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Abstract

Knowledge transfer from large teacher models to smaller student models has
recently been studied for metric learning, focusing on ne-grained classi cation.

In this work, focusing on instance-level image retrieval, we studgsymmetric
testingtask, where the database is represented by the teacher and queries by the
student. Inspired by this task, we introduasgymmetric metric learning novel
paradigm of using asymmetric representationsaahing. This acts as a simple
combination of knowledge transfer with the original metric learning task.

We systematically evaluate different teacher and student models, metric learning
and knowledge transfer loss functions on the new asymmetric testing as well as the
standardsymmetric testingask, where database and queries are represented by the
same model. We nd that plairegressioris surprisingly effective compared to
more complex knowledge transfer mechanisms, working best in asymmetric testing.
Interestingly, our asymmetric metric learning approach works best in symmetric
testing, allowing the student to even outperform the teacher.

1 Introduction

Originating inmetric learning loss functions based on pairwise distances or similaritigs/0, 46,
, 5] are paramount in representation learning. Their power is most notable in category-level tasks
where classes at inference are different than classes at learning, for insexgeained classi cation

[46, 71], few-shot learning68, 61] local descriptor learning19] andinstance-level retrievdll6, 52].
There are different ways to use them without supervision 79, 6] and indeed, they form the basis
for modernunsupervised representation learnifigt, 21, 8].

Powerful representations come traditionally with powerful network modgis4g], which are
expensive. The search for resource-ef cient architectures has lead to the design of lightweight
networks for mobile devices[, 57, 83, neural architecture searcf8, 41] andmodel scalind63].
Training of small networks may be facilitated Bpowledge transfefrom larger networksZ3].
However, both network design and knowledge transfer are commonly performed on classi cation

tasks, using standard cross-entropy.

Focusing on ne-grained classi cation and retrieval, several recent methods have extended metric
learning loss functions to allow for knowledge transfer from teacher to student mégdets p1, 47].
However, two questions are in order: (a) since transferrirgpeesentatiorirom one model to another

is inherently a continuous task, can't we just usgressiof? (b) apart from knowledge transfer, is the
original metric learning task still relevant and what is a simple way to combine the two?

In this work, we focus on the task ofstance-level image retriev@dl9, 51], which is at the core

of metric learning in the sense of using pairwise distances or similarities. In its most well-known
form [16, 57], the task is supervised, but the supervision is originating from automated data analysis
rather than humans. As such, apart from noisy, supervision is often incomplete, in the sense that
although class labels per example may exist, not all pairs of examples of the same class are labeled.
Hence, one has to work with pairs rather than examples, ueltkéace recognitiorf11].

Preprint. Under review.



Our work is motivated by the scenario wherel@abase (gallerypf images is represented and
indexed according to a large model, whijeeriesare captured from mobile devices, where a smaller
model is the only option. In such scenario, rather than re-indexing the entire database, it is preferable
to adapt different smaller models for different end-user devices. In this case, knowledge transfer from
the large (teacher) to the small (student) model is not just helping, but the student should really learn
to map inputs to the same representation space. We call thiasgskmetric testing

More importantly, even if we consider the standaydhmetric testingask, where both queries and
database examples are represented by the same model at inference, we introduce a novel paradigm
of using asymmetric representaticatgraining, as a knowledge transfer mechanism. We call this
paradigmasymmetric metric learningBy representing anchors by the student and positives/negatives

by the teacher, one can apply any metric learning loss function. This achieves both metric learning
and knowledge transfer, without resorting to a linear combination of two loss functions.

In summary, we make the following contributions:

We study the problem of knowledge transfer from a teacher to a student model for the rst
time in pair-based metric learning for instance-level image retrieval.

In this context, we study thesymmetric testintask, where the database is represented by
the teacher and queries by the student.

In both symmetric and asymmetric testing, we systematically evaluate different teacher and
student models, metric learning loss functions (subsection 3.3) and knowledge transfer loss
functions (subsection 3.4), serving as a benchmark for future work.

We introduce the@symmetric metric learningaradigm, an extremely simple mechanism to
combine metric learning with knowledge transfer (subsection 3.2).

2 Related work

Metric learning Historically, metric learning is about unsupervised learning of embeddings ac-
cording to a pairwise distance&/] or similarities 8, 3]. Modern deep metric learning is mostly
supervisedwith pair labels specifying a set pbsitiveandnegativeexamples peanchorexam-

ple [77]. Standard loss functions acentrastive[ 1] andtriplet [77, 70], operating on one or two
pairs, respectivelyGlobal loss functions rather operate on an arbitrary number of paits/[., 5],
similarly tolearning to rank{ 7, 76]. The large number of potential tuples gives risetiming[20, 74]
andmemory[72, 75] mechanisms. At the other extreme, extensions of cross-entropy operate on
single examplefs9, 11]. We focus on pair-based functions in this work, due to the nature of the
ground truth $2, 53]. Unsupervisednetric learning is gaining momenturia1, 79, 6], but we focus

on the supervised case, given that it requires no human effort [52, 16].

