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Abstract

To divide a ”manna” Ω of private items (commodities, workloads,
land, time intervals) between n agents, the worst case measure of fair-
ness is the welfare guaranteed to each agent, irrespective of others’
preferences. If the manna is non atomic and utilities are continu-
ous (not necessarily monotone or convex), we can guarantee the min-
Max utility: that of our agent’s best share in her worst partition of
the manna; and implement it by Kuhn’s generalisation of Divide and
Choose. The larger Maxmin utility – of her worst share in her best
partition – cannot be guaranteed, even for two agents.

If for all agents more manna is better than less (or less is better
than more), our Bid & Choose rules implement guarantees between
minMax and Maxmin by letting agents bid for the smallest (or largest)
size of a share they find acceptable.
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1 Introduction and the punchlines

The fair division of a common property manna – resources privately con-
sumed – is a complicated problem if its joint owners have heterogenous
preferences over the manna. A coarse yet important benchmark is the wel-
fare Guarantee a division rule offers to each participant: this is the highest
welfare that a given agent can secure in this rule, irrespective of the pref-
erences of other agents, even if our agent is clueless about the latter and
assumes the worst. The more an agent is risk averse and the less she knows
about others’ preferences, the more this worst case benchmark matters to
her.

Our goal is to throw some light on the feasible Guarantees in the very
general class of non atomic fair division problems: small changes in the size
of a share result in small utility changes (a continuity property explained
below). Our model places no other restrictions on the structure of prefer-
ences and corresponding utilities, or their direction: the manna may contain
some desirable parts (money, tasty cake, valuable commodities), some not
(unpleasant tasks, financial liabilities, burnt parts of the cake that must still
be eaten [33]); agents may disagree over which parts are good or bad; utili-
ties can be single-peaked over some parts (teaching loads, volunteering time,
shares of a risky project), single-dipped on others, etc..

Assume that the manna Ω and the domain D of potential preferences are
common knowledge, and define a Fair Guarantee as a mapping (ui, n) →
Γ(ui;n) selecting for each preference in D, described for clarity as a utility
function ui, and each number n of joint owners, a utility level. The mapping
is fair because it ignores agent i’s identity, and it must be feasible: for any
profile (ui)

n
i=1 of utilities in Dn there exists a partition (Si)

n
i=1 of Ω such that

ui(Si) ≥ Γ(ui;n) for all i.
Given the division problem (Ω,D) we ask what are the best (highest) Fair

Guarantees? and what mechanism implements1 them?
Observe first that any Fair Guarantee Γ(u;n) is bounded above by the

utility, denotedMaxmin(u;n), of the worst share for u in the best n-partition
of the manna. For all u ∈ D and n we have

Γ(u;n) ≤ Maxmin(u;n) = max
Π=(Si)ni=1

min
1≤i≤n

u(Si) (1)

where the maximum (that may not be achieved exactly) bears on all n-

1In the simple sense of implementation described in the last paragraph of this section.
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partitions Π = (Si)
n
i=1 of Ω. This follows by feasibility of Γ(u;n): at the

unanimous profile where ui = u for all i there is a partition Π such that
u(Si) ≥ Γ(u;n) for all i, hence Γ(u;n) ≤ min1≤i≤n u(Si) ≤ Maxmin(u;n).

Therefore if (u, n) → Maxmin(u;n) is itself a Fair Guarantee (it is fair,
but the issue is feasibility), it is the best possible one and answers the first of
the two general questions above. This happens in two well known and much
discussed families of fair division problems.

In the cake-cutting model due to Steinhaus ([35]) the manna Ω is a mea-
surable space endowed with a non atomic measure, and utilities are additive
measures, absolutely continuous with respect to the base measure. Additiv-
ity of u implies Maxmin(u;n) ≤ 1

n
u(Ω); this is in fact an equality because

the cake can be partitioned in n shares of equal utility. Agent i’s share Si

is Proportionally Fair if ui(Si) ≥ 1
n
ui(Ω): this is feasible for all agents at

any preference profile (ui)
n
i=1, therefore Proportional Fairness offers the best

possible Guarantee in this model, and is the weakest and least controversial
test of fairness throughout the cake-cutting literature ([14] and [32]).

In the microeconomic model of fair division the manna is a bundle ω ∈ RK
+

of K divisible and non disposable items, and D is the set of convex and
continuous preferences over [0, ω] (not necessarily monotonic). It is feasible
to give an equal share 1

n
ω to every agent, so that Γes(u;n) = u( 1

n
ω) is a

feasible Guarantee. In D the inequality Maxmin(u;n) ≤ u( 1
n
ω) is also true.2

Therefore the optimal Guarantee is Γes, aka the Equal Split lower bound
ui(zi) ≥ u( 1

n
ω) (where zi is i’s share of ω). Here too it is the starting point

of the discussion of fairness (see e. g., [38] and [28]).

As soon as we drop either additivity in the former model, or convexity
in the latter one, the Maxmin benchmark is not a Fair Guarantee any more:
already in some two person problems no division of the manna yields at least
Maxmin(ui; 2) for both i = 1, 2. In a simple example Ann and Bob share
10 units of a single non disposable divisible item (e.g., time spent in a given
activity). Ann’s preferences are single-peaked (hence convex), while Bob’s
are single-dipped (see Figure 1 ):

uA(x) = x(12− x) ; uB(x) = x(x− 6) for 0 ≤ x ≤ 10

2Pick a hyperplane H supporting the upper contour of u at 1

n
ω; the lower contour of

u at 1

n
ω contains one closed half-space cut by H , and every division of ω as ω =

∑n

1
zi

includes at least one zj in that half-space.
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Compute

Maxmin(uA) = 35 at Π1 = {5, 5} ; Maxmin(uB) = 0 at Π2 = {0, 10}

If Bob’s share is worth at least Maxmin(uB) then Ann gets either the whole
manna or at most 4 units: so her utility is at most 32 and we see that
(Maxmin(uA),Maxmin(uB)) is not feasible.

A second critical benchmark utility is minMax(u;n), the utility of the
best share for u in the worst possible n-partition of Ω:

minMax(u;n) = min
Π=(Si)ni=1

max
1≤i≤n

u(Si)

where as before the minimum bears on all n-partitions of Ω.
Our first main result, Theorem 1 in Section 4, says that in any non atomic

problem, the mapping u → minMax(u;n) is a Fair Guarantee; in particular
minMax(u;n) ≤ Maxmin(u;n) for all u ∈ D and n (by (1)). Moreover
the minMax Guarantee is implemented by Kuhn’s little known n-person
generalisation of Divide and Choose ([20]), denoted here D&Cn.

The result is clear in two person problems, where ordinary Divide and
Choose clearly guarantees her Maxmin to the Divider and his Minmax

to the Chooser. For instance in the example above Ann would Divide as
Π1 = {5, 5} and Bob would get utility −5, exactly his minMax(uB ; 2); while
Bob would Divide as Π2 = {0, 10}, and Ann would Choose 10, thus achieving
minMax(uA; 2) = 20.

