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SRG3: Speech-driven Robot Gesture Generation with GAN

Chuang Yu and Adriana Tapus

Fig. 1: Our robot gesture generation pipeline. The speech audio is used as an input to the 3D pose synthesizer with a random noise.
Then, the natural and human-like 3D gesture sequences (in the joint position(x, y, z) space) are generated. Moreover, one same speech
audio with multiple different random noises can align multiple natural gesture expressions in the same manner as humans have similar but
different gestures while expressing the same speech in different contexts and situations. The gesture retargeting part maps the obtained
gestures in the joint position space of the Pepper robot (i.e., in the joint angle(pitch, roll, yaw) space). Finally, the mapped positions are
applied on the real Pepper robot in the human-robot interaction.

Abstract— The human gestures occur spontaneously and
usually they are aligned with speech, which leads to a natural
and expressive interaction. Speech-driven gesture generation is
important in order to enable a social robot to exhibit social
cues and conduct a successful human-robot interaction. In this
paper, the generation process involves mapping acoustic speech
representation to the corresponding gestures for a humanoid
robot. The paper proposes a new GAN (Generative Adversarial
Network) architecture for speech to gesture generation. Instead
of the fixed mapping from one speech to one gesture pattern,
our end-to-end GAN structure can generate multiple mapped
gestures patterns from one speech (with multiple noises) just
like humans do. The generated gestures can be applied to
social robots with arms. The evaluation result shows the
effectiveness of our generative model for speech-driven robot
gesture generation.

I. INTRODUCTION

The gesture as a non-verbal body language is very impor-
tant for a humanoid robot communication during human-
robot interaction [1] [2] [3] [4]. Gestures associated and
aligned with speech make a robot more expressive than
by using only-speech communication during human-robot
interaction [5]. It is very challenging to deal with speech-
gesture synchronization problem during the gesture genera-
tion with speech [6] [7]. In the past, the natural and human-
like robot gestures were mostly handcrafted by researchers
again and again, process that is time-consuming and that
needs to use prior knowledge in the related domain. Hence,
the end-to-end automatic methods of the speech to gesture
generation are more and more attracting the attention from
researchers. Because the non-verbal behaviors have a random
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variation to some degree, humans express alternative and
variable instead of repeated speech-driven behaviors [8]. The
speech-driven gesture for the robot as a non-verbal behavior
should possess this kind of characteristic, namely that the
robot can express multiple variable gesture patterns given the
same speech in different contexts and situations. However, in
the past, researchers focused only on one-to-one instead of
one-to-many mapping between the speech and the gesture.
Our paper focuses on the end-to-end speech-driven gesture
generation for a humanoid robot. The pipeline of the robot
gesture generation is as shown in Figure 1. Our 3D gesture
synthesizer is based on the Generative Adversarial Network
(GAN) [9], capable of using the speech audio as input to
generate human-like natural 3D gesture sequences, which
are in the 3D joint position (x, y, z) space. Then, these 3D
positions are mapped to the joint angles(pitch, roll, yaw) of
the Pepper robot gesture controlling by our gesture retarget-
ing algorithm. Besides, our model can complete one-to-many
mapping work, where one same speech audio with multiple
random noises is used as an input to the gesture synthesizer
in order to get multiple interrelated gesture sequences. Our
contributions of this paper are as follows:

(1) We build-up an audio-visual database
from the public YouTube TED video collection.
The link of these videos is the following:
https://www.youtube.com/user/TEDtalksDirector/videos.
The database includes the speech audio data extracted
directly from the videos and the associated 3D human pose
data extracted from 2D RGB images.

(2) A new temporal GAN framework of the cross-modal
generation is proposed for the alignment between the human-
like gestures and the speech. Moreover, our model can use
one speech audio (with multiple noises) to generate multiple
human-like 3D gesture series, which can lead to a natural
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instead of boring and repeated human-robot interaction. The
model solves the problem of how to add the noise for the
generative model with time series source as the input because
the temporal noise sequence is hard to generate for temporal
GAN. In our generator of GAN, the audio speech as a kind
of the time sequence input is represented by the encoder part
as a vector, which contains all temporal information of the
audio speech. Then the decoder of the generator takes the
audio representation and the noise directly to generate the
synchronous gesture sequence.

