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Abstract—Few-shot learning is often motivated by the ability
of humans to learn new tasks from few examples. However,
standard few-shot classification benchmarks assume that the
representation is learned on a limited amount of base class data,
ignoring the amount of prior knowledge that a human may have
accumulated before learning new tasks. At the same time, even
if a powerful representation is available, it may happen in some
domain that base class data are limited or non-existent. This
motivates us to study a problem where the representation is
obtained from a classifier pre-trained on a large-scale dataset of
a different domain, assuming no access to its training process,
while the base class data are limited to few examples per class and
their role is to adapt the representation to the domain at hand
rather than learn from scratch. We adapt the representation in
two stages, namely on the few base class data if available and
on the even fewer data of new tasks. In doing so, we obtain
from the pre-trained classifier a spatial attention map that allows
focusing on objects and suppressing background clutter. This is
important in the new problem, because when base class data are
few, the network cannot learn where to focus implicitly. We also
show that a pre-trained network may be easily adapted to novel
classes, without meta-learning.

I. INTRODUCTION

The ever improving performance of deep learning models,
apart from technical progress, is largely due to the existence of
large-scale datasets, fully or weakly labeled by humans [1]–
[3]. At the same time, reducing the need for supervision is
becoming increasingly important, e.g. by taking advantage of
prior learning [4]–[6] or exploiting unlabeled data [7], [8].

An extreme situation is few-shot learning [9]–[12], where
the problem is to learn novel (previously unseen) classes using
only a very small labeled training set, typically not more
than 10 examples per class. Here not only the annotation
but even the raw data are not available. This problem is
often motivated by the ability of humans to learn new tasks
from few examples [13], [14], which has given rise to meta-
learning [15]–[19], or learning to learn. In this scenario, a
training set is treated as a collection of smaller sets where
every class has few labeled examples.

However, there is a huge gap between the motivating
example of humans learning new tasks and how the few-shot
classification task is set up. On one hand, for the sake of
simplicity in experiments, the base class datasets where the
representation is learned from scratch, contain a few dozen or
hundred classes with a few hundred examples each. This is by
no means comparable to datasets available to date [2], [3], let

alone the amount of prior knowledge that a human may have
accumulated before learning a new task. On the other hand, for
a given domain of novel classes, e.g. bird species [20], base
class data of such size in the same domain may not exist.

In this work, we depart from the standard few-shot clas-
sification scenario in two directions. First, we allow the
representation to be learned from a large-scale dataset in a
domain different than the base and novel class domain. In
particular, we model prior knowledge by a classifier that is
pre-trained on such a dataset, having no access to its training
process. We thus maintain the difficulty of domain gap and
the simplicity of experiments (by not training from scratch),
while allowing a powerful representation. Second, we assume
only few or zero examples per base class. Hence, the role of
base classes is to adapt the representation to the domain at
hand rather than learn from scratch. This scenario can be seen
as few-shot version of few-shot learning. Hence, we call it
few-shot few-shot learning (FSFSL).

We treat this problem as a two-stage adaptation process,
first on the few base class examples if available and second on
the even fewer novel class examples. Because of the limited
amount of data, it is not appropriate to apply e.g. transfer
learning [4] or domain adaptation [21], in either of the two
stages. Because the network is pre-trained, and we do not have
access to its training process or data, meta-learning is not an
option either. We thus resort to few steps of fine-tuning as
in the meta-testing stage of Finn et al. [22] and Ravi and
Larochelle [17].

Focusing on image classification, we then investigate the
role of spatial attention in the new problem. With large base
class datasets, the network can implicitly learn the relevant
parts of the images where to focus. In our setup, base class data
are few, so our motivation is that a spatial attention mechanism
may help the classifier in focusing on objects, suppressing
background clutter. We observe that although the prior classes
of the pre-trained classifier may be irrelevant to a new task,
uncertainty over a large number of such classes may express
anything unknown like background. This is a class-agnostic
property and can apply to new tasks.

In particular, given an input image, we measure the entropy-
based certainty of the pre-trained classifier in its prediction
on the prior classes at every spatial location and we use it
to construct a spatial attention map. This map can be utilized
in a variety of ways, for instance weighted spatial pooling or



weighted loss per location; and at different situations like the
two adaptation stages or at inference. By exploring different
alternatives, we show that a pre-trained network may be easily
adapted to novel classes, without meta-learning.

In summary, we make the following contributions:
• We introduce a new few-shot learning setting, called few-

shot few-shot learning (FSFSL), where base class data is
few and its role is to adapt the representation rather than
learn from scratch.

• We demonstrate that an off-the-shelf network pre-trained
on large-scale out-of-domain data brings impressive im-
provement compared to methods specifically designed for
few-shot learning.

• We show that, given a large number of classes, a pre-
trained classifier can be used as a class-agnostic spatial
attention mechanism, suppressing background clutter.

• We show that spatial attention helps in adapting the
representation, particularly when base class examples are
few.

In the following, we provide a detailed problem formulation
and related background in section II, then we describe our
spatial attention mechanism in section III and its use in few-
shot classification in section IV. We provide experimental
results in section V, and we conclude in section VI.