In three persons problems D&C3 works as follows. The Divider Ann offers
a 3-partition Π = {S1, S2, S3} where all shares are of equal value to her; Bob
accepts all shares worth at least minMax(uB ; 3), and Charles all those worth
least minMax(uC ; 3). If Bob and Charles can each be assigned a share they
accept, we do so and Ann gets the last piece.3 If both accept a single share in
Π, the same one, we give one of the remaining shares Sk to Ann (it does not
matter which one) and then run D&C2 between Bob and Charles for Ω�Sk

(it does not matter who Divides or Chooses).
The n-person division rule D&Cn proceeds similarly in at most n − 1

steps of Division and Acceptance between a shrinking set of agents sharing a
shrinking manna. Its only subtlety is a simple combinatorial matching step
(Lemma 2 in Section 4) after each partitioning of the remaining manna.

3Maybe more than one such assignment is feasible; any choice implements the target
Guarantee, which is all we need.
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The hard step in proving Theorem 1 is Lemma 1 in Subsection 3.2, stating
that in each round of D&Cn the current Divider can find an equipartition: a
partition of the remaining manna where all shares are equally valuable to this
Divider. Because we only assume that he manna is measurable and endowed
with a non atomic measure, and that utilities are continuous in that measure,
the proof of Lemma 1 requires advanced tools in algebraic geometry: this the
object of the companion paper [4], see the discussion in Subsection 3.2.

Our second main result, Theorem 2 in Subsection 5.2, focuses on non
atomic problems where preferences are also co-monotone: that is, increasing
if enlarging a share cannot make it worse and we speak of a good manna; or
decreasing if the opposite holds and we have a bad manna. Either restriction
on preferences opens the door to a new family of division rules significantly
simpler than D&Cn and implementing a higher Guarantee than theminMax.
These rules are inspired by the well known family of Moving Knife (MKn)
rules (Dubins and Spanier [19]) that we recall first.

Assume the manna is good: a knife cuts continuously an increasing share
of the cake; agents can stop the knife at any time; the first agent who does
gets the share cut so far. Repeat between the remaining agents and manna.
For a bad manna, agents can drop at any time and the last one to drop gets
the share cut so far.

A Moving Knife (MK) rule chooses a single arbitrary path for the knife,
which tightly restricts the range of individual shares and partitions, hence
can result in a very inefficient allocation. We introduce a large family of
rules in the same spirit as MK but with all partitions in their range, that
we call the Bid & Choose (B&Cn) rules. Each rule is defined by fixing a
benchmark additive measure of the shares, diversely interpreted as their size,
their market price, etc.. If the manna is good a bid bi by agent i is the
smallest measure of a share that i finds acceptable: the smallest bidder i∗

chooses freely a share of measure at most bi∗ , then we repeat between the
remaining agents and manna. For a bad manna the bid bi is the largest size
of a share that i finds acceptable, and the largest bidder i∗ picks any share
of size at least bi∗ .

Theorem 2 in Section 5 shows that all B&Cn rules, as well as all MKn

rules implement a Guarantee between the minMax and Maxmin level.
A handful of examples in Subsection 5.3 show that the B&Cn Guarantee

improves substantially the minMax Guarantee in the microeconomic model
of fair division. There the Equal Split Guarantee is the Maxmin benchmark
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(the best possible) for agents with convex preferences, while for agents with
“concave” preferences (convex lower contours) Equal Split is the minMax

Guarantee, which the B&Cn Guarantee improves significantly.

Throughout the paper we speak of implementation in the very simple
sense adopted by most of the cake cutting literature (e. g., [14]), and formal-
ized in the general collective decision context as implementation in “protec-
tive equilibrium” (Barbera and Dutta [7]). A rule implements (guarantees)
a certain utility level γ means this: no matter what her preferences, each
agent has a strategy that depends also upon Ω, n and D, such that what-
ever other agents do the utility of her share is no less than γ. Moreover the
“guaranteeing strategy” is essentially unique.

2 Relevant literature

The two welfare levels Maxmin and minMax are key to our results. In
the atomic model where the manna is a set of indivisible items, they are
introduced by Budish ([16]) and Bouveret and Lemaitre ([12]) respectively .
If utilities are additive in that model, the basic inequality of our non atomic
model is reversed:

Maxmin(u;n) ≤ 1

n
u(Ω) ≤ minMax(u;n)

and minMax(u;n) is obviously not a feasible Guarantee. It took a couple of
years and many brain cells to check that the Maxmin lower bound may not
be feasible either for three or more agents ([31]), though this happens in rare
instances of the model ([22]).4 Our paper is the first systematic discussion
of these two bounds in the non atomic model of cake division.

Kuhn’s 1967 n person generalisation of Divide and Choose ([20]) promptly
implements the minMax guarantee in our model: Theorem 1. Except for
a recent discussion in [1] for additive utilities, D&Cn has not received much
attention, a situation which our paper may help to correct. In particular,
unlike the Diminishing Share ([35]) Moving Knife ([19]), and Bid and Choose
rules, it is very well suited to divide mixed manna, i. e., containing subjec-
tively good and bad parts, as when we divide the assets and liabilities of a

4If the manna is atomic and utilities are not necessarily additive, it is easy to construct
examples showing that all six orderings of Maxmin, minMax, and 1

n
u(Ω) are possible.
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dissolving partnership. Introduced in [11] and [10] for the competitive fair di-
vision of commodities in the microeconomic model, the mixed manna model
is discussed by [33] for a general cake, and by [5] for indivisible items.

Privacy preservation is a growing concern in a world of ever expanding
information flows. The D&Cn rule stands out for its informational parsimony:
each Divider only reports a partition with the understanding that she is
indifferent between the two shares she just cut, and Choosers only only accept
a subset of these shares. If the manna is mixed, no one is asked to explain
which parts they view as good or bad: for instance if we divide tasks, I may
not want others to know which tasks I am actually happy to perform, or
which ones are very painful to me.

The “cuts” selected by Dividers and “queries” answered by Choosers re-
quire only a modest cognitive effort: no one needs to form complete prefer-
ence relations over all shares of the cake. Taking this feature to heart, a large
literature in the cake cutting model evaluates the informational complexity
of various mechanisms by the number of “cuts” and “queries” they involve:
see [14] or [32], and more recently [17] and [18]. This line of research goes
beyond the test of Proportional Guarantee, and find cuts and queries divi-
sion rules more complex than D&Cn reaching an Envy-free division of the
cake. The algorithms in Brams and Taylor ([13]), and more recently Aziz and
McKenzie ([6]), do exactly this when utilities are additive and non atomic;
but because they involve an astronomical number of cuts and queries they
are of no practical interest and squarely contradict informational parsimony.
See ([15], [21]) for some fine tuning of these general facts.

The “equipartition” Lemma (Subsection 3.2) is critical to the proof of
Theorem 1, and proved in [4] by algebraic geometry techniques. These, or
subtle variants of Sperner’s Lemma, demonstrate the existence of an Envy-
free division under very general preferences, where which share I like best
in a given partition can depend upon the partition itself, not just upon
my own share: Stromquist’s ([36]) and Woodall’s ([39]) seminal insights are
considerably strenghtened by the recent results in [37], [33], [25] and [3].
However all these results assume that, either all agents (weakly) prefer any
non empty share to the empty share, or all weakly prefer the empty share to
any non empty one: this rules out a mixed manna.

We noted earlier that the concept of unanimity utility (the common effi-
cient utility level in the economy where everyone has the same preferences)
leads to the Equal Split Guarantee when we divide private goods and pref-
erences are convex (see Footnote 2). When applied to fair division problems
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involving production, it defines some compelling Fair Guarantees as well as
some meaningful upper bounds on individual welfare: [27], [26].

