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1.1. q-analogues: why, what, where? In mathematics and theoretical physics, "q-deformation" often means "quantization" and vice-versa. Historically, q is the exponential of the Planck constant q = e , but, in quantization theory, both q and are parameters.

A number of q-deformations of algebraic, geometric, and analytic structures have been introduced and thoroughly studied in mathematics. Among the q-deformed structures, we encounter quantum groups, quantized Poisson structures, q-deformed special functions, just to mention the best known theories. Quantized sequences of integers arise and play an important role in all of them.

Quantized quantities are functions in q, usually polynomials, or power series. A "good" q-analogue of a "classical" quantity must satisfy (at least) two requirements:

(1) when q → 1, we obtain the initial quantity;

(2) coefficients of polynomials in the quantized object have a combinatorial meaning.

Whenever a combinatorial object counts something, its q-analogue counts the same things but with more precision. This is why combinatorics is playing an increasingly important role in mathematical physics.

1.2. Euler and Gauss. Quantum integers appeared in mathematics long before the development of quantum physics. For a positive integer n, the polynomial [START_REF] Baur | Frieze patterns of integers[END_REF] [n] q := 1 + q + q 2 + • • • + q n-1 = 1 -q n 1 -q is commonly called the q-analogue of n. It satisfies two recurrences:

(2)

[n + 1] q = q [n] q + 1, [n + 1] q = [n] q + q n , both of which can be used to define [n] q starting from the natural assumption [0] q = 0. The q-analogues (1) were introduced by Euler, who studied the infinite product n≥1 (1 -q n ), now called the Euler function.

Euler connected this function to permutations simultaneously founding combinatorics and the theory of modular forms. The q-factorial is defined by [n] q ! := [START_REF] Baur | Frieze patterns of integers[END_REF] q [START_REF] Conway | An enumeration of knots and links, and some of their algebraic properties[END_REF] q • • • [n] q , and the Gaussian q-binomial coefficients by

n m q := [n] q ! [m] q ! [n -m] q ! .
They are polynomials. The role of q-binomials in combinatorics is immense. They count points in Grassmannians over finite fields, Young diagrams, binary words, etc. Every coefficient of n m q has a combinatorial meaning.

The first interesting example of a q-binomial is 4 2 q = 1 + q + 2q 2 + q 3 + q 4 which is different from [START_REF] Coxeter | Frieze patterns[END_REF] q . Moreover, [START_REF] Conway | Triangulated polygons and frieze patterns[END_REF] q ! = 1 + 2q + 2q 2 + q 3 gives yet another version of "quantum 6." These and many other examples explain our viewpoint: we cannot quantize 6 or any other integer individually. What we quantize are not integers, but sequences of integers.

Friezes and Conway's classification.

A frieze is an array of n staggered infinite rows of positive integers, with the first and the last rows consisting of 1's, that satisfies the local unimodular rule

• • • 1 1 1 1 1 • • • 1 • • • • • • c i c i+1 c i+2 • • • c j-1 c j • • • c ij • • • • • • • • • • • • 1 1 1 1 1 • • • 1 • • • local rule b a d c ad -bc = 1
A frieze is determined by the second row (c i ) i∈Z . Every entry of the frieze is parametrized by two integers, i and j. The local rule then allows for the calculation of c ij . For instance,

c ii = c i , c i,i+1 = c i c i+1 -1, etc.
Example 1.1. The following 7-periodic frieze with 6 rows is the main example of [START_REF] Conway | Triangulated polygons and frieze patterns[END_REF] (and the favorite example of Coxeter who used it in all of his articles on the subject).

1 1 1 1 1 1 1 1 • • • 1 4 2 1 3 2 2 1 1 3 7 1 2 5 3 1 1 2 5 3 1 3 7 1 • • • 1 3 2 2 1 4 2 1 • • • 1 1 1 1 1 1 1 • • • 1 3 2 2 4 2 1
Coxeter proved [START_REF] Coxeter | Frieze patterns[END_REF] that every frieze is (n + 1)-periodic. The Conway and Coxeter theorem provides a classification of friezes, stating that friezes are in one-to-one correspondence with triangulations of a convex (n + 1)-gon.