II. PROBLEM, BACKGROUND, RELATED WORK AND
CONTRIBUTION

Few-shot classification. We are given a set of training ex-
amples X := {xi}ni=1 ⊂ X , and corresponding labels y :=
(yi)

n
i=1 ⊂ Cn where C := [c] := {1, . . . , c} is a set of base

classes. The objective is to learn a representation on these data,
a process that we call base training, such that we can solve
new tasks. A new task comprises a set of support examples
X ′ := {x′i}n

′

i=1 ⊂ X and labels y′ := (y′i)
n′

i=1 ⊂ (C ′)n
′
, where

n′ � n and C ′ := [c′] is a set of novel classes disjoint from
C. The most common setting is k′ examples per novel class,
so that n′ = k′c′, referred to as c′-way, k′-shot classification.
The objective now is to learn a classifier on these support data,
a process that we call adaptation. This classifier should map
a new query example from X to a prediction in C ′.

Few-shot few-shot classification. Few-shot classification as-
sumes there is more data in base than novel classes, and a
domain shift between the two, in the sense of no class overlap.
Here we consider a modified problem where n can be small
or zero, but there is another set C◦ = [c◦] of prior classes
with even more data X◦ and labels y◦ with n� n◦ := |X◦|
and a greater domain shift to C,C ′. Again, the most common
setting is k examples per base class, so that n = kc. We are
using a classifier that is pre-trained on this data but we do not
have direct access to either X◦,y◦, or its learning process. The
objective of base training is now to adapt the representation
to the domain of C,C ′ rather than learn it from scratch; but
we still call it base training.

In the remaining of this section we present general back-
ground on few-shot classification that typically applies to

base classes C or novel classes C ′, but may also apply to
both, in which case the symbols c, C and c′, C ′ may be used
interchangeably. Prior classes and the pre-trained network are
only considered in the following sections.

Classifier. The classifier is a function fθ,W : X → Rc (resp.
Rc′ ) with learnable parameters θ,W , mapping a new example
x ∈ X to a vector of probabilities p := fθ,W (x) over c (resp.
c′) base (resp. novel) classes. The classifier prediction is the
class of maximum probability

π(p) := arg max
j
pj , (1)

where pj is the j-th element of p. The classifier is built on
top of an embedding function φθ : X → Rr×d. Given an
example x ∈ X , this function yields a r × d feature tensor
φθ(x), where r represents the spatial dimensions and d the
feature dimensions. For X comprising 2d images for instance,
the feature is a w×h×d tensor that is the activation of the last
convolutional layer, where r = w×h is the spatial resolution.
The embedding is a vector in Rd in the special case r = 1.

The embedding parameters θ may be updated into θ′ in
the adaptation process, in which case we have an embedding
function φθ′ and classifier fθ′,W . Again θ, θ′ may be used
interchangeably.

Cosine classifier. A simple form of classifier that was intro-
duced in few-shot learning independently by Qi et al. [23] and
Gidaris and Komodakis [24] is a parametric linear classifier
that consists of a fully-connected layer without bias on top
of the embedding function φθ followed by softmax. If W :=
(wj)

c
j=1 is the collection of class weights with wj ∈ Rr×d,

the classifier is defined by

fθ,W (x) := σ
(
τ [s(φθ(x),wj)]

c
j=1

)
(2)

for x ∈ X , where σ : Rm → Rm is the softmax function
σ(u) := (eu1 ,...,euc )∑

j e
uj for u ∈ Rc, τ ∈ R+ is a trainable scale

parameter and s is cosine similarity1. We minimize the cost
function

J(X,y; θ,W ) :=

n∑
i=1

`(fθ,W (xi), yi) (3)

over θ,W at base training, where `(p, y) := − log py for p ∈
Rc+, y ∈ C is the cross-entropy loss.

Prototypes. An alternative classifier that is more appropriate
during few-shot adaptation or at testing is a prototype classifier
proposed by Snell et al. [11] and followed by Qi et al. [23] and
Gidaris and Komodakis [24] too. If Sj := {i ∈ [n′] : y′i = j}
denotes the indices of support examples labeled in class j, then
the prototype of this class j is given by the average features

pj =
1

|Sj |
∑
i∈Sj

φθ′(x
′
i) (4)

1For matrices u,v ∈ Rr×d, s(u,v) := 〈u,v〉 /(‖u‖ ‖v‖) with 〈·, ·〉 and
‖·‖ being the Frobenius inner product and norm respectively.



of those examples for j ∈ C ′. Then, denoting by P := (pj)
c′

j=1

the collection of prototypes, a query x ∈ X is classified as
fθ′,P (x), as defined by (2).

Dense classifier. This is a classifier where the loss function
applies densely at each spatial location of the feature ten-
sor rather than by global pooling or flattening as implied
by (2). The classifier can be of any form but a cosine
classifier [23], [24] is studied by Lifchitz et al. [25]. In
particular, the embedding φθ(x) is seen as a collection of
vectors [φ(q)(x)]rq=1, where φ(q)(x) ∈ Rd is an embedding of
spatial location q ∈ [r]. The classifier (2) is then generalized
to fθ,W : X → Rr×c, now mapping an example to a vector
of probabilities per location, defined by

fθ,W (x) :=
[
σ
(
τ [s(φ

(q)
θ (x),wj)]

c
j=1

)]r
q=1

(5)

for x ∈ X , while the class weights W are shared over locations
with wj ∈ Rd. Cross-entropy applies using the same label
yi for each location of example xi, generalizing the cost
function (3) to