Image retrieval Instance-level image retrieval, either using local featutes ¢r global pool-

ing [36], has relied on SIFT descriptor£d] for more than a decad€onvolutional networkguickly
outperformed shallow representations, using diffeperdlingmechanismsis, 67] and ne-tuning

on relevant datasets, initially with cross-entropy on noisy labels from the @emfl then with
contrastive 2] and triplet [L6] loss on labels generated from the visual data alone. While the best
performance comes from large networks,[51], we focus orsmall networkg57, 63 for the rst

time. Ourasymmetric tesscenario is equivalent to that of prior studi€s,[59], but with different
motivation and settingd-eature translatiorj27] is meant for retrieval system interoperability, so both
networks may be large and none is adapted. The rd@ahward-compatible trainin@BCT) [59] is
meant to avoid re-indexing of the database like here, but the new model used for queries is actually
more powerful than the old one used for the database, or trained on more data.

Small networks While large networks{2, 28] excel in performance, they are expensive. One
solution is tocompresexisting architecture®.g by quantization [5] or pruning [2]. Another is to
manuallydesignmore ef cient networkse.g by using bottlenecks3[)], separable convolutiong §],
inverted residualsy/] or point-wise group convolutions8i]. MobileNetV2 [57] is such a network

that we use as a student in this work. More recemiyral architecture searcp!s, 41, 62, 25] is

making this process automatic, although expensive. Alternatively, a small model can rst be designed
(or learned) and then its architectigealedby adding depthZZ], width [87], resolution P9 or



a compound of the abovéf]. We use the latter as another student in this work. We show that
pruning[73] cannot compete designed or learned architectures.

Knowledge transfer Rather than training a small network directly, it is easier to optimize the same
small network §tudenf to mimic a larger onetéache), essentially transferring knowledge from the
teacher to the student. In classi cation, this can be dexgeby regression of the logits] or by
cross-entropy on soft targets, knownka®wledge distillatiof23]. BCT [59] xes the classi er (last
layer) of the student to that of the teacher, similarlyid][ Such ideas do not apply in this work, since
there is no parametric classi eletric learningis mostly about pairs rather than individual examples,
and indeed recent knowledge transfer methods are based on pairwise distances or similarities. This
includese.g learning to rank[9] and regression on quantities involving one or more pairs like
distanced81, 47], log-ratio of distance$38], or angles[47]. The most general form ielational
knowledge distillatiofRKD) [47]. Direct regression ofeaturess either not considered or shown
inferior [81], but we show it is much more effective than previously thought. We also show that the
original metric learning task is still bene cial when training the student and we introduce a very
simple mechanism to combine with knowledge transfer.

Asymmetry Asymmetric distances or similarities are commompproximate nearest neighbor
search where queries may be quantized differently than the database, or notlat, ali| 34, 32, 45,

]. In image retrieval there are efforts to reduce the asymmetri-afearest neighbor relationg],
or use asymmetry to mitigate the effect of quantizatio®f],[or handle partial similarity §4] or
alignment [6]. In classi cation, it is common to use asymmetric image-to-class distandesr [
region-to-image matching[]. In metric learning asymmetry has been used in sample weight-
ing [40], different mappings per views[]], or hard example mining/[F]. Asymmetric similarities
are used betweerross-modal embedding$4, 39, 13, but not for knowledge transfer. They are
also used over the same modality to adjust embeddings to a memoryZidiok fo treat a set of
examples as a whole [68], but again not for knowledge transfer.

3 Asymmetric metric learning

3.1 Preliminaries

LetX X be atraining set whereX is aninput space Two sources of supervision are considered.

The rstis a set oflabels a subset of all pairs of examplesinis labeled as positive or negative

and the remaining are unlabeled. Formally, for eanbhora 2 X, asetP(a) X of positive
andaseN(a) X of negativeexamples are given. The second igachermodelg: X | RY,

mapping input examples tofaature (embeddinggpace of dimensionality. The objective is to

learn the parametersof astudentmodelf : X ! RY, such that anchors are closer to positives

than negatives, the teacher and student agree in some sense, or both. When labels are not used, an
additional set of exampldd(a) may be used for each anchmre.g aneighborhoodf a space or

the entire seX nfag. The teacher is assumed to have been trained aising labels only.

Training can be formulated as minimizing tegor function

X
J(X; )= (&) 1)

a2Xx

with respect to parametersover X . There is one loss term per ancl@? X , which however may
depend on any other exampleXn hence,J is not additive inX . Theloss function may depend

on the labels or the teacher only, discussed respectively in subsection 3.3 and subsection 3.4; it may
depend on the teacher indirectly vigianilarity function as discussed in subsection 3.2.

Atinference, gdestseZ X and a set oflueriesQ X are given, both disjoint fronX . For each
queryg2 Q,asetP(q) Z of positiveexamples is givenSymmetric testing the task of ranking
positive example® (q) before all others iZ by descending similarity tqin the student space, for
each query 2 Q. Asymmetric testing the same, except that similarities are between queries in the
student space and test examples in the teacher space.



e, 0, @ : anchor, positive, negative (studers).e, ® : anchor, positive, negative (teacher).
f : student (with parameters. g: teacher ( xed).- - - -, : distance measurements.
—, «<—> : attraction, repulsion (mutual)——, <— : attraction, repulsion (unilateral).
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Figure 1: Metric learning and knowledge transfer. &)mmetric Positive (negative) pairs of
examples mutually attracted (repulsed) in student space; teacher not uBegygsiorfabsolute
ML+KD [ 81]): Examples in student space attracted to corresponding examples in teacher space; labels
not used. (cRelational(relative ML+KD [81] or distance-wise RKDZ47]): Distances encouraged to

be the same in both spaces; labels not usedAggtinmetridthis work): Anchors in student space
attracted to (repulsed from) positives (negatives) in teacher space; both labels and teacher used.

