embedding. In ACM Multimedia, 2011.
[33] H. Jégou, M. Douze, and C. Schmid. Improving bag-of-features for large scale image search. IJCV, 87(3),

2010.
[34] H. Jégou, M. Douze, and C. Schmid. Product quantization for nearest neighbor search. PAMI, 33(1):117–

128, 2011.
[35] H. Jégou, H. Harzallah, and C. Schmid. A contextual dissimilarity measure for accurate and efficient image

search. In CVPR, 2007.
[36] Hervé Jégou and Andrew Zisserman. Triangulation embedding and democratic kernels for image search.

In CVPR, 2014.
[37] Jaechul Kim and Kristen Grauman. Asymmetric region-to-image matching for comparing images with

generic object categories. In CVPR, 2010.
[38] Sungyeon Kim, Minkyo Seo, Ivan Laptev, Minsu Cho, and Suha Kwak. Deep metric learning beyond

binary supervision. In CVPR, 2019.
[39] Ryan Kiros, Ruslan Salakhutdinov, and Richard S Zemel. Unifying visual-semantic embeddings with

multimodal neural language models. arXiv preprint arXiv:1411.2539, 2014.
[40] Shengcai Liao and Stan Z Li. Efficient PSD constrained asymmetric metric learning for person re-

identification. In ICCV, 2015.
[41] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable architecture search. arXiv

preprint arXiv:1806.09055, 2018.
[42] Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. Rethinking the value of network

pruning. In ICLR, 2018.
[43] D.G. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 60(2):91–110, 2004.
[44] Ishan Misra and Laurens van der Maaten. Self-supervised learning of pretext-invariant representations.

arXiv preprint arXiv:1912.01991, 2019.
[45] Behnam Neyshabur, Nati Srebro, Ruslan R Salakhutdinov, Yury Makarychev, and Payman Yadollahpour.

The power of asymmetry in binary hashing. In NIPS, 2013.
[46] Hyun Oh Song, Yu Xiang, Stefanie Jegelka, and Silvio Savarese. Deep metric learning via lifted structured

feature embedding. In CVPR, 2016.
[47] Wonpyo Park, Dongju Kim, Yan Lu, and Minsu Cho. Relational knowledge distillation. In CVPR, 2019.
[48] Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V Le, and Jeff Dean. Efficient neural architecture search

via parameter sharing. arXiv preprint arXiv:1802.03268, 2018.
[49] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. Object retrieval with large vocabularies and fast

spatial matching. In CVPR, 2007.
[50] James Philbin, Ondrej Chum, Josef Sivic, Michael Isard, and Andrew Zisserman. Lost in quantization:

Improving particular object retrieval in large scale image databases. In CVPR, 2008.
[51] Filip Radenović, Ahmet Iscen, Giorgos Tolias, Yannis Avrithis, and Ondřej Chum. Revisiting oxford and

paris: Large-scale image retrieval benchmarking. In CVPR, 2018.
[52] Filip Radenović, Giorgos Tolias, and Ondřej Chum. CNN image retrieval learns from bow: Unsupervised

fine-tuning with hard examples. ECCV, 2016.
[53] Filip Radenović, Giorgos Tolias, and Ondřej Chum. Fine-tuning CNN image retrieval with no human

annotation. PAMI, 41(7):1655–1668, 2018.
[54] Ilija Radosavovic, Piotr Dollar, Ross Girshick, Georgia Gkioxari, and Kaiming He. Data distillation:

Towards omni-supervised learning. In CVPR, 2018.
[55] Ali Sharif Razavian, Josephine Sullivan, Atsuto Maki, and Stefan Carlsson. Visual instance retrieval with

deep convolutional networks. arXiv preprint arXiv:1412.6574, 2014.
[56] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,

Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. ImageNet large scale visual recognition
challenge. IJCV, 115(3):211–252, 2015.

[57] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mobilenetv2:
Inverted residuals and linear bottlenecks. In CVPR, 2018.

[58] Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller. Nonlinear component analysis as a
kernel eigenvalue problem. Neural computation, 10(5):1299–1319, 1998.

[59] Yantao Shen, Yuanjun Xiong, Wei Xia, and Stefano Soatto. Towards backward-compatible representation
learning. arXiv preprint arXiv:2003.11942, 2020.

[60] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recogni-
tion. arXiv preprint arXiv:1409.1556, 2014.

[61] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. In NIPS,
2017.