J(X,y; θ,W ) :=

n∑
i=1

r∑
q=1

`(f
(q)
θ,W (xi), yi). (6)

Related work. Prototypical networks [11] use a prototype
classifier. At testing, a query is classified to the nearest
prototype, while at adaptation, computing a prototype per
class (4) is the only learning to be done. Base training is
based on meta-learning: a number of fictitious tasks called
episodes are generated by randomly sampling a number of
classes from C and then a number of examples in each class
from X with their labels from y. These data are assumed
to be support examples and queries of novel classes C ′.
Labels are now available for the queries and the objective
is that they are classified correctly. In imprinting [23], a
cosine classifier (2) and standard cross-entropy (3) are used
instead at base training. At adaptation, class prototypes P are
computed (4) and imprinted in the classifier, that is, W is
replaced by W ′ := (W,P ). The entire embedding function
is then fine-tuned based again on (3) to make predictions
on n + n′ base and novel classes, which requires the entire
training data (X,y). Few-shot learning without forgetting [24]
uses model similar to imprinting, the main difference being
that only the weight parameters W of the base classes are
stored and not the entire training data. At base training, a
cosine classifier is trained by (3) followed by episodes. At
adaptation, prototypes are adapted to W by a class attention
mechanism. Model agnostic meta-learning (MAML) [22] uses
a fully-connected layer as classifier. At adaptation, the entire
embedding function is fine-tuned on each new task using (3)
only on the novel class data, but for few steps such that
the classifier does not overfit. At base training, episodes are
used where the loss function mimics the iterative optimization
that normally takes place at adaptation. In implanting [25], a
prototype classifier is trained in episodes, keeping the base
embedding function fixed but attaching a parallel implant

stream of convolutional layers that learns features useful for
each new task.

Contribution. The problem we consider is a variant of few-
shot learning that has not been studied before. It involves
sequential adaptation of a given network in two stages, each
comprising a limited amount of data. There are many ways
of exploiting prior learning to reduce the required amount
data and supervision like transfer learning [4], [26], domain
adaptation [5], [21], [27], or incremental learning [6], [28],
[29]. However, none applies to the few-shot domain where just
a handful of examples are given.

Attention has been studied as a core component of several
few-shot learning and meta-learning approaches [10], [24],
[30], [31], but it always referred to examples (e.g. images)
as a unit. Spatial attention on the other hand refers to neurons
at different spatial locations. It is ubiquitous in several prob-
lems, for instance weakly supervised object detection [32]–
[34] and non-local convolution [35]–[37], but has not been
applied to few-shot learning until recently [38], [39]. In [38],
attention maps are computed by a module trained on base class
data, which is not directly accessible in our setup. In [39],
attention encourages different classes to use different contexts,
which helps maintain the discrimination between head and tail
classes. By contrast, we are discriminating between foreground
and background. Our spatial attention mechanism is extremely
simple, based on the pre-trained network, without training on
the base or novel class data.

III. SPATIAL ATTENTION FROM PRE-TRAINING

We assume a pre-trained network with an embedding func-
tion φθ◦ : X → Rr×d followed by global average pooling
(GAP) and a classifier that is a fully connected layer with
weights W ◦ := (w◦j )

c◦

j=1 ∈ Rd×c◦ and biases b◦ ∈ Rc◦ ,
denoted jointly by U◦ := (W ◦,b◦). Without re-training, we
remove the last pooling layer and apply the classifier densely
as in 1×1 convolution, followed by softmax with temperature
T . Then, similarly to (5), the classifier fθ◦,U◦ : X → Rr×c◦

maps an example to a vector of probabilities per location,
where classifier parameters U◦ are shared over locations:

fθ◦,U◦(x) :=

[
σ

(
1

T

(
W ◦>φ

(q)
θ◦ (x) + b◦

))]r
q=1

. (7)

We now want to apply this classifier to examples in set X
(resp. X ′) of base (resp. novel) classes C (resp. C ′) in order to
provide a spatial attention mechanism to embeddings obtained
by parameters θ (resp. θ′). We formulate the idea on X,C, θ
in this section but it applies equally to X ′, C ′, θ′. In particular,
given an example x ∈ X , we use the vector of probabilities
p(q) := f

(q)
θ◦,U◦(x) corresponding to spatial location q ∈ [r] to

compute a scalar weight w(q)(x), expressing the discrimina-
tive power of the particular location q of example x.

Since x belongs to a set of classes C different than C◦, there
is no ground truth to be applied to the output of the pre-trained
classifier fθ◦,U◦ . However, the distribution p(q) can still be
used to evaluate how discriminative the input is. We use the



Fig. 1. Examples of images from CUB (top) and miniImageNet (bottom)
overlaid with entropy-based spatial attention maps obtained from (8) using
only the predicted class probabilites from ResNet-18 pre-trained on Places.
See section V for details on datasets and networks.

entropy function for this purpose, H(p) := −
∑
j pj log(pj).

We map the entropy to [0, 1], measuring the certainty of the
pre-trained classifier in its prediction on the prior classes C◦:

w(q)(x) := 1−
H(f

(q)
θ◦,U◦(x))

log c◦
(8)

for q ∈ [r], where we ignore dependence on parameters θ◦, U◦

to simplify notation, since they remain fixed. We use this
as a weight for location q assuming that uncertainty over a
large number of prior classes expresses anything unknown
like background, which can apply to a new set of classes. We
then `1-normalize the weights w(x) := [w(q)(x)]rq=1 ∈ Rr as
ŵ(x) := w(x)/ ‖w(x)‖1. We call ŵ(x) the spatial attention
weights of x.