(3) The generated gestures given the speech audio are
applied to Pepper robot after 3D pose retargeting processing
from the generated 3D pose to the Pepper robot pose, which
certifies the generated gesture’s effectiveness in reality.

In total, compared with traditional one-to-one mapping
models from time series (for example the speech text and
the speech audio) to time series (for example the action and
the video), we came up with a new one-to-many solution
for speech-driven gesture generation which is promising. As
the noise of the conditional GAN model with time series as
input is hard to be added towards the generator part [10],
our GAN model can overcame this problem.

The rest of the paper is structured as follows: Section II
shows the related works. Section III describes the method-
ology; Section IV presents our experiments and results. The
conclusions and future work are part of Section V.

II. RELATED WORKS

Generative models including the deep belief networks
[11], the variational autoencoder models [12], and the gen-
erative adversarial models [9] have attracted a lot of at-
tention of researchers from many research areas including
computer vision, robotics, and image processing. These have
led to more and more excellent applications of audio-virtual
correspondence, where a major focus was on the temporal
mapping between the audio and the face action [13] [10]
or the human Pose [14] [15]. For speech-driven motion
generation, there are two methods based on the type of input
speech, namely the speech with text and the speech input
with audio.

Speech-driven Pose Generation with Text. Aly et al.
[16] built a generation model with the tool BEAT (Behav-
ior Expression Animation Toolkit) [17] to map a human’s
verbal behavior to a corresponding combined robot’s verbal-
nonverbal behavior, namely gesture, based on the personality
dimensions of the interacting human. However, the BEAT
toolkit is a rule-based method and generates the gesture
without a random variation, which leads to a repetitive and
boring experience in the lifelong human-robot interaction.
Yoon et al. [18] built a large-scale co-speech gesture database
including speech text and spontaneous 2D human gestures
extracted from public videos of Youtube TED talks. The
authors proposed an autoencoder model based on the seq2seq
model [19] and the generative model used the speech text
as the input to generate 2D human gesture sequence. The
authors also applied the generated pose and the speech audio
synthesized from text to the NAO robot for the participant

evaluation experiments. However, as mentioned in the pa-
per, the method experienced an unnatural mapping problem
where the generated gesture and the speech audio could
not be tightly mapped well during the experiments. For the
same text sentence, different people can speak with variable
emotional states and speeds, which should correspond to dif-
ferent poses. However, this speech text-based approach can
align only one pose pattern with only one speech sentence,
which leads to an unnatural and not human-like human-robot
interaction. Speech audio-based method can deal with this
well in order to generate different pose sequences based on
the variable speech expression of speakers.

Speech-driven Pose Generation with Audio. Hasegawa
et al. [20] used the Bi-Directional LSTM (Long Short-
Term Memory) Network to generate the co-speech gestures.
The model processed the speech audio into MFCC (Mel-
Frequency Cepstral Coefficients) as the audio representation
and also included LSTM regression part for the temporal
mapping and a temporal filtering to remove noises of the
3D pose data. Using the same database, Kucherenko et al.
[21] proposed an autoencoder-based approach to deal with
the alignment between the speech audio and the human
pose. One autoencoder network, namely MotionED, was
trained for lower dimensional motion representation and
one encoder was trained for the mapping the speech to
motion representation obtained in MotionED. However, the
two studies are one-to-one generation structure, which can
generate only one gesture sequence for the same speech
input.

III. METHODOLOGY

A. Problem Definition

Speech-driven Gesture Generation: This problem is an
one-to-many task by nature to generate the diverse spon-
taneous gesture sequences gm = [gm

t ]t=1:T0
with one speech

audio s= [st ]t=1:T1
and multiple noises nm as inputs. Namely,

the research tried to learn a mapping function Fgeneration,
which will maximize the conditional probability p(gm|s).

gm = Fgeneration (s,nm) (1)

3D Gesture Retargeting: The objective is to map the
generated gestures gm with the position p(x,y,z) in the joint
position space towards the robot gestures rm with the angle
a(pitch,roll,yaw) in the joint angle space, which can be
used on the Pepper robot co-speech gesture controlling di-
rectly. The mapping consists in finding a retargeting function
Fretargeting:

rm = Fretargeting (gm) (2)

B. GAN Model for Speech-driven Gesture Generation

The first GAN model is created by Googfellow et al. [9].
GAN model trains two competitive networks, namely the
generator G and the discriminator D in the same time, how-
ever G and D have opposite objectives. G tries to generate
the data as the sample in the distribution of the training set



