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Abstract
For the evolution of a compressible fluid in spherical symmetry on a Schwarzschild curved
background, we design a class of well-balanced numerical algorithms up to third-order
accuracy. We treat both the relativistic Burgers–Schwarzschild model and the relativistic
Euler–Schwarzschild model and take advantage of the explicit or implicit forms available
for the stationary solutions of these models. Our schemes follow the finite volume methodol-
ogy and preserve the stationary solutions. Importantly, they allow us to investigate the global
asymptotic behavior of such flows and determine the asymptotic behavior of the mass density
and velocity field of the fluid.

Keywords Compressible fluid · Relativistic flow · Schwarzschild black hole ·
Well-balanced algorithm · Asymptotic behavior
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1 Introduction

We are interested in the numerical approximation and the long time behavior of relativistic
compressible fluid flows on a Schwarzschild black hole background. The flow is assumed to
enjoy spherical symmetry and therefore we deal with nonlinear hyperbolic systems of partial
differential equations (PDEs) in one space variable. This paper is twofold: on the one hand,
designing and testing numerically finite volume algorithms that are well-balanced; on the
other to perform a thorough investigation of the behavior of the solutions and numerically
infer definite conclusions about the long-time behavior of such flows. Our study should
provide first and useful insights for, on the one hand, further development concerning the
mathematical analysis of the models and, on the other hand, further investigations to the same
problem in higher dimensions without symmetry restriction.

Two models are of interest in the present paper. We treat first the relativistic Burgers–
Schwarzschild model (as it is called in [15,16]):

vt + F(v, r)r = S(v, r), t ≥ 0, r > 2M, (1.1a)

where v = v(t, r) ∈ [−1, 1] is the unknown function and the flux and source terms read

F(v, r) =
(
1 − 2M

r

)v2 − 1

2
, S(v, r) = 2M

r2
(v2 − 1), (1.1b)

while the constant M > 0 represents the mass of the black hole. Obviously, the speed of
propagation for this scalar balance law reads

∂vF(v, r) =
(
1 − 2M

r

)
v, (1.2)

which vanishes at the boundary r = 2M , so that no boundary condition is required in order
to pose the Cauchy problem.

Next, we consider the relativistic Euler–Schwarzschild model (as it is called in [15,16]):

Vt + F(V , r)r = S(V , r), t ≥ 0, r > 2M, (1.3a)

whose unknowns are the fluid density ρ = ρ(t, r) ≥ 0 and the normalized velocity v =
v(t, r) ∈ (−1, 1). These functions are defined for all r > 2M and the limiting values v = ±1
being reached at the boundary r = 2M only, and

V =
(
V 0

V 1

)
=

⎛
⎜⎜⎝

1 + k2v2

1 − v2
ρ

1 + k2

1 − v2
ρv

⎞
⎟⎟⎠ , F(V , r) =

⎛
⎜⎜⎝

(
1 − 2M

r

)1 + k2

1 − v2
ρv

(
1 − 2M

r

)v2 + k2

1 − v2
ρ

⎞
⎟⎟⎠ ,(1.3b)

S(V , r) =

⎛
⎜⎜⎝

−2

r

(
1 − 2M

r

)1 + k2

1 − v2
ρv

−2r + 5M

r2
v2 + k2

1 − v2
ρ − M

r2
1 + k2v2

1 − v2
ρ + 2

r − 2M

r2
k2ρ

⎞
⎟⎟⎠ , (1.3c)

with

v =
1 + k2 −

√
(1 + k2)2 − 4k2

(
V 1

V 0

)2

2k2 V 1

V 0

, ρ = V 1(1 − v2)

v(1 + k2)
. (1.3d)
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Here, k ∈ (−1, 1) denotes the (constant) speed of sound, and this second model can be
checked to be a strictly hyperbolic system. The eigenvalues of the corresponding Jacobian
of the flux function read

μ± =
(
1 − 2M

r

) v ± k

1 ± k2v
. (1.4)

As usual, a state (ρ, v), by definition, is said to be sonic if one of the eigenvalues vanishes,
i.e. if |v| = k, supersonic if both eigenvalues have the same sign, i.e. if |v| > k, or subsonic if
the eigenvalues have different signs, i.e. if |v| < k. We will need to distinguish between these
regimes in order to design a robust scheme for this model. Both eigenvalues μ± vanish at
the boundary r = 2M , so that no boundary condition is required in order to pose the Cauchy
problem.

In order to be able of running reliable and accurate numerical simulations for these two
models, in this paper we design shock-capturing, high-order, and well-balanced finite volume
methods of first- and second-order of accuracy (and even third-order accurate for (1.1)).
Specifically, we extend to the present problem the well-balanced methodology proposed
recently by Castro and Parés [7] for nonlinear hyperbolic systems of balance laws. For
earlierwork onwell-balanced schemeswe also refer to [5,19,20] and, concerning the design of
geometry-preserving schemes, we refer for instance to [1–3,6,9–11,18,22] and the references
therein.

The properties of the stationary solutions play a fundamental role in the design of well
balanced schemes, as well as in the study of the long time behavior of solutions. We thus also
built here upon earlier investigations by LeFloch and collaborators [14–16] on the theory and
approximation of the relativistic Burgers- and Euler–Schwarzschild model (1.1) and (1.3).
Remarkably, the stationary solutions to both models are available in explicit or implicit form.

An outline of the content of this paper is as follows.
In Sect. 2 we describe the methodology for this paper and indicate the challenges met

with the two models above. The actual design of the schemes is the content of Sect. 3
(Burgers equation) and Sect. 5 (Euler equations). The proposed well-balanced algorithms,
by construction, preserve all of the steady state solutions, which is an essential property since
numerical methods without this property may lead to wrong conclusions. Furthermore, for
eachmodel we investigate the efficiency, accuracy, and robustness of the proposed algorithms
first in Sect. 4 (Burgers equation) and Sect. 6 (Euler equations). Our numerical experiments
belowmake comparisons between well-balanced and standard methods, and we demonstrate
that the proposed schemes are numerically well-balanced and we emphasize the importance
of this property in order to reach reliable results. Furthermore, we study the late time behavior
of solutions to both models and discuss the role of the choice of the value of the initial data
at the boundary. Finally, we also describe how steady shocks behave under small (or large)
perturbations. In short, we demonstrate that the global dynamics can be accurately determined
by the proposed algorithms and we reach some definite conclusions in Sects. 4.6 and 6.5,
respectively. Further details concerning our methodology and conclusions are found in the
corresponding sections for each model.

2 Well-BalancedMethodology and Strategy Proposed in this Paper

General methodology. Both problems of interest are of the form

Vt + F(V , r)r = S(V , r), r > 2M, (2.1)
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with unknown V = V (t, r) ∈ R
N and N = 1 or 2. Systems of this form have non-trivial

stationary solutions, which satisfy the ODE

F(V , r)r = S(V , r). (2.2)

Our goal is to introduce a family of numerical methods that are well-balanced, i.e. that
preserve the stationary solutions in a sense to be specified. We follow the strategy in [7] to
which we refer for further details and arguments of proof.

We consider semi-discrete finite volume numerical methods of the form

dVi
dt

= − 1

�r

(
Fi+ 1

2
− Fi− 1

2
−
∫ r

i+ 1
2

r
i− 1

2

S(Pt
i (r), r) dr

)
, (2.3)

and the following notation is used:

• Ii = [ri− 1
2
, ri+ 1

2
] denote the computational cells, whose length �r is taken to be a

constant for the sake of simplicity in the presentation.
• Vi (t) denotes the approximate average of the exact solution in the i th cell at the time t ,

that is,

Vi (t) ∼= 1

�r

∫ r
i+ 1

2

r
i− 1

2

V (r , t) dr . (2.4)

• P
t
i (r) denotes the approximate solution in the i th cell, as given by a high-order recon-

struction operator based on the cell averages {Vi (t)}, that is, Pt
i (r) = P

t
i (r; {Vj (t)} j∈Si ).

Here, Si denotes the set of cell indices associated with the stencil of the i th cell.
• The flux terms are denoted by Fi+ 1

2
= F(V t,−

i+ 1
2
, V t,+

i+ 1
2
, ri+ 1

2
), where V t,±

i+ 1
2
are the recon-

structed states at the interfaces, i.e.

V t,−
i+ 1

2
= P

t
i (ri+ 1

2
), V t,+

i+ 1
2

= P
t
i+1(ri+ 1

2
). (2.5)

Here, F is a consistent numerical flux, i.e. a continuous function F : R
N × R

N ×
(2M,+∞) → R

N satisfying F(V , V , r) = F(V , r) for all V , r .

Furthermore, given a stationary solution V ∗ of (2.1), we use the following terminology.

• The numerical method (2.3) is said to be well-balanced for V ∗ if the vector of cell
averages of V ∗ is an equilibrium of the ODE system (2.3).