Theorem 1 ([3]

). A sequence of positive integers (c 0 , . . . , c n ) is a cycle of the second row of an n-row frieze if and only if c i is the number of triangles at the i-th vertex of a triangulated (n + 1)-gon.

As Coxeter [START_REF] Coxeter | Frieze Patterns, Triangulated Polygons and Dichromatic Symmetry[END_REF] acknowledged, this statement is actually due to John Conway.

Coxeter showed a connection of friezes to continued fractions; see Proposition 2.6 below. This connection is somewhat equivalent to the existence of a natural embedding of friezes and triangulated (n+1)-gons into the Farey graph; see Figure 2.

Interest in Conway-Coxeter friezes has much increased recently because of the connection to various areas of number theory, algebra, geometry and combinatorics. For a survey, see [START_REF] Morier-Genoud | Coxeter's frieze patterns at the crossroads of algebra, geometry and combinatorics[END_REF] and [START_REF] Baur | Frieze patterns of integers[END_REF].

1.4. Quantum friezes. The following notion is new, although it was implicitly in [START_REF] Morier-Genoud | q-deformed rationals and q-continued fractions[END_REF]. Definition 1.2. A q-deformed frieze is an array of n infinite rows of polynomials in one variable, with the first row of 1's and the second row of Euler's q-integers (1),

1 1 1 1 1 • • • 1 • • • [ci] q [ci+1] q [ci+2] q • • • [cj-1] q [cj] q • • • Cij(q) • • • • • • • • •
that satisfies the following "q-unimodular rule"

(3)

C i,j-1 (q) C i+1,j (q) -C i+1,j-1 (q) C ij (q) = q j-1 k=i (c k -1) . 1 1 1 1 1 1 1 1 • • • 1 [4]q [2]q 1 [3]q [2]q [2]q 1 1 q[3]q {7}q 1 q[2]q {5}q [3]q 1 1 q 2 [2]q q{5}q [3]q q 2 q[3]q {7}q 1 • • • q 3 q 2 [3]q q[2]q q 2 [2]q q 3 q[4]q [2]q q 3 • • • q 4 q 2 q 3 q 3 q 4 q q 3 • • • Figure 1.
The q-deformation of the frieze of Example 1.1.

Starting from the line ([c i ] q ) and using (3), one can calculate every next row of the q-frieze inductively. The q-deformation of the frieze in Example 1.1 is shown in Figure 1, where {7} q = 1 + 2q + 2q 2 + q 3 + q 4 and {5} q = 1 + 2q + q 3 + q 4 , and [c] q is as in [START_REF] Baur | Frieze patterns of integers[END_REF]. For instance, {7} q is calculated twice, the first time as [START_REF] Conway | An enumeration of knots and links, and some of their algebraic properties[END_REF] q -q 3 and then as {7} q = {5}q[3]q-q 3

{7} q = [4] q
[2]q . At first glance, definition 1.2 does not look natural. In particular, (3) is no longer local, but it leads to a frieze with nice properties. We will see in Section 2.3, that C ij (q) is a polynomial with positive integer coefficients. In particular, the last row of a q-frieze consists of powers of q. Quantum friezes deserve thorough study, and we are currently at work on this project.

Introducing quantum rationals & irrationals

Like the integers, rational numbers r s cannot be q-deformed on their own, without including them in a sequence. Attempts to q-deform the numerator and denominator separately lead to notions that lack nice properties. A very naive formula r s q =

[r]q

[s]q and a more standard one [x] q = 1-q x 1-q (note that they coincide modulo a rescaling of the parameter q) are among them.