3.2 Asymmetric similarity

We usecosine similarityin this work: sim(v;v9 := hv;v3 =(kvkkv%) for v;v® 2 RY. The
symmetric similaritys®™ (a; x) between an anchar 2 X and a positive or negative example
x 2 P(a) [ N (a) is obtained by representing both in the feature space of the student:

s¥M(a;x) :=sim(f (a);f (x)): ()
This is the standard setting in related work in metric learning.

By contrast, we introduce tresymmetric similaritg®™™ (a; x), where the ancha is represented

by the student, while positive and negative examplase represented by the teacher:
s*™M (a;x) = sim(f (a); g(x)): 3
In this settingg(x) is xed for all x 2 X, because the teacher is xed.

Figure 1 illustrates the idea. When used with loss functions discussed in subsection 3.3, (3) (Fig-
ure 1(d)) uses both the labels and the teacher, essentially combining metric learning and knowledge
transfer. With the same loss functions, (2) (Figure 1(a)) uses the labels only, focusing on metric
learning only. Instead, as discussed in subsection 3.4, relational distill&fiph7] uses the teacher

only, focusing on knowledge transfer only (Figure 1(b,c)). In practice, these other solutions require a
linear combination of two error functions for metric learning and knowledge transfer.

3.3 Loss functions using labels

When using the labels, we have access to positive and negative exdhip)esndN (a) per anchor
a. The teacheg may be used in addition to labels or not by using the asymmetric (3) or symmetric (2)
similarity, respectively. We write either as(a; x) below.

Contrastive Thecontrastiveloss [L8] encourages independently positive examplés be close to
the anchom and negative examplesf§rther froma by rgl(arginm in the student space:

“contr (&) = s (a;p) + [s (&n) m]: (4)
p2P (a) n2N (a)

Triplet Thetriplet loss [/(] encourages positive examplpgo be closer to the ancharthan
negative examples by marginm in the %Eudent space:

“triplet (&) = [s (a;n) s (a;p)+ m]s; (5)
(pin)2L(a)
where typicallyL (a) := P(a) N (a). Positive and negative examples are not used independently:
if similarities are ranked correctly, the corresponding loss term is zero.



Multi-similarity ~ Themulti-similarity loss [71] treats positives and negatives independently:
0 1 0 1

X X
\MS(a; ) = E'og@l-k e (s (&p) MA + 1'09@14— e (s (&n) m)A : (6)
p2P (a) n2N (a)

Here, multiple examples are taken into account together by a nonlinear function: positives (negatives)
that are farthest from (nearest to) the anchor receive the greatest relative weight.

3.4 Loss functions using the teacher only

When not using the labels, the only source of supervision is the teacher gno@tmmetric
similarity (2) is not an option here; we either use use (3) or other ways to compare the two models.
Given anchom, the loss may depend @nalone, or also the additional examplééa). We write

S(a; x) :=sim( g(a); g(x)) for the similarity ofa and some 2 U(a) in the teacher space.

Regression The simplest option igegressionencouraging the representations of the same input
examplea by the two models to be close by using asymmetric similarity (3):

reg(@ )= S*M(aa) = sim(f (a);9(a)): (7

For each anchor, it does not depend on any other example. It is the sameahsdhdeversion
of metric learning knowledge distillatiofML+KD) [ 81] and as contrastive loss (4) on asymmetric
similarity (3) (using only the anchor as a positive fielf).

Relational distillation ~ Given an anchoa and one or more other vectoxs::: 2 RY, relational
knowledge distillatio(RKD) [47] is based on a number of relational measuremefigs x;:::).
One such (a;x;:::) is thedistanceka xk for x 2 RY. Another is theanglesim(a x;a )
formed bya; x;y, forx;y 2 RY. The loss is calledistance-wisendangle-wiserespectively. The
RKD loss encourages the same measurements by both models,

X
“rkp (&) 1= r( (f (a);f (x);:00); (9(a);9(x);::0)); ®)
(x;::r )2U(a)n
wheren is e.g 1 for distance an@ for angle and is a regression loss, taken as Hub&d[ RKD
encompasses regression byaken as the identity mapping on the anchor feature alone &den
as sim. It also encompasses theativesetting of ML+KD [81] by (a;x) := ka xkand the
direct matchbaseline of DarkRank [9] by (a;x) == ka XK.

DarkRank LetV(a;x):= fy2 U(a): S(a;y) S(a;x)g be the set of examples lni(a) that
are mapped farther away from ancledhanx in the teacher space. For eac U(a), DarkRank p]
encourages those examples to be farther away &dmanx in the student space:

0 1

X X sym .
‘or(a )= @s™™ (a;x)  log e @A )
x2U(a) y2V (ax)

It is an application of thdistwiseloss [/, 76], where the ground truth ranking is obtained by the
teacher rather than some form of annotation.

4 Experiments

4.1 Setup

Datasets We use theéSfM dataset§3] for training, containing 133k images for training and 30k
images for validation. We use threvisited R Oxford5kand R Paris6k datasets 1] for testing,

each having 70 query images. All datasets depict particular architectural landmarks under very
diverse viewing conditions. We follow the standard evaluation protocol, usingéetumandhard
settings p1]. We reportmean average precisidimAP), includingmean precision at 1(mP@10) in

the supplementary material. Comparisons are based on mAP. To compare with priihimege[also

use the originaDxford5k[49] andParis6k[50] datasets, reporting mAP only.