The weights are applied in different ways depending on
the problem. If the embedding φθ(x) is normally a vector in
Rd obtained by GAP on a feature tensor Φθ(x) ∈ Rr×d as
1
r

∑
q∈[r] Φ

(q)
θ (x) for x ∈ X , then GAP is replaced by global

weighted average pooling (GwAP):

φθ(x) :=
∑
q∈[r]

ŵ(q)(x)Φ
(q)
θ (x). (9)

for x ∈ X . We recall that this applies equally to θ′ in the case
of novel classes.

Figure 1 shows examples of images with spatial attention
maps. Despite the fact that there has been no training involved
for the estimation of attention on the particular datasets, the
result can still be useful in suppressing background clutter.

IV. SPATIAL ATTENTION IN FEW-SHOT CLASSIFICATION

Here we discuss the use of attention maps at inference on
novel classes, as well as learning on novel classes. In the latter
case, the weights are pre-computed for all training examples
since the pre-trained network remains fixed in this process. In
summary, we either replace GAP by GwAP (9) in all inputs
to the embedding network, or use dense classification (5).

A. Base class training

Starting from a pre-trained embedding network φθ◦ , we can
either solve new tasks on novel classes C ′ directly, in which

case θ = θ◦, or perform base class training, fine-tuning θ
from θ◦. Adaptation may involve for instance fine-tuning the
last layers or the entire network, applying a spatial attention
mechanism or not. Recalling that φθ◦ is still needed for weight
estimation (8), the most practical setting is to fine-tune the last
layers, in which case φθ shares the same backbone network
with φθ◦ . Following MAML [22], we perform few gradient
descent steps with low learning rate.

We use a dense classifier fθ,W : X → Rr×c (5) with
class weights W . Given the few base class examples X and
labels y, we learn W at the same time as fine-tuning θ by
minimizing (6).

B. Novel class adaptation

Optionally, given the few novel class support examples X ′

and labels y′, we can further adapt the embedding network,
while applying our attention mechanism to the loss function.
As in subsection IV-A, φθ′ shares the same backbone with φθ,
being derived from it by fine-tuning the last layers. We perform
even fewer gradient descent steps with lower learning rate

We use a prototype classifier where vector embeddings
φθ′(x

′) of support examples x′ ∈ X ′ are obtained by GwAP
with φθ′ defined as in (9) and class prototypes P := (pj)

c′

j=1

are obtained per class by averaging embeddings of support
examples as defined by (4) and updated whenever θ′ is
updated. The classifier fθ′,P : X → Rc′ is a standard cosine
classifier (2) and the loss function is standard cross-entropy
J(X,y; θ, P ) (3) with embedding φθ′ obtained by GwAP (9).
Attention weights apply to embeddings of all inputs to the
network, each time focusing on most discriminative parts. In
case of no adaptation to the embedding network, we fix θ′ = θ.
Computing the prototypes P (4) is then the only learning to
be done and we can proceed to inference directly.

C. Novel class inference

At inference, as in subsection IV-B, we adopt a proto-
type classifier where vector embeddings φθ′(x′) of support
examples x′ ∈ X ′ are obtained by GwAP with φθ′ defined
as in (9) and class prototypes P := (pj)

c′

j=1 are obtained
per class by averaging embeddings of support examples as
defined by (4). Then, given a query x ∈ X , we similarly
obtain a vector embedding φθ′(x) by GwAP (9) and predict
the class π(fθ′,P (x)) of the nearest prototype according to
cosine similarity where π is given by (1) and fθ′,P by (2). We
thus focus on discriminative parts of both support and query
examples, suppressing background clutter.

V. EXPERIMENTS

A. Experimental setup

Pretrained Network. We assume that we have gathered
prior knowledge on unrelated visual tasks. This knowledge
is modeled by a deep convolutional network, trained on a
large-scale dataset. In our experiments, we choose to use a
ResNet-18 [40] pre-trained on the Places365-Standard subset
of Places365 [41]. We refer to this subset as Places. This subset
contains around 1.8 million images across 365 classes. The



miniImageNet split miniImageNet class Places class with overlap

TRAIN carousel carousel
TRAIN slot amusement arcade
TRAIN cliff cliff

VALIDATION coral reef underwater - ocean deep
TEST school bus bus station - indoor
TEST bookshop bookstore

TABLE I
CLASSES REMOVED FROM miniIMAGENET TO FORM THE modified

miniImageNet DATASET AND THE CORRESPONDING OVERLAPPING PLACES
CLASSES.

classes are outdoor and indoor scenes. We select this dataset
for its large scale, diversity of content and different nature
than other popular datasets like CUB-200-2011 (see below).
Images are resampled to 224×224 pixels for training. We
choose ResNet-18 as the architecture of the pre-trained model
as it is a powerful network that is also used in other few-shot
learning studies [42], [43], which helps in comparisons. We
make no assumption on the pre-training of the network. We
do not access either the pre-training process or the dataset. We
rather use a publicly available converged model that has been
trained with a fully-connected layer as a classifier, as assumed
in section III.