[62] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and Quoc V
Le. MnasNet: Platform-aware neural architecture search for mobile. In CVPR, 2019.

10



[63] Mingxing Tan and Quoc V Le. EfficientNet: Rethinking model scaling for convolutional neural networks.
arXiv preprint arXiv:1905.11946, 2019.

[64] J. Tenenbaum. Mapping a manifold of perceptual observations. In NIPS. 1997.
[65] Giorgos Tolias, Yannis Avrithis, and Hervé Jégou. To aggregate or not to aggregate: Selective match

kernels for image search. In ICCV, 2013.
[66] Giorgos Tolias and Ondrej Chum. Asymmetric feature maps with application to sketch based retrieval. In

CVPR, 2017.
[67] Giorgos Tolias, Ronan Sicre, and Hervé Jégou. Particular object retrieval with integral max-pooling of cnn

activations. ICLR, 2016.
[68] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Koray Kavukcuoglu, and Daan Wierstra. Matching

networks for one shot learning. In NIPS, 2016.
[69] Hao Wang, Yitong Wang, Zheng Zhou, Xing Ji, Dihong Gong, Jingchao Zhou, Zhifeng Li, and Wei Liu.

CosFace: Large margin cosine loss for deep face recognition. In CVPR, 2018.
[70] Jiang Wang, Yang Song, Thomas Leung, Chuck Rosenberg, Jingbin Wang, James Philbin, Bo Chen, and

Ying Wu. Learning fine-grained image similarity with deep ranking. In CVPR, 2014.
[71] Xun Wang, Xintong Han, Weilin Huang, Dengke Dong, and Matthew R Scott. Multi-similarity loss with

general pair weighting for deep metric learning. In CVPR, 2019.
[72] Xun Wang, Haozhi Zhang, Weilin Huang, and Matthew R Scott. Cross-batch memory for embedding

learning. arXiv preprint arXiv:1912.06798, 2019.
[73] Xiaodong Wang, Zhedong Zheng, Yang He, Fei Yan, Zhiqiang Zeng, and Yi Yang. Progressive local filter

pruning for image retrieval acceleration. arXiv preprint arXiv:2001.08878, 2020.
[74] Chao-Yuan Wu, R. Manmatha, Alexander J. Smola, and Philipp Krahenbuhl. Sampling matters in deep

embedding learning. In ICCV, 2017.
[75] Zhirong Wu, Alexei A Efros, and Stella X Yu. Improving generalization via scalable neighborhood

component analysis. In ECCV, 2018.
[76] Fen Xia, Tie-Yan Liu, Jue Wang, Wensheng Zhang, and Hang Li. Listwise approach to learning to rank:

theory and algorithm. In ICML, 2008.
[77] Eric P Xing, Michael I Jordan, Stuart J Russell, and Andrew Y Ng. Distance metric learning with

application to clustering with side-information. In NIPS, 2003.
[78] Xinyi Xu, Yanhua Yang, Cheng Deng, and Feng Zheng. Deep asymmetric metric learning via rich

relationship mining. In CVPR, 2019.
[79] Mang Ye, Xu Zhang, Pong C. Yuen, and Shih-Fu Chang. Unsupervised embedding learning via invariant

and spreading instance feature. In CVPR, June 2019.
[80] Hong-Xing Yu, Ancong Wu, and Wei-Shi Zheng. Cross-view asymmetric metric learning for unsupervised

person re-identification. In ICCV, 2017.
[81] Lu Yu, Vacit Oguz Yazici, Xialei Liu, Joost Van De Weijer, Yongmei Cheng, and Arnau Ramisa. Learning

metrics from teachers: Compact networks for image embedding. In CVPR, 2019.
[82] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint arXiv:1605.07146,

2016.
[83] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. ShuffleNet: An extremely efficient convolu-

tional neural network for mobile devices. In CVPR, 2018.
[84] Cai-Zhi Zhu, Herve Jégou, and Shin’ichi Satoh. Query-adaptive asymmetrical dissimilarities for visual

object retrieval. In ICCV, 2013.

11



A Example of asymmetric hard example mining

Depending on the similarity we use in the loss function, i.e., symmetric (2) or asymmetric(3), we
follow the same choice for hard negative mining. This means that, in mining based on asymmetric
similarity, the features of anchor a come from the student model fθ(a) while the database is repre-
sented by the teacher g. The database is fixed and does not need to be re-computed after each epoch.
Only the anchors are updated, which makes training more efficient. Figure 2 gives an example of
the hard negatives mined for one anchor across different epochs. Before the training starts (epoch
0) the results are not very informative, which is not surprising giving that the feature spaces of the
teacher and the student do not match. However, after just a few epochs we see harder negatives being
selected. This example illustrates how asymmetric similarity acts as a knowledge transfer mechanism
from the teacher to the student model.