• The reconstruction operator is said to be well-balanced for V ∗ if, for every i , we have
Pi (r) = V ∗(r) for all r ∈ [ri− 1

2
, ri+ 1

2
], where Pi is the approximation of V ∗ obtained

by applying the reconstruction operator to the vector of cell averages of V ∗.
It is easily checked that, if the reconstruction operator is well-balanced for a continuous
stationary solution V ∗ of (2.1) then the numerical method is also well-balanced for V ∗. The
following strategy to design a well-balanced reconstruction operator Pi on the basis of a
standard operator Qi was introduced in [5]:

Given a family of cell values {Vi }, in every cell Ii = [ri− 1
2
, ri+ 1

2
] we proceed as follows.

1. Seek, (whenever possible), a stationary solution V ∗
i (x) defined in the stencil of cell Ii

(∪ j∈Si I j ) such that

1

�r

∫ r
i+ 1

2

r
i− 1

2

V ∗
i (r) dr = Vi . (2.6)

If such a solution does not exist, take V ∗
i ≡ 0.
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2. Apply the reconstruction operator to the cell values {Wj } j∈Si given by

Wj = Vj − 1

�r

∫ r
j+ 1

2

r
j− 1

2

V ∗
i (r) dr , j ∈ Si , (2.7)

in order to obtain Qi (r) = Qi (r; {Wj } j∈Si ).

3. Define finally

Pi (r) = V ∗
i (r) + Qi (r). (2.8)

It can be then easily shown that the reconstruction operator Pi in (2.8) is well-balanced
for every stationary solution provided that the reconstruction operatorQi is exact for the zero
function. Moreover, if Qi is conservative then Pi is conservative, in the sense that

1

�r

∫ r
i+ 1

2

r
i− 1

2

Pi (r) dr = Vi , (2.9)

and Pi has the same accuracy as Qi if the stationary solutions are sufficiently regular.
Observe that, if there does not exists a stationary solution defined in the stencil and

satisfying (2.6) then the standard reconstruction is used. Observe that this choice does not
spoil thewell-balanced character of the numerical method since, in this case, the cell values in
the stencil cannot be the averages of a stationary solution (otherwise, there would be at least
one solution V ∗

i ) and therefore there exists no local equilibrium which would be required to
preserve. On the other hand, if there exist more than one stationary solution defined on the
stencil and satisfying (2.6), a criterion is needed in order to select one of them and indeed
this sometimes happen for the Euler–Schwarzschild model of interest in the present paper.
The relevant criterion in this regime depends on the particular problem and, in the case of the
Euler–Schwarzschild model, we propose to distinguish between the (subsonic or supersonic)
regimes of the flow, as we will explain later in Sect. 5.

If a quadrature formula (whose order of accuracy must be greater or equal to the one of
the reconstruction operator)

∫ r
i+ 1

2

r
i− 1

2

f (x) dx ≈ �r
q∑

l=0

αl f (ri,l)

where α0, . . . , αq , ri,0, . . . , ri,q represent the weights and the nodes of the formula, is used
to compute the averages of the initial condition, namely Vi,0 = ∑q

l=0 αl V0(ri,l), the recon-
struction procedure has to be modified to preserve the well-balanced property: Steps 1 and 2
have to be replaced by the following ones.

1. Seek, if possible, the stationary solution V ∗
i (x) defined in the stencil of cell Ii (∪ j∈Si I j )

such that
q∑

l=0

αl V
∗
i (ri,l) = Vi . (2.10)

If this solution does not exist, take V ∗
i ≡ 0.

2. Apply the reconstruction operator to the cell values {Wj } j∈Si given by

Wj = Vj −
q∑

l=0

αl V
∗
i (r j,l), j ∈ Si .
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For first- or second-order methods, if the midpoint rule is selected to compute the initial
averages, i.e. Vi,0 = V0(ri ), then at the first step of the reconstruction procedure, the problem
(2.10) reduces to finding the stationary solution satisfying

V ∗
i (ri ) = Vi . (2.11)

The well-balanced property of the method can be lost if the quadrature formula is used
to compute the integral appearing at the right-hand side of (2.3). In order to circumvent this
difficulty, in [7] it is proposed to rewrite the methods as follows:

dVi
dt

= − 1

�r

(
Fi+ 1

2
− F

(
V t,∗
i (ri+ 1

2
), ri+ 1

2

)
− Fi− 1

2
+ F

(
V t,∗
i (ri− 1

2
), ri− 1

2

))

+ 1

�r

∫ r
i+ 1

2

r
i− 1

2

(
S(Pt

i (r), r) − S(V t,∗
i (r), r)

)
dr ,

(2.12)

where V t,∗
i is the function selected in Step 1 for the i th cell at time t . In this equivalent form,

a quadrature formula can be applied to the integral without losing the well-balanced property,
and this leads to a numerical method of the form:

dVi
dt

= − 1

�r

(
Fi+ 1

2
− F

(
V t,∗
i (ri+ 1

2
), ri+ 1

2

)
− Fi− 1

2
+ F

(
V t,∗
i (ri− 1

2
), ri− 1

2

))

+
q∑

l=0

αl
(
S(Pt

i (ri,l), ri,l) − S(V t,∗
i (ri,l), ri,l)

)
.

(2.13)

First-order well-balanced methods are obtained by selecting the trivial constant piecewise
reconstruction operator as the standard one, i.e.

Qi (r , Vi ) = Vi , r ∈ [ri− 1
2
, ri+ 1

2
]. (2.14)

It can be easily checked that the numerical method then reduces to

dVi
dt

= − 1

�r

(
Fi+ 1

2
− F

(
V t,∗
i (ri+ 1

2
), ri+ 1

2

)
− Fi− 1

2
+ F

(
V t,∗
i (ri− 1

2
), ri− 1

2

))
,(2.15)

where Fi+ 1
2

= F

(
V ∗
i (ri+ 1

2
), V ∗

i+1(ri+ 1
2
), ri+ 1

2

)
.

Further strategy for this paper.When applying the well-balanced reconstruction method-
ology, a main difficulty comes from the first step, in which we need to find a stationary
solution (i.e. a solution of the ODE system (2.2)) satisfying (2.6), (2.10), or (2.11), and this
depends upon the way that the relevant integrals are computed. This amounts, in general, to a
non-trivial, nonlinear problem whose analysis and solution depend on the system of balance
laws under consideration.

For the Burgers–Schwarzschild model, the explicit form of the general solution of the
ODE (2.2) is available (as we recall in Sect. 3) and the nonlinear problem to be solved in
Step 1 has always a unique solution v∗

i . Nevertheless, it may not be possible to extend this
solution to the whole stencil and, in such a case, the standard reconstruction operator must
then be used.

For the Euler–Schwarzschild model, only first and second-order methods will be consid-
ered in the present paper, and the mid-point rule will be used in order to numerically compute
the relevant integrals. As a consequence, only solutions of the ODE system (2.2) satisfying
(2.11) (i.e. solutions of a standard Cauchy problem) should be found in Step 1. Now, the
general solution of the ODE system is available in implicit form (as we will recall in Sect. 5)
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and, for this system, the Cauchy problem (2.2), (2.11) may have a single solution or no solu-
tions as well as two or more solutions. If there exists no solution, the standard reconstruction
is used. If there are two or more solutions, a criterion based on the (subsonic, supersonic)
nature of the fluid flow will be used in order to select one of them, as mentioned above.

This methodology can be extended to systems of balance laws for which the solutions to
the ODE system (2.2) are not available neither in explicit or implicit form. For such system,
the nonlinear problems arising in Step 1 must be solved numerically. For instance, in [12] a
control-based strategy combined with a standard ODE solver is used and solutions of (2.2)
are computed that satisfy averaging conditions like (2.6) or (2.10).

Concerning the extension to multidimensional problems, the main challenge is again
the problem in Step 1, which now consists in finding a solution to the nonlinear system
of PDEs satisfied by the stationary solutions with prescribed average in the cell or from
values at a point. Such a problem, clearly, is much more difficult to solve (either exactly
or numerically) than an ODE system. Moreover, there may exist infinitely many stationary
solutions satisfying the average or point value conditions. Nevertheless, the methodology can
be still applied and allows one to design numerical methods that preserve a certain family
of stationary solutions. In Step 1, the stationary solution belonging to the prescribed family
that satisfies the imposed condition would be selected or the one that is closer in some sense
to the cell values in the stencil. For instance, it is possible to apply this methodology and
design numerical methods for the Euler–Schwarzschild model in three spatial dimension and
impose spherical-symmetric stationary solutions are preserved.

3 Burgers–Schwarzschild Model: Designing the Numerical Algorithm

3.1 Preliminaries

For the Burgers–Schwarzschild equation (1.1), the steady state solutions are of the form

v∗(r) = ±
√
1 − K 2

(
1 − 2M

r

)
, K > 0. (3.1)

In Fig. 1 we plot the steady solutions for several values of K 2. The domain of definition of
these stationary solutions is

DK =
⎧⎨
⎩

[2M,∞), K 2 ≤ 1,[
2M,

2MK 2

K 2 − 1

]
, K 2 > 1.