Fig. 2: An overview of our GAN model architecture for speech-driven gesture generation. The whole GAN model consists of a
generator and a discriminator. The generator contains a temporal encoder and a temporal decoder. The encoder takes the speech audio as
input to get the last hidden state as output for the later decoder input. The next decoder is applied to decode the input with the encoder
output and a random noise towards the mapping gesture. The discriminator uses the generated gesture (or the ground-truth gesture) and
the spontaneous speech audio as input to predict whether the speech and the gesture match with each other.

while D tries to differ the real data and the generated data.
Nowadays, GAN model has been used in a lot of cross-
modal generation problems, especially audio-visual mapping,
for example audio-to-face and music-to-dance. The authors
in [10] present an end-to-end co-speech face generation
system based on the temporal GAN including a generator
and 2 discriminators. A kind of music-to-dance model based
on GAN was proposed in paper [14] that can synthesize
realistic dances from music. In order to facilitate the co-
speech gestures task, we built a new temporal generative
adversarial network (GAN), which contains the generator and
the discriminator.

In this paper, the proposed GAN model as shown in Figure
2 can produce diverse speech-matching gestures, which can
be applied towards the humanoid robot. Our GAN model is
named with S2GGAN, namely Speech to (2) Gesture GAN.
S2GGAN model contains a generator and a discriminator.
The generator includes one encoder and one decoder and
takes the speech audio as input and outputs the mapping
gesture. The discriminator is used to differ whether the
speech and the gesture match with each other.

1) Generator: The generator consists of an encoder and
a decoder and uses the speech audio as input and outputs the
spontaneous gesture sequence extracted from YouTube TED
videos. As shown in Figure 2, the audio signal is divided into
overlapped audio clips so that each audio clip is one-to-one
correspondence with the gesture frames. Each clip has 8000
audio frames. In order to cope with the starting part and the

ending part of the whole audio signal, 4000 audio frames are
padded to each end, respectively. The stride is the quotient of
the audio frame rate divided by the video frame rate. Then,
the audio clips are input to Convolutional Neural Network
(CNN) [22] with 1D convolution to extract the speech audio
representation, respectively as the 1D CNN can extract the
256 dimensional representation of the time series including
the audio signal [23]. 1D CNN structure in the paper [10]
is applied in our encoder network and it is composed of 1D
convolution, a batch normalization part, and a ReLU part.
The 1D CNN structure is as shown in Figure 3. Inspired
from [24], the 1D CNN should start with a a large kernel,
which can make the low-level feature meaningful. In our
paper, the first kernel size is 250 and all the followed kernel
sizes are 4. We chose leaky ReLU activation [25] instead
of a common ReLU because the latter experiences a dying
ReLU problem and the former can overcome this problem
during the training. Lastly, these representation results are
fed into Gated Recurrent Unit (GRU) model [26] to get the
256 dimensional final hidden state as the encoding output of
the encoder network.

The decoder network comprises one layer GRU and the
Multilayer Perceptron (MLP). The input of the decoder is
the output of the encoder adding the 10 dimensional random
noise. As described in [27], the random noise can introduce
some natural variability during the audio-visual generation
task. We used multiple random noises to generate various
kinds of mapping gestures from one speech audio. This can



Fig. 3: 1D CNN network framework. 1D CNN model input is 8000 frame audio clip and output is 256 dimensional representation.
This 1D CNN start with a big kernel,namely 250 and all the followed convolution operations have a small kernel size with 4. Among
convolution operations, there are leaky ReLU operation and batch normalization operation. Finally, a full connected layer is used to get
the 256 dimensional speech audio representation.[10]

produce various gestures for the robot and can lead to a
natural long-life human-robot interaction. The output of the
decoder is the spontaneous gesture sequence mapping with
the speech audio in the encoder network. Each gesture frame
contains 3D positions of 8 joints including the head, the spine
shoulder joint, the left shoulder joint, the right shoulder joint,
the left elbow joint, the right elbow joint, the left wrist joint,
and the right wrist joint.