B Model complexity and parameters

Table 4 gives the number of parameters and computational complexity (in FLOPS) for the networks
used in this work. This includes two teachers. It is important to note that the versions of the teachers
are already for image retrieval by removing the fully connected layers, hence this version of VGG16
has significantly fewer parameters than the original (around 138M). For the student networks, after
removing the fully connected layers, a 1 × 1 convolutional layer is added to match the output
dimensionality of the teacher network. Those models are shown in Table 4 as well as a version of the
student model without the additional convolutional layer and fully connected layers.

NETWORK TEACHER D GFLOPS PARAM(M)

VGG16 [53] 512 79.40 14.71
ResNet101 [53] 2048 42.85 42.50

MobileNetV2
1280 1,74 2.22

VGG16 512 1.94 2.88
ResNet101 2048 2.50 4.85

EfficientNet-B3
1536 5.36 10.70

VGG16 512 5.56 11.48
ResNet101 2048 6.26 13.84

Table 4: FLOPS and parameters for the networks used in this work. In the top segment, the teacher
networks are adapted for image retrieval, i.e. the fully connected layers are removed. The bottom
segment shows the student network adapted in the same way and also with an added layer (or not) to
match the output dimensionality of the teacher.

C More results

Complete contrastive–regression ablation Here, we present the full version of the results of the
ablation from Table 1, for all four student-teacher combinations. Apart from mAP, we also report
mP@10. Table 5 and Table 6 present the symmetric and asymmetric testing results, respectively. All
results agree with the results of Table 1. For symmetric testing, contrastive loss with a single positive
and no negatives is again the worst. The addition of the anchor as a positive for itself as well as the
negatives improve the results substantially. Contr+, which uses both, performs best in most cases
with the exception of VGG16→EfficientNet. For asymmetric testing, regression is the best. The
inclusion of the anchor as positive for itself gives better results than without it.

Complete symmetric and asymmetric testing results Table 7 supplements Table 2 by adding
mP@10 scores for all the symmetric testing experiments. Similarly, Table 8 adds mP@10 results
to all asymmetric testing experiments. Overall, the conclusions made based on mAP apply to the
mP@10 results.

12



EPOCH a N(a)

0

5

10

300

Figure 2: Asymmetric hard negative mining. One anchor a shown on the first column, followed by
the hard negatives N(a) mined for this anchor, over different epochs. The anchor is represented by
the student and the database of potential negatives by the teacher.

STUDENT d TEACHER LAB LOSS SELF POS NEG MINING
MEDIUM HARD

ROxford5k RParis6k ROxford5k RParis6k
mAP mP@10 mAP mP@10 mAP mP@10 mAP mP@10

MobileNetV2

512 VGG16

X Contr (4) X X hard 57.3 77.1 67.1 95.7 31.1 47.3 41.3 80.4
X Contr (4) X X X hard 57.3 78.4 68.4 96.1 31.5 46.9 42.2 78.9
X Contr (4) X hard 55.9 79.2 66.7 95.0 31.1 44.0 40.6 78.9
X Contr (4) X X hard 55.5 76.1 67.0 96.0 30.4 44.1 40.9 81.4

Reg (7) X – 53.3 75.1 67.5 95.6 28.9 43.6 40.9 81.3

2048 ResNet101

X Contr (4) X X hard 60.8 81.7 72.1 97.3 36.1 50.4 47.6 85.1
X Contr (4) X X X hard 63.2 84.4 75.0 98.0 37.9 52.1 52.0 87.3
X Contr (4) X hard 51.8 72.5 67.6 96.0 27.6 38.1 41.3 80.0
X Contr (4) X X hard 60.6 80.0 74.1 97.0 35.7 49.4 50.9 85.6

Reg (7) X – 59.8 80.3 73.1 96.9 35.7 49.4 49.5 84.7

EfficientNet-B3

512 VGG16

X Contr (4) X X hard 56.8 75.7 70.4 96.3 31.2 43.9 45.4 81.7
X Contr (4) X X X hard 56.9 75.6 69.0 96.0 31.1 46.7 43.5 80.9
X Contr (4) X hard 56.1 77.0 69.3 96.4 30.1 42.1 44.7 78.4
X Contr (4) X X hard 57.6 78.3 69.9 96.9 31.4 46.7 44.9 82.6