Datasets. We apply our method to two standard datasets in
few-shot learning. The first is CUB-200-2011 [44], referred to
as CUB, originally meant for fine-grained classification, and
subsequently introduced to few-shot learning by Hilliard et
al. [45]. This dataset contains 11,788 images of birds across
200 classes corresponding to different species. We use the split
proposed by Ye et al. [46], where 100 classes are used as base
classes and the remaining 100 as novel, out of which 50 for
validation and 50 for testing. CUB images are cropped using
bounding box annotations and resampled to 224×224.

The second dataset is miniImageNet [10], a subset of
the ImageNet ILSVRC-12 [47] containing 100 classes with
600 images per class. Following the split from Ravi and
Larochelle [17], 64 classes are used as base classes and
36 as novel, out of which 16 for validation and 20 for
testing. Originally, miniImageNet images have been down-
sampled from the ImageNet resolution to 84×84. In this work,
similarily to [42], [43], we resample to 224×224 instead,
which is consistent with the choice of pre-trained network.

Dataset overlap. Contrary to CUB, miniImageNet has some
non-negligible overlap with Places. Some classes or even ob-
jects appear in both datasets. To better satisfy our assumption
of domain gap, we remove the most problematic overlapping
classes from miniImageNet: 3 base classes, 1 validation class
and 2 novel classes. We refer to this pruned dataset as modified
miniImageNet. For the sake of comparison and because this
overlap can happen in practice, we also experiment on the
original miniImageNet.

In particular, we measure, for each miniImageNet class,
what is the most frequent prediction among Places classes
by the pre-trained Resnet-18 classifier and what proportion of

examples are classified in this class. Ranking miniImageNet
classes by that proportion, we check class names on both
datasets and manually inspect examples in the top-ranking
classes. We remove only the most clearly overlapping classes,
that is, identical classes and classes depicted in images of a
Places class. For instance, most images from the bus station -
indoor class of Places contain a bus, so we chose to remove the
school bus class from miniImageNet. Table I lists the classes
removed from miniImageNet in this way.

Evaluation protocol. To adapt to our few-shot version of few-
shot learning, we randomly keep only k images per base class.
We experiment with k ∈ {0, 1, 5, 10} and k ∈ {0, 20, 50}
respectively for the CUB and miniImageNet. This is because
CUB classes refer to bird species, while miniImageNet classes
to broad object categories, hence have a lot more variability.
For novel classes, we use the standard setting k′ ∈ {1, 5}. We
generate a few-shot task on novel classes by selecting a support
set X ′. In particular, we sample c′ classes from the validation
or test set and from each class we sample k′ images. In all
experiments, c′ = 5, i.e. 5-way classification. For each task we
additionally sample 30 novel class images per class, to use as
queries for evaluation. We report average accuracy and 95%
confidence interval over 5,000 tasks for each experiment. The
base class training set X contains k examples per base class
in C. Each experiment can be seen as a few-shot classification
task on few base class examples.

Baselines. We evaluate experiments with the network being
either pre-trained on Places or randomly initialized. In both
cases, we report measurements for different number k of
examples per base class, as well as all examples in X .
In the latter case (randomly initialized), we do not use the
option k = 0 because then there would be no reasonable
representation to adapt or to perform inference on, given a
few-shot task on novel classes. Furthermore, in this case we
do not apply the attention mechanism as it is based on the pre-
trained classifier. In all cases, we compare to the baselines of
using no adaptation and no spatial attention. When learning
from scratch, spatial attention is not applied as we do not
have access to the pre-trained classifier. In the case of random
initialization, and using all examples in X , we compare to
Baseline++ [42] and prototypical networks [11], as reported
in the benchmark by Chen et al. [42], as well as category
traversal (CTM) [48] and ensembles [43], all using ResNet-
18. They can only be compared to our randomly initialized
baseline when using base training on all data.

Implementation details. At base training, we use stochastic
gradient descent with Nesterov momentum with mini-batches
of size 200. At adaptation, we perform a maximum of 60
iterations over the support examples using Adam optimizer
with fixed learning rate. In both cases, the learning rate,
schedule if any and number of iterations are determined on the
validation set. The temperature used by (7) for the computation
of the entropy is fixed per dataset, again on the validation set.
In particular, we use T = 100 and T = 2.6 respectively for
CUB and modified miniImageNet.



NOVEL: k′ = 1 NOVEL: k′ = 5

Attention X X X X
Adaptation X X X X

BASE PLACES

k = 0 38.80±0.24 39.69±0.24 39.76±0.24 40.79±0.24 55.09±0.24 56.95±0.23 63.29±0.24 64.27±0.23

k = 1 40.50±0.23 41.74±0.24 41.11±0.24 42.23±0.24 57.25±0.22 58.89±0.23 65.42±0.23 66.78±0.23

k = 5 56.47±0.28 57.16±0.29 56.69±0.29 57.32±0.29 74.27±0.23 74.95±0.23 75.82±0.23 76.32±0.23

k = 10 62.83±0.30 64.32±0.30 62.97±0.30 64.41±0.30 78.89±0.22 80.08±0.21 80.56±0.22 81.53±0.21