2) Discriminator: The discriminator works to distinguish
whether the gesture sequence is realistic and whether the
gesture sequence matches with the speech audio or not.
Firstly, the 1D CNN, which is the same with the one
in the generator, receives the speech audio divided into
the overlapped clips as one of two inputs to get the 256
dimensional representation vectors. Meanwhile, each gesture
frame of the real or generated gesture sequence is used as an
input to the MLP layer to get 256 dimensional vectors. These
vectors concatenate 256 dimensional speech representation
vectors each by each respectively to get the 512 dimensional
vectors as the input of one layer GRU. The GRU final
hidden state is used as input for the MLP layer to distinguish
whether the gesture matches with the speech audio.

3) Objective function: The objective function of our
S2GGAN contains two parts, namely conditional GAN loss
part and L1 loss part. The conditional GAN loss part can
be expressed as shown in Eq. 3. In this equation, G tries to
minimize the loss while D tries to maximize it.

LcGAN(G,D) =Es,g[logD(s,g)]+

Es,z[log(1−D(s,G(s,z))]
(3)

where s denotes the speech audio, g means the gesture
sequence, and z is the random noise.

Previous works have found that it is beneficial to add L1
loss towards the conditional GAN loss in image translation
task [28]. In our work, the L1 reconstruction loss is applied
to enhance the realistic gesture generation at the frame level
(see Eq. 4).

LL1(G) = Es,z,g [‖g−G(s,z)‖1] (4)

The final objective of our S2GGAN is as shown in Eq. 5. The
hyperparameter λ is empirically set to 100 during S2GGAN
training, which is used to decide how much contribution L1

or LcGAN make for all the loss.

G∗S2GGAN = argmin
G

max
D

LcGAN(G,D)+λLL1(G) (5)

C. Gesture Retargeting

Mapping from 3D joint positions p(x,y,z) to 3D robot
joint angles a(roll, pitch,yaw) is a problem of robot kinemat-
ics. There are a lot of works showing how to transfer human
pose with 3D positions to robot pose with joint motor angles
[29] [30]. In our work, we use a Pepper robot to present
the generated co-speech gesture. The Pepper is a social
humanoid robot from SoftBank Robotics. In our research,
8 joint positions are generated, including the head, the spine
shoulder joint, the left shoulder joint, the right shoulder joint,
the left elbow joint, the right elbow joint, the left wrist joint,
and the right wrist joint. Furthermore, 8 joint rotation angles
of 4 joints should be obtained from the 3D positions in each
gesture frame. These 8 joint angles of the robot upper body
gesture can be obtained from the 3D positions of the 8 joints
as shown in Figure 4.

The definitions and the angle ranges of the 8 joint rotation
angles are shown in Figure 5 according to the Pepper robot
official technique documents [31]. In order to make sure that
the rotation axes in the left shoulder joint are in the rotation
angle space, each unit vector along each positive direction of
x axis, y axis, and z axis respectively should be determined.
These three unit vectors are defined as shown in Eqs 6, 7,
and 8 with

⇀

V0,1 and
⇀

V1,2.
And, unit vectors of x axis, y axis, and z axis in the right

shoulder can be calculated with
⇀

V0,1 and
⇀

V1,5. From human
kinesiology, the left and right shoulders do not have so much
relative motion during speaking. In addition, Pepper robot
cannot move his shoulders like human beings. In order to
finish the mapping task from the joint positions to the joint
angles, we simplify the solution where

⇀

V1,5 is negative vector
of

⇀

V1,2. Then, we can use the unit vectors of x axis, y axis,
and z axis in the left shoulder to calculate the angles for the
right shoulder.

⇀x =
⇀

V0,1×
⇀

V1,2

|
⇀

V0,1×
⇀

V1,2|
(6)

⇀y =
⇀

V1,2

|
⇀

V1,2|
(7)



Fig. 4: An overview of the gesture retargeting process. In the joint position (x,y,z) space, there are 8 joints’ 3D positions. The joints
are the head (joint 0), the spine shoulder joint (joint 1), the left shoulder joint (joint 2), the right shoulder joint (joint 5), the left elbow
joint (joint 3), the right elbow joint (joint 6), the left wrist joint (joint 4), and the right wrist joint (joint 7). Based on the robot kinematics,
the 8 angles of the 4 joints are obtained from the 3D positions. The 8 joint angles are the left shoulder pitch, the right shoulder pitch,
the left shoulder roll, the right shoulder roll, the left elbow roll, the right elbow roll, the left elbow yaw, and the right elbow yaw. Joint
roll rotations take place around the X axis, joint pitch rotations around the Y axis, and joint yaw rotations around the Z axis.