SYMMETRIC TESTING  ASYMMETRIC TESTING
STUDENT TEACHER LAB LOSS SELF Pos NEG MINING ASsYM MEDIUM HARD MEDIUM HARD
R Oxf R Par R Oxf R Par R Oxf R Par R Oxf R Par

X Contr (4) X X hard X 57.3 67.1 31.1 413 383 498 184 238

X Contr(4) X X X hard X 57.3 68.4 315 422429 559 226 314
MobileNetvV2 VGG16 X Contr (4) X hard X 559 66.7 31.1 406 341 473 17.0 245
X Contr(4) X X hard X 555 67.0 304 409 382 522 153 289

Reg (7) X - X 53.3 675 289 409480 579 265 326

Table 1:Contrastive—regression ablatio®ymmetric and asymmetric testing mAP R®xford5k

and R Paris6k p1]. LAB: using labels in student model trainingos, NEG: Using positives,
negatives. SELF. Using anchor (by teacher) as positive for itself (by studedtsym: Using

asymmetric similarity (3) at training. The second row is an option that we call Co@eM pooling

and learned whitening [53] used in all cases.

Networks All models are pre-trained for classi cation on ImageN&t][and then ne-tuned
for image retrieval on SfM, following the setup of the same work. We use VGG:1pgnd
ResNet10177] asteachemodels with the feature dimensionaliyf 512 and 2048, respectively. We
use MobileNetV2 §7] and Ef cientNet-B3 [53] asstudentnetworks, removing any fully connected
layers and stacking orfe 1 convolutional layer to match the dimensionality of the teacher. All
networks usgeneralized mean-poolingeM) [53] on the last convolutional feature map.

Implementation details The image resolution is limited 862 362at training ( ne-tuning). At
testing, anulti-scalerepresentation is used, with initial resolutionldf24 1024and scale factors
of 1, p% and%. The representation is pooled by GeM over the features of the three scaled inputs. We

usesupervised whitenindrained on the same SfM datasef]. In asymmetric testingvhitening is
learned in the teacher space. Our implementation is based on the of cial codd of PyTorch; as
well as [71, 47, 9]. Teacher models are taken from [53].

Training and hyper-parameters We follow the training setup ofj3] for loss functions that use

labels. We use the validation set to determine the hyperparameter values and the best model. We train
all models using the SGD with learning rate decay of 0.99 per ef®gmmetric trainind2) takes

place for 100 epochs or until convergence based on the validation setsyometric trainindg3),

this is extended to 300 epochs. Each epoch consists of 2000 tuples. A mini-batch has 10 tuples, each
composed of 1 anchor, 1 corresponding positive and 5 negatives. For unsupervised losses we create
tuples of the same overall size. We use weight decayof in each experiment.

Loss functions Forcontrastivdoss (4), we set the margim = 0:7 and the initial learning rate to
10 ®and10 2 for symmetric and asymmetric training, respectively. et (5), we setm = 0:1
and =10 8. Formulti-similarity (6) we setm =0:6, =1, =1 and =10 8 forall setups.
Forregression(7), we set =10 3. We use the DA variant or RKD/[/] (8), with the angle-wise
and distance-wise loss weighted by a factor of 2 and 1 respectively, arid 2. For DarkRank
(DR) (9), we set =10 °© for the VGG16 teacher; for ResNet1017 10 ° for MobileNetV2 and

=10 7 for Ef cientNet-B3. We do not discriminate between the student training bsiqmrvised
or not, since labels are already used for teacher training.

Mining Whenusing labelswe usehard negative minings a default, followingg3]. Negatives

are mined each epoch from a random subset of 22k images of the training set. The negatives closest
to the anchor (according to (2) or (3), depending on the setting) are selected. There is no mining for
positives, because there are only few (1-2) positives per anchor. Wtarsing labelswe draw
additional examples uniformly aandomas a default. There is no mining for regression.

4.2 Results

Contrastive—regression ablation As will be shown in the following results, contrastive loss and
regression turn out be most effective in general. Moreover, by comparing (4) with (7), contrastive
with asymmetric similarity (3) encompasses regression by setting each anchor as a positive for itself,

Yhttps://github.com/filipradenovic/cnnimageretrieval-pytorch
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SYMMETRIC TESTING ASYMMETRIC TESTING