(3.2)

It can be easily checked that, given a pair (K , r∗) such that r∗ ∈ DK , the discontinuous
function defined in DK by

w∗(r) =

⎧
⎪⎪⎨
⎪⎪⎩

√
1 − K 2

(
1 − 2M

r

)
, r ≤ r∗,

−
√
1 − K 2

(
1 − 2M

r

)
, otherwise,

(3.3)

is an entropy weak stationary solution of the Burgers–Schwarzschild model. (For further
properties, see the study in [15,16].)
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Fig. 1 Steady solutions to the Burgers model

3.2 First-order Method

If themidpoint rule is used to compute the initial averages, at the first step of the reconstruction
procedure one has to search for K 2

i such that
√
1 − K 2

i

(
1 − 2M

ri

)
= |vi |. (3.4)

There is always a unique solution K̃i given by

K̃ 2
i = 1 − v2i

1 − 2M

ri

, (3.5)

so that the stationary solution is

v∗
i (r) = sgn(vi )

√
1 − K̃ 2

i

(
1 − 2M

r

)
. (3.6)

In order to apply the numerical method (2.12), this stationary solution has to be computed at
ri± 1

2
and this is only possible if ri+ 1

2
∈ DK̃i

, that is, provided

K̃ 2
i ≤ 1 or

(
K̃ 2
i > 1 and ri+ 1

2
≤ 2MK̃ 2

i

K̃ 2
i − 1

)
. (3.7)

If this condition is satisfied, then the numerical method (2.15) can be used.
If this condition is not satisfied, then the standard trivial reconstruction is considered,

i.e. Qi (r) = vi . The numerical method writes then as follows:

dvi

dt
= − 1

�r

(
Fi+ 1

2
− Fi− 1

2
− S(vi , ri )

)
, (3.8)

where Fi+ 1
2

= F(vi , vi+1, ri+ 1
2
).
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Summing up, the expression of the semi-discrete first-order method reads

dvi

dt
= − 1

�r

(
Fi+ 1

2
− Fi− 1

2
− Si

)
, (3.9)

where

Si =
{
F(v∗

i (ri+ 1
2
), ri+ 1

2
) − F(v∗

i (ri− 1
2
), ri− 1

2
)), if (3.7) holds,

S(vi , ri ), otherwise.
(3.10)

The forward Euler method is used for the time discretization. Furthermore, we emphasize
that, if (3.7) is not satisfied, then vi cannot be the point value of a stationary solution defined
in the computational domain, so that the use of the standard reconstruction does not destroy
the well-balanced property of the method, since in this case there is no stationary solution to
preserve.

3.3 Second-order Method

Let us suppose again that the midpoint rule is used to compute the cell averages and that the
minmod reconstruction operator is considered: see [21]. The stationary solution v∗

i selected
at the first stage of the reconstruction procedure is again (3.6) with K̃i given by (3.5). In order
to compute the reconstructions, this stationary solution has to be computed at the points ri−1,
ri− 1

2
, ri+ 1

2
, ri+1 so that the following condition has to be satisfied ri+1 ∈ DK̃i

, i.e.

K̃ 2
i ≤ 1 or

(
K̃ 2
i > 1 and ri+1 ≤ 2MK̃ 2

i

K̃ 2
i − 1

)
. (3.11)

If this condition is satisfied, the following step of the reconstruction procedure consists in
computing the fluctuations:

wi−1 = vi−1 − sgn(vi−1)

√
1 − K̃ 2

i

(
1 − 2M

ri−1

)
,

wi = vi − sgn(vi )

√
1 − K̃ 2

i

(
1 − 2M

ri

)
= 0,

wi+1 = vi+1 − sgn(vi+1)

√
1 − K̃ 2

i

(
1 − 2M

ri+1

)
.

(3.12)

Then the reconstruction is defined as

Pi (r) = v∗
i (r) + minmod

(
wi+1 − wi

�r
,
wi+1 − wi−1

2�r
,
wi − wi−1

�r

)
(r − ri ), (3.13)

where

minmod(a, b, c) =

⎧
⎪⎨
⎪⎩

min{a, b, c}, a, b, c > 0,

max{a, b, c}, a, b, c < 0,

0, otherwise.

(3.14)

Once the well-balanced reconstruction operator has been computed, the form (2.12) of the
numerical method is considered and the midpoint rule is used again to approximate the
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integral. Observe however that, in this case:
∫ r

i+ 1
2

r
i− 1

2

(
S(Pt

i (r), r) − S(V t,∗
i (r), r)

)
dr ∼= �r

(
S(Pt

i (ri ), ri ) − S(V t,∗
i (ri ), ri )

) = 0.

Therefore, the expression (2.13) reduces again to (2.15) with Fi+ 1
2

= F(v
t,−
i+ 1

2
, v

t,+
i+ 1

2
, ri+ 1

2
).

If (3.11) is not satisfied, then the standard MUSCL reconstruction is applied, namely

Qi (r) = vi + minmod

(
vi+1 − vi

�r
,
vi+1 − vi−1

2�r
,
vi − vi−1

�r

)
(r − ri ). (3.15)

The expression of the numerical method is given again by (3.9)–(3.10) with the difference
that the second-order reconstructions are used now to compute the numerical fluxes. The
TVDRK2 method [13] is used in order to discretize the equations in time.

Observe that, according to the well-balanced reconstruction procedure described in the
previous section, the fluctuations to be reconstructed should be in this case

w j = v j − v∗
i (r j ) = v j − sgn(vi )

√
1 − K̃ 2

i

(
1 − 2M

r j

)
, j = i − 1, i, i + 1,

but in (3.12) the sign of vi has been replaced by that of v j . This modification allows one
to preserve not only the continuous stationary solutions solution but also the discontinuous
stationary solutions of the family (3.3).

3.4 Third-order Method

In order to design a third-order method the CWENO reconstruction of order 3 (see [8], [17])
will be considered and the two-point Gauss quadrature will be used to compute the initial
averages and the integrals coming from the source term, namely v0i = 1

2 (v0(ri,0)+v0(ri,1)),
where

ri,0 = ri− 1
2

+ �r

2

(
−
√
1

3
+ 1

)
, ri,1 = ri− 1

2
+ �r

2

(√
1

3
+ 1

)
.

Therefore, at the first step of the reconstruction procedure one has to look for K 2
i such that:

1

2

(√
1 − K 2

i

(
1 − 2M

ri,0

)
+
√
1 − K 2

i

(
1 − 2M

ri,1

))
= |vi |. (3.16)

If we define the function

g(x) = 1

2

(√
1 − x

(
1 − 2M

ri,0

)
+
√
1 − x

(
1 − 2M

ri,1

))
, x ≥ 0,

it is easily checked that g is a positive decreasing function defined in the interval [0, K 2
i,c]

with K 2
i,c = (1 − 2M

ri,1

)−1
. Therefore there are two possibilities:

• If |vi | ∈ [g(K 2
i,c), 1], there is a unique K̃ 2

i satisfying (3.16).
• In other case, (3.16) has no solution.
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If (3.16) is satisfied, the corresponding stationary solution v∗
i (r) =

sgn(vi )

√
1 − K̃ 2

i

(
1 − 2M

r

)
has to be computed in the points {ri−1,0, ri−1,1, ri+1,0, ri+1,1} in

the reconstruction procedure. Therefore, these points have to be in the interval of definition
of v∗

i , and this happens if ri+1,1 ∈ DK̃i
. Therefore, the well-balanced reconstruction can be

computed only if the following condition is satisfied:

|vi | ∈ [g(K 2
i,c), 1] and

(
K̃ 2
i ≤ 1 or

(
K̃ 2
i > 1 and ri+1,1 ≤ 2MK̃ 2

i

K̃ 2
i − 1

))
. (3.17)

If this condition is satisfied, the fluctuations can be then computed:

w j = v j − sgn(v j )
1

2

(√
1 − K̃ 2

i

(
1 − 2M

r j,0

)
+
√
1 − K̃ 2

i

(
1 − 2M

r j,1

))
, j = i − 1, i, i + 1,

and the well-balanced reconstruction is given by Pi (r) = v∗
i (r) + Qi (r;wi−1, wi , wi+1),

where Q represents the CWENO approximation. On the other hand, if (3.17) is not satis-
fied, the standard CWENO reconstruction is applied, namelyQi (r) = Qi (r; vi−1, vi , vi+1).

The expression of the semi-discrete method is finally (3.9) where the numerical fluxes are
computed at the reconstructed states and

Si =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

F(v∗
i (ri+ 1

2
), ri+ 1

2
) − F(v∗

i (ri− 1
2
), ri− 1

2
) + �r

2∑
j=0,1

(
S(Pi (ri, j ), ri, j ) − S(v∗

i (ri, j ), ri, j )
)

if (3.17) holds,
�r

2

∑
j=0,1

S(Qi (ri, j ), ri, j ), otherwise.

(3.18)

The TVDRK3 method of order 3 [13] will be used for the time discretization.