Fig. 5: The definition of the joint rotation angles and their rotation angle ranges in degree. [31]

⇀z =
⇀x×⇀y
|⇀x×⇀y|

(8)

where
⇀

Vm,n is a vector from the position of the joint m
to the position of the joint n (m,n = 0,1,2,3,4,5,6,7). The
relation between the joint number and the joint name is as
shown in Figure 4. In the mechanical structure of the physical
Pepper robot, the spine shoulder joint, the left shoulder joint,
and the right shoulder joint keep the fixed spatial relationship.
In our research, we fix the position spine shoulder joint
towards the position of midpoint of the left shoulder joint
and the right shoulder joint.

For the left and right shoulder joints, there are 4 joint
rotation angles that should be extracted, including the left
shoulder roll, the left shoulder roll, the left shoulder pitch,
and the right shoulder pitch.

In order to simplify the calculation process, we used the
unit vectors of the left shoulder joint rotation axes, namely
⇀x, ⇀y and ⇀z, for these 4 angles calculation of both the left
shoulder and the right shoulder joint. LSR (Left Shoulder
Roll), RSR (Right Shoulder Roll), LSP (Left Shoulder Pitch)
and RSP (Right Shoulder Pitch) are calculated as shown in
Eqs. 9, 10, 11, and 12, respectively.

LSR =
π

2
− csc−1

 ⇀y ·
⇀

V5,6

|⇀y| ·
∣∣∣⇀V5,6

∣∣∣
 (9)

RSR = csc−1

 ⇀y ·
⇀

V2,3

|⇀y| ·
∣∣∣⇀V2,3

∣∣∣
− π

2
(10)

LSP =− tan−1

( ⇀

V2,3 ·
⇀z

⇀

V2,3 ·
⇀x

)
(11)

RSP =− tan−1

( ⇀

V5,6 ·
⇀z

⇀

V5,6 ·
⇀x

)
(12)

For the left and right elbow joint rotation angles, their
related coordinate axes rotate because of the shoulder joints’
rotation. Relative to the calculation of four elbow rotation
angles, only the unit vectors of x axis should be transferred,
including ⇀xle f t , and ⇀xright . The related calculation of the 4
elbow joint rotation angles are shown in the Eqs. 13 - 19.
Where ⇀vplane234 is the normal vector of the plane defined
by joint 2 (left shoulder), joint 3 (left elbow) and joint 4
(left wrist). s(α) and c(α) means the sine and cosine of α

respectively. LER, RER, LEY , and REY are the left elbow
roll angle, the right elbow roll angle, the left elbow yaw
angle and the right elbow yaw angle, respectively.



LER =−cos−1

 ⇀

V2,3 ·
⇀

V3,4∣∣∣⇀V2,3

∣∣∣ · ∣∣∣⇀V3,4

∣∣∣
 (13)

RER = cos−1

 ⇀

V5,6 ·
⇀

V6,7∣∣∣⇀V5,6

∣∣∣ · ∣∣∣⇀V6,7

∣∣∣
 (14)

⇀xle f t =

 c(LSR) s(LSR) 0
−s(LSR) c(LSR) 0

0 0 1

 ·
 c(LSP) 0 s(LSP)

0 1 0
−s(LSP) 0 c(LSR)

 ·⇀x
(15)

⇀vplane234 =

⇀

V2,3×
⇀

V3,4∣∣∣⇀V2,3×
⇀

V3,4

∣∣∣ (16)

LEY = cos−1

(
⇀xle f t ·

⇀vplane234∣∣⇀xle f t
∣∣ · ∣∣⇀vplane234

∣∣
)
− π

2
(17)

⇀xright =

 c(RSR) s(RSR) 0
−s(RSR) c(RSR) 0

0 0 1

 ·
 c(RSP) 0 s(RSP)

0 1 0
−s(RSP) 0 c(RSR)

 ·⇀x
(18)

⇀vplane567 =

⇀

V5,6×
⇀

V6,7∣∣∣⇀V5,6×
⇀

V6,7

∣∣∣ (19)

REY = cos−1

(
⇀xright ·

⇀vplane567∣∣⇀xright
∣∣ · ∣∣⇀vplane567

∣∣
)
− π

2
(20)