STUDENT d TEACHER LAB LOSS MINING ASYM MEDIUM HARD MEDIUM HARD
R Oxf R Par R Oxf R Par R Oxf R Par R Oxf R Par
VGG16 [53] 512 X Contr(4) hard 60.9 69.3 329 442
ResNet101 [53] 2048 X Contr(4) hard 65.4 76.7 40.1 552
MobileNetv2 512 X Contr(4) hard 53.6 66.4 288 39.7
2048 X Contr(4) hard 56.1 68.5 30.3 42.0
) 512 X Contr(4) hard 53.8 70.9 26.2 46.0
EfcientNet-B3 540 X Contr(4) hard 596 751 333 519
X Contr* hard X 573 68.4 315 422429 559 226 314
X Contr(4) hard X 57.3 67.1 311 413 383 498 184 238
X Triplet(5) hard X 370 624 118 360 18 43 0.7 28
512 VGG16 X MS(6) hard X 36.8 628 115 365 19 43 08 27
Reg (7) - X 53.3 675 289 409480 579 265 326
RKD (8) random 46.2 643 218 376 20 41 08 26
DR (9) random 452 606 246 331 17 38 07 24
MobileNetV2
X  Contr* hard X 63.2 75.0 379 520471 615 218 37.7
X Contr(4) hard X 60.8 721 36.1 47.6 323 515 9.6 282
X Triplet(5) hard X 455 68.0 19.6 434 13 37 07 24
2048 ResNet101 X MS (6) hard X 445 68.1 179 432 14 36 07 23
Reg (7) - X 59.8 73.1 357 495492 650 233 407
RKD (8) random 56.1 69.8 318 442 16 41 08 25
DR (9) random 483 580 233 315 13 41 06 27
X Contr* hard X 56.9 69.0 31.1 435 447 580 239 324
X Contr(4) hard X 56.8 704 31.2 454 438 249 230 6.1
X Triplet(5) hard X 337 646 80 403 14 40 06 25
512 VGG16 X MS(6) hard X 339 649 81 406 14 39 06 25
Reg (7) - X 55.0 69.4 27.1 445494 582 26.0 33.0
RKD (8) random 516 676 262 417 13 38 06 25
DR (9) random 347 611 85 352 14 39 06 24
Ef cientNet-B3
X  Contr* hard X 66.8 77.1 425 555 452 63.7 19.6 409
X Contr(4) hard X 66.3 77.4 413 555 374 574 109 337
X Triplet(5) hard X 395 694 116 458 15 40 0.7 25
2048 ResNet101 X MS (6) hard X 399 69.7 11.7 462 15 40 0.7 24
Reg (7) - X 649 744 405 524529 652 278 424
RKD (8) random 56.3 73.0 305 464 16 38 07 24
DR (9) random 40.3 699 118 464 15 40 07 25

Table 2: Symmetric and asymmetric testinmgAP onR Oxford5k andR Paris6k p1]. LAB: using
labels in student model trainingdsym: Using asymmetric similarity (3) at training (our work).
Contr* is de ned in Table 1. Best result highlighted per teacher-student pair. GeM pooling and
learned whitening [53] used in all cases.

without any other positive or negatives. To better understand the relation between these two loss
functions, we perform an ablation study where we investigate versions of contrastive on (3) having
negatives, or not, and the anchor itself as positive, or not. The results are shown in Table 1 for
VGG18 MobileNetV2. In symmetric testing, it turns out that the best combination is having both
negatives and the anchor itself. The same happens in almost all cases for other teacher and student
models, as shown in the supplementary material. We denote this combination a$ &whtve

include it in subsequent results. Asymmetric testing is much more challenging. The best is regression
in this case, but Conitris still the second best.

Symmetric testing According to the left part of Table 2, Cofitworks best on MobileNetV2,
while on Ef cientNet, either contrastive and Cohtworks best, with the two options having little
difference. The difference to other loss functiarsing labelds large, reaching 20% or even 30% on
R Oxford5k. Triplet is known to be inferior to contrastived, but the difference is more pronounced
in our knowledge transfer setting. This result is particularly surprising for multi-similarity, which is
state of the art in ne-grained classi cationt {]. Also surprisingly, regression works best among loss
functionsnot using labelsincluding recent knowledge transfer methods RKJ[and DarkRank 9].

It is second or third best in all cases. This nding is contrary&a][ where the regression baseline is
found inferior. DarkRank is inferior to RKD, in agreement with [47].

The superiority of contrastive or Cohtrover regression con rms that, by using our asymmetric
similarity, the original metric learning task is still bene cial. Unlike knowledge distillation on



mAP
Oxf Par

Contr (4) 82.45 81.37
Contr (4) 76.2073.18

X Contr(4) 74.14 78.26
Reg (7) 66.58 74.45

Contr (4) 75.3083.23
Reg (7) 63.57 76.96

STUDENT %FLOPS %RRAM TEACHER LAB LoOSS

VGG16 [53] 100 100

X
VGG16-PLFP[73] 57.37  61.05 X

2.44 19.58 VGG16
MobileNetV2

314 3297 ResNet10T"

Table 3:Symmetric testingiAP on Paris6k and Oxford5k. FLOPS and parameters relative to VGG16.
LAB: using labels in student model training. Using asymmetric similarity (3) in all teacher-student
settings. GeM pooling [53] used in all cases batlearned whitening.

classi cation tasks, knowledge transfer alone is not the best option. Focusing on the best results
(contrastive or Contr), we con rm that, with just one exception (VGGIL6Ef cientNet on R Paris6k
hard),knowledge transfer always helpsmpared to training without the teacher, using the same

The gain is more pronounced, reaching 7-10% on ResNetMdbileNetV2, when the teacher is
stronger and the student is weaker (the exception corresponds to the weakest teacher and strongest
student). MobileNetV2 performs only 2-3% below its teacher. Remarkably, Ef cientigterforms

its teacher this happens oR Paris6k for VGG16 and on all settings for ResNet101.

Asymmetric testing Here, similarities are asymmetric at testing, with the database being repre-
sented by the teacher and queries by the student. According to the right part of Ti&gikegsion is

the clear winneiin this case. This is contrary t6{], where regression fails. In a sense, this can be
expected since the student should learn to map images to features exactly like the teacher. Contr
is clearly the second best, with the differences varying between 1-2RdRamis6k and up to 8%

on R Oxford5k. Contrastive is the third, with a further loss of roughly 5-10% or more. Knowledge
transfer of weak information like relations or ranking fails completely in this case, which is totally
expected. What is unexpected is that triplet and multi-similarity fail too.