Here we give several equivalent definitions of q-rationals and explain the connection to q-friezes. For more definitions, a combinatorial interpretation, and a connection to Jones polynomial and cluster algebras, see [START_REF] Morier-Genoud | q-deformed rationals and q-continued fractions[END_REF]. Surprisingly, the q-deformation [x] q of an irrational x ∈ R is a Laurent series in q, owing to an unexpected phenomenon of stabilization of Taylor series of sequences of q-deformed rationals converging to x.

2.1. Deformed continued fractions. Every rational number r s > 0 , where r, s ∈ Z >0 are coprime, has a standard finite continued fraction expansion r s = [a 1 , a 2 , . . .]. Choosing an even number of coefficients (and removing the ambiguity [a 1 , . . . , a n , 1] = [a 1 , . . . , a n + 1]), we have the unique expansion r s = [a 1 , . . . , a 2m ]. Similarly, there is also a unique expansion with minus signs called the Hirzebruch-Jung continued fraction:

r s = a 1 + 1 a 2 + 1 . . . + 1 a 2m = c 1 - 1 c 2 - 1 . . . - 1 c k ,
where a i ≥ 1 and c j ≥ 2 (except for a 1 ≥ 0, c 1 ≥ 1). The notation used by Hirzebruch is r s = c 1 , . . . , c k ; the coefficients a i and c j are connected by the Hirzebruch formula; see, e.g., [START_REF] Morier-Genoud | Farey boat: continued fractions and triangulations, modular group and polygon dissections[END_REF].
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The weighted Farey graph between 0 1 and 1 0 ; the colored area corresponds to the frieze of Example 1.1.

Definition 2.1. The q-deformed regular continued fraction is defined by

(4) [a 1 , . . . , a 2m ] q := [a 1 ] q + q a1 [a 2 ] q -1 + q -a2 [a 3 ] q + q a3 [a 4 ] q -1 + q -a4 . . . [a 2m-1 ] q + q a2m-1 [a 2m ] q -1
where [a] q is the Euler q-integer. The q-deformed Hirzebruch-Jung continued fraction is

(5) c 1 , . . . , c k q := [c 1 ] q - q c1-1 [c 2 ] q - q c2-1 . . . . . . [c k-1 ] q - q c k-1 -1 [c k ] q
For r s = [a 1 , . . . , a 2m ] = c 1 , . . . , c k , the rational functions ( 4) and ( 5) coincide. This rational function is called the q-rational and denoted r s q = R(q) S(q) . Both polynomials, R and S, depend on r and s.

Example 2.2. For instance, we obtain 5 2 q = 1+2q+q 2 +q 3 1+q and 5 3 q = 1+q+2q 2 +q 3 1+q+q 2

. Observe that "quantum 5" in the numerator depends on the denominator. The set of rational numbers Q, completed by ∞ := 1 0 , are vertices of a graph called the Farey graph. Two rationals r s and r s are connected by an edge if and only if rsr s = ±1. Edges of the Farey graph are often represented as geodesics of the hyperbolic plane which is triangulated.

Definition 2.3. The weighted Farey graph, see Figure 2, is just the classical Farey graph, in which the vertices are labeled by rational functions in q and the edges are weighted by powers of q. The weights and the labels are defined recursively via the following local rule:

1 q k q k-1 R S R+q k R ′ S+q k S ′ R ′ S ′
from the initial triangle ( 0 1 , 1 1 , 1 0 ) that remains undeformed. Theorem 2 ( [START_REF] Morier-Genoud | q-deformed rationals and q-continued fractions[END_REF]). The vertices of the weighted Farey graph are, indeed, labeled by q-rationals.

Remark 2.4. The Farey graph contains Z as a subgraph (that forms a sequence of triangles, ( n 1 , n+1 1 , 1 0 )). Our q-deformation restricted to Z leads to Euler's formula [START_REF] Baur | Frieze patterns of integers[END_REF].

Alternatively, one can use the Stern-Brocot tree instead of the Farey graph.