IV. EXPERIMENTS AND RESULTS

A. Database

It is very hard to build-up a huge audio-visual database
with the speech and the spontaneous gesture. Yoon et al.
[18] proposed a new solution to build up a big speech-driven
gesture database; they used 52 hours of public YouTube TED
videos and related English transcripts. Using OpenPose [32],
which is a popular Human Pose Estimation (open-source)
library, 2D human poses were extracted from videos. Then,
they built the 2D speech driven gesture with the speech text
and the synchronous 2D pose. Inspired by this work, we built
up our own speech-driven database with the speech audio and
the spontaneous 3D gesture extracted from YouTube TED
videos. Instead of speech text, we used speech audio in our
research as the same speech text can be expressed as various
speech audios. Instead of 2D gesture, we achieved 3D gesture
through 3D− pose− baseline [33] in our database. 3D−
pose−baseline is a lightweight library doing 2D-to-3D pose
estimation and its trained model is open to use. However, the
original model was trained with the whole body pose data.
Our work focuses only on the upper body gesture because
the whole body cannot be visualized in most of YouTube

TED videos. Hence, in order to complete our 2D-to-3D pose
estimation task, we trained the 3D− pose−baseline with 8
joints data from the Human3.6M dataset [34], which is an
open 3D human pose database with 3.6 million human poses
and corresponding images.

Not all the frames of the YouTube TED videos contain a
speaker or the whole upper body with 8 joints. Moreover,
we made our rules for the continuous clip selection based
on the rules discussed in paper [18]. Firstly, all 3D gesture
frames in a clip should contain all the eight joints in the upper
body and also all 3D gestures of those joints can be detected
in our 2D-to-3D pose estimation process. Considering the
synchronization of the speech audio and the gesture in our
S2GGAN model, we only selected the videos with a frame
rate of 24 Hz (most of the videos are 24 Hz and few of
them are 25 Hz). The clip should be more than five seconds.
Furthermore, the upper body height should be half larger
than the the height of 2D image in the video. Finally, the
speaker in the selected video clip should face the camera
and there should be no still frames where the speaker stays
still without the gesture movements.

Based on these rule, our final speech-driven gesture
database contains 5760 samples 1. The whole process of our
speech-driven gesture database building is as follows.

(1) Download 1760 public TED videos from YouTube
through YouTube Data API.

(2) Extract the speech audios from videos downloaded
through the FFmpeg library [35].

(3) Extract 2D gesture data of eight joints used in our
study from YouTube videos through OpenPose library.

(4) Transform the 2D gesture to the 3D gesture of eight
joints by 3D− pose− baseline model trained by ourselves.
In 2D-to-3D pose estimation process, only 7 joints’ 3D were
predicted from 2D pose of 8 joints and the spin shoulder joint
is the origin (0,0,0) in the 3D space.

(5) Based on the rules of clip selection, we divided the data
into clips, made synchronization processing with the audios
and the 3D gestures, and built the database for speech-driven
gesture generation task.

B. S2GGAN Training

Our audio-gesture database contains 5760 samples which
were divided into 180 batches with the batch size of 32. The
time steps of the gesture sequence were fixed to 126 and the
time duration is of 5.25 seconds. Standardization operation
are completed on the 3D gesture data before inputting
S2GGAN model and batch normalization operation was used
in 1D CNN part of S2GGAN, which both can effectively
reduce the over fitting during model training based on our
tuning experiments. We used Adam [36] as the optimization
algorithm where the learning rate is 0.0002, the parameter
β1, β2 and ε are 0.5, 0.999, and 10−7, respectively for both
the generator and the discriminator in S2GGAN model. Our
S2GGAN model is completed in TensorFlow 2.0 and the

1Our new database is available upon request. Please contact the authors
for more details.



Fig. 6: The virtual Pepper robot runs the generated speech-
driven gesture in the simulation environment.

training process with 4086 epochs was done on an NVIDIA
GeForce RTX 2080 Ti GPU for about 1 week.

C. Results and Evaluation

After S2GGAN training, we tested the model to generate
various speech-driven gesture sequences with two kinds of
random noises. After pose retargeting from the joint positions
to the joint rotation angles, we applied the joint rotation
angels to run the Pepper robot in simulation environment-
ChoreGraphe as shown in Figure 6 2.