Reg (7) X – 55.0 75.0 69.4 96.6 27.1 42.3 44.5 80.4

2048 ResNet101

X Contr (4) X X hard 66.3 85.3 77.4 98.4 41.3 58.9 55.5 88.3
X Contr (4) X X X hard 66.8 84.7 77.1 98.6 42.5 58.7 55.5 87.9
X Contr (4) X hard 61.7 81.7 74.3 97.1 36.1 51.7 51.6 85.9
X Contr (4) X X hard 63.8 83.1 75.9 98.3 40.1 54.3 54.4 87.1

Reg (7) X – 64.9 83.7 74.4 97.7 40.5 55.9 52.4 87.1

Table 5: Complete contrastive–regression ablation: symmetric testing on ROxford5k and
RParis6k [51]. LAB: using labels in student model training. POS, NEG: Using positives, neg-
atives. SELF: Using anchor (by teacher) as positive for itself (by student). Using asymmetric
similarity (3) at training in all cases. Best mAP highlighted per teacher-student pair. GeM pooling
and learned whitening [53] used in all cases.

13



STUDENT d TEACHER LAB LOSS SELF POS NEG MINING
MEDIUM HARD

ROxford5k RParis6k ROxford5k RParis6k
mAP mP@10 mAP mP@10 mAP mP@10 mAP mP@10

MobileNetV2

512 VGG16

X Contr (4) X X hard 38.3 53.7 49.8 84.4 18.4 32.8 23.8 55.7
X Contr (4) X X X hard 42.9 59.1 55.9 88.4 22.6 35.2 31.4 66.3
X Contr (4) X hard 34.1 48.9 47.3 82.0 17.0 25.6 24.5 53.4
X Contr (4) X X hard 38.2 52.0 52.2 86.0 15.3 26.2 28.9 64.1

Reg (7) X – 48.0 64.3 57.9 90.7 26.5 37.9 32.6 67.1

2048 ResNet101

X Contr (4) X X hard 32.3 49.7 51.5 83.3 9.6 18.3 28.2 62.4
X Contr (4) X X X hard 47.1 65.4 61.5 92.6 21.8 33.1 37.7 74.1
X Contr (4) X hard 27.3 38.4 47.7 80.9 8.4 15.3 24.3 50.6
X Contr (4) X X hard 40.5 58.2 55.8 87.6 17.4 26.3 29.9 63.4

Reg (7) X – 49.2 67.9 65.0 92.6 23.3 36.9 40.7 72.1

EfficientNet-B3

512 VGG16

X Contr (4) X X hard 43.8 74.7 24.9 39.3 23.0 51.3 6.1 15.6
X Contr (4) X X X hard 44.7 61.5 58.0 93.3 23.9 37.9 32.4 69.1
X Contr (4) X hard 32.4 45.4 47.8 84.4 14.1 22.0 25.8 56.3
X Contr (4) X X hard 41.6 57.5 53.9 90.1 20.3 30.6 30.2 64.0

Reg (7) X – 49.4 70.0 58.2 92.4 26.0 39.6 33.0 70.6

2048 ResNet101

X Contr (4) X X hard 37.4 56.8 57.4 90.4 10.9 24.6 33.7 65.9
X Contr (4) X X X hard 45.2 67.2 63.7 92.1 19.6 35.5 40.9 73.6
X Contr (4) X hard 30.8 44.5 51.2 83.7 10.2 16.1 27.8 57.0
X Contr (4) X X hard 40.1 56.7 59.1 91.1 14.6 24.3 35.0 71.0

Reg (7) X – 52.9 71.8 65.2 93.3 27.8 41.5 42.4 71.9

Table 6: Complete contrastive–regression ablation: asymmetric testing on ROxford5k and
RParis6k [51]. LAB: using labels in student model training. POS, NEG: Using positives, neg-
atives. SELF: Using anchor (by teacher) as positive for itself (by student). Using asymmetric
similarity (3) at training in all cases. Best mAP highlighted per teacher-student pair. GeM pooling
and learned whitening [53] used in all cases.