1 0 0 1 • 1 1 1 1 1 0 • q 1 • q 1 0 1 2 1 q 1 2 q • q 2 1 • q 1 • q 2 1 • q 1 • q 3 1 3 1 q • q 1 • q 2 1 3 2 q • q 1 • q 3 1 2 3 q • q 1 • q 2 1 1 3 q • q 1 4 1 q 5 2 q 5 3 q 4 3 q 3 4 q 3 5 q 2 5 q 1 4 q . . . . . . . . . local rule q k-1 R S R S • q k 1 q k R+R q k S+S
The weight of every edge of the weighted Stern-Brocot tree is determined by the local rule along the tree: the weight of the right branch is multiplied by q, the weight of the left branch is 1. This allows us to calculate q-rationals inductively. For instance, 2 1 q = q+1 1 = [2] q , 1 2 q = q q+1 . The left branch of the tree consists of the classical q-integers (1).

2.3. q-deformed SL(2, Z). The modular group SL(2, Z) is useful as a tool in working with continued fractions. In our case, we need to q-deform SL(2, Z), so we consider the following three matrices: [START_REF] Coxeter | Frieze patterns[END_REF] R q := q 1 0 1 , L q := q 0 q 1 , S q := 0 -q -1 1 0 .

For q = 1, we obtain the standard matrices, any two of which can be chosen as generators of SL(2, Z).

Proposition 2.5 ([15]

). Given a rational, r s = [a 1 , . . . , a 2m ] = c 1 , . . . , c k , the polynomials R(q) and S(q) of r s q = R(q) S(q) can be calculated as the entries of the first column of the following matrix products

R a1 q L a2 q • • • R a2m-1 q L a2m q = qR R qS S , R c1 q S q R c2 q S q • • • R c k q S q = R -q c k -1 R S -q c k -1 S ,
where R , S and R , S are lower degree polynomials corresponding to the previous convergents of the continued fractions.

This way of understanding q-rationals clarifies Definition 1.2. Indeed, (3) is the determinant of the second matrix. Note that the matrices (6) are proportional to the matrices arising in quantum Teichmüller theory; see [START_REF] Fock | Quantum Teichmüller spaces[END_REF]. This interesting connection has yet to be investigated.

2.4. Connection to q-friezes. It turns out that q-rationals appear everywhere in q-deformed Conway-Coxeter friezes, as quotients of the neighboring entries, so that we can consider q-friezes as yet another way to describe q-deformations of rationals.

Let us first recall the connection between the Conway-Coxeter friezes and continued fractions. This statement has a straightforward q-analogue.

Proposition 2.7. If (c ij ) are the entries of a frieze and (C ij (q)) the entries of the q-deformed frieze, then

Cij (q)
Ci+1,j (q) = cij ci+1,j q = c i , . . . , c j q .

The q-frieze of Figure 1 contains many examples of q-rationals: {5}

[2] = 5 2 q , {7} [3] = 7 3 q , etc.

2.5. q-deformed irrational numbers. Let x ≥ 0 be an irrational number, and let (x n ) n≥1 be a sequence of rationals converging to x. Our definition is the following. Take the sequence of rational functions [x 1 ] q , [x 2 ] q , . . . Consider their Taylor expansions at q = 0, for which we will use the notation [x n ] q = k≥0 κ n,k q k . Theorem 3 ([16]). (i) For every k ≥ 0, the coefficients of the Taylor series of [x n ] q stabilize as n grows.

(ii) The limit coefficients κ k = lim n→∞ κ n,k do not depend on the sequence (x n ) n≥1 , but only on x.

This stabilization phenomenon allows us to define the q-deformation of x ≥ 0 as a power series in q:

[x] q = κ 0 + κ 1 q + κ 2 q 2 + κ 3 q 3 + • • •

In the case of x < 0, the definition of q-deformation is based on the recurrence [x -1] q := q -1 [x] q -q -1 ; cf. Section 4.1. It turns out that the resulting series in q is a Laurent series (with integer coefficients):

[x] q = -q -N + κ 1-N q 1-N + κ 2-N q 2-N + • • • ,
where N ∈ Z >0 such that -N ≤ x < 1 -N .