ALL 80.68±0.27 80.48±0.27 80.68±0.27 80.56±0.27 90.38±0.16 90.33±0.16 91.22±0.15 91.17±0.15

BASE RANDOMLY INITIALIZED

k = 1 31.65±0.19 - 31.37±0.19 - 39.45±0.20 - 42.70±0.21 -
k = 5 40.52±0.25 - 40.50±0.26 - 52.94±0.25 - 53.45±0.25 -
k = 10 48.25±0.28 - 48.61±0.29 - 63.37±0.26 - 64.52±0.26 -
ALL 71.78±0.30 - 71.77±0.30 - 85.60±0.18 - 85.96±0.19 -

Baseline++ 67.02±0.90 - - - 83.58±0.54 - - -
ProtoNet 71.88±0.91 - - - 87.42±0.48 - - -
Ensemble 68.77±0.71 - - - 84.62±0.44 - - -

TABLE II
Average 5-way k′-shot novel class accuracy on CUB. WE USE RESNET-18 EITHER PRE-TRAINED ON PLACES OR WE TRAIN IT FROM SCRATCH ON k BASE

CLASS EXAMPLES. PROTONET [11] IS AS REPORTED BY CHEN et al. [42]. FOR ENSEMBLE [43], WE REPORT THE DISTILLED MODEL FROM AN
ENSEMBLE OF 20. BASELINES AS REPORTED IN THE LITERATURE, WITHOUT ATTENTION OR ADAPTATION; TO BE COMPARED ONLY TO RANDOMLY

INITIALIZED WITH k = ALL.

NOVEL: k′ = 1 NOVEL: k′ = 5

Attention X X X X
Adaptation X X X X

BASE PLACES

k = 0 61.66±0.30 63.36±0.29 62.09±0.30 63.56±0.30 78.86±0.22 80.15±0.22 80.38±0.22 81.05±0.22

k = 20 62.95±0.29 63.15±0.28 63.11±0.29 63.33±0.29 78.41±0.21 78.53±0.21 79.67±0.21 79.82±0.21

k = 50 65.07±0.29 65.10±0.29 65.18±0.29 65.24±0.29 79.94±0.20 79.99±0.20 80.88±0.20 80.96±0.20

ALL 66.20±0.29 65.94±0.29 66.23±0.29 66.06±0.29 80.37±0.21 80.24±0.21 81.56±0.20 81.50±0.20

BASE RANDOMLY INITIALIZED

k = 20 33.43±0.21 - 33.35±0.21 - 43.83±0.21 - 44.21±0.21 -
k = 50 41.03±0.24 - 41.05±0.24 - 54.68±0.22 - 54.92±0.22 -
ALL 55.99±0.28 - 56.13±0.28 - 72.43±0.22 - 73.10±0.21 -

TABLE III
Average 5-way k′-shot novel class accuracy on modified miniImageNet. WE USE RESNET-18 EITHER PRE-TRAINED ON PLACES OR WE TRAIN IT FROM

SCRATCH ON k BASE CLASS EXAMPLES. BASELINES ONLY SHOWN IN TABLE IV ON THE ORIGINAL miniIMAGENET.

B. Results

We present results in Tables II and III respectively for CUB
and modified miniImageNet. The original miniImageNet is
discussed separately at the end of this section.
Effect of base training. For fine-grained few-shot classifica-
tion (CUB), base training is extremely important in adapting
to the new domain, improving the baseline 1-shot accuracy by
more than 40% with no adaptation and no spatial attention.
On object classification in general (modified miniImageNet),
it is less important, improving by 4.5%. It is the first time that
experiments are conducted on just a small subset of the base
class training set. It is interesting that 50 examples per class
are bringing nearly the same improvement as all examples, i.e.
hundreds per class.
Effect of (novel class) adaptation. Fine-tuning the network on
k′ novel class examples per class, even fewer than k in the case
of base classes, comes with the risk of over-fitting. We still
show that a small further improvement is possible with a small
learning rate. The improvement is more significant when k is

low, in which case, more adaptation of the embedding network
to the novel class domain is needed. In the extreme case of
CUB dataset without base training, adaptating on only the 25
images of the 5-way 5-shot tasks brings an improvement of
8.20%.

Effect of spatial attention. Spatial attention allows focusing
on the most discriminative parts of the input, which is more
beneficial when fewer examples are available. The extreme
case is having no base class images and only one image
per novel class. In this case, most improvement comes on
modified miniImageNet without base training, where spatial
attention improves 5-way 5-shot classification accuracy by
1.5% after adaptation. The attention maps appear to be domain
independent as they improve CUB accuracy even when no
images from the bird domain have been seen (k = 0).

Original miniImageNet results. The original miniImageNet
dataset partially overlaps Places. We use T = 2.4 for the
temperature in (7). The remaining setup is as for modified
miniImageNet. Results are shown in Table IV.