3 Non atomic fair division

3.1 Basic definitions

The manna Ω is a bounded measurable set in an euclidian space, endowed
with the Lebesgue measure | · |, and such that |Ω| > 0. A share S is a possibly
empty measurable subset of Ω, and B is the set of all shares. A n-partition
of Ω is a n-tuple of shares Π = (Si)

n
i=1 such that ∪n

i=1Si = Ω and |Si∩Sj | = 0
for all i 6= j; and Pn(Ω) is the set of all partitions of Ω. We define similarly
an n-partition of S for any share S ∈ B, and write their set as Pn(S).

If S ⊗ T = (S ∪ T )�(S ∩ T ) is the symmetric difference of shares,
recall that δ(S, T ) = |S ⊗ T | is a pseudo-metric on B (a metric except that
δ(S, T ) = 0 iff S and T differ by a set of measure zero).

A utility function u is a mapping from B into R such that u(∅) = 0
and u is continuous for the pseudo-metric δ and bounded. So u does not
distinguish between two shares at pseudo-distance zero (equal up to a set of
measure zero): for instance u(S) = 0 if |S| = 0. Also if the sequence |St|
converges to zero in t, so does u(St). We write D(Ω) for this domain of utility
functions.

So a non atomic division problem consists of (Ω,B, (ui)
n
i=1 ∈ D(Ω)n).

Several subdomains of D(Ω) play a role below:

• additive utilities: u ∈ Add(Ω) iff u(S) =
∫
S
f(x)dx for all S, where f

is bounded and measurable in Ω;

• monotone increasing: u ∈ M+(Ω) iff S ⊂ T =⇒ u(S) ≤ u(T ) for all
S, T ;

• monotone decreasing: u ∈ M−(Ω) iff S ⊂ T =⇒ u(S) ≥ u(T ) for all
S, T ;

• separable: u ∈ S(Ω) iff there is a finite set A, a partition (Ca)a∈A ∈
P|A|(Ω) of Ω, and a continuous function v from RA

+ into R, such that
u(S) = v((|S ∩ Ca|)a∈A) for all S ∈ B.
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The separable domain S(Ω) captures the standard microeconomic fair
division model: A is a set of divisible commodities, the manna is the bundle
ω ∈ RA

+ such that ωa = |Ca| for all a, a share Si gives to agent i the amount
zia = |Si ∩Ca| of commodity a, and the partition Π = (Si)

n
i=1 corresponds to

the division of the manna as ω =
∑n

1 zi .
In the general non atomic division problem, the set of shares B is not com-

pact for the pseudo-metric δ. It follows that when we maximize or minimize
utilities over shares, or look for a partition achieving a benchmark utility
minMax or Maxmin, we cannot claim the existence of an exact solution to
the program: the minMax is not a true minimum, only an infimum, and
Maxmin is only a supremum, not a true maximum. As this will cause no
confusion, we stick to the min and Max notation throughout.

However in the microeconomic model, the set of shares and of partitions
are both compact so for this important set of problems (where all our exam-
ples live) the min and Max notation are strictly justified.

One can also specialise the general model by imposing constraints on the
set of feasible shares. The most important instance is the familiar interval
model, where the manna is Ω = [0, 1] and a share must be an interval, so
an n-partition is made of n adjacent intervals. Other instances assume Ω
is a polytope, and shares are polytopes of a certain type: e.g. triangles or
tetrahedrons ([34]). And sometimes shares must be connected subsets of Ω
([8], [2]).

The Divide and Choosen rules, as well as our Bid and Choosen rules, do
not work in these models5, so our Theorems 1 and 2 do not apply. But the
interval model is still useful here in a technical sense: the proof of the critical
Lemma 1 in Subsection 3.2 starts by projecting the general problem onto an
interval model and proving existence of an equipartition there.

3.2 Equipartitions

Definition 1 An n-equipartition of the share T ∈ B for utility u ∈ D(T )
is a partition Πe = (Si)

n
i=1 ∈ Pn(T ) such that u(Si) = u(Sj) for all i, j ∈

{1, · · · , n}; we write u(Πe) for this common value, and EPn(T ; u) for the set
of these n-equipartitions.

5For instance in the interval model, the first divider can find an equipartition made of
adjacent intervals (by our Lermma 1), but the next agent called to divide is typically left
with disconnected intervals.
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It is clear that EPn(S; u) is non empty if u is additive: if B[S] is the subset
of shares included in S, Lyapunov Theorem implies that the range u(B[S])
is convex, so it contains 1

n
u(S); then we replace n by n − 1 and repeat the

argument on the remaining share.
The same is true if u is monotone (u ∈ M±(Ω)), and the proof, outlined

in Remark 1 below, is fairly simple. That of our next statement is much
harder.

Lemma 1 ([4])
Fix a share S ∈ B and a utility u ∈ D(Ω). The set EPn(S; u) of n-
equipartitions of S at u is non empty.

Proof. The Theorem in [4] proves Lemma 1 for the interval model (which,
as mentioned above, is not a special case of our model). Fix a real valued
function f on the set of intervals [a, b] ⊂ [0, 1], continuous in the standard
topology and such that f(a, a) = 0 for all a ∈ [0, 1]. Then there exist
n subintervals [0 = x0, x1], [x1, x2], · · · , [xn−1, xn = 1] of [0, 1] forming an
equipartition of f : f(xi−1, xi) is constant for i = 1, · · · , n.

Start now from a share S in the statement of Lemma 1 and pick a moving
knife through S, i. e., a path κ : [0, 1] ∋ t → K(t) ∈ B from K(0) = ∅ to
K(1) = S, continuous for the pseudo-metric δ on B and weakly inclusion
increasing:

0 ≤ t < t′ ≤ 1 =⇒ K(t) ⊆ K(t′)

(in Subsection 5.1 moving knifes must be strictly inclusion increasing). Then
the function

f(a, b) = u(K(b)�K(a))

is as in the previous paragraph, and an f -equipartition ([xi−1, xi])
n
i=1 of [0, 1]

yields the desired u-equipartition (K(xi)�K(xi−1))
n
i=1 of S. �

Remark 1 It is easy to prove Lemma 1 if we assume that the sign of u

is constant: all shares are weakly preferred to the empty share, or all are
weakly worse. Assume the former and use as above a moving knife to project
S onto [0, 1], where a n-partition is identified with a point in the simplex of
dimension n− 1. Then apply the Knaster–Kuratowski–Mazurkiewicz Lemma
to the sets Qi of partitions of the interval where the i-th interval gives the
lowest utility: each Qi is closed, contains the i-th face of the simplex, and
their union covers it entirely. Thus these sets intersect.

One can also invoke the stronger results in [36] and [37] showing the
existence of an Envy-free partition under this assumption. But recall that a
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key feature in the division of a mixed manna is that the sign of u is not

constant across shares.

3.3 Two utility benchmarks

Definition 2 Fix n, the manna (Ω,B) and u ∈ D(Ω):

minMax(u;n) = min
Π∈Pn(Ω)

max
1≤i≤n

u(Si) ; Maxmin(u;n) = max
Π∈Pn(Ω)

min
1≤i≤n

u(Si)

(2)
Recall that minMax is the utility agent u can achieve by having first pick
in the worst possible n-partition of Ω, and Maxmin by having last pick in
the best possible n-partition of Ω.