3. Examples: q-Fibonacci and q-Pell numbers, q-golden ratio and √ 2 q

Let us consider two remarkable sequences of rationals,

F n+1 F n = [1, 1, . . . , 1] n and P n+1 P n = [2, 2, . . . , 2] n ,
where F n is the n th Fibonacci number, and P n is the n th Pell number. Quantizing them, we obtain sequences of polynomials with a very particular "swivel" property: the polynomials corresponding to F n (resp. P n ) in the numerator and denominator are mirrors of each other. The stabilized Taylor series of Fn+1 Fn q and Pn+1 Pn q

give rise of q-analogues of 1+ √ 5 2 and 1 + √ 2, respectively.

3.1. q-Fibonacci numbers. Let F n (q) be a sequence of polynomials defined by the recurrence

F n+2 = [3] q F n -q 2 F n-2 ,
where [3] q = 1 + q + q 2 is Euler's quantum 3, and where the initial conditions are (F 0 (q) = 0, F 2 (q) = 1) and (F 1 (q) = 1, F 3 (q) = 1 + q). The sequence of polynomials F n (q) is a q-deformation of the Fibonacci sequence, i.e., F n (1) = F n . Consider also the mirror polynomials Fn (q) := q n-2 F n ( 1 q ) (n ≥ 2). The triangles of their coefficients 2 1 1 2 2 2 1 1 2 3 3 3 1 1 3 4 5 4 3 1 • • • are the well-studied sequences A079487 and A123245 of OEIS [START_REF]The On-Line Encyclopedia of Integer Sequences[END_REF].

1 1 1 1 1 1 1 2 1 1 1 2 2 2 1 1 3 3 3 2 1 1 3 4 5 4 3 1 • • • 1 1 1 1 1 1 1 1
Proposition 3.1. One has Fn+1 Fn q = Fn+1(q) Fn(q) .

Example 3.2. The case 5 3 q has already been considered in Example 2.2. We then have

8 5 q = 1 + 2q + 2q 2 + 2q 3 + q 4 1 + 2q + q 2 + q 3 , 13 8 q 
= 1 + 2q + 3q 2 + 3q 3 + 3q 4 + q 5 1 + 2q + 2q 2 + 2q 3 + q 4 , 21 13 q = 1 + 3q + 4q 2 + 5q 3 + 4q 4 + 3q 5 + q 6 1 + 3q + 3q 2 + 3q 3 + 2q 4 + q 5 , . . . . . . . . . The coefficients of these rational functions grow at every fixed power of q, and there is no stabilization of rational functions.

3.2. q-Pell numbers. The sequence of polynomials P n (q) satisfying the recursion

P n+2 = 4 2 q P n -q 4 P n-2 ,
where 4 2 q is the Gaussian q-binomial and with the initial conditions (P 0 (q) = 0, P 2 (q) = 1 + q) and (P 1 (q) = 1, P 3 (q) = 1+q+2q 2 +q 3 ), are q-analogues of the classical Pell numbers. The mirror polynomials are defined by Pn := q 2n-3 P n ( 1 q ) (n ≥ 2). The coefficients of P n (q) 1 1 1 1 2 1 1 1 2 3 3 2 1 1 3 5 6 6 5 2 1 1 3 7 11 13 13 11 7 3 1 • • • form a triangular sequence that was recently added to the OEIS (sequence A323670).

Proposition 3.3. One has Pn+1

Pn q = Pn+1(q) Pn(q) .

