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Abstract 

Based on climate extreme indices calculated from a high-resolution daily 

observational dataset in China during 1961-2005, the performance of 12 climate 

models from phase 6 of the Coupled Model Intercomparison Project (CMIP6), and 30 

models from the phase 5 of CMIP (CMIP5), are assessed in terms of spatial 

distribution and interannual variability. CMIP6 multi-model ensemble mean 

(CMIP6-MME) can well simulate the spatial pattern of annual mean temperature, 

maximum daily maximum temperature and minimum daily minimum temperature. 

However, CMIP6-MME has difficulties to reproduce cold nights and warm days, and 

has large cold biases over the Tibetan Plateau. Its performance in simulating extreme 

precipitation indices is generally lower than in simulating temperature indices. 

Compared to CMIP5, CMIP6 models show improvements in the simulation of climate 

indices over China. This is particularly true for precipitation indices for both the 

climatological pattern and the interannual variation, except for the consecutive dry 

days. The areal-mean bias for total precipitation has been reduced from 127% 

(CMIP5-MME) to 79% (CMIP6-MME). The most striking feature is that the dry 

biases in southern China, very persistent and general in CMIP5-MME, are largely 

reduced in CMIP6-MME. A stronger ascent together with more abundant moisture 

can explain this reduction of dry biases. Wet biases for total precipitation, heavy 

precipitation and precipitation intensity in the eastern Tibetan Plateau are still present 

in CMIP6-MME, but smaller, compared to CMIP5-MME.  

Keywords: CMIP6; CMIP5; Intercomparison; Climate Extremes 

Article Highlights: 

CMIP6 models, as CMIP5 models, generally perform better in simulating Tav, TXx 

and TNn than in simulating extreme precipitation indices.  

The persistent dry biases in southern China in CMIP5-MME are largely reduced in 

CMIP6-MME. 

CMIP6 models show obvious improvements in simulating precipitation extremes 

compared with CMIP5 models. 
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1. Introduction 

General circulation models (GCMs) are important tools for understanding the 

climate system, reproducing its past, predicting and projecting its future changes. To 

make models comparable to each other, the Working Group on Coupled Modelling 

(WGCM) in the framework of World Climate Research Programme (WCRP) 

established the Coupled Model Intercomparison Project (CMIP). CMIP is also 

devoted to providing standardized climate simulations and outputs (Meehl et al., 

2007), and to facilitating the use of such simulations among different scientific 

communities. In the past years, CMIP made great contributions to the last assessment 

reports produced by the Intergovernmental Panel on Climate Change (IPCC) (IPCC 

2007, 2012, 2013). 

According to the IPCC Fifth Assessment Report, CMIP5 models exhibit 

improvements in the simulation of surface temperature and large-scale precipitation 

compared to the previous exercise of CMIP (IPCC 2013). They generally have a 

better skill in simulating surface air temperature than in simulating precipitation 

(IPCC 2007, 2012, 2013; Sillmann et al. 2013; Flato et al., 2014; Koutroulis et al., 

2016). It is also shown that CMIP5 models are more skillful than CMIP3 models in 

simulating various aspects of the Asian summer monsoon (Sperber et al., 2013), as 

well as the climatological spatial pattern and the dominant mode of summer 

precipitation in the Pan-Asian monsoon region (Gao et al., 2015). 

Recently, several studies focused on the capability of CMIP models in 

reproducing climate over China. The same conclusion was reached with a better 

performance for CMIP5 models, compared to their precedent generation CMIP3 

models (Committee of Chinese National Assessment Report on Climate Change, 

2015). However, there are some discrepancies for both temperature and precipitation. 

For instance, cold biases are generally present in western China (Guo et al., 2013; Sun 

et al., 2015), and overestimated precipitation in the eastern part of the Tibetan Plateau 

(Xu et al., 2010; Su et al., 2013). Extreme precipitation is also generally 
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overestimated, especially in western China and in mountainous regions, while 

precipitation in southern China is always underestimated (Jiang et al., 2009; Jiang et 

al., 2012, 2015; Ou et al., 2013; Chen et al., 2014; Chen and Sun, 2014; Chen and 

Frauenfeld, 2014; Kusunoki and Arakawa, 2015).  