Proposition 1

i) If u ∈ Add(Ω) then minMax(u;n) = Maxmin(u;n) = 1
n
u(Ω)

ii) If u ∈ M±(Ω)

minMax(u;n) = min
Πe∈EPn(Ω;u)

u(Πe) ; Maxmin(u;n) = max
Πe∈EPn(Ω;u)

u(Πe) (3)

iii) If u ∈ D(Ω)

minMax(u;n) ≤ min
Πe∈EPn(Ω;u)

u(Πe) ≤ max
Πe∈EPn(Ω;u)

u(Πe) ≤ Maxmin(u;n)

(4)

Proof

Statement iii) If Πe is an n-equipartition, u(Πe) is the utility of its best share,
hence minMax(u;n) ≤ u(Πe); proving the other inequality in (4) is just as
easy.
Statement i) By additivity of u, for any n-partition Π we have maxi u(Pi) ≥
1
n
u(Ω) implying minMax(u;n) ≥ 1

n
u(Ω); we check symmetrically 1

n
u(Ω) ≥

Maxmin(u;n), and the conclusion follows by comparing these inequalities
to those in (4).
Statement ii) Assume u ∈ M+(Ω); the proof for M−(Ω) is identical. The
continuity and monotonicity of u imply: if S, T are two disjoints shares
such that u(S) > u(T ), we can trim part of S and add it to T to get two
disjoint shares with equal utility in between u(S) and u(T ). Expanding this
argument, if S1, · · · , Sk and T are disjoint shares such that

u(S1) = u(S2) = · · · = u(Sk) > u(T )

11



we can simultaneously trim S1, · · · , Sk keeping them of equal utility and add
the trimming to T , so that the resulting k + 1 shares are all equally good
and their common utility is between the two utilities above. Iterating this
process, we see that if Π = (Si)

n
i=1 ∈ Pn(Ω) is such that max1≤i≤n u(Si) >

min1≤i≤n u(Sj), we can construct an equipartition Πe ∈ EPn(Ω; u) such that

max
1≤i≤n

u(Si) > u(Πe) > min
1≤j≤n

u(Sj)

Now fix ε > 0, arbitrarily small, pick Π = (Si)
n
i=1 ∈ Pn(Ω) such that

min1≤j≤n u(Sj) ≥ Maxmin(u;n)− ε, and assume that Π is not an equiparti-
tion. By the argument above we can find Πe ∈ EPn(Ω; u) such that u(Πe) >
min1≤j≤n u(Sj), therefore Π

e too is an ε-approximation ofMaxmin(u;n), and
the right-hand inequality in (3) follows. The proof of the left-hand inequality
is similar. �

In the general domain D(Ω), the partitions achieving the Maxmin and
minMax utilities are not necessarily equipartitions. In the microeconomic
example of Section 1, Ann has single-peaked preferences and her minMax

is achieved by the all-or-nothing partition {∅,Ω}; Bob has single-dipped
preferences and the same partition delivers his Maxmin; but {∅,Ω} is not
an equipartition for either utility.

Remark 2: In the interval model with a monotone utility u, it is easy to
check that any two n-equipartitions have the same utility and in turn this im-
plies minMax(u;n) = Maxmin(u;n): hence this is the best Fair Guarantee.
The numerical example above can be viewed as an instance of the interval
model where the two agents are indifferent between [0, x] and [1 − x, 1] for
all x: so only the inequality (4) holds true in the general (non monotone)
interval model.

3.4 Fair Guarantees

Definition 3 Fix the manna (Ω,B) and a subdomain D∗, D∗ ⊆ D(Ω). A
Fair Guarantee in D∗ is a mapping Γ : u → Γ(u;n) such that for any profile
(ui)

n
i=1 ∈ (D∗)n there exists Π = (Si)

n
i=1 ∈ Pn(Ω) such that ui(Si) ≥ Γ(ui;n)

for all i.

In Section 1 we observed, by looking at unanimity profiles, thatMaxmin(·;n)
is an upper bound for any Fair Guarantee: inequality (1). We also men-
tioned two subdomains where Maxmin(·;n) itself is a (hence the optimal)

12



Fair Guarantee: the additive domain Add(Ω) and the subdomain of the sep-
arable one S(Ω) where preferences are also convex. Finally we used the
Ann and Bob microeconomic example with a single commodity to show that
Maxmin(·;n) is not a Fair Guarantee in D(Ω), even for n = 2 and a one
dimensional manna.

Before proving in the next Section that minMax(·;n) is a Fair Guarantee
in the whole domain D(Ω) we construct a microeconomic problem with two
divisible items and two agents u1 and u2 where

minMax(ui; 2) = 0 < 1 = Maxmin(ui; 2) for i = 1, 2
and (minMax(u1), minMax(u2)) is weakly Pareto optimal

This implies that for any Fair Guarantee Γ, at least one of Γ(u1; 2) = 0 and
Γ(u2; 2) = 0 must hold. In words, for some problems, no Fair Guarantee can
reduce the gap from minMax to Maxmin for both agents.6

The manna is ω = (1, 1) and we a share as z = (x, y). Both utilities are
symmetric in x, y: ui(x, y) = ui(y, x) so it is enough to define them for x ≤ y:

u1(z) = 0 if x ≤ 1
2
≤ y

u1(z) = 1− 2y if x ≤ y ≤ 1
2

u1(z) = 2x− 1 if 1
2
≤ x ≤ y

u2(z) = 0 if x ≤ y ≤ 1
2
or 1

2
≤ x ≤ y

u2(z) = 2y − 1 if 1
2
≤ y ≤ 1− x

u2(z) = 1− 2x if 1
2
≤ 1− x ≤ y

The range of both utilities is [0, 1]. Agent 1’s utility u1(z1) is null in the NW
and SE quadrant of the box [0, 1]2 with center at (1

2
, 1
2
); it is strictly positive

in the SW and NE quadrants except on the lines x = 1
2
and y = 1

2
. Agent 2’s

utility u2(z2) is symetrically null in the SW and NE quadrants, and strictly
positive in the NW and SE quadrants except on the same two lines. Therefore
for any division (1, 1) = z1 + z2 of the manna we have u1(z1) · u2(z2) = 0:
there is no feasible division s. t. ui(zi) > 0 for i = 1, 2.

The partition {(0, 0), (1, 1)} achievesMaxmin(u1) = 1 andminMax(u2) =
0; the partition {(0, 1), (1, 0)} achieves Maxmin(u2) = 1 andminMax(u1) =
0.

6Divide and Choose implements the utility profile (minMax(ui; 2),Maxmin(uj; 2)):
this gap can be closed for one agent.
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4 The Divide & Choosen rule

Start by a combinatorial observation. Let G be a bilateral graph between
the sets M of agents and R of shares: interpret (m, r) ∈ G as agent m likes

share r. We say that the subset M̃ of agents are properly matched to the
subset R̃ of shares if |M̃ | = |R̃|, agents in M̃ are each matched (one-to-one)

to a share they like in R̃, and no one outside M̃ likes any share in R̃.