14



STUDENT d TEACHER LAB LOSS MINING
MEDIUM HARD

ASYM ROxf RPar ROxf RPar
mAP mP@10 mAP mP@10 mAP mP@10 mAP mP@10

VGG16 512 X Contr (4) hard 60.9 81.9 69.3 97.4 32.9 50.9 44.2 83.1
ResNet101 2048 X Contr (4) hard 65.4 85.7 76.7 98.4 40.1 56.6 55.2 87.7

MobileNetV2 512 X Contr (4) hard 53.6 75.8 66.4 96.7 28.8 42.9 39.7 79.0
2048 X Contr (4) hard 56.1 79.0 68.5 98.1 30.3 46.0 42.0 82.6

EfficientNet-B3 512 X Contr (4) hard 53.8 76.6 70.9 96.6 26.2 42.3 46.0 83.7
2048 X Contr (4) hard 59.6 86.1 75.1 95.1 33.3 46.0 51.9 87.6

MobileNetV2

512 VGG16

X Contr+ hard X 57.3 78.4 68.4 96.1 31.5 46.9 42.2 78.9
X Contr (4) hard X 57.3 77.1 67.1 95.7 31.1 47.3 41.3 80.4
X Triplet (5) hard X 37.0 55.2 62.4 94.4 11.8 23.0 36.0 73.7
X MS (6) hard X 36.8 55.2 62.8 94.4 11.5 22.2 36.5 75.0

Reg (7) – X 53.3 75.1 67.5 95.6 28.9 43.6 40.9 81.3
RKD (8) random 46.2 68.1 64.3 94.7 21.8 32.8 37.6 72.3
DR (9) random 45.2 66.5 60.6 92.1 24.6 34.9 33.1 74.1

2048 ResNet101

X Contr+ hard X 63.2 84.4 75.0 98.0 37.9 52.1 52.0 87.3
X Contr (4) hard X 60.8 81.7 72.1 97.3 36.1 50.4 47.6 85.1
X Triplet (5) hard X 45.5 66.1 68.0 96.1 19.6 33.5 43.4 80.6
X MS (6) hard X 44.5 65.4 68.1 96.1 17.9 32.1 43.2 80.1

Reg (7) – X 59.8 80.3 73.1 96.9 35.7 49.4 49.5 84.7
RKD (8) random 56.1 79.3 69.8 96.3 31.8 46.0 44.2 82.3
DR (9) random 48.3 69.8 58.0 94.3 23.3 33.3 31.5 71.4

EfficientNet-B3

512 VGG16

X Contr+ hard X 56.9 75.6 69.0 96.0 31.1 46.7 43.5 80.9
X Contr (4) hard X 56.8 75.7 70.4 96.3 31.2 43.9 45.4 81.7
X Triplet (5) hard X 33.7 48.5 64.6 94.4 8.0 20.1 40.3 76.1
X MS (6) hard X 33.9 49.5 64.9 94.4 8.1 20.4 40.6 76.9

Reg (7) – X 55.0 75.0 69.4 96.6 27.1 42.3 44.5 80.4
RKD (8) random 51.6 71.4 67.6 95.3 26.2 38.5 41.7 81.1
DR (9) random 34.7 50.0 61.1 93.1 8.5 17.8 35.2 67.1

2048 ResNet101

X Contr+ hard X 66.8 84.7 77.1 98.6 42.5 58.7 55.5 87.9
X Contr (4) hard X 66.3 85.3 77.4 98.4 41.3 58.9 55.5 88.3
X Triplet (5) hard X 39.5 57.3 69.4 95.9 11.6 24.3 45.8 81.1
X MS (6) hard X 39.9 57.4 69.7 95.7 11.7 24.2 46.2 81.4

Reg (7) – X 64.9 83.7 74.4 97.7 40.5 55.9 52.4 87.1
RKD (8) random 56.3 75.8 73.0 98.4 30.5 46.4 46.4 82.3
DR (9) random 40.3 58.4 69.9 95.9 11.8 24.6 46.4 81.1

Table 7: Symmetric testing onROxford5k andRParis6k [51]. LAB: using labels in student model
training. ASYM: Using asymmetric similarity (3) at training. Best mAP highlighted per teacher-
student pair. GeM pooling and learned whitening [53] used in all cases.