NOVEL: k′ = 1 NOVEL: k′ = 5

Attention X X X X
Adaptation X X X X

BASE PLACES

k = 0 65.80±0.31 67.56±0.31 66.41±0.32 67.96±0.31 81.90±0.23 83.00±0.22 83.45±0.22 84.09±0.22

k = 20 66.98±0.29 67.63±0.29 67.32±0.29 67.80±0.29 81.44±0.21 81.82±0.21 82.56±0.21 82.92±0.21

k = 50 69.11±0.29 69.17±0.29 69.22±0.29 69.30±0.29 83.14±0.20 83.25±0.20 83.97±0.19 84.10±0.19

ALL 69.71±0.29 69.81±0.29 69.70±0.29 70.00±0.29 83.31±0.19 83.25±0.19 84.20±0.19 84.24±0.19

BASE RANDOMLY INITIALIZED

k = 20 37.75±0.23 - 37.74±0.23 - 49.13±0.23 - 49.67±0.23 -
k = 50 42.79±0.23 - 42.79±0.23 - 57.18±0.23 - 57.68±0.23 -
ALL 59.68±0.27 - 59.66±0.27 - 75.42±0.20 - 75.95±0.20 -

Baseline++ 51.87±0.77 - - - 75.68±0.63 - - -
ProtoNet 54.16±0.82 - - - 73.68±0.65 - - -
Ensemble 63.06±0.63 - - - 80.63±0.43 - - -
CTM 64.12±0.55 - - - 80.51±0.13 - - -

TABLE IV
Average 5-way k′-shot novel class accuracy on original miniImageNet. WE USE RESNET-18 EITHER PRE-TRAINED ON PLACES OR WE TRAIN IT FROM

SCRATCH ON k BASE CLASS EXAMPLES. PROTONET [11] IS AS REPORTED BY CHEN et al. [42]. CTM REFERS TO THE DATA-AUGMENTED VERSION OF LI
et al. [48]. FOR ENSEMBLE [43], WE USE THE DISTILLED MODEL FROM AN ENSEMBLE OF 20. BASELINES AS REPORTED IN THE LITERATURE, WITHOUT

ATTENTION OR ADAPTATION; TO BE COMPARED ONLY TO RANDOMLY INITIALIZED WITH k = ALL.

Compared to the results of modified miniImageNet (Ta-
ble III), performances are nearly uniformly increased by 3-4%
and conclusions remain the same. The increase in performance
is due to having more training data, as well as putting back
easily classified classes in the test dataset. Observe that, unlike
CUB (cf . Table II), CTM [48] and ensembles [43] perform
better than our randomly initialized baseline. Our objective is
not to improve the state of the art of the standard few-shot
setup, but rather to study the new problem using a network
pre-trained on a large-scale dataset. In this respect, our simple
baseline better facilitates future research.

VI. CONCLUSION

In this paper we address the problem of few-shot learning
when even base classes images are limited in number. To ad-
dress it, we use a pre-trained network on a large-scale dataset
and a very simple spatial attention mechanism that does not
require any training on the base or novel classes. We consider
two few-shot learning datasets: CUB and miniImageNet, with
different domain gaps to our prior dataset Places. Our findings
indicate that even when the domain gap is large between the
dataset used for pre-training and the base/novel class domains,
it is still possible to get significant benefit from base class
training even with a few examples, which is very important
as it reduces the need for supervision. The gain from spatial
attention is more pronounced in this case.

REFERENCES

[1] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and
L. Fei-Fei, “ImageNet Large Scale Visual Recognition Challenge,”
International Journal of Computer Vision (IJCV), vol. 115, no. 3, pp.
211–252, 2015.

[2] A. Kuznetsova, H. Rom, N. Alldrin, J. Uijlings, I. Krasin, J. Pont-Tuset,
S. Kamali, S. Popov, M. Malloci, and T. Duerig, “The open images
dataset v4: Unified image classification, object detection, and visual
relationship detection at scale,” arXiv preprint arXiv:1811.00982, 2018.

[3] D. Mahajan, R. Girshick, V. Ramanathan, K. He, M. Paluri, Y. Li,
A. Bharambe, and L. van der Maaten, “Exploring the limits of weakly
supervised pretraining,” in ECCV, 2018, pp. 181–196.

[4] Y. Bengio, I. Guyon, G. Dror, V. Lemaire, G. Taylor, and D. Silver,
“Deep learning of representations for unsupervised and transfer learn-
ing,” in in Proc. of ICML, 2011.

[5] A. Mallya, D. Davis, and S. Lazebnik, “Piggyback: Adapting a single
network to multiple tasks by learning to mask weights,” in ECCV, 2018.

[6] Z. Li and D. Hoiem, “Learning without forgetting,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 40, no. 12, pp. 2935–
2947, Dec 2018.

[7] M. Caron, P. Bojanowski, A. Joulin, and M. Douze, “Deep clustering for
unsupervised learning of visual features,” in ECCV, 2018, pp. 132–149.

[8] I. Radosavovic, P. Dollar, R. Girshick, G. Gkioxari, and K. He, “Data
distillation: Towards omni-supervised learning,” in CVPR, June 2018.

[9] G. Koch, R. Zemel, and R. Salakhutdinov, “Siamese neural networks
for one-shot image recognition,” in ICMLW, 2015.

[10] O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra et al., “Matching
networks for one shot learning,” in NIPS, 2016.

[11] J. Snell, K. Swersky, and R. Zemel, “Prototypical networks for few-shot
learning,” in NIPS, 2017.

[12] B. Hariharan and R. B. Girshick, “Low-shot visual recognition by
shrinking and hallucinating features,” ICCV, 2017.

[13] B. Lake, R. Salakhutdinov, J. Gross, and J. Tenenbaum, “One shot
learning of simple visual concepts,” in Proceedings of the Annual
Meeting of the Cognitive Science Society, 2011.

[14] B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum, “Human-level
concept learning through probabilistic program induction,” Science, vol.
350, no. 6266, pp. 1332–1338, 2015.

[15] A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. Lillicrap,
“Meta-learning with memory-augmented neural networks,” in ICML,
2016.