3.3. q-deformed golden ratio. To illustrate the stabilization phenomenon, we take the Taylor series of the Fibonacci quotients; see Example 3.2. For instance, 8 5 q = 1 + q 2 -q 3 + 2q 4 -4q 5 + 7q 6 -12q 7 + 21q 8 -37q 9 + 65q 10 -114q 11 + 200q = 1 + q 2 -q 3 + 2q 4 -4q 5 + 8q 6 -17q 7 + 36q 8 -75q 9 + 156q 10 -325q 11 + 677q = 1 + q 2 -q 3 + 2q 4 -4q 5 + 8q 6 -17q 7 + 37q 8 -82q 9 + 184q 10 -414q 11 + 932q = 1 + q 2 -q 3 + 2q 4 -4q 5 + 8q 6 -17q 7 + 37q 8 -82q 9 + 185q 10 -423q 11 + 978q More and more coefficients repeat as the series proceed with the series eventually stabilizing to

[ϕ] q = 1 + q 2 -q 3 + 2q 4 -4q 5 + 8q := [ϕ] q .

The series [ϕ] q satisfies the equation q [ϕ] 2 q -q 2 + q -1 [ϕ] q -1 = 0, which is a q-analogue of x 2 -x + 1 = 0. Therefore, the generating function of the series [ϕ] q is [START_REF] Fock | Quantum Teichmüller spaces[END_REF] [ϕ] q = q 2 + q -1 + (q 2 + 3q + 1)(q 2 -q + 1) 2q .

Let us mention that the coefficients of the series [ϕ] q remarkably coincide with Sequence A004148 of [START_REF]The On-Line Encyclopedia of Integer Sequences[END_REF] (with alternating signs), called the Generalized Catalan numbers.

3.4. q-deformed √ 2. Quotients of the Pell polynomials stabilize to the series 1 + √ 2 q , from which we deduce √ 2 q = 1 + q 3 -2q 5 + q 6 + 4q 7 -5q 8 -7q 9 + 18q 10 + 7q 11 -55q 12 + 18q 13 +146q 14 -155q 15 -322q 16 + 692q 17 + 476q 18 -

2446q 19 + 307q 20 • • • .
This series is a solution of q 2 √ 2 2 q -q 3 -1 √ 2 q = q 2 + 1, which is our version of the q-analogue of x 2 = 2. The generating function is then equal to [START_REF] Kogiso | q-Deformations and t-deformations of Markov triples[END_REF] √ 2 q = q 3 -1 + (q 4 + q 3 + 4q 2 + q + 1)(q 2 -q + 1) 2q 2 .

Note that the coefficients of √ 2 q grow much more slowly than those of [ϕ] q and fail to match any known sequence.

3.5. Quadratic q-irrationals. Several observations can be made by analyzing [START_REF] Fock | Quantum Teichmüller spaces[END_REF] and [START_REF] Kogiso | q-Deformations and t-deformations of Markov triples[END_REF]. The polynomial under the radical of these q-numbers is a palindrome. This remarkable property remains true for arbitrary quadratic irrationals, i.e., numbers of the form x = a+ √ b c , where a, b > 0, c are integers.

Theorem 4 ([9]

). For every quadratic irrational, a+

√ b c q = A(q)+ √ B(q) C(q)
, where A, B and C are polynomials in q. Furthermore, B is a monic polynomial whose coefficients form a palindrome.

A quadratic irrational can also be characterized as a fixed point of an element of PSL(2, Z). A qanalogue of this property will be provided in Theorem 5 in the next section.

3.6. Radius of convergence. The modulus of the smallest (i.e., closest to 0) root of the polynomials under the radical in [START_REF] Fock | Quantum Teichmüller spaces[END_REF] and ( 8) is equal to

R - ϕ = 3 - √ 5 2 and R - √ 2 = 1 + √ 2 -2 √ 2 -1 2 ,
respectively. This are the radii of convergence of the Taylor series ( 7) and ( 8), resp. The modulus of the largest roots are

R + ϕ = 1/R - ϕ and R + √ 2 = 1/R - √ 2 , viz., R + ϕ = 3 + √ 5 2 and R + √ 2 = 1 + √ 2 + 2 √ 2 -1 2 .
Aesthetic aspects of these formulas motivated us to analyze several more examples, one of which is another remarkable number, 9+ √ 221 14