Nowadays, CMIP enters into its phase 6 (CMIP6). CMIP6 models have higher 

spatial resolution and improved parameterization schemes for major physical and 

biogeochemical processes of the climate system (Eyring et al., 2016). Most modeling 

groups are releasing their new simulations with the published documentation of their 

model evolution from CMIP5 to CMIP6 (Park et al., 2019; Kawai et al., 2019; Wu et 

al., 2019; Gusain et al., 2020). But few works were devoted to assessing the ensemble 

behaviors of CMIP6 models, especially in simulating climate extremes over China. 

This is actually what we want to address in this study. Two questions constitute our 

main motivation: How is the performance of CMIP6 models in terms of MME 

(multi-model ensemble) in simulating current climate extremes over China? What is 

the improvement from CMIP5 to CMIP6 for this regard? 

In order to answer these questions, simulations from 12 CMIP6 climate models 

have been quantitatively assessed with skill-score metrics. We took all CMIP6 

simulations available on ESGF when we started this work in August 2019. Their 

performance is compared with that of 30 existing CMIP5 models. We are aware that 

the 12 CMIP6 models used here are not necessarily the successor of the 30 CMIP5 

models, but our goal is to assess the ensemble behaviors of the two phases of CMIP. 

This objective is quite distinct from that of each individual model to document 

changes of model constitution and performance. In this work, we want to provide a 

reliable scientific basis for end-users of CMIP6 simulations who are interested in the 

projection of future climate changes in China.  

2. Data and methods 

2.1 Data 

As a reference from observation, we used the daily gridded dataset, CN05.1, with 
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a resolution of 0.5° in both latitude and longitude, including four basic variables: 

temperature (TM), daily-maximum temperature (TX), daily-minimum temperature 

(TN), and precipitation. It was provided by the National Climate Center of the China 

Meteorological Administration based on 2416 observation stations, unevenly covering 

whole China (Wu and Gao, 2013). This dataset has been widely used in researches on 

climate change over China (Dong et al., 2015; Xu et al., 2018). 

The simulated daily maximum temperature and daily minimum temperature and 

precipitation from 12 CMIP6 models and 30 CMIP5 models were retrieved through 

data portals of the Earth System Grid Federation. Only the first historical realization 

was analyzed for each model. For both models and observations, we used in this study 

the same period from 1961 to 2005. The used models with their basic information are 

listed in Table 1 for CMIP5 and Table 2 for CMIP6, respectively. 

Different climate indices from different models and observations were firstly 

calculated at their native grids. To facilitate the inter-comparison, a bilinear 

interpolation scheme was used to interpolate all indices to a common 1°×1° grid. 

Monthly vertical velocity together with meridional wind (V) and specific 

humidity were also used in our study to search possible causes for the better 

performance of CMIP6-MME to reproduce precipitation in south China. The 

corresponding variables from the reanalysis National Centers for Environmental 

Prediction-National Center for Atmospheric Research (NCEP/NCAR) with a 

resolution of 2.5° were used as a reference for the same period 1961-2005. All models 

were interpolated to the 2.5°×2.5° grid to facilitate the inter-comparison. 

2.2 Climate indices 

In this work, we consider 10 climate indices, including the annual average 

temperature and nine extreme indices defined by the Expert Team on Climate Change 

Detection and Indices (ETCCDI; http://etccdi.pacificclimate.org/; see Table 3 for 

details). These indices have been widely used in climate change researches and 

considered as representative for model performance (Frich et al., 2002; Zhang et al., 
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2011; Zhou et al., 2014; Akinsanola et al., 2019). 