Lemma 2. Assume |M | = |R|, each agent in M likes at least one object
in R and some agent i∗ likes all objects in R. Then there is a (non empty)

largest set M∗ of properly matchable agents containing i∗: if M̃ is properly
matched to R̃, then M̃ ⊆ M∗.

Proof. We apply the Gallai-Edmonds decomposition of a bipartite graph:
see e.g. [23] Chap 3 (or Lemma 1 in [9]). If M can be matched with R this
is a proper match and the statement holds true. If M and R cannot be
matched, then we can uniquely partition M as (M+,M∗) and R as (R+, R∗)
such that:
1. |M+| > |R+|, the agents in M+ do not like any object in R∗, and they
compete for the over-demanded objects in R+: every subset of R+ is liked
by a strictly larger subset of agents in M+;
2. |M∗| < |R∗| and the agents in M∗ can be matched with some subset of
R∗.

By the general Gallai-Edmonds result, M+ and R∗ are non empty. Here
M∗ is non empty as well because it contains the special agent i∗. Every
match of M∗ to a subset of R∗ is proper. Finally suppose M̃ is properly
matched to R̃ and M̂ = M̃ ∩M+ is non empty. Then M̂ is matched to some
subset R̂ of R+ but R̂ is liked by more agents in M+ than there are in M̂ ,
therefore the match is not proper: contradiction. So M̃ does not intersect
M+ as was to be proved.�

Definition 4: the D&C n rule.
Fix the manna (Ω,B) and the ordered set of agents N = {1, · · · , n}, each
with a utility in D(Ω).
Step 1. Agent 1 proposes a partition Π1 ∈ Pn(Ω); all other agents report
which shares in Π1 they like (at least one). In the resulting bipartite graph
between N and the shares in Π1, where agent 1 likes all the shares, we use
Lemma 2 to match properly the largest possible set of agents N1 (it contains
agent 1) with some set of shares R; if N1 = N we are done, otherwise we
go to

14



Step 2. Repeat with the remaining manna Ω2 and agents in N�N1. Ask the
first agent in the exogenous ordering to propose a partition Π2 ∈ Pn−|N1|(Ω

2),
while others report which of these new shares they like. And so on.

At least one agent, the Divider, is served in each step, thus the algorithm
just described takes at most n−1 steps. But the algorithm matches as many
agents as possible, so as to minimize information disclosure, and typically
takes fewer steps.

There is some flexibility in the Definition of the rule: although the set
of agents matched in each step is unambiguous, we have typically several
choices for the set R of shares to assign in each step, and multiple ways to
assign these to the agents.

Our first main result is that minMax is a Fair Guarantee, implemented
by the D&Cn rule in the full domain D(Ω).

Theorem 1

Fix the manna (Ω,B) and n.
i) In the D&C n rule, an agent with utility u ∈ D(Ω) guarantees the minMax(u;n)
utility level by 1) when called to divide, proposing an equipartition Πe ∈
EPm(S; u) of the remaining share S of manna among the m remaining
agents, and 2) when reporting shares he likes, accepting all shares, and only
those, not worse than minMax(u;n) (the minMax level in the initial prob-
lem).
ii) Moreover the first Divider (and no one else) guarantees her Maxmin

utility by proposing her Maxmin partition in Step 1. Other agents cannot
guarantee more than their minMax utility.

Proof. Statement i). Consider agent u using the strategy in the state-
ment. At a step where he must report which shares he likes among those
offered at that step, he can for sure find one worth at least minMax(u;n): all
shares previously assigned are worth to him strictly less than minMax(u;n),
and together with the freshly cut shares they form a partition in Pn(Ω); in
any partition at least one share is worth minMax(u;n) or more.

At a step where our agent is called to cut, he proposes to the remaining
agents an m-equipartition Πe ∈ EPm(S; u) of the remaining manna S. To
check the inequality u(Πe) ≥ minMax(u;n) note that Πe together with the
previously assigned shares is a partition of Ω in which the old shares are
worth strictly less than minMax(u;n).7

7After Step 1 an agent can secure his Maxmin utility for the smaller manna S among
m agents, but this may be below the Maxmin utility in the initial problem.
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Statement ii). This is clear for the first Divider. Fix now an agent i with
utility u and check that if he is not the first Divider, for certain moves of
the other agents, agent u gets exactly his minMax utility. Pick a partition
Π ∈ Pn(Ω) achieving minMax(u;n) (as usual, the existence assumption is
without loss). Suppose that the first Divider, who is not agent i, offers Π,
and all agents other than i (including the Divider) find all shares acceptable:
then a full match is feasible (i must accept at least one share) so i’s share
cannot be worth more than minMax(u;n). �

5 Bid and Choose and Moving Knives for

good or bad manna

We now assume that the manna is unanimously good, u ∈ M+(Ω), or unan-
imously bad, u ∈ M−(Ω). Because u(∅) = 0, for all S we have u(S) ≥ 0
in the former case and u(S) ≤ 0 in the latter. Recall that in these two do-
mains, the minMax (resp. Maxmin) utility is the smallest (resp. largest)
equipartition utility: property (3) in Proposition 1.

We check first that the profile of Maxmin utility levels still may not
be feasible, even in the simple microeconomic model (corresponding to the
separable domain S(Ω) in Subsection 3.1). We have one unit each of two
divisible goods,ω = (1, 1), to be shared between two agents. The first agent
has Leontief preferences u1(z) = min{x, y} so his worst case partition is
Π = {(1, 0), (0, 1)} and his best one is the equal split partition Π′ = {1

2
ω, 1

2
ω}:

minMax(u1; 2) = 0 < 1
2
= Maxmin(u1; 2). Agent 2 has anti-Leontief pref-

erences: u2(z) = max{x, y}. For her the equal split partition Π′ is the worst
and the best one is Π: minMax(u2; 2) =

1
2
< 1 = Maxmin(u2; 2). Clearly

the profile of Maxmin utilities (1
2
, 1) is not feasible, while D&C2 implements

(1
2
, 1
2
) and (0, 1), depending on who is the Divider.
We show that theminMax guarantee is always improved, at least weakly,

by the large family of Bid and Choose (B&Cn) rules, inspired by the familiar
Moving Knives (MKn) rules ([19]).

5.1 MKκ
n and B&Cθ

n rules

A moving knife through the manna (Ω,B, | · |) is a path κ : [0, 1] ∋ t →
K(t) ∈ B from K(0) = ∅ to K(1) = Ω, continuous for the pseudo-metric δ
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on B and strictly inclusion increasing:

0 ≤ t < t′ ≤ 1 =⇒ K(t) ⊂ K(t′) and |K(t′)�K(t)| > 0

The moving knife κ arranges shares of increasing value to all participants
along the specific path of the knife. An example is K(t) = B(t) ∩ Ω, where
t → B(t) is a path of balls with a fixed center and radius growing from 0 to
1, so that B(1) contains Ω. Moving knifes can take many other shapes, for
instance hyperplanes.

Our Bid and Choose rules offer more choices than Moving Knives to the
agents, with the help of a benchmark measure θ of the shares, chosen by the
rule designer: θ is a positive σ-additive measure on (Ω,B), normalised to
θ(Ω) = 1. It is absolutely continuous w.r.t. the Lebesgue measure | · | and
vice versa: the density of θ w.r.t. | · | is strictly positive. In particular θ is
strictly inclusion increasing:

∀S, T ∈ B : S ⊂ T and |T�S| > 0 ⇒ θ(S) < θ(T )

In applications θ can evaluate for instance the market value, physical size, or
weight of a share.