, sometimes called the "bronze ratio." This is the third, after ϕ and √ 2, badly approximated number in Markov theory. The modulus of the minimal and maximal roots of the polynomial under the radical in

9+ √ 221 14 q are R -= 1 + √ 13 -2 √ 13 -1 4 and R + = 1 + √ 13 + 2 √ 13 -1 4 .
Note that 221 = 13 • 17. We do not know if the striking resemblance to the case of √ 2 is a coincidence. Work on the analytic properties of q-numbers is in progress [START_REF] Leclere | Analytic properties of q-deformed real numbers: radius of convergence[END_REF].

Some properties of q-rationals

The notion of q-rationals arose from an attempt to understand the connection between several different theories, such as continued fractions, Jones polynomials of (rational) knots, quantum Teichmüller theory, and cluster algebras. These connections were discovered by many authors; see [START_REF] Fock | Quantum Teichmüller spaces[END_REF][START_REF] Lee | Cluster algebras and Jones polynomials[END_REF]. Our definition is a specialization of such notions as F -polynomials, quantum geodesic length, snake graphs. We present some of those concrete properties of q-rationals that we consider most important; many reflect this deep connection. For more details, see [START_REF] Morier-Genoud | q-deformed rationals and q-continued fractions[END_REF][START_REF] Morier-Genoud | On q-Deformed Real Numbers[END_REF] Theorem 5 ([9]). The procedure of q-deformation commutes with the PSL(2, Z)-action.

Indeed, the first recurrence (2) remains true for q-rationals. For every x ∈ Q, we have [START_REF] Leclere | The q-deformed modular group and quadratic irrationals[END_REF] [x + 1] q = q [x] q + 1.

Recurrence [START_REF] Leclere | The q-deformed modular group and quadratic irrationals[END_REF] readily follows from (4) and is very useful as it allows us to define q-deformations of x < 0. Furthermore, we have

(10) - 1 x q = - 1 q [x] q , [-x] q = -q -1 [x] q -1 .
Together, ( 9) and ( 10) define an action of PSL(2, Z) on q-rationals generated by the matrices R q and qS q in (6). This was (implicitly) checked in [START_REF] Morier-Genoud | q-deformed rationals and q-continued fractions[END_REF] (see Lemma 4.6) and will be further developed in [START_REF] Leclere | The q-deformed modular group and quadratic irrationals[END_REF].

Remark 4.1. Recurrence (9) appears, e.g., for q-integers and plays a crucial role in quantum algebra. For instance, this recurrence is necessary for the quantum binomial formula. Identities (10) look more intriguing and need to be better understood.

4.2. Total positivity. The polynomials in the numerator and denominator of a positive q-rational have positive integer coefficients, with 1 at lowest and higher orders. Moreover, the set of all q-rationals has a much stronger property of total positivity. Consider two q-rationals, r s q = R(q) S(q) and r s q = R (q) S (q) .

Theorem 6 ([15]

). If r s > r s > 0, then the polynomial (11) X r s , r s (q) := R(q)S (q) -S(q)R (q)

has positive integer coefficients.

The main ingredient of the proof of this theorem is the fact that (11) is a monomial, i.e., proportional to a power of q, if and only if r s and r s are connected in the Farey graph. Theorem 6 means that the "quantization preserves the order," in the sense that it is a homeomorphism of Q into an ordered subset of a partially ordered set of rational functions. The notion of total positivity has a long history in mathematics and manifests itself in every area of it. 4.3. Relation to the Jones polynomial. One of the ingenious inventions of Conway [START_REF] Conway | An enumeration of knots and links, and some of their algebraic properties[END_REF] was to encode a certain large class of knots, called "rational" or "two-bridge" knots, by continued fractions. Every notion of knot theory, such as knot invariants, can then be directly associated to continued fractions.