[16] N. Mishra, M. Rohaninejad, X. Chen, and P. Abbeel, “Meta-learning
with temporal convolutions,” arXiv preprint arXiv:1707.03141, 2017.

[17] S. Ravi and H. Larochelle, “Optimization as a model for few-shot
learning,” ICLR, 2017.

[18] L. Bertinetto, J. F. Henriques, P. H. Torr, and A. Vedaldi, “Meta-
learning with differentiable closed-form solvers,” arXiv preprint
arXiv:1805.08136, 2018.

[19] C. Han, S. Shan, M. Kan, S. Wu, and X. Chen, “Face recognition with
contrastive convolution,” in ECCV, 2018.

[20] P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Belongie,
and P. Perona, “Caltech-UCSD Birds 200,” California Institute of
Technology, Tech. Rep. CNS-TR-2010-001, 2010.



[21] Y. Ganin and V. Lempitsky, “Unsupervised domain adaptation by
backpropagation,” arXiv preprint arXiv:1409.7495, 2014.

[22] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for
fast adaptation of deep networks,” in ICML, 2017.

[23] H. Qi, M. Brown, and D. G. Lowe, “Low-shot learning with imprinted
weights,” in CVPR, 2018.

[24] S. Gidaris and N. Komodakis, “Dynamic few-shot visual learning
without forgetting,” in CVPR, 2018.

[25] Y. Lifchitz, Y. Avrithis, S. Picard, and A. Bursuc, “Dense classification
and implanting for few-shot learning,” CVPR, 2019.

[26] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are
features in deep neural networks?” in NIPS, 2014.

[27] S.-A. Rebuffi, H. Bilen, and A. Vedaldi, “Learning multiple visual
domains with residual adapters,” in NIPS, 2017.

[28] S.-A. Rebuffi, A. Kolesnikov, and C. H. Lampert, “iCaRL: Incremental
classifier and representation learning,” arXiv preprint arXiv:1611.07725,
2016.

[29] J. Yoon, E. Yang, J. Lee, and S. J. Hwang, “Lifelong learning with
dynamically expandable networks,” ICLR, 2018.

[30] N. Mishra, M. Rohaninejad, X. Chen, and P. Abbeel, “A simple neural
attentive meta-learner,” ICLR, 2018.

[31] M. Ren, R. Liao, E. Fetaya, and R. S. Zemel, “Incremental
few-shot learning with attention attractor networks,” arXiv preprint
arXiv:1810.07218, 2018.

[32] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, “Learning
deep features for discriminative localization,” in CVPR, June 2016.

[33] Q. Hou, P. Jiang, Y. Wei, and M.-M. Cheng, “Self-erasing network for
integral object attention,” in NIPS, 2018, pp. 549–559.

[34] Y. Zhu, Y. Zhou, Q. Ye, Q. Qiu, and J. Jiao, “Soft proposal networks
for weakly supervised object localization,” in ICCV, Oct 2017.

[35] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in
CVPR, 2018, pp. 7132–7141.

[36] X. Wang, R. Girshick, A. Gupta, and K. He, “Non-local neural net-
works,” in CVPR, 2018, pp. 7794–7803.

[37] Y. Chen, Y. Kalantidis, J. Li, S. Yan, and J. Feng, “Aˆ 2-nets: Double
attention networks,” in NIPS, 2018, pp. 352–361.

[38] D. Wertheimer and B. Hariharan, “Few-shot learning with localization
in realistic settings,” in CVPR, 2019.

[39] Z. Liu, Z. Miao, X. Zhan, J. Wang, B. Gong, and S. X. Yu, “Large-
scale long-tailed recognition in an open world,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2019.

[40] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in CVPR, 2016.

[41] B. Zhou, A. Lapedriza, A. Khosla, A. Oliva, and A. Torralba, “Places:
A 10 million image database for scene recognition,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2017.

[42] W. Chen, Y. Liu, Z. Kira, Y. F. Wang, and J. Huang, “A closer look at
few-shot classification,” ICLR, 2019.

[43] N. Dvornik, C. Schmid, and J. Mairal, “Diversity with cooperation:
Ensemble methods for few-shot classification,” ICCV, 2019.

[44] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie, “The
Caltech-UCSD Birds-200-2011 Dataset,” California Institute of Tech-
nology, Tech. Rep. CNS-TR-2011-001, 2011.

[45] N. Hilliard, L. Phillips, S. Howland, A. Yankov, C. D. Corley, and
N. O. Hodas, “Few-shot learning with metric-agnostic conditional em-
beddings,” CoRR, vol. abs/1802.04376, 2018.

[46] H. Ye, H. Hu, D. Zhan, and F. Sha, “Learning embedding adaptation
for few-shot learning,” CoRR, vol. abs/1812.03664, 2018.

[47] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein et al., “Imagenet large
scale visual recognition challenge,” arXiv, 2014.

[48] H. Li, D. Eigen, S. Dodge, M. Zeiler, and X. Wang, “Finding task-
relevant features for few-shot learning by category traversal,” in CVPR,
2019.


	Introduction
	Problem, background, related work and contribution
	Spatial attention from pre-training
	Spatial attention in few-shot classification
	Base class training
	Novel class adaptation
	Novel class inference

	Experiments
	Experimental setup
	Results

	Conclusion
	References