3.5 Preserving the Exact Averages of the Stationary Solutions

The three methods presented above can be modified to preserve the exact averages of the
stationary solutions instead of its approximation computed with a quadrature formula. To do
this, the problem to be solved at the first stage of the well-balanced reconstruction procedure
is the following one: find K 2

i such that:

1

�r

∫ r
i+ 1

2

r
i− 1

2

√
1 − K 2

i

(
1 − 2M

r

)
dr = |vi |. (3.19)

If we define the function

g(x) = 1

�r

∫ r
i+ 1

2

r
i− 1

2

√
1 − x

(
1 − 2M

r

)
dr ,

it can be easily checked that it is a decreasing function defined in [0, K 2
e,i ] where K 2

e,i =(
1 − 2M/ri+ 1

2

)−1
and g(0) = 1. Therefore, (3.19) has a unique solution K̃ 2

i if

|vi | ≤ g(Ke,i ). (3.20)

The explicit expression of g can be obtained: g(x) = 1
�r

(
f (x, ri+ 1

2
) − f (x, ri− 1

2
)
)

,where
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f (x, r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r

√
1 − x

(
1 − 2M

r

)
+ xM√

1 − x
log

(
x(M − r) + r + √

1 − xr

√
1 − x

(
1 − 2M

r

))
, 0 ≤ x < 1,

2r

√
2M

r
, x = 1,

r
√
1 − x

(
1 − 2M

r

)
− 2xM√

x − 1
tan−1

⎛
⎜⎜⎝

√
1 − x

(
1 − 2M

r

)

√
x − 1

⎞
⎟⎟⎠ , x > 1.

is a primitive function of

√
1 − x

(
1 − 2M

r

)
. Therefore g(Ke,i ) can be explicitly computed.

The well-balanced reconstruction can thus be computed if (3.20) is satisfied and the cells
of the stencil Si are contained in the domain of definition DK̃i

of the corresponding stationary
solution. Otherwise, the standard reconstruction is applied. The expression of the numerical
methods is the same as the ones above.

4 Burgers–Schwarzschild Model: A Numerical Study

4.1 Preliminaries

In this section several numerical tests are applied to check the performance of the well-
balanced numerical methods introduced in the previous section. We consider the spatial
interval [2M, L] with M = 1 and L = 4, a 256-point uniform mesh and the CFL number is

set to 0.5. At r = 2M we impose F− 1
2

= 0 as boundary condition since
(
1 − 2M

r

)
= 0. At

r = L we will use a transmissive boundary condition using ghost-cells if the initial condition
is not a stationary solution; otherwise, the stationary solution is imposed in the ghost-cells.
The following numerical flux will be used:

Fi+ 1
2

= F(vi , vi+1, ri+ 1
2
) =
(
1 − 2M

ri+ 1
2

)
q2(0; vi , vi+1) − 1

2
,

where q(·; vL , vR) is the self-similar solution of the Riemann problem for the standard
Burgers equation with the initial condition

v0(r) =
{

vL , r < 0,
vR, r > 0.

In order to check the relevance of thewell-balanced property, thesemethodswill be compared
with those based on the same numerical fluxes and the standard first-, second-, or third-order
reconstructions.

4.2 Stationary Solutions

Positive stationary solution.We consider the initial condition

v0(r) =
√
3

4
+ 1

2r
(4.1)
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Table 1 Well-balanced versus
non-well-balanced schemes: L1

errors at t = 50 for the Burgers
model with the initial condition
(4.1)

Scheme (256 cells) Error (1st) Error (2nd) Error (3rd)

Well-balanced 1.13E−14 8.72Ee−17 7.22E−14

Non well-balanced 1.89 1.61 8.78E−02

Fig. 2 Burgers–Schwarzschild model with the initial condition (4.1): first-, second- and third-order well-
balanced and not-well-balanced methods at various times for variable v

corresponding to the positive stationary solution with K = 1
2 . Table 1 shows the error in

L1 norm between the initial condition and the numerical solution at time t = 50. Figure 2
compares the numerical solutions obtainedwith thewell-balanced and the non-well-balanced
methods: it can be seen how the latter are unable to capture the stationary solution. After a
time that decreases with the order, the numerical solutions depart from the steady state.
Negative stationary solution.Let us consider now as initial condition the negative stationary
condition corresponding to K = 1

2 :

v0(r) = −
√
3

4
+ 1

2r
. (4.2)

Figure 3 shows the numerical solutions obtained with the different numerical methods.
Observe that the scale of the vertical axis is not the same as the one in Fig. 2: it has been
changed so that the difference between the numerical solutions can be better seen. Table 2
shows the error in L1 norm between the initial condition and the numerical solution at time
t = 50. According to Fig. 3 and Table 2 we need more time to see the differences between
the well-balanced and non-well-balanced schemes of order 1, 2 and 3 but the errors are again
much smaller with the well-balanced schemes for this test. In this case we need more time
to see these differences since this negative stationary solution is close to the constant state
v(r) = −1 where it seems that the non-well-balanced schemes converge.

123



3 Page 14 of 43 Journal of Scientific Computing (2021) 89 :3

Fig. 3 Burgers–Schwarzschild model with the initial condition (4.2): first-, second- and third-order well-
balanced and non-well-balanced methods at selected times for variable v

Table 2 Well-balanced versus
non-well-balanced schemes: L1

errors at t = 50 for the Burgers
model with the initial condition
(4.2)

Scheme (256 cells) Error (1st) Error (2nd) Error (3rd)

Well-balanced 6.98E−16 1.24E−16 4.03E−16

Non well-balanced 3.92E−02 3.20E−07 1.63E−10

Table 3 Well-balanced versus
non-well-balanced schemes: L1

errors at t = 50 for the Burgers
model with the initial condition
(4.3)

Scheme (256 cells) Error (1st) Error (2nd) Error (3rd)

Well-balanced 8.68E−15 8.54E−17 7.90E−14

Non well-balanced 1.02 1.09 1.09

Discontinuous stationary entropy weak solution. Let us consider finally the discontinuous
initial condition

v0(r) =

⎧
⎪⎪⎨
⎪⎪⎩

√
3

4
+ 1

2r
, 2 < r < 3,

−
√
3

4
+ 1

2r
, otherwise,

(4.3)

that is a stationary entropy weak solution of the family (3.3). Table 3 shows the error in L1

norm between the initial condition and the numerical solution at time t = 50. Figure 4 shows
the differences between the numerical solutions obtained with well-balanced and non-well-
balanced methods: again the latter depart from the stationary solution at times that decrease
with the order. The numerical results obtained for the equation with initial conditions (4.1),
(4.2), and (4.3) clearly show the need of using well-balanced methods for this equation.

4.3 Moving Shocks Connecting two Steady Profiles

Right-moving shock.We consider now the initial condition

v0(r) =

⎧
⎪⎪⎨
⎪⎪⎩

√
1

2
+ 1

r
, 2 < r < 2.5,

√
2

r
, otherwise.

(4.4)

The corresponding solution consists of a right-moving shock connecting two branches of
stationary solutions. Figure 5 shows the numerical solutions obtained with the first-, second-,
and third-order well-balancedmethods and a reference solution computed with the first-order
standard method using a mesh of 10000 cells. As it can be seen, the well-balanced methods
capture correctly the shock with a resolution that increases with the order as expected.
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Fig. 4 Burgers–Schwarzschild model with the initial condition (4.3): first-, second- and third-order well-
balanced and non-well-balanced methods at selected times for variable v

Fig. 5 Burgers–Schwarzschild model with the initial condition (4.4): first-, second- and third-order well-
balanced methods at selected times for variable v
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Fig. 6 Burgers–Schwarzschild model with the initial condition (4.5): first-, second- and third-order well-
balanced methods at selected times for variable v

Left-moving shock. Similar conclusions can be drawn for the left-moving shock linking two
branches of stationary solutions that generates from the initial condition:

v0(r) =

⎧⎪⎪⎨
⎪⎪⎩

−
√
2

r
, 2 < r < 2.5,

−
√
3

4
+ 1

2r
, otherwise,

(4.5)

see Fig. 6. A reference solution computed with the first-order standard method has been
computed again using a mesh of 10000 cells.