The Jones polynomial is a powerful invariant in knot theory. It turns out that one can express the Jones polynomial J r s (q) of the two-bridge knot associated to a rational r s as a combination of the polynomials R and S of the q-rational r s q .

Theorem 7 ( [START_REF] Morier-Genoud | q-deformed rationals and q-continued fractions[END_REF]). The Jones polynomial of a two-bridge knot is J r s (q) = qR(q) + (1 -q)S(q).

The proof is based on the connection to cluster algebras; see [START_REF] Lee | Cluster algebras and Jones polynomials[END_REF].

4.4. Unimodality conjecture. Long computer experimentation and evidence in the simplest cases convinced us of yet another property of q-rationals.

Conjecture 1 ([15]

). For every r s q = R(q) S(q) , the coefficients of the polynomials R(q) and S(q) form unimodal sequences.

This means that the coefficients of the polynomials increase from 1 to the maximal value (that can be taken by one or more consecutive coefficients) and then decrease to 1. Unimodal sequences appear in mathematics, and this property is interesting because it often hides some combinatorial or geometric structure.

A proof of several particular cases of the conjecture, as well a connection to old problems of combinatorics, was obtained in [START_REF] Mcconville | On a rank-unimodality conjecture of Morier-Genoud and Ovsienko[END_REF]. However, the general problem is open.

Discussion Actually

To our great regret, we cannot discuss all of this with John Conway (at least not yet!), but we can easily imagine such a discussion.

Perhaps, John would ask about number walls, as he did when we talked about friezes. This notion, among hundreds of other surprising notions, can be found on leafing through John's co-authored (with Richard Guy) book [START_REF] Conway | The book of numbers[END_REF]. A number wall is a Z 2 -lattice filled with integers satisfying a local rule different from the frieze rule:

• • • • N • • • • • • • W X E • • • • • • • S • • • • local rule X 2 = N S + EW.
As in the case of friezes, the array is bounded by lines (or zig-zags) of 1's. "Can you q-deform this?," John would likely ask. Our answer would be: "We don't know!" The question, however, is interesting since number walls produce many interesting (known and unknown) sequences of integers.

He might also have wondered about surreal numbers, which he and Guy also discussed in [START_REF] Conway | The book of numbers[END_REF]. Surreal numbers can be constructed using the same binary tree as in Section 2.2. Vertices of the tree are labeled by dyadic rationals (rationals whose denominator is a power of 2): The completion of this picture, according to Conway, contains not only all real numbers, but much more. Conway called surreal numbers an "enormous new world of numbers" and valued them as his greatest discovery; see [18, p. 568]. Once again, though, we do not know what q-deformed surreal numbers are, but it is tempting to apply the same quantization procedure to the binary tree. We are not aware, however, of any stabilization phenomenon. At this point, John would understand that any sophisticated question he might ask us would result in the same answer . . . . He would probably look at us with indulgence and ask something simple like: "But how about quantum complex numbers?! What is the q-deformation of i, or of 1+i √ 3 2 ?!" "Yes," we would reply, "we do know the answer to that!:

[i] q = i √ q , while 1+i √ 3 2
remains undeformed, like 0 and 1," and we would add, "we'll will tell you more about it very very soon!"

2. 2 .

 2 The weighted Farey graph and Stern-Brocot tree. Let us give a recursive definition.

Proposition 2 . 6 (

 26 [START_REF] Coxeter | Frieze patterns[END_REF]). If (c ij ) are the entries of a frieze, then cij ci+1,j = c i , . . . , c j .

  .

4. 1 .

 1 PSL(2, Z)-action. Our first important property is the following.
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	13 q
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	55
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  6 -17q 7 + 37q 8 -82q 9 + 185q 10 -423q 11 + 978q 12 -2283q 13 +5373q 14 -12735q 15 + 30372q16 -72832q 17 + 175502q18 -424748q 19 + 1032004q 20 • • •

	√ This power series is our quantized golden ratio 1+ 2	5	q
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