Fixing a moving knife κ and a measure θ, we define in parallel the Moving
Knife (MKκ

n) and the Bid and Choose (B&Cθ
n) rules. In both cases a clock t

runs from t = 0 to t = 1.

Definition 5 the MK κ
n and B&C θ

n rules with increasing utilities
Step 1. The first agent i1 to stop the clock, at t1, gets the share K(t1) in
MK κ

n, or in B&C θ
n chooses any share in Ω s.t. θ(S) = t1, say Si1, and leaves;

Step k: Whoever stops the clock first at tk gets the share K(tk)�K(tk−1) in
MK κ

n, or in B&C θ
n chooses any share in Ω�∪k−1

1 Siℓ s.t. θ(S) = tk − tk−1,
say Sik , and leaves;
In Step n− 1 the single remaining agent who did not stop the clock takes the
remaining share Ω�K(tn−1) or Ω�∪n−1

1 Siℓ.

Definition 5∗ with decreasing utilities
In each step all agents must choose a time to “drop”, and the last agent i1 who
drops, at t1, gets K(t1) in MK κ

n, or in B&C θ
n chooses Si1 s.t. θ(Si1) = t1.

The other steps are similarly adjusted.

Breaking ties between agents stopping the clock (or dropping) at the
same time is the only indeterminacy in these rules, much less severe than in
D&Cn, where we serve at each step an unambiguous set of agents, but there
are typically several ways to match them properly.
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Up to tie-breaking, B&Cθ
n and MKκ

n are anonymous (do not discriminates
between agents) but not neutral (do discriminate between shares), while
D&Cn is neutral but not anonymous.

In MKκ
n the share of an agent takes the form K(t)�K(t′) so it covers a

set of dimension 2 (and feasible partitions move in a set of dimension n− 1).
By contrast every partition in Pm(Ω) is feasible under the B&Cθ

n rule.
To check this fix Π = (Si)

n
i=1 and assume first |Si| > 0 for all i. Consider

n agents deciding (cooperatively) to achieve Π. By the strict monotonicity
of θ the sequence ti = θ(∪i

j=1Sj) increases strictly therefore they can stop
the clock (or drop) at these successive times and choose the corresponding
shares in Π. If there are shares of measure zero they can all be distributed
at time 0.

On the other hand in B&Cθ
n all but one agent must pick a share under

constraints, thus revealing more information than in MKκ
n. Loosely speaking,

B&Cθ
n is informationally comparable to D&Cn.

Remark 3. We can also implement the Guarantees described in the next
Subsection by alternative static versions of MK κ

n and B&C θ
n where agents

bid all at once for potential stopping times; we do not discuss these rules for
the sake of brevity.

5.2 B&Cθ and MKκ Guarantees

We fix an increasing utility u ∈ M+(Ω). The results are identical, and
identically phrased, for a bad manna u ∈ M−(Ω). See also Remark 4 at the
end of this Subsection.

Define the triangle T = {(t1, t2)|0 ≤ t1 ≤ t2 ≤ 1} in R2
+ and the set Υ(n)

of increasing sequences τ = (tk)0≤k≤n in [0, 1] s.t.

t0 = 0 ≤ t1 ≤ · · · ≤ tn−1 ≤ 1 = tn

For a moving knife κ, utilities of the shares in MKκ
n are described by the

function uκ on T :

uκ(t1, t2) = u(K(t2)�K(t1)) for all (t1, t2) ∈ T

For a measure θ, the corresponding definition in B&Cθ is the indirect utility
uθ:

uθ(t1, t2) = min
T :θ(T )=t1

max
S:S∩T=∅;θ(S)=t2−t1

u(S) for all (t1, t2) ∈ T (5)
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Both uκ and uθ decrease (weakly) in t1 and increase (weakly) in t2.
We show below that the Guarantees Γk and Γθ implemented by MKκ

n and
B&Cθ

n respectively are computed as

Γα(u;n) = max
τ∈Υ(n)

min
0≤k≤n−1

uα(tk; tk+1) where α is κ or θ (6)

For instance in MKκ
2 with two agents, write τκ for the (not necessarily

unique) position of the knife making our agent indifferent between the share
K(τκ) and its complement. Then

Γκ(u; 2) = max
0≤t1≤1

min{u(K(t1)), u(Ω�K(t1)) = u(K(τκ)) = u(Ω�K(τκ)

In B&Cθ
2 the bid τ θ makes the best share of size τ θ as good as the worst

share of size 1− τ θ:

Γθ(u; 2) = max
0≤t1≤1

min{ max
θ(S)=t1

u(S), min
θ(S)=t1

u(Ω�S)} = max
θ(S)=τθ

u(S) = min
θ(S)=τθ

u(Ω�S)

(7)
Lemma 4

i) The utility uκ and the indirect utility uθ are continuous. Both the minimum
and maximum in (5) are achieved.
ii) The maximum of problem (6) (for both rules) is achieved at some τ ∈ Υ(n)
where the sequence tk increases in k, all the uα(tk; tk+1) are equal, and this
common utility is the optimal value of (6).

Proof in the Appendix.

Theorem 2

Fix the manna (Ω,B), the number of agents n, and a utility u ∈ M+(Ω).
i) With the MK κ

n rule, an agent guarantees the utility Γκ(u;n) by committing
to stop the knife at tkκ if exactly k − 1 other agents have been served before;
ii) With the B&C θ

n rule, she guarantees Γθ(u;n) by stopping the clock at tkθ
if exactly k − 1 other agents have been served before; and choosing then the
best available share of size tk − tk−1.
iii) minMax(u;n) ≤ Γα(u;n) ≤ Maxmin(u;n) where α is κ or θ.

Proof.
Statement i) and iii) for MK κ

n. Recall the equipartition Π = (K(tkκ)�K(tk−1
κ ))n1

has u(Π) = Γκ(u;n). Thus (3) in Proposition 1 implies the inequalities iii).
Next if the knife has been stopped k−1 times before our agent is served, the
last stop occured at or before tk−1

κ therefore if she does stop the knife at tkκ
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(and wins the possible tie break) her share is at least K(tkκ)�K(tk−1
κ ). If she

never gets to stop the knife, the last stop is at or before tn−1
κ and she gets at

least Ω�K(tn−1
κ ).

Statement ii). If she is the first to stop the clock (perhaps also winning the
tie break) at step k, in step k − 1 the clock stopped at tk−1 ≤ tk−1

θ and the
share T already distributed at that time has θ(T ) = tk−1: therefore she can
choose a share with utility uθ(tk−1; tkθ) ≥ uθ(tk−1

θ ; tkθ) = Γθ(u;n). If she is the
last to be served, having never stopped the clock (or lost some tie breaks)
the share assigned to all other agents has θ(T ) = tn−1 ≤ tn−1

θ therefore her
share is worth uθ(tn−1; 1) ≥ uθ(tn−1

θ ; 1) = Γθ(u;n).

Statement iii) for B&C θ
n.