2.3 Evaluation method 

2.3.1 Taylor diagram  

To evaluate the overall skill in reproducing the spatial pattern of the present-day 

climate indices, the Taylor diagram and Taylor skill scores (TS) (Taylor 2001; Wang 

et al.,2018) were used. Taylor diagram provides a concise statistical summary of the 

degree of correlation (PCC; pattern correlation coefficient), centered root mean square 

error (RMSE), and the ratio of spatial standard deviation (RSD). The similarity 

between observations and simulations can be quantified by their correlation and the 

amplitude of the variability. A perfect simulation would be that with the centered 

RMSE equal to 0 and both the PCC and RSD close to 1. Taylor skill score (TS) is a 

combined measure and calculated as: 
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where R is the spatial correlation coefficient between the simulation and observation, 

R0 is the maximum correlation coefficient attainable (here we use 0.999). σsm and σso 

are the standard deviations of the simulated and observed spatial patterns, respectively. 

The score equals 1 for a perfect match between the model and observation, and 0 for 

an inverse model performance. 

2.3.2 Interannual variability skill scores (IVS) 

The method to quantitatively express interannual variability skill score (IVS) is 

the same as employed in Chen et al. (2011) : 
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where σtm and σto denote the interannual standard deviation of model simulations and 

observations, respectively. Smaller IVS values indicate better performance of the 
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simulation. 

3. The evaluation of CMIP6 models and comparison with CMIP5 

models  

3.1 Temperature Indices 

3.1.1 Climatology 

In order to evaluate the capability of models in reproducing temperature indices 

over China, Fig. 1 shows the box-and-whisker plots and the spatial distribution of 

biases between simulations (CMIP6-MME and CMIP5-MME) and observation from 

1961 to 2005. All the box-and-whisker plots use the commonly-used convention with 

upper and lower limits of the box indicating the 75th and 25th percentile values, the 

horizontal line in the box indicating the median, the dot in the box indicating the mean, 

and the whiskers showing the 90th and 10th percentile values. It can be seen that 

CMIP6-MME has a general cold bias throughout the country. The areal-mean bias of 

CMIP6-MME for annual mean temperature (Tav), maximum daily maximum 

temperature (TXx) and minimum daily minimum temperature (TNn) in whole China 

is -1.64℃/-0.45°C/-4.51°C. Large cold biases are located in the Tibetan Plateau, 

where the local bias is more than 4°C for Tav and 8°C for TNn. Compared with 

CMIP5-MME, CMIP6-MME does not present obvious differences for Tav/TNn. 

Except for TXx, the general warm bias (0.93℃) in CMIP5-MME becomes a general 

cold bias (-0.45℃) in CMIP6-MME (Fig. 1e and f). Regions, where biases in 

CMIP6-MME are lower than that in CMIP5-MME and their difference is statistically 

significant at the 5% level are dotted in the middle panels. The dotted areas in Fig. 1e 

represent the simulated bias for TXx from CMIP6-MME is significantly reduced in 

north China and parts of Xinjiang. The dotted areas are mainly located in Xinjiang for 

Tav and TNn, which indicates the bias over Xinjiang also is reduced in CMIP6-MME 

(Fig. 1b and h).  

Generally speaking, it is difficult to evaluate model performances with percentile 
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indices because the mean threshold exceedance rate in the base period is 

approximately the same for all models and observations (Sillmann et al. 2014; Chen 

and Sun, 2015). The calculations of these percentile indices for the models and 

observations are implemented over the standard base period of 1961-1990, and the 

climatic mean analyses are calculated over the period of 1961-2005. There is a 

systematic overestimation from CMIP6-MME for cold nights (TN10p), but a 

systematic underestimation for warm days (TX90p). CMIP5-MME shows similar 

spatial characteristics for TN10p. But the simulated bias is basically distributed as a 

north-south dipole for TX90p, with negative bias in the north and positive bias in the 

south.  

Apart from biases measuring the deviation of models from observation, the 

inter-model spreading is also considered as an important assessment for CMIP models, 

since it indicates the degree of consensus across the climate modelling community, 

and it ultimately serves as a surrogate to measure uncertainty of climate models, 

especially for projection of future climate. With this idea in mind, we now evaluate 

the standard deviation (SD) among models for CMIP5 and CMIP6 respectively. We 

followed what was done in Jiang D. et al. (2016) and display the areal-mean SD over 

whole China in the upper side of each relevant panel in Fig. 1. The inter-model SD for 

all CMIP6 models (CMIP6-twelve) is generally smaller than that of all CMIP5 

models (CMIP5-thirty) for most temperature indices (except for TNn). We think that 

such a difference is not significant, since CMIP5 (30 members) is more diverse than 

CMIP6 (12 members). Results (not shown) from a subset of six CMIP6 models 

(CMIP6-six) and their CMIP5 predecessors (CMIP5-six) do not permit to conclude 

significant differences, neither, which confirms that the inter-model spreading is quite 

comparable between CMIP5 and CMIP6. 