When compared with symmetric testing using the corresponding teacher alone, the loss of using the
student on queries is 8-16%. There is no substantial difference in this behavior between MobileNetV2
and Ef cientNet. Asymmetric testing is considerably more challenging than symmetric. The closest
work in terms of asymmetric testing fieature translatiorf27], where a shallow translator is learned
instead of ne-tuning the student end-to-end. This approach performs poorly, with up to 40% mAP
loss. Students are still large networks, so there is no computational gain.

Results on Paris6k and Oxford5k We consider this experiment primarily for comparison with
progressive local lter pruning PLFP) [73], which performs symmetric testing with a pruned version

of VGG16. For the sake of comparison, there is no whitening in this case. According to Table 3,
MobileNetV2 has substantially lower FLOPS and parameters than the pruned VGGL16, yet with either
teacher it performs better on Paris and nearly the same on Oxford. Ef cientNet, reported in the
supplementary material, performs best, although it has more parameters.

5 Conclusions

There are certain unexpected or surprising ndings in this work. First, regression is particularly effec-
tive in knowledge transfer. It appears that the more the constraints on student mappingsking

I distance/angle relations positions), the better the performance in standard symmetric testing.
Second, the standard contrastive loss is particularly effective with asymmetric similarity at training,
outperforming by a large margin state of the art methods like multi-similarity. A straightforward
combination with regression—treating the anchor itself as positive—performs best on symmetric
testing. In the new asymmetric testing task, regression is unsurprisingly a winner.

We have shown that using the original metric learning task while transferring knowledge is still
bene cial in symmetric testing. It remains to be investigated whether the same can happen in
asymmetric testing. We consider the same dataset in teacher and student training, so the latter is as
supervised as the former. An interesting extension would be to consider a different, unlabeled dataset
in student training. This would be a semi-supervised solution diéta distillation[54].
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A Example of asymmetric hard example mining

Depending on the similarity we use in the loss functiom, symmetric (2) or asymmetric(3), we

follow the same choice for hard negative mining. This means that, in mining basesyommetric
similarity, the features of ancharcome from the student modkl(a) while the database is repre-
sented by the teachgr The database is xed and does not need to be re-computed after each epoch.
Only the anchors are updated, which makes training more ef cient. Figure 2 gives an example of
the hard negatives mined for one anchor across different epochs. Before the training starts (epoch
0) the results are not very informative, which is not surprising giving that the feature spaces of the
teacher and the student do not match. However, after just a few epochs we see harder negatives being
selected. This example illustrates how asymmetric similarity acts as a knowledge transfer mechanism
from the teacher to the student model.

B Model complexity and parameters

Table 4 gives the number of parameters and computational complexity (in FLOPS) for the networks
used in this work. This includes two teachers. It is important to note that the versions of the teachers
are already for image retrieval by removing the fully connected layers, hence this version of VGG16
has signi cantly fewer parameters than the original (around 138M). For the student networks, after
removing the fully connected layers,1a 1 convolutional layer is added to match the output
dimensionality of the teacher network. Those models are shown in Table 4 as well as a version of the
student model without the additional convolutional layer and fully connected layers.

NETWORK TEACHER D GFLOPS RRAM (M)
VGG16 [53] 512 79.40 14.71
ResNet101 [53] 2048 42.85 42.50
1280 1,74 2.22
MobileNetV2 VGG16 512 1.94 2.88
ResNet101 2048 2.50 4.85
1536 5.36 10.70
Ef cientNet-B3 VGG16 512 5.56 11.48
ResNet101 2048 6.26 13.84

Table 4: FLOPS and parameters for the networks used in this work. In the top segment, the teacher
networks are adapted for image retrieval, i.e. the fully connected layers are removed. The bottom
segment shows the student network adapted in the same way and also with an added layer (or not) to
match the output dimensionality of the teacher.

C More results

Complete contrastive—regression ablation Here, we present the full version of the results of the
ablation from Table 1, for all four student-teacher combinations. Apart from mAP, we also report
mP@10. Table 5 and Table 6 present the symmetric and asymmetric testing results, respectively. All
results agree with the results of Table 1. For symmetric testing, contrastive loss with a single positive
and no negatives is again the worst. The addition of the anchor as a positive for itself as well as the
negatives improve the results substantially. Contvhich uses both, performs best in most cases
with the exception of VGG16 Ef cientNet. For asymmetric testing, regression is the best. The
inclusion of the anchor as positive for itself gives better results than without it.

Complete symmetric and asymmetric testing results Table 7 supplements Table 2 by adding
mP@10 scores for all the symmetric testing experiments. Similarly, Table 8 adds mP@10 results
to all asymmetric testing experiments. Overall, the conclusions made based on mAP apply to the
mP@10 results.
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EPOCH a N (a)

10

300

Figure 2:Asymmetric hard negative minin@ne anchoa shown on the rst column, followed by
the hard negativeld (a) mined for this anchor, over different epochs. The anchor is represented by
the student and the database of potential negatives by the teacher.