Right hand inequality. It is enough to construct a partition Π = (Sk)
n
1 in

which the utility of every share Sk, 0 ≤ k ≤ n − 1 is at least uθ(tk−1
θ , tkθ),

implying mink u(Sk) ≥ Γθ(u;n). We proceed by induction on the steps of
B&Cθ

n. First S1 maximizes u(S) s.t. θ(S) = t1θ so u(S1) = uθ(0; t1θ) = Γθ(u;n)
and θ(S1) = t1θ. Assume the sets Sℓ are constructed for 1 ≤ ℓ ≤ k, mutually
disjoint, s.t. θ(Sℓ) = tℓθ− tℓ−1

θ and u(Sℓ) ≥ uθ(tℓθ, t
ℓ−1
θ ): then the set T = ∪k

1Sℓ

is of size tkθ and we pick Sk+1 maximizing u(S) s.t. S ∩ T = ∅ and θ(S) =
tk+1
θ − tkθ . By definition (5) we have u(Sk) ≥ uθ(tkθ ; t

k+1
θ ) and the induction

proceeds. Note that in fact mink u(Sk) = Γθ(u;n).

Left hand inequality. We need now construct a partition Π = (Rk)
n
1 s. t.

u(Rk) ≤ uθ(tk−1
θ ; tkθ) for 1 ≤ k ≤ n. We do this by a decreasing induction in n.

In (the first) step n of the induction we define the 2-partition Πn = (Tn−1, Rn)
of Ω where Tn−1 is any solution of the program minT :θ(T )=tn−1

θ

u(Ω�T ), and

Rn = Ω�Tn−1. Thus u(Rn) = uθ(tn−1
θ ; 1) and θ(Tn−1) = tn−1

θ .
Assume that in step k we constructed the (n − k + 2)-partition Πk =

(Tk−1, Rk, Rk+1, · · · , Rn) s.t. θ(Tk−1) = tk−1
θ and u(Rℓ) ≤ uθ(tℓ−1

θ ; tℓθ) for

k ≤ ℓ ≤ n. Pick T̃ a solution of

min
T :θ(T )=tk−2

θ

max
S:S∩T=∅;θ(S)=tk−1

θ
−tk−2

θ

u(S) = uθ(tk−2
θ ; tk−1

θ )

As θ(T̃ ∩Tk−1) ≤ tk−2
θ and θ(Tk−1) = tk−1

θ we can choose Tk−2 s.t. T̃ ∩Tk−1 ⊆
Tk−2 ⊆ Tk−1 and θ(Tk−2) = tk−2

θ . Then we set Rk−1 = Tk−1�Tk−2 so that

u(Rk−1) ≤ uθ(tk−2
θ ; tk−1

θ ) follows from Rk−1 ∩ T̃ = ∅ and the definition of

T̃ . This completes the induction step. We note finally that each set Rk thus
constructed is of θ-size tkθ − tk−1

θ , and that maxk u(Sk) = Γθ(u;n). �
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It is easy to check that no agent can secure more utility than Γκ
n in MKκ

n

or Γθ
n in B&Cθ

n.

Remark 4. The minMax Guarantee and Maxmin upper bound for u ∈
Mε(Ω) and −u ∈ M−ε(Ω), where ε = ±, are related: minMax(−u;n) =
−Maxmin(u;n). With two agents the Guarantees Γκ(u; 2) and Γθ(u; 2) are
similarly antisymmetric:

Γα(−u; 2) = −Γα(u; 2) where α is κ or θ (8)

This is clear for Γκ and we check it for Γθ by means of the change of variable
S → S ′ = Ω�S:

Γθ(−u; 2) = − min
0≤t1≤1

max{ min
θ(S)=t1

u(S), max
θ(S)=t1

u(Ω�S)} =

− min
0≤t1≤1

max{ min
θ(S′)=1−t1

u(Ω�S ′), max
θ(S′)=1−t1

u(S ′)}

= − min
0≤t′≤1

max{ max
θ(S′)=t′

u(S ′), min
θ(S′)=t′

u(Ω�S ′)}

and the claim follows because if two continuous functions t → f(t) and
t → g(t) intersect in [0, 1] and one increases while the other decreases, then
min0≤t≤1 max{f(t), g(t)} = max0≤t≤1min{f(t), g(t}.

The identity (8) generalises to n ≥ 3 for the MK κ Guarantee, but not for
the B&C θ one.

5.3 Microeconomic fair division

We must divide a good manna ω ∈ RK
+ in n shares zi ∈ RK

+ . Utilities
u ∈ M+(ω) are continuous and weakly increasing on [0, ω].

A Moving Knife is a continuous increasing path t → K(t) from 0 to ω:
a natural choice is K(t) = tω, 0 ≤ t ≤ 1: the corresponding Guarantee
Γκ(u;n) = u( 1

n
ω) is the Equal Split utility Γes(u;n) = u( 1

n
ω). A positive,

additive measure θ defining B&Cθ is a “price” θ(z) = p · z, p ∈ RK
+�{0}, so

we write the corresponding Guarantee as Γp.

Recall from Section 1 that if an agent’s preferences are convex her Equal
Split utility equals her Maxmin utility, the upper bound on all Fair Guar-
antees ((1)), in particular it is weakly larger than the B&Cp guarantee for
any p. The converse inequality holds for “concave preferences”.

Lemma 5
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i) If the upper contours of the utility u ∈ M+(ω) are convex, then Γp(u;n) ≤
u( 1

n
ω) = Maxmin(u;n).

ii) If the lower contours of the utility u ∈ M+(ω) are convex, then minMax(u;n) =
u( 1

n
ω) ≤ Γp(u;n).

The equality in statement i) was proven in Section 1. A symmetrical
argument gives statement ii).

We turn to a handful of numerical examples where K = 2, ω = (1, 1),
and p · z = 1

2
(x + y). Shares are z = (x, y), utilities are 1-homogenous and

normalised so that u(ω) = 10. We compute our three Guarantees: Bid and
Choose Γp, Equal Split, and minMax, and compare them to the Maxmin

upper bound.
The first three utilities (Leontief, Cobb Douglas and CES) define con-

vex preferences, the last two define “concave preferences” (represented by
quadratic and “anti-Leontief” utilities).

Our first table assumes two agents, n = 2, and illustrates Lemma 5. An
agent with convex (resp. concave) preferences gets a better Guarantee under
Equal Split (resp. Bid and Choose):

u(x, y) minMax(u; 2) Γp(u; 2) u(1
2
ω) Maxmin(u; 2)

10min{x, y} 0 3.3 5 5
10
√
x · y 0 4.1 5 5

5
2
(
√
x+

√
y)2 2.5 4.4 5 5

5(x+ y) 5 5 5 5

5
√
2(x2 + y2) 5 5.9 5 7.1

10max{x, y} 5 6.7 5 10

The equal split partition delivers the Maxmin utility for the first four
preferences, and the minMax utilities for the last three. The equipartition
Π = {(1, 0), (0, 1)} gives similarly the minMax utilities of the first four, and
the Maxmin ones for the last three.

To compute Γp(u; 2) we know from (7) that the optimal bid t1 (denoted
t for simplicity) solves

max
1

2
(x+y)≤t

u(x, y) = min
1

2
(x+y)≤t

u(1− x, 1− y) = min
1

2
(x+y)≥1−t

u(x, y)

This equality implies 0 ≤ t ≤ 1
2
. If u represents convex preferences symmetric

in the two goods, u(x, y) is maximal under 1
2
(x + y) ≤ t at x = y = t, and
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minimal under x + y ≥ 2(1 − t) at x = 1, y = 1 − 2t. So we must solve
u(t, t) = u(1, 1− 2t): see Figure 2.