Taylor diagrams and TS are also used to further evaluate the overall skills of 

models in reproducing the spatial pattern of temperature indices. Fig. 2 shows the 

Taylor diagrams for the 12 CMIP6 and 30 CMIP5 models and their MME against 

observations, combined with the TS histograms of their MME. The majority of 
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models (both CMIP5 and CMIP6) have PCC greater than 0.85 for Tav, TXx, and TNn. 

This indicates that the coupled models have a good performance in simulating the 

spatial distribution of these indices, with RSD between 0.75 and 1.25 and RMSE less 

than 0.5. The result from MME is furthermore much better than individual models. 

The PCC and TS for each index of both CMIP5-MME and CMIP6-MME are above 

0.94, the RSD close to 1, and the RMSE close to 0.25. Compared with CMIP5, 

CMIP6 models also show some improvements for TXx, with larger PCC and TS. If 

we examine TN10p and TX90p, presented in the lower panels in Fig. 2, all models 

(both CMIP5 and CMIP6) show relatively poor performances, with PCC below 0.5. 

Even the MME is not good enough, with PCC below 0.6 and TS below 0.3. This 

feature has also been revealed by previous studies (e.g. Chen and Sun 2015). 

We also compared the subset CMIP6-six models with their CMIP5-six 

predecessors by using similar Taylor diagrams (results not shown), and the 

performance of models for temperature indices is generally similar between CMIP6 

and CMIP5. We may even notice that, for TNn, CMIP6 models presents some 

degradation, mainly due to the poor performance of IPSL-CM6A-LR. The capability 

of their ensemble mean (MME) to reproduce the climatological temperature indices is 

also close to each other. For the subset of six affiliation-identified simulations, we 

also performed a further analysis as what presented in Sillmann et al. (2013), 

providing a compact graphical overview of models’ performance relative to each other. 

The basic calculation is the root mean square error (RMSE) relative to the observed 

climatology. RMSE is then subtracted and normalized by the median value among the 

models to compare and for each parameter. Such a processing allows half of the 

models with positive values and the second half with negative values. It is clear that 

models with negative values have a better performance compared to those with 

positive values. Results for temperature indices are shown in Fig. 3. Colors are used 

to show magnitude of the normalized relative RMSE. Warm colors indicate models in 

the bad half, and cold colors indicate models in the good half. From a visual 

inspection, we can easily conclude that the six affiliated CMIP6 simulations are not 
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distinguishable from their counterpart from CMIP5.  

Generally speaking, both CMIP6-MME and CMIP5-MME exhibit good 

capabilities to simulate the spatial distribution of Tav, TXx and TNn, but have 

difficulties to reproduce TN10p and TX90p. CMIP6-MME still has cold biases over 

the Tibetan Plateau for Tav and TNn, which may be related to the complex physical 

characteristics of the underlying surface of the plateau. Climate models, with a 

relatively coarse resolution, cannot depict the steep terrain of the plateau and the 

complex characteristics of the underlying surface (Gao et al., 2008; IPCC, 2007, 

2013). However, compared with CMIP5-MME, the warm biases for TXx in some 

regions of northwest China have significantly reduced in CMIP6-MME. The 

capability of CMIP6-MME to simulate the spatial distribution of TN10p and TX90p 

is still relatively poor but shows some improvement in comparison with 

CMIP5-MME. Consider all temperature indices as a whole, we can conclude that the 

simulation of their spatial pattern is of similar performance in CMIP6 and CMIP5, 

and the inter-model spread is at a comparable level in CMIP5 and CMIP6. 