4.4 Perturbation of a Steady Shock Solution

Left-hand perturbation. In this test case we consider the initial condition:

ṽ0(r) = v0(r) + pL (r), (4.6)

where v0 is the steady shock solution given by (4.3) and

pL (r) =
⎧⎨
⎩

−1

5
e−200(r−2.5)2 , 2.2 < r < 2.8,

0, otherwise.
(4.7)

The first-, second-, and third-order well-balancedmethods have been applied to this problem.
In Fig. 7 it can be observed that, after the wave generated by the initial perturbation leaves the
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Fig. 7 Burgers–Schwarzschildmodelwith the initial condition (4.6)–(4.3)–(4.7): first-, second- and third-order
well-balanced methods at selected times for variable v

computational domain, the stationary solution (4.3) is not recovered: a different stationary
solution of the family (3.3) is obtained whose shock is placed at a different location. Observe
that all the three methods capture the same stationary solution.
Right side perturbation. Similar conclusions can be drawn if a perturbation at the right side
of the shock is superposed to the stationary solution v0 given by (4.3):

ṽ0(r) = v0(r) + pR(r), (4.8)

with

pR(r) =
⎧⎨
⎩
1

5
e−200(r−3.5)2 , 3.2 < r < 3.8,

0, otherwise,
(4.9)

as displayed in Fig. 8. In this case we have used a 2000-point uniform mesh since the
displacement of the shock is smaller in this case and more points in the mesh are needed in
order to see that the steady shock is not recovered.
Left-hand perturbation with zero average. Now we consider an initial condition of the
form (4.6) with a perturbation pL such that

∫
pL (r)dr = 0, in particular:

pL(r) =
{
0.1cos(−25.5π + 10πx)e−200(x−2.8)2 , 2.7 < r < 2.9,

0, otherwise.
(4.10)
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Fig. 8 Burgers–Schwarzschildmodelwith the initial condition (4.8)–(4.3)–(4.9): first-, second- and third-order
well-balanced methods at selected times for variable v

In Fig. 9 it can be observed that now, after the wave generated by the initial perturbation
leaves the computational domain, the stationary solution (4.3) is recovered. Here we have
used again a 2000-point uniform mesh to verify that the steady state does not move.
Right side perturbationwith zero average.Similar conclusions can be drawn ifwe consider
an initial condition of the form (4.8) with

∫
pR(r)dr = 0. In particular we take

pR(r) =
{
0.1cos(−29.5π + 10πx)e−200(x−3.2)2 , 3.1 < r < 3.3,

0, otherwise,
(4.11)

see Fig. 10. Here we have used again a 2000-point uniform mesh to verify that the steady
state does not move.
Left-hand and right-hand perturbations with zero average. In order to study the relation
between the amplitude of the perturbation and the distance between the initial and the final
stationary shocks, we consider the initial condition:

ṽ0(r) = v0(r) + pL(r) + pR(r), (4.12)

where v0 is the steady shock solution given by (4.3) and
∫
(pL (r) + pR(r))dr = 0. In

particular we take pL(r) as in (4.7) and pR(r) as in (4.9). In Fig. 11 it can be observed that,
after the wave generated by the initial perturbation leaves the computational domain, the
stationary solution (4.3) is not recovered: a different stationary solution of the family (3.3)
with the shock placed at a different location is reached. This is a natural result since, as we saw
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Fig. 9 Burgers–Schwarzschild model with the initial condition (4.6)–(4.3)–(4.10): first-, second- and third-
order well-balanced methods at selected times and zoom of the initial and final stationary shocks (right-down)
for variable v

before, the right perturbation creates a lower displacement than the left-hand perturbation.
Here we have used again a 2000-point uniform mesh.
Relation between the perturbation and the displacement of the shock. In order to study
the relationship between the amplitude of the perturbation and the distance between the initial
and the final shock locations, we consider the family of initial conditions:

ṽ0(r) = v0(r) + δv(α, r), (4.13)

where v0 is given again by (4.3) and

δv(α, r) =
{

α cos(5πr − 12π)e−200(r−2.8)2 , 2.7 < r < 2.9,

0, otherwise,
(4.14)

with α > 0. The amplitude of the perturbation is measured by
∫

δv(α, r) dr and the distance
between the shocks is measured by limt→∞

∫ |v(r , t) − v0(r)| dr . See Fig. 12. Table 4 and
Fig. 13 show the relationship between those magnitudes that is clearly linear.

4.5 Long-time Behavior of the Solutions

In this section we consider different initial conditions and investigate the long-time behavior
of the corresponding solutions using the first-order well-balanced scheme. A large number
of tests have been performed with the first-order methods (that is the less costly one) consid-
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Fig. 10 Burgers–Schwarzschild model with the initial condition (4.8)–(4.3)–(4.11): first-, second- and third-
order well-balanced methods at selected times and zoom of the initial and final stationary shocks (right-down)
for variable v

ering different initial conditions, different meshes, and different lengths of the computational
domain: the observed behavior of the numerical solutions have been always one of the four
ones shown here depending on the value at 2M (1 or lower) and at the right boundary (positive
or negative).

1. Initial condition satisfyingv0(2M) = 1 andv0(L) ≥ 0: let us consider the initial condition

v0(r) =
{
1, 2 < r < 2.1,

cos(30r)e
−1

(x−2.5)2 , otherwise,
(4.15)

that takes value 1 in a neighborhood of 2M = 2 and a positive value at the right boundary of
the computational domain x = 4. As it can be observed in Fig. 14 after a transient regime,
the numerical solution takes the form of a right-moving shock linking the stationary
solution v ≡ 1 with the negative stationary solution that takes value −1 at x = 2M and
value 0 at x = 4. Once this shock leaves the domain, the stationary solution v ≡ 1 is
reached in the whole computational domain.

2. Initial condition satisfying v0(2M) = 1 and v0(L) < 0: we consider now the initial
condition

v0(r) =
{
1, 2 < r < 2.1,

cos(20r)e
−1

(x−2.5)2 , otherwise,
(4.16)
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Fig. 11 Burgers–Schwarzschild model with the initial condition (4.8)–(4.3)–(4.11): comparison between the
first-, second- and third-order well-balanced methods at selected times for variable v

Fig. 12 Burgers–Schwarzschild model with the initial condition (4.13)–(4.3)–(4.14): measures of the pertur-
bation and the shock displacement for α = 1

that takes value 1 in a neigborhood of 2M = 2 and negative value at the right boundary of
the computational domain x = 4. As it can be observed in Fig. 15 after a transient period,
the numerical solution takes the form of a right-moving shock linking the stationary
solution v ≡ 1 with the negative stationary solution that takes value −1 at x = 2M and
value v0(4) at x = 4. Once this shock leaves the domain, the stationary solution v ≡ 1 is
reached in the whole computational domain.
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Table 4 Burgers–Schwarzschild
model with the initial condition
(4.13)–(4.3)–(4.14): measures of
the perturbation and the shock
displacement for different values
of α

α
∫

δv limt→∞
∫ |v − vs |

0.0 0.00000 0.00000

0.1 0.00936 0.01245

0.2 0.01873 0.02586

0.3 0.02809 0.03735

0.4 0.03745 0.05076

0.5 0.04682 0.06225

0.6 0.05618 0.07566

0.7 0.06554 0.08715

0.8 0.07491 0.09864

0.9 0.08427 0.11013

1.0 0.09364 0.12163

1.1 0.10300 0.13503

1.2 0.11236 0.14653

1.3 0.12172 0.15802

1.4 0.13109 0.16760

1.5 0.14045 0.17909

3. Initial condition satisfying v0(2M) < 1 and v0(L) ≥ 0: we consider now the initial
condition

v0(r) =
{
0.8, 2 < r < 2.1,

cos(30r)e
−1

(x−2.5)2 , otherwise.
(4.17)

In this case the numerical solution reaches in finite time the negative stationary solution
v∗ such that v∗(2) = −1 and v∗(4) = 0: see Fig. 16.

4. Initial condition satisfying v0(2M) < 1 and v0(L) < 0: we finally consider the initial
condition

v0(r) =
{
0.8, 2 < r < 2.1,

cos(20r)e
−1

(x−2.5)2 , otherwise.
(4.18)

The numerical solution reaches in finite time the negative stationary solution v∗ such that
v∗(2) = −1 and v∗(4) = v0(4): see Fig. 17.

4.6 Main Conclusions for the Burgers–Schwarzschild Model

From Figs. 7, 8, 9, 10, 11, 12 and 13 and Table 4 we can conclude the following:

Conclusion 1 If a perturbation δv is added to a steady shock solution of the form

v0(r) =
⎧
⎨
⎩

√
1 − K 2

0 (1 − 2M
r ), 2M < r < r0,

−
√
1 − K 2

0 (1 − 2M
r ), otherwise,
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Fig. 13 Burgers–Schwarzschildmodel with the initial condition (4.13)–(4.3)–(4.14): values of limt→∞
∫ |v−

vs | as a function of
∫

δv

then the solution reaches at finite time another steady shock solution of the form:

v(r) =
⎧⎨
⎩

√
1 − K 2

0 (1 − 2M
r ), 2M < r < r1,

−
√
1 − K 2

0 (1 − 2M
r ), otherwise.

1. If
∫ r0
2M δv = 0 and

∫∞
r0

δv = 0, then r1 = r0, i.e. the initial stationary solution is recovered.

2. If
∫∞
2M δv = 0 and

∫ r0
2M δv = − ∫∞

r0
δv , then r1 
= r0 and a different stationary solution is

obtained.
3. If

∫
δv 
= 0, then r1 
= r0 and a different stationary solution is obtained. In this case the

distance between r0 and r1 depends linearly on the amplitude of the perturbation: see
Table 4 and Fig. 13.

In view of Figs. 14, 15, 16 and 17 we have reached the following.

Conclusion 2 1. For a bounded domain [2M, L]:
(a) If v0(r) = 1 for r ∈ [2M, 2M + ε), with ε > 0, v0(L) ≥ 0 and v0 
= 1, in finite time

the solution has the form of a right-moving shock that links the stationary solution
v ≡ 1 and the negative steady solution v∗ such that v∗(2M) = −1 and v∗(L) = 0,

that is, v∗
0(r) = −

√
1 − 1

1− 2M
L

(
1 − 2M

r

)
.