If u represents concave symmetric preferences its maximum under 1
2
(x+

y) ≤ t is at x = 0, y = 2t, and its minimum under x + y ≥ 2(1 − t) at
x = y = 1− t, so we solve u(0, 2t) = u(1− t, 1− t): see Figure 3.

We compute finally the same Guarantees with three agents:

u(x, y) minMax(u; 3) Γp(u; 3) u(1
3
ω) Maxmin(u; 3)

10min{x, y} 0 2 3.3 3.3
10
√
x · y 0 2.4 3.3 3.3

5
2
(
√
x+

√
y)2 2 2.5 3.3 3.3

5(x+ y) 3.3 3.3 3.3 3.3

5
√
2(x2 + y2) 3.3 4.1 3.3 4.1

10max{x, y} 3.3 5 3.3 5

The minMax equipartition for u = 5
2
(
√
x +

√
y)2 and the Maxmin

equipartition for u′ = 5
√
2(x2 + y2) have the same form Π = {(x, 0), (0, x), (1−

x, 1 − x)}: in the former case we find x = 4
5
and minMax(u; 3) = 2, in the

latter we get x = 2 −
√
2 and Maxmin(u′; 3) = 10(

√
2 − 1). Lemma 5 and

the partition Π′ = {(1, 0), (0, 1
2
), (0, 1

2
)} fill the remaining values of minMax

and Maxmin.
To compute Γp(u; 3) we know by Lemma 4 that the three terms in (6)

are equal. They are
up(0, t1) = max 1

2
(x+y)≤t1 u(x, y)

up(t1, t2) = min 1

2
(x1+y1)≤t1 max 1

2
(x+y)≤t2−t1 and (x1+x,y1+y)≤(1,1) u(x, y)

up(t2, 1) = min 1

2
(x2+y2)≤t2 u(1− x2, 1− y2)

Clearly t1 ≤ 1
3
(as t2 − t1 < 1

3
< t1 and 1 − t2 < 1

3
< t1 are both

impossible). Therefore up(0, t1) = up(t1, t2) is achieved by t2 = 2t1 (the
constraint (x1 + x, y1 + y) ≤ (1, 1) does not bind). Writing t = t1 = t2 − t1

it remains to solve

max
1

2
(x+y)≤t

u(x, y) = min
1

2
(x2+y2)≤2t

u(1− x2, 1− y2) = min
1

2
(x+y)≥1−2t

u(x, y)

When u represents convex preferences symmetric in the two goods, the
minimum on the right-hand side is achieved by (x, y) = (1−4t, 1) so we solve
u(t, t) = u(1− 4t, 1). See Figure 4.

If u represents concave symmetric preferences, the minimum on the right-
hand side is achieved by (x, y) = (1 − 2t, 1 − 2t) so we solve u(2t, 0) =
u(1− 2t, 1− 2t). See Figure 5.
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6 Concluding comments

Comparing B&Cn versus D&Cn rules The exogenous ordering of the
agents greatly affects the outcome of D&Cn, whereas B&Cn treats the agents
symmetrically. On the other hand the choice of the benchmark measure in
B&Cn is exogenous, which allows much, perhaps too much flexibility to the
designer.

In D&Cn the dividing agent may have many different strategies guaran-
teeing her minMax utility. By contrast in B&Cn the solution to programs
(7) and (6) is often unique. Multiple choices and the resulting indeterminacy
of the outcome may be appealing for the sake of privacy preservation, less so
from the implementation viewpoint.

Two challenging open questions 1). Fix the manna (Ω,B) as in Theo-
rem 1, and each of the n agents with his own utility in D(Ω). As mentioned
in Section 2 and Subsection 3.2, Stromquist ([36]) showed that an Envy-free
partition of Ω exists if all utilities are non negative for all shares. Without
the sign assumption on utilities, Avvakumov and Karasev ([3]) prove exis-
tence of an Envy-free partition if n is a power of a prime number. Whether
this remains true for all n is still an open question.

2) If the utilities vary in a domain U(Ω) where the Maxmin utility is not
feasible, we would like to describe the family of undominated Fair Guarantees
u → Γ(u;n). For instance in the microeconomic domain M+(ω) of Subsec-
tion 5.3, the Equal Split Guarantee is clearly undominated. We conjecture
that in the domains M±(Ω) the B&C Guarantees Γθ (Subsection 5.2) are
undominated as well.

7 Appendix: proof of Lemma 4

1). First statement. Recall that we can replace in definition (5) the equalities
like θ(T ) = t1 with inequalities θ(T ) ≤ t1. We check first that the correspon-
dence t → {S ∈ B|θ(S) ≤ t} is continuous. Upper hemi continuity follows by
the continuity of θ. For lower hemi continuity pick a sequence tn converging
to t and S ∈ B s.t. θ(S) ≤ t. If tn has a decreasing subsequence, we set
Sn = S so that θ(Sn) ≤ tn and Sn converges to S. If tn has an increasing
subsequence we construct an inclusion increasing sequence Sm converging to
S and s.t. |Sm| < |S| for all m: because θ increases strictly, so does the
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sequence θ(Sm) converging to θ(S), therefore we can pick subsequences Sp of
Sm and tp of tn s.t. θ(Sp) ≤ tp, as desired.

Next we apply the Maximum Theorem twice. The first one to show
that the function (T, t1, t2) → C(T, t1, t2) = max{u(S)|S ⊂ Ω�T ; θ(T ∪
S) ≤ t1 + t2} is continuous because the correspondence (T, t1, t2) → {S|S ⊂
Ω�T ; θ(T ∪ S) ≤ t1 + t2} is continuous. The second one to deduce that the
function minT :θ(T )≤t1 C(T, t1, t2) is continuous.

2). Second statement. For simplicity we assume n = 3, the general proof
is entirely similar. Fixing u and t1 there is some t2 such that uθ(t1; t2) =
uθ(t2; 1). This is because of the monotonicity properties of uθ and of the
inequalities uθ(t1; t1) = 0 ≤ uθ(t1; 1) and uθ(t1; 1) ≥ 0 = uθ(1; 1). This
common value is unique (though t2 may not be) and defines a function g(t1) =
uθ(t1; t2) = uθ(t2; 1). It is easy to check from the continuity and monotonicity
properties of uθ that g is weakly decreasing and continuous. Then we find in
the same way t1 s.t. g(t1) = uθ(0; t1).

Check finally that if τ ∗ ∈ Υ(n) is such that all terms uθ(tk∗; t
k+1
∗ ), 0 ≤

k ≤ n − 1, equal a common value λ, then τ ∗ solves program (6). If it does
not there is a τ such that uθ(tk; tl+1) > λ for 0 ≤ k ≤ n − 1. Applying this
inequality at k = 0 gives t1 > t1∗; next at k = 1 we get uθ(t1, t2) > uθ(t1∗, t

2
∗)

implying t2 > t2∗; and so on until we reach a contradiction with the fact that
both τ and τ ∗ are in Υ(n).

Finally, the optimal sequence tk increases in k, strictly if u is not every-
where zero because u(t, t) = 0 for all t.
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