MEDIUM HARD
STUDENT d TEACHER LAB LoOSs SeELF Pos NEG MINING R Oxford5k R Paris6k R Oxford5k R Paris6k
MAP mP@10 mAP mP@10 mAP mP@10 mAP mP@10

X Contr (4) X X hard 57.3 77.1 67.1 957 311 473 413 804
X Contr(4) X X X hard 573 784 684 96.1 315 469 422 789
512 VGG16 X Contr(4) X hard 559 79.2 66.7 950 311 440 406 789
X Contr(4) X X hard 555 76.1 67.0 96.0 304 441 409 814
Reg (7) X - 533 751 675 956 289 436 409 813
MobileNetV2
X Contr (4) hard 60.8 817 721 973 36.1 504 47.6 851

X x

hard 63.2 844 750 98.0 379 521 520 873
2048 ResNetl01X Contr (4) hard 518 725 67.6 96.0 276 381 413 800
X Contr (4) X hard 606 80.0 741 97.0 357 494 509 856

Reg (7) X - 598 803 731 969 357 494 495 847

X Contr(4) X

Xx X x

X Contr (4) X X hard 56.8 75.7 70.4 96.3 31.2 439 454 817
X Contr(4) X X X hard 569 756 69.0 96.0 311 46.7 435 809
512 VGG16 X Contr(4) X hard 56.1 770 69.3 964 301 421 447 784
X Contr(4) X X hard 57.6 783 69.9 969 314 46.7 449 826
Reg (7) X - 55.0 75.0 69.4 96.6 27.1 423 445 804
Ef cientNet-B3
X Contr (4) X X hard 66.3 853 77.4 984 413 589 555 883
X Contr(4) X X X hard 66.8 847 77.1 986 425 587 555 879
2048 ResNetl01X Contr (4) X hard 617 817 743 971 361 517 516 859
X Contr(4) X X hard 63.8 83.1 759 983 40.1 543 544 87.1
Reg (7) X - 649 837 744 977 405 559 524 871

Table 5: Complete contrastive—regression ablation: symmetric testingR Oxford5k and
RParis6k p1]. LAB: using labels in student model trainingfos, NEG: Using positives, neg-
atives. SELF: Using anchor (by teacher) as positive for itself (by student). Using asymmetric
similarity (3) at training in all cases. Best mAP highlighted per teacher-student pair. GeM pooling
and learned whitening [53] used in all cases.
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MEDIUM HARD
STUDENT d TEACHER LAB LosSs SeLF Pos NEG MINING R Oxford5k R Paris6k R Oxford5k R Paris6k
mMAP mP@10 mAP mP@10 mAP mP@10 mAP mP@10

X Contr (4) X X hard 38.3 53.7 498 844 184 328 238 557
X Contr(4) X X X hard 429 59.1 559 884 226 352 314 663
512 VGG16 X Contr(4) X hard 34.1 489 473 820 170 256 245 534
X Contr(4) X X hard 38.2 520 522 86.0 153 26.2 289 64.1
Reg (7) X - 48.0 64.3 579 90.7 265 379 326 67.1
MobileNetV2
X Contr (4) hard 323 49.7 515 833 96 183 282 624

X Contr(4) X hard 471 654 615 926 218 331 377 741
2048 ResNet101X Contr (4) hard 273 384 47.7 809 84 153 243 506

X Contr (4) X hard 405 582 558 876 174 263 299 634
Reg (7) X - 49.2 679 650 926 233 369 407 721

X X x
X x

X Contr (4) X X hard 438 747 249 393 230 513 6.1 156
X Contr(4) X X X hard 447 615 580 933 239 379 324 69.1
512 VGG16 X Contr(4) X hard 324 454 478 844 141 220 258 56.3
X Contr(4) X X hard 416 575 539 901 203 306 302 640

Reg (7) X - 49.4 70.0 582 924 26.0 39.6 33.0 70.6

Ef cientNet-B3

X Contr (4) X X hard 374 56.8 574 904 109 246 33.7 659
X Contr(4) X X X hard 452 67.2 63.7 921 196 355 409 736
2048 ResNet1l01X Contr (4) X hard 308 445 512 837 102 16.1 27.8 57.0
X Contr(4) X X hard 40.1 56.7 59.1 911 146 243 350 710

Reg (7) X - 529 71.8 65.2 933 278 415 424 719

Table 6: Complete contrastive—regression ablation: asymmetric testindRk Oxford5k and
RParis6k p1]. LaB: using labels in student model trainingfos, NEG: Using positives, neg-
atives. SELF: Using anchor (by teacher) as positive for itself (by student). Using asymmetric
similarity (3) at training in all cases. Best mAP highlighted per teacher-student pair. GeM pooling
and learned whitening [53] used in all cases.
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MEDIUM HARD