(b) If v0(r) = 1 for r ∈ [2M, 2M + ε), with ε > 0 and v0(L) = a, with a < 0, then in
finite time the solution has the form of a right-moving shock that links the stationary
solution v ≡ 1 and the negative steady solution v∗ such that v∗(2M) = −1 and

v∗
0(L) = a, that is, v∗

0(r) = −
√
1 − 1−a2

1− 2M
L

(
1 − 2M

r

)
.

(c) If v0(2M) < 1 and v0(L) ≥ 0, then in finite time the solution coincides with the
negative steady solution such that v∗(2M) = −1 and v∗

0(L) = 0, that is, v∗
0(r) =

−
√
1 − 1

1− 2M
L

(
1 − 2M

r

)
.

(d) If v0(2M) < 1 and v0(L) = a, with a < 0, then in finite time the solution
coincides with the negative stationary solution v∗ such that v∗(L) = a, that is,

v∗
0(r) = −

√
1 − 1−a2

1− 2M
L

(
1 − 2M

r

)
.
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Fig. 14 Burgers–Schwarzschild model with the initial condition (4.15): first-order well-balanced scheme at
selected times for variable v

2. For the unbounded domain [2M,∞) the following conclusions can be drawn by passing
to the limit when L → ∞:

(a) If v0(r) = 1 for r ∈ [2M, 2M + ε), with ε > 0, limr→∞ v0(r) ≥ 0 and v0 
= 1, in
finite time the solution has the form of a right-moving shock that links the stationary

solution v ≡ 1 and the negative stationary solution v∗
0(r) = −

√
2M
r , corresponding

to K 2 = 1.
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Fig. 15 Burgers–Schwarzschild model with the initial condition (4.16): first-order well-balanced scheme at
selected times for variable v

(b) If v0(r) = 1 for r ∈ [2M, 2M + ε), with ε > 0 and limr→∞ v0(r) = a, with
a < 0, then in finite time t0 the solution has the form of a right- moving shock that
links the stationary solution v ≡ 1 and the negative stationary solution v∗ such that

v∗(2M) = −1 and limr→∞ v∗
0(r) = a, that is, v∗

0(r) = −
√
1 − (1 − a2)

(
1 − 2M

r

)
.

(c) If v0(2M) < 1 and limr→∞ v0(r) ≥ 0, then the solution converges as t → ∞ to the
negative stationary solution v∗ such that v∗(2M) = −1 and limr→∞ v∗

0(r) = 0, that

is, v∗
0(r) = −

√
2M
r .
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Fig. 16 Burgers–Schwarzschild model with the initial condition (4.17): first-order well-balanced scheme at
selected times for variable v

(d) If v0(2M) < 1 and limr→∞ v0(r) = a, with a < 0, then the solution converges
as t → ∞ to the negative stationary solution v∗ such that v∗(2M) = −1 and

limr→∞ v∗
0(r) = a, that is, v∗

0(r) = −
√
1 − (1 − a2)

(
1 − 2M

r

)
.

5 Euler–Schwarzschild Model: Designing the Numerical Algorithm

5.1 Preliminaries

In the case of the Euler–Schwarzschild equations (1.3), the stationary solutions are implicitly
given by the equations:

sgn(v)(1 − v2)|v| 2k2

1−k2 r
4k2

1−k2(
1 − 2M

r

) = C1, r(r − 2M)ρ
v

1 − v2
= C2, (5.1)

where C1,C2 are constants. The pair (v, ρ) of a stationary solution satisfies the following
ODE system analyzed first in [15,16]:
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Fig. 17 Burgers–Schwarzschild model with the initial condition (4.18): numerical solution obtained with the
first-order well-balanced scheme at selected times for variable v

dv

dr
= v

(1 − v2)(1 − k2)

r(r − 2M)

(
2k2

1 − k2
(r − 2M) − M

)/
(v2 − k2), (5.2)

dρ

dr
= − 2(r − M)

r(r − 2M)
ρ − ρ

(1 + v2)(1 − k2)

r(r − 2M)

(
2k2

1 − k2
(r − 2M) − M

)/
(v2 − k2).(5.3)

Figure 18 shows the graph of v for some of them. When these functions are defined in
(2M,∞), they have a maximum or a minimum in

rc = M(1 − k2)

2k2
+ 2M, (5.4)

that comes from solving dv
dr = 0. In Fig. 18 the stationary solutions marked in red are those

that take the value v = ±k at r = rc.
Given two constants C1 and C2, in order to compute the stationary solution given by (5.1)

in a point r = a, the following nonlinear system has to be solved:

sgn(v)(1 − v2)|v| 2k2

1−k2 =
(
1 − 2M

a

)

a
4k2

1−k2

C1, ρ = 1 − v2

va(a − 2M)
C2. (5.5)

It is enough thus to solve, if it is possible, the nonlinear equation

g(v) = Ka, (5.6)
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Fig. 18 Euler–Schwarzschild model with k = 0.3: graph of the variable v for some stationary solutions

with

g(v) = sgn(v)(1 − v2)|v| 2k2

1−k2 , v ∈ [−1, 1], Ka =
(
1 − 2M

a

)

a
4k2

1−k2

C1, (5.7)

to compute v. Once this equation is solved, ρ is computed using the second equation of (5.5).
It can be easily checked that g satisfies:

−(1 − k2)k
2k2

1−k2 = g(−k) ≤ g(v) ≤ g(k) = (1 − k2)k
2k2

1−k2 , v ∈ [−1, 1].
Moreover, g is strictly monotone in [−1,−k), (−k, k), and (k, 1]. As a consequence we have
the following conclusion. (For further properties, see the study in [15,16].)

• If |Ka | > g(k), the equation (5.6) has no solution, i.e. a stationary solution given by C1

and C2 cannot be defined at r = a.
• If |Ka | = g(k) then the equation (5.6) has only one solution (k if Ka > 0,−k if Ka < 0).

Therefore, (5.5) has only one solution that is a sonic state.
• Otherwise, (5.6) has two possible solutions. Therefore there are two states (ρ, v) that

solve (5.5), one supersonic and one subsonic.

For the sake of clarity, together with the representation

V = [ρ(1 + k2v2)/(1 − v2), ρv(1 + k2)/(1 − v2)]T ,

for the states, we will use Ṽ = [ρ, v]T . Here, V can be easily computed from Ṽ and, given
V , Ṽ is also easily computed by (1.3d) that comes from solving a second-degree equation.

5.2 First-order Method

If the midpoint rule is used to compute the initial averages, given a family of cell values Ṽi , in
the first step of the well-balanced reconstruction procedure one has to find, if it is possible, a
stationary solution Ṽ ∗

i defined in the interval [ri− 1
2
, ri+ 1

2
] such that Ṽ ∗

i (ri ) = Ṽi = [ρi , vi ]T .
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Obviously such a stationary solution would correspond to the choice of constants:

Ci,1 = sgn(vi )(1 − v2i )|vi |
2k2

1−k2 r
4k2

1−k2

i(
1 − 2M

ri

) , Ci,2 = ri (ri − 2M)ρi
vi

1 − v2i
. (5.8)

According to the discussion above, the corresponding stationary solution is defined in ri± 1
2

provided that:

|Ki± 1
2
| ≤ g(k), Ki± 1

2
=
(
1 − 2M

ri± 1
2

)
r
− 4k2

1−k2

i± 1
2

Ci,1. (5.9)

When |Ki± 1
2
| < g(k) there are two possible values for Ṽ ∗

i (ri± 1
2
), one subsonic and one

supersonic. Therefore, a criterion is needed to select one or the other. The following criterion
will be used here:

• if Ṽi is not sonic, then the state whose regime (sub or supersonic) is the same as Ṽi is
selected for Ṽ ∗

i (ri± 1
2
).

• if Ṽi is sonic, then the state whose regime is the same as Ṽi+1 is selected for Ṽ ∗
i (ri+ 1

2
)

and the state whose regime is the same as Ṽi−1 is selected for Ṽ ∗
i (ri− 1

2
).

Observe that this criterion aims to preserve the regime of the given cell values.
If condition (5.9) is satisfied, then the numerical method (2.15) is used. Otherwise the

standard trivial reconstruction is considered.
The expression of the semi-discrete first-order method is then as follows:

dVi
dt

= − 1

�r

(
Fi+ 1

2
− Fi− 1

2
− Si

)
, (5.10)

where

Si =
{
F(V ∗

i (ri+ 1
2
), ri+ 1

2
) − F(V ∗

i (ri− 1
2
), ri− 1

2
), if (5.9) holds,

S(Vi , ri ), otherwise.
(5.11)

The forward Euler method is used again for the time discretization.