15



STUDENT d TEACHER LAB LOSS MINING
MEDIUM HARD

ASYM ROxf RPar ROxf RPar
mAP mP@10 mAP mP@10 mAP mP@10 mAP mP@10

VGG16 512 X Contr (4) hard 60.9 81.9 69.3 97.4 32.9 50.9 44.2 83.1
ResNet101 2048 X Contr (4) hard 65.4 85.7 76.7 98.4 40.1 56.6 55.2 87.7

MobileNetV2 512 X Contr (4) hard 53.6 75.8 66.4 96.7 28.8 42.9 39.7 79.0
2048 X Contr (4) hard 56.1 79.0 68.5 98.1 30.3 46.0 42.0 82.6

EfficientNet-B3 512 X Contr (4) hard 53.8 76.6 70.9 96.6 26.2 42.3 46.0 83.7
2048 X Contr (4) hard 59.6 86.1 75.1 95.1 33.3 46.0 51.9 87.6

MobileNetV2

512 VGG16

X Contr+ hard X 42.9 59.1 55.9 88.4 22.6 35.2 31.4 66.3
X Contr (4) hard X 38.3 53.7 49.8 84.4 18.4 32.8 23.8 55.7
X Triplet (5) hard X 1.8 0.0 4.3 1.3 0.7 0.0 2.8 1.4
X MS (6) hard X 1.9 0.0 4.3 1.6 0.8 0.0 2.7 1.6

Reg (7) – X 48.0 64.3 57.9 90.7 26.5 37.9 32.6 67.1
RKD (8) random 2.0 0.0 4.1 1.0 0.8 0.0 2.6 1.0
DR (9) random 1.7 0.0 3.8 0.3 0.7 0.0 2.4 0.3

2048 ResNet101

X Contr+ hard X 47.1 65.4 61.5 92.6 21.8 33.1 37.7 74.1
X Contr (4) hard X 32.3 49.7 51.5 83.3 9.6 18.3 28.2 62.4
X Triplet (5) hard X 1.3 0.0 3.7 1.4 0.7 0.0 2.4 1.4
X MS (6) hard X 1.4 0.3 3.6 1.0 0.7 0.3 2.3 0.9

Reg (7) – X 49.2 67.9 65.0 92.6 23.3 36.9 40.7 72.1
RKD (8) random 1.6 1.3 4.1 2.3 0.8 1.1 2.5 1.6
DR (9) random 1.3 0.4 4.1 3.6 0.6 0.3 2.7 3.1

EfficientNet-B3

512 VGG16

X Contr+ hard X 44.7 61.5 58.0 93.3 23.9 37.9 32.4 69.1
X Contr (4) hard X 43.8 74.7 24.9 39.3 23.0 51.3 6.1 15.6
X Triplet (5) hard X 1.4 0.0 4.0 0.0 0.6 0.0 2.5 0.0
X MS (6) hard X 1.4 0.0 3.9 0.0 0.6 0.0 2.5 0.0

Reg (7) – X 49.4 70.0 58.2 92.4 26.0 39.6 33.0 70.6
RKD (8) random 1.3 0.0 3.8 0.7 0.6 0.0 2.5 0.3
DR (9) random 1.4 0.0 3.9 0.0 0.6 0.0 2.4 0.0

2048 ResNet101

X Contr+ hard X 45.2 67.2 63.7 92.1 19.6 35.5 40.9 73.6
X Contr (4) hard X 37.4 56.8 57.4 90.4 10.9 24.6 33.7 65.9
X Triplet (5) hard X 1.5 0.7 4.0 1.6 0.7 0.7 2.5 0.9
X MS (6) hard X 1.5 0.7 4.0 1.4 0.7 0.7 2.4 1.0

Reg (7) – X 52.9 71.8 65.2 93.3 27.8 41.5 42.4 71.9
RKD (8) random 1.6 0.7 3.8 1.6 0.7 0.4 2.4 0.7
DR (9) random 1.5 0.9 4.0 1.9 0.7 0.9 2.5 1.4

Table 8: Asymmetric testing onROxford5k andRParis6k [51]. LAB: using labels in student model
training. ASYM: Using asymmetric similarity (3) at training. Best mAP highlighted per teacher-
student pair. GeM pooling and learned whitening [53] used in all cases. The results without a teacher
in the top block correspond to symmetric testing (same as in Table 7) and are only added here for
convenience.

16


	1 Introduction
	2 Related work
	3 Asymmetric metric learning
	3.1 Preliminaries
	3.2 Asymmetric similarity
	3.3 Loss functions using labels
	3.4 Loss functions using the teacher only

	4 Experiments
	4.1 Setup
	4.2 Results

	5 Conclusions
	A Example of asymmetric hard example mining
	B Model complexity and parameters
	C More results

