Solving high-dimensional parameter inference: marginal posterior densities & Moment Networks - Archive ouverte HAL Accéder directement au contenu
Communication Dans Un Congrès Année : 2020

Solving high-dimensional parameter inference: marginal posterior densities & Moment Networks

Résumé

High-dimensional probability density estimation for inference suffers from the "curse of dimensionality". For many physical inference problems, the full posterior distribution is unwieldy and seldom used in practice. Instead, we propose direct estimation of lower-dimensional marginal distributions, bypassing high-dimensional density estimation or high-dimensional Markov chain Monte Carlo (MCMC) sampling. By evaluating the two-dimensional marginal posteriors we can unveil the full-dimensional parameter covariance structure. We additionally propose constructing a simple hierarchy of fast neural regression models, called Moment Networks, that compute increasing moments of any desired lower-dimensional marginal posterior density; these reproduce exact results from analytic posteriors and those obtained from Masked Autoregressive Flows. We demonstrate marginal posterior density estimation using high-dimensional LIGO-like gravitational wave time series and describe applications for problems of fundamental cosmology.

Dates et versions

hal-03047530 , version 1 (08-12-2020)

Identifiants

Citer

Niall Jeffrey, Benjamin D. Wandelt. Solving high-dimensional parameter inference: marginal posterior densities & Moment Networks. 34th Conference on Neural Information Processing Systems, Dec 2020, Online Conference, Canada. ⟨hal-03047530⟩
44 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More