5.3 Second-order Method

Let us use again the midpoint rule to compute cell averages and the minmod reconstruction
operator. The stationary solution sought at the first stage of the well-balanced reconstruction
procedure is again characterized by the constants (5.8). This time, this stationary solution
has to be computed at the points ri−1, ri− 1

2
, ri+ 1

2
, ri+1 so that the following condition has to

be satisfied:

|Ki+ j | ≤ g(k), j = −1,−1

2
,
1

2
, 1, (5.12)

where Ki± 1
2
are given by (5.9) and

Ki±1 =
(
1 − 2M

ri±1

)
r
− 4k2

1−k2

i±1 Ci,1. (5.13)

123



3 Page 30 of 43 Journal of Scientific Computing (2021) 89 :3

If this condition is satisfied, the reconstruction is defined as follows:

Pi (r) = V ∗
i (r) + minmod

(
Wi+1 − Wi

�r
,
Wi+1 − Wi−1

2�r
,
Wi − Wi−1

�r

)
(r − ri ),

where the minmod function is applied component by component andWj = Vj − V ∗
i (r j ) for

j = i −1, i, i +1. Observe that the conserved variables V are used in the reconstruction pro-
cedure. On the other hand, if (5.12) is not satisfied, then the standard MUSCL reconstruction
is applied:

Qi (r) = Vi + minmod

(
Vi+1 − Vi

�r
,
Vi+1 − Vi−1

2�r
,
Vi − Vi−1

�r

)
(r − ri ).

The expression of the numerical method is given again by (5.10)–(5.11) with the difference
that the second-order reconstructions are used now to compute the numerical fluxes. The
TVDRK2 method is used now to discretize the equations in time.

6 Euler–Schwarzschild Model: A Numerical Study

6.1 Preliminaries

In this section several tests are considered to check the performance of the first- and second-
order well-balanced numerical methods for Euler–Schwarzschild model introduced in the
previous section. We consider the spatial interval [2M, L] with M = 1 and L = 10, a 500-
point uniform mesh, k = 0.3 and the CFL number is set to 0.5 again. At r = 2M we impose

F− 1
2

= 0 as boundary condition since
(
1 − 2M

r

)
= 0. At r = L we will use a transmissive

boundary condition in the case we are not in a stationary solution or we will expand the
stationary solution if we are in one.

In order to test the dependency of the results on the numerical method, two different
first-order numerical fluxes are considered: the Lax-Friedrichs numerical flux

Fi+ 1
2

= 1

2
(F(Vi ) + F(Vi+1)) − 1

2

�t

�x
(Vi+1 − Vi ), (6.1)

and a HLL-like numerical flux in PVM form (see [4]):

Fi+ 1
2

= 1

2
(F(Vi ) + F(Vi+1)) − 1

2
(α0(Vi+1 − Vi ) + α1(F(Vi+1) − F(Vi ))) , (6.2)

with

α0 = λ2|λ1| − λ1|λ2|
λ2 − λ1

, α1 = |λ2| − |λ1|
λ2 − λ1

, (6.3)

where λ1 and λ2 are the eigenvalues of some intermediate matrix Ji+ 1
2
of the form

Ji+ 1
2

=
(
1 − 2M

ri+ 1
2

)⎡
⎣

0 1
k2 − v2m

1 − k2v2m

2(1 − k2)vm
1 − k2v2m

⎤
⎦ , (6.4)

where vm is some intermediate value between vni and vni+1.
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Given two states VL and VR , in order to choose an adequate intermediate value vm , we
look for v such that the following Roe-type property is satisfied:

⎡
⎣

0 1
k2 − v2

1 − k2v2
2(1 − k2)v

1 − k2v2

⎤
⎦ · (VR − VL) = F̂R − F̂L ,

F̂α =

⎛
⎜⎜⎝

1 + k2

1 − v2α
ραvα

v2α + k2

1 − v2α
ρα

⎞
⎟⎟⎠ , α = L, R,

(6.5)

i.e. the factor (1 − 2M/r) is neglected for simplicity. Due to the form of the matrix, it is
enough to find v such that

k2 − v2

1 − k2v2
(V1,R − V1,L) + 2(1 − k2)v

1 − k2v2
(V2,R − V2,L) = F2,R − F2,L .

This equality is equivalent to a second-order degree equation for v, namelyαv2+βv+γ = 0,
where

α = ρR(1 − v2L) − ρL(1 − v2R),

β = −2
(
ρRvR(1 − v2L) − ρLvL(1 − v2R)

)
,

γ = ρRv2R(1 − v2L) − ρLv2L(1 − v2R).

Since the discriminant D = ρLρR(1 − v2L)(1 − v2R)(vR − vL)2 is always positive, there are
always two real solutions:

v± =
ρRvR(1 − v2L) − ρLvL(1 − v2R) ± |vR − vL |

√
ρLρR(1 − v2L)(1 − v2R)

ρR(1 − v2L) − ρL(1 − v2R)

and it can be proven that:

• if vL < vR , then v− ∈ (vL , vR) and v+ /∈ (vL , vR), so that we will take vm = v−;
• if vL > vR then v− /∈ (vR, vL ) and v+ /∈ (vR, vL), so that we will take vm = v+.

Finally, in the caseα = 0 and VR 
= VL , we take vm = − γ
β
and in the case ||VR−VL ||∞ <

ε we take vm = vL+vR
2 .

Once vm has been chosen, the expression of λ j , j = 1, 2 in (6.3) is as follows:

λ1 = λ1 (vm) =
(
1 − 2M

r
i+ 1

2

)
vm−k
1−k2vm

, λ2 = λ2 (vm) =
(
1 − 2M

r
i+ 1

2

)
vm+k
1+k2vm

.

Since for a 2-systems HLL and Roe methods are equivalent and the intermediate value
chosen to compute the wave speeds satisfies a Roe-type property, this numerical flux will
be called Roe-type numerical flux in what follows. The proposed numerical method will be
compared with those based on the same numerical flux and the standard first- and second-
order reconstructions.
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Table 5 Well-balanced versus non-well-balanced schemes: L1 errors at time t = 50 for the Euler–
Schwarzschild model with the initial condition (6.6)

Scheme (500 cells) Error v (1st) Error ρ (1st) Error v (2nd) Error ρ (2nd)

Well-balanced 3.34E−13 5.61E−12 3.43E−13 7.12E−12

Non well-balanced 0.94 5.79 0.93 5.75

Fig. 19 Euler–Schwarzschild model with the initial condition (6.6): first- and second-order well-balanced and
non-well-balanced methods at selected times for the variable v

6.2 Stationary Solutions

Positive stationary solution. We take as initial condition the positive supersonic stationary
solution satisfying

ρ∗(10) = 1, v∗(10) = 0.6. (6.6)

Table 5 shows the error in L1 norm between the numerical solution at time t = 50 for the
well-balanced and non-well-balanced methods using the Roe-type numerical flux. Figs. 19
and 20 compare the numerical solutions obtained with the well-balanced and the non-well-
balanced methods: as it happened for the Burgers–Schwarzschild model, the numerical
solutions obtained with non-well-balanced methods depart from the initial steady state.
Negative stationary solution.Let us consider nowas initial condition the negative supersonic
stationary solution V ∗ that satisfies

ρ∗(10) = 1, v∗(10) = −0.8. (6.7)
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Fig. 20 Euler–Schwarzschild model with the initial condition (6.6): first- and second-order well-balanced and
non-well-balanced methods at selected times for the variable ρ

Table 6 Well-balanced versus non-well-balanced schemes: L1 errors at time t = 50 for the Burgers–
Schwarzschild model with the initial condition (6.7)

Scheme (500 cells) Error v (1st) Error ρ (1st) Error v (2nd) Error ρ (2nd)

Well-balanced 1.54E−15 7.02E−13 1.35E−15 5.01E−13

Non well-balanced 0.01 2240.72 0.01 2250.77

Table 6 shows the error in L1 normbetween the numerical solution at time t = 50. Figs. 21, 22
show the difference between the numerical results given by well-balanced and non-well-
balancedmethods using the Roe-type numerical flux. Again the numerical solutions obtained
with non-well-balanced methods depart from the initial steady state.
Discontinuous stationary entropy weak solution.We consider finally the initial condition

V0(r) =
{
V ∗−(r), r ≤ 6,

V ∗+(r), otherwise,
(6.8)

where V ∗−(r) is the supersonic stationary solution such that

ρ∗−(6) = 4, v∗−(6) = 0.6 (6.9)
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Fig. 21 Euler–Schwarzschild model with the initial condition the stationary solution satisfying (6.7): first-
and second-order well-balanced and non-well-balanced methods at selected times for the variable v

Fig. 22 Euler–Schwarzschild model with the initial condition (6.7): first- and second-order well-balanced and
non-well-balanced methods at selected times for the variable ρ

and V ∗+(r) is the subsonic one such that

ρ∗+(6) = ρ∗−(6)(v∗−(6)2 − k4)

k2(1 − v∗−(6)2)
, v∗+(6) = k2

v∗−(6)
. (6.10)

V0 is an entropy weak stationary solution of the system: see [15,16]. Table 7 shows the
error in L1 norm between the numerical solution at time t = 50 and Figs. 23, 24 show
the comparison of the numerical results obtained with well-balanced and non-well-balanced
methods at selected times. On the other hand, the numerical results of this section put on
evidence, as for the Burgers–Schwarzschild system, the relevance of using well-balanced
methods for the Euler–Schwarzschild model.
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Table 7 Well-balanced versus non-well-balanced schemes: L1 errors at time t = 50 for the Burgers–
Schwarzschild model with the initial condition (6.8)