1) Qualitative Evaluation: As any one-to-many genera-
tive model, our S2GGAN is able to generate multiple gesture
sequences mapping with one same speech audio and multi-
ple random noises. After pose retargeting operation on the
gesture with positions, we obtained the joint rotation angles
which can be applied to the Pepper robot. The generated
samples with the joint angle LSR and RSR as shown in
Figure 7, in which (a), (b), and (c) are relative to the
ground truth, the generated gesture with noise 1 and the
generated gesture with noise 2, respectively. We can find
two key points: (1) The generated gestures by S2GGAN
model can learn the whole gesture pattern or trend well
in general. (2) Although the input is the same one speech
audio, S2GGAN can generate two different gesture sequences
with two different noises and the two gesture sequences are
similar in general but with the random variation to some
degree, which can lead to a natural lifelong human-robot
interaction instead of a repetitive and boring one.

In addition, because the random noise is added to the
initial hidden state ĥ0 in the decoder of generator, the joint
rotation angles of generated gestures in the first steps are not
so stable. However, the situation will be improved with the
time steps increasing as shown in RSR sequence of Figure
7 (c). The generated gesture data is more smooth because
GAN model mostly focus on whether the speech audio and
the gesture match with each other. Namely, GAN model pays
more attention to the global alignment instead of the frame-
level alignment compared with the autoencoder model.

2) Quantitative Evaluation: We also estimate the gen-
erated pose using a Average Position Error (APE) [20] as
shown in Eq. 21, where T is the time steps and is equal to

2Due to Covid19 and the lockdown, we couldn’t use the real robot to run
the experiments

TABLE I: APE with noise 1 and noise 2

APE(cm) Noise 1 Noise 2
Head 5.99 5.89

Left shoulder 3.63 3.62
Left elbow 8.97 8.91
Left wrist 21.36 21.79

Right shoulder 3.63 3.63
Right elbow 10.79 10.73
Right Wrist 22.51 22.43

126; M is the number of testing samples and is equal to 960
(30 batches with batch size 32); yreal(m, t) and ygenerated(m, t)
are the the ground truth and prediction of joint position y of
sample m at time step t, respectively.

APE =
1

M×T

M

∑
m=1

T

∑
t=T

∣∣yreal(m, t)− ygenerated(m, t)
∣∣ (21)

The APE results of 7 joints are shown in Table I. Firstly,
you can find that the generation with noise 1 and the
generation noise 2 had similar results, which certify that
the random noise can make the generated gestures have a
random variation to a certain extent. Then, the head APE
and the shoulder APE are small while the wrist APE is large.
Because the wrist joint at the end of the arm has a large
movement space and other joints movements have a limited
space in real contexts.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we came up with a new one-to-many
S2GGAN model for speech-driven gesture generation, which
is promising to be used on other cross-modal mapping tasks
with the time series as the input and the output. In addition,
the model provided a solution to the hard problem, which is
how to add noise to the time series input of GAN model
or VAE model. We also built-up a speech-driven gesture
database with the speech audio and the spontaneous 3D
gestures. S2GGAN model was trained and tested to generate
various speech-driven gestures. Then, the generated gestures
with the joint positions were transformed towards robot
gestures with the joint rotation angles, which were applied
on the Pepper robot. Lastly the generated gestures were
qualitatively and quantitatively evaluated.

During S2GGAN testing part, we generated 960 speech-
driven gesture sequence mapping with the speech audio.
Real-world experiments will be run soon. Participants will
be asked to evaluate the naturalness of the generated ges-
tures. Furthermore, we will also explore emotional gesture
generation.
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[26] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
rnn encoder-decoder for statistical machine translation,” arXiv preprint
arXiv:1406.1078, 2014.

[27] T. Kefalas, K. Vougioukas, Y. Panagakis, S. Petridis, J. Kossaifi, and
M. Pantic, “Speech-driven facial animation using polynomial fusion
of features,” in ICASSP 2020-2020 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2020, pp.
3487–3491.

[28] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image
translation with conditional adversarial networks,” in Proceedings of
the IEEE conference on computer vision and pattern recognition,
2017, pp. 1125–1134.

[29] S. Franz, R. Nolte-Holube, and F. Wallhoff, “Nafome: Nao follows
me-tracking, reproduction and simulation of human motion,” Jade
University of Applied Sciences, Germany, 2013.
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