STUDENT d TEACHER LAB LOSS MINING ASYM R Oxf R Par R Oxf R Par
mMAP mP@10 mAP mP@10 mAP mP@10 mAP mP@10
VGG16 512 X Contr(4) hard 609 819 693 974 329 509 442 831
ResNet101 2048 X Contr(4) bard 654 857 76.7 984 40.1 56.6 552 877
MobileNetV2 512 X Contr(4) hard 536 758 66.4 96.7 288 429 39.7 79.0
2048 X Contr(4) hard 56.1 79.0 685 981 30.3 46.0 420 826
Ef cientNet-B3 512 X Contr(4) hard 53.8 76.6 709 96.6 26.2 423 46.0 837
2048 X Contr(4) hard 59.6 86.1 751 951 333 46.0 519 876
X Cont hard X 573 784 684 96.1 315 469 422 789
X Contr(4) hard X 573 77.1 671 957 311 473 413 804
X Triplet(5) hard X 370 552 624 944 118 23.0 36.0 737
512 VGG16 X  MS(6) hard X 36.8 552 628 944 115 222 365 750
Reg (7) - X 533 751 675 956 289 436 409 813
RKD (8) random 46.2 68.1 64.3 947 218 328 376 723
DR (9) random 452 665 60.6 921 246 349 331 741
MobileNetV2
X  Contf hard X 632 844 750 98.0 379 521 520 873
X Contr(4) hard X 608 81.7 721 973 36.1 504 47.6 851
X Triplet(5) hard X 455 66.1 68.0 96.1 19.6 335 434 80.6
2048 ResNet101 X MS (6) hard X 445 654 681 961 179 321 432 80.1
Reg (7) - X 598 803 731 96.9 357 494 495 847
RKD (8) random 56.1 79.3 69.8 963 318 46.0 442 823
DR (9) random 483 69.8 58.0 943 233 333 315 714
X  Cont* hard X 569 756 69.0 96.0 311 46.7 435 809
X Contr(4) hard X 56.8 757 704 96.3 312 439 454 817
X Triplet(5) hard X 337 485 646 944 80 201 403 76.1
512 VGG16 X  MS(6) hard X 339 495 649 944 81 204 406 76.9
Reg (7) - X 550 750 694 966 27.1 423 445 804
RKD (8) random 516 714 67.6 953 262 385 417 811
DR (9) random 347 500 611 931 85 178 352 67.1
Ef cientNet-B3
X  Cont hard X 668 847 771 98.6 425 58.7 555 879
X Contr(4) hard X 663 853 774 984 413 589 555 88.3
X Triplet(5) hard X 395 57.3 694 959 116 243 458 81.1
2048 ResNet101 X MS (6) hard X 39.9 574 697 957 11.7 242 462 814
Reg (7) - X 649 837 744 977 405 559 524 87.1
RKD (8) random 56.3 758 73.0 984 305 464 464 823
DR (9) random 40.3 584 699 959 118 246 464 8l1

Table 7:Symmetric testingn R Oxford5k andR Paris6k p1]. LAB: using labels in student model
training. Asym: Using asymmetric similarity (3) at training. Best mAP highlighted per teacher-
student pair. GeM pooling and learned whitening [53] used in all cases.

15



MEDIUM HARD
STUDENT d TEACHER LAB LOSS MINING ASYM R Oxf R Par R Oxf R Par
mMAP mP@10 mAP mP@10 mAP mP@10 mAP mP@10
VGG16 512 X Contr(4) hard 609 819 693 974 329 509 442 831
ResNet101 2048 X Contr(4) hard 65.4 857 76.7 984 40.1 56.6 552 877
MobileNetV2 512 X Contr(4) hard 536 758 66.4 96.7 288 429 39.7 79.0
2048 X Contr(4) hard 56.1 79.0 685 981 303 46.0 420 826
Ef cientNet-B3 512 X Contr(4) hard 53.8 76.6 709 96.6 26.2 423 46.0 837
2048 X Contr(4) hard 59.6 86.1 751 951 333 46.0 519 876
X Cont hard X 429 591 559 884 226 352 314 663
X Contr(4) hard X 383 537 498 844 184 328 238 557
X Triplet(5) hard X 18 00 43 13 07 00 28 14
512 VGG16 X MS(6) hard X 19 00 43 16 038 0.0 2.7 1.6
Reg (7) - X 480 643 579 90.7 265 379 326 67.1
RKD (8) random 2.0 0.0 41 1.0 08 00 26 1.0
DR (9) random 17 0.0 3.8 0.3 0.7 0.0 2.4 0.3
MobileNetV2
X  Cont hard X 471 654 615 926 218 331 377 741
X Contr(4) hard X 323 497 515 833 96 183 282 624
X Triplet(5) hard X 1.3 00 3.7 14 07 0.0 2.4 1.4
2048 ResNet101 X MS (6) hard X 14 03 3.6 1.0 07 0.3 23 09
Reg (7) - X 492 679 650 926 233 36.9 40.7 721
RKD (8) random 1.6 1.3 4.1 2.3 0.8 1.1 25 1.6
DR (9) random 13 04 41 36 06 0.3 27 31
X Cont hard X 447 615 580 933 239 379 324 691
X Contr(4) hard X 438 747 249 393 230 513 6.1 156
X Triplet(5) hard X 14 00 40 00 06 00 25 00
512 VGG16 X MS(6) hard X 14 00 3.9 0.0 06 0.0 25 00
Reg (7) - X 494 700 582 924 26.0 39.6 33.0 70.6
RKD (8) random 13 0.0 38 0.7 06 00 25 0.3
DR (9) random 14 00 3.9 0.0 06 0.0 24 00
Ef cientNet-B3
X  Cont hard X 452 672 637 921 196 355 409 736
X Contr(4) hard X 374 56.8 574 904 109 246 33.7 659
X Triplet(5) hard X 15 07 40 16 07 0.7 25 09
2048 ResNet101 X MS (6) hard X 15 07 40 14 07 0.7 24 1.0
Reg (7) - X 529 718 652 933 27.8 415 424 719
RKD (8) random 1.6 0.7 3.8 1.6 0.7 0.4 2.4 0.7
DR (9) random 15 09 40 19 07 0.9 25 1.4

Table 8:Asymmetric testingn R Oxford5k andR Paris6k [
training. Asym: Using asymmetric similarity (3) at training. Best mAP highlighted per teacher-
student pair. GeM pooling and learned whiteniag][used in all cases. The results without a teacher

in the top block correspond to symmetric testing (same as in Table 7) and are only added here for

convenience.
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