Scheme (500 cells) Error v (1st) Error ρ (1st) Error v (2nd) Error ρ (2nd)

Well-balanced 2.20E−13 1.25E−11 1.92E−13 1.03E−11

Non well-balanced 0.89 3.94 0.89 3.92

Fig. 23 Euler–Schwarzschild model with the initial condition (6.8): first- and second-order well-balanced and
non-well-balanced methods at selected times for the variable v

Fig. 24 Euler–Schwarzschild model with the initial condition (6.8): first- and second-order well-balanced and
non-well-balanced methods at selected times for the variable ρ
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(a)

(b)

Fig. 25 Euler–Schwarzschild model with the initial condition (6.11): first- and second-order well-balanced at
selected times for the variable v

6.3 Perturbation of a Regular Stationary Solution

In this test we consider the initial condition

Ṽ0(r) = Ṽ ∗(r) + δ(r), (6.11)

where Ṽ ∗ is the supersonic stationary solution

ρ∗(10) = 1, v∗(10) = 0.9 (6.12)

and

δ(r) = [δv(r), δρ(r)]T =
{

[−0.01e−200(r−6)2 , 0]T , 5 < r < 7,

[0, 0]T , otherwise.
(6.13)

It can be observed in Fig. 25 that the stationary solution V ∗ is recovered once the perturbation
has left the domain. In this Figure, the numerical results obtained with the first- and second-
order well-balanced methods are compared with a reference solution computed using the
first-order well-balanced method with a 5000-point mesh (the Roe-type numerical flux is
used again). As expected, the second-order method is less diffusive.

6.4 Perturbation of a Steady Shock Solution

Left-hand perturbation.We consider the initial condition

Ṽ0(r) = Ṽ ∗(r) + δL(r), (6.14)

where

δL(r) = [δv,L(r), δρ,L(r)]T =
{

[0.2e−200(r−4)2 , 0]T , 3 < r < 5,

[0, 0]T , otherwise,
(6.15)
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(a)

Fig. 26 Euler–Schwarzschild model with the initial condition (6.14): comparison between the first-order well-
balanced method with different meshes using the Roe-type and the Lax numerical fluxes at selected times for
the variable v

and V ∗(r) is the stationary solution given by (6.8)–(6.10). In Figs. 26 and 27 the numerical
results obtained with the first- and second-order well-balanced methods using the Lax-
Friedrichs and the Roe-type numerical methods with different meshes are compared. As it
happened for the Burgers–Schwarzschild model, the location of the stationary shock changes
after the passage of the wave generated by the perturbation. Nevertheless in this case the dis-
placement of the shock is slower. Different numerical methods have been applied to check
the dependency of the motion on the scheme: although the evolution of the shock slightly
depends on the number of points of the mesh, all the numerical solutions capture the same
final location of the shock. In Fig. 28 the evolution of the shock given by the first-order WB
method with different number of cells are compared. The location of the shock at every time

step has been detected by using the condition
vi − vi−1

vi+1 − vi
≥ 0.8.

Right-hand perturbation. Let us consider now two different initial conditions: on the one
hand

Ṽ0,1(r) = Ṽ ∗(r) + δR(r), (6.16)

where Ṽ ∗(r) is again the discontinuous stationary solution given by (6.8)–(6.10) and

δR(r) = [δv,R(r), δρ,R(r)]T =
{

[−0.05e−200(r−8)2 , 0]T , 7 < r < 9,

[0, 0]T , otherwise.
(6.17)

On the other hand,

Ṽ0,2(r) = Ṽ ∗
2 (r) + δR(r), (6.18)

where δR is given again by (6.16) and Ṽ ∗
2 (r) is the steady shock of the form (6.8) satisfying

ρ∗−(6) = 5, v∗−(6) = 0.6. (6.19)
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(a)

Fig. 27 Euler–Schwarzschild model with the initial condition (6.14): first-order well-balanced method with
different meshes using the Roe-type and the Lax numerical fluxes at selected times for the variable ρ

Fig. 28 Euler–Schwarzschild model taking as initial condition (6.14): evolution of the shock position with
time obtained with the first-order well-balanced method using the Roe-type numerical flux with different
meshes

Observe that the definition of v is identical for both stationary solutions but ρ is different.
After the passage of the perturbation, the shock starts moving leftward and, in both cases,

the numerical solution converges to a smooth transonic stationary solution of the form:

V ∗(r) =
{
V ∗−(r), r ≤ rc,

V ∗+(r), otherwise,
(6.20)

where rc is given by (5.4); V ∗−(r) and V ∗+(r) are respectively a subsonic and a supersonic
stationary solution satisfying v∗±(rc) = −k: see Fig. 29. Nevertheless, the limits in time of
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Fig. 29 Euler–Schwarzschild model with the initial conditions (6.16) and (6.18): first-order well-balanced
method with a 2000-point mesh using the Roe-type numerical flux at selected times for the variable v: the
numerical solutions coincide

Fig. 30 Euler–Schwarzschild model with the initial conditions (6.16) and (6.18): first-order well-balanced
method with a 2000-point mesh using the Roe-type numerical flux at selected times for the variable ρ

the approximations of ρ are different: see Fig. 30. Observe that, in the Euler–Schwarzschild
model (5.1), there are infinitely many stationary solutions with the same function v and
different ρ.
Relation between the perturbation and the displacement of the shock. In order to study
the relationship between the amplitude of the perturbation and the distance between the initial
and the final shock locations, we consider the family of initial conditions:

Ṽ0(r) = Ṽ ∗(r) + δ(α, r), (6.21)
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(a)

Fig. 31 Euler–Schwarzschild model with the initial condition (6.21): first-order well-balanced method taking
different values of α for variable v

(a)

Fig. 32 Euler–Schwarzschild model with the initial condition (6.21): first-order well-balanced method taking
different values of α for variable ρ

Table 8 Euler–Schwarzschild
model with the initial condition
(6.21): measures of the
perturbation and the shock
displacement for different values
of α

α
∫

δv limt→∞
∫ |v − v∗|

0.05 0.0063 1.0952

0.1 0.0125 1.0969

0.15 0.0188 1.0987

0.2 0.0251 1.1023

0.25 0.0313 1.1077

0.3 0.0376 1.1327

where Ṽ ∗ is the steady shock solution given by (6.8)–(6.10) and

δ(α, r) = [δv(α, r), δρ(α, r)]T =
{

[αe−200(r−4)2 , 0]T , 3 < r < 5,

[0, 0]T , otherwise,
(6.22)

with α > 0. In this case we will also use the Roe-type numerical flux and a 2000-point
uniform mesh. Figures 31 and 32 show the numerical solution for different values of α and
we observe that depending on the amplitude of the perturbation the numerical solutions
converge in time to different steady shock solutions.

The amplitude of the perturbation is measuredwith
∫

δv(α, r) dr and the distance between
the shocks is measured by limt→∞

∫ |v(r , t) − v∗(r)| dr , as we did for the Burgers–
Schwarzschild model. Table 8 and Fig. 33 show the relationship between those magnitudes:
the displacement of the shock seems to grow exponentially with the amplitude.
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Fig. 33 Euler–Schwarzschildmodelwith the initial condition (6.21): values of limt→∞
∫ |v−v∗| as a function

of
∫

δv

Fig. 34 Euler–Schwarzschild model with the initial condition (6.23): first-order well-balanced method taking
different values of β for variable v

Let us finally consider a family of initial conditions that generate leftward displacement
of the initial steady shock:

Ṽ0(r) = Ṽ ∗(r) + δ(β, r), (6.23)

where Ṽ ∗ is again the steady shock solution given by (6.8)–(6.10) and

δ(β, r) = [βv(β, r), δρ(β, r)]T =
{

[βe−200(r−8)2 , 0]T , 7 < r < 8,

[0, 0]T , otherwise,
(6.24)

with β < 0. In this case we will use the Roe-type numerical flux and a 2000-point uniform
mesh. Figures 34 and 35 show the numerical solution for different values of β and we observe
that it converges to the same stationary solution regardless of the perturbation.

6.5 Main Conclusions for the Euler–Schwarzschild Model

In view of Fig. 25 we arrive at the following observation.

Conclusion 3 If a smooth stationary solution of the Euler system (1.3) is perturbed, the
solution is restored once the wave generated by the perturbation goes away.
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Fig. 35 Euler–Schwarzschild model with the initial condition (6.23): first-order well-balanced method taking
different values of β for variable ρ

In view of Figures 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 and Table 8 we arrive at the
following observation.

Conclusion 4 Consider a perturbation δ = (δv, δρ) added to a steady shock solution of the
form

V0(r) =
{
V ∗−(r), r ≤ r0,

V ∗+(r), otherwise.

1. If the perturbation moves the steady shock to the right, then a different stationary solution
of the form

V (r) =
{
V ∗−(r), r ≤ r1,

V ∗+(r), otherwise,

with r0 
= r1, is obtained, and the distance between r0 and r1 seems to depend exponen-
tially on the amplitude of the perturbation: see Table 8 and Fig. 33.

2. If the perturbation moves the steady shock to the left, then a steady shock solution of the
form (6.20) is obtained.
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