3.1.2 Interannual variability  

The performance in simulating the temporal variation is also a very important 

factor to measure the capability of models. The IVS defined in section 2.3.2 is here 

used to quantify the similarity of interannual variability between simulated and 

observed indices. Fig. 4 gives the IVS histogram of models for five temperature 

indices in China. Both CMIP6 and CMIP5 models can realistically simulate the 

interannual variation of temperature indices with the mean IVS less than 1. The mean 

IVS of Tav, TN10p and TX90p from CMIP6 models are 0.26, 0.33 and 0.25, 

respectively. The mean IVS of Tav, TN10p and TX90p from CMIP5 models are 0.35, 

0.28 and 0.31, respectively. CMIP6 models perform better than CMIP5 models for 

TXx, the mean IVS from CMIP6 and CMIP5 models is 0.51 and 0.91, respectively. 

Consider all temperature indices, we can again conclude that the simulation of 

interannual variation of different temperature indices is of similar performance 

between CMIP6 and CMIP5. 
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3.2 Precipitation Indices 

3.2.1 Climatology 

The simulation of precipitation is more challenging for models as it depends 

closely on the parameterization of complex physical processes and their 

implementation in models. Major challenges are linked to surface properties 

(topography, coastline, vegetation) that lead to much greater spatial heterogeneity at 

regional scales (IPCC, 2007, 2013). Fig. 5 shows the box-and-whisker plots and the 

spatial distribution of biases between simulation and observation for different 

precipitation indices for the common period from 1961 to 2005. The precipitation 

indices simulated by CMIP6-MME are generally overestimated, except for 

consecutive dry days (CDD). The areal-mean relative bias of CMIP6-MME for total 

precipitation (Prcptot), heavy precipitation (R95p) and precipitation intensity (Sdii) in 

whole China is 79%/85%/21%, respectively. The largest wet bias is located in the 

Himalayan mountains and the eastern part of the Tibetan Plateau, where local bias is 

more than 600 mm for Prcptot, 150 mm for R95p and 3 mm/day for Sdii, respectively 

(Fig. 5b, e and h). The subset ensemble mean from six models with identified 

affiliation, CMIP5-six and CMIP6-six, perform in a very similar way as in Fig. 5.  

CMIP6-MME shows significant improvements in the simulation of precipitation 

indices compared with CMIP5-MME, except for CDD, which has similar 

performance in the two ensembles. For Prcptot (Fig. 5a), the areal-mean bias has been 

reduced from 127% in CMIP5-MME to 79% in CMIP6-MME. Similarly, the median 

relative bias has also been reduced from 51% (CMIP5-MME) to 30% (CMIP6-MME). 

Although the high skewness of precipitation distribution leads to different behaviors, 

both the mean and median show a clear improvement from CMIP5-MME to 

CMIP6-MME. CMIP5-MME shows obvious dry biases in the south of the Yangtze 

River for Prcptot, R95p and Sdii (negative bias for extremely heavy rain days, 

R20mm), while dry (negative) biases are significantly decreased in CMIP6-MME 

(Fig. 5b, e, h and n dotted areas). This feature is also observed with the subset 

ensemble results. The biases of Prcptot (exceed -400 mm) and R95p (exceed -100 mm) 
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in CMIP5-MME over south China are reduced to less than -200 mm and -50 mm in 

CMIP6-MME, respectively. The Tibet Plateau also is within the dotted area in Fig. 5 

(middle column), which indicates the large wet bias here is reduced in CMIP6-MME.  

CDD does not show obvious improvement in CMIP6-MME, with overestimation 

in Xinjiang and in southern China, but underestimation in other regions, especially in 

the Kunlun Mountains (north part of the Tibetan Plateau), where the bias is over 60 

days (Fig. 5k). The areal-mean bias of CDD over whole China is -15.7 days. The 

spatial distribution from CMIP5-MME is similar, and the areal-mean bias over China 

is -13.1 days.  

Unlike temperature indices showing inconclusive variation between CMIP5 and 

CMIP6 in terms of inter-model spreading, precipitation indices display a clearer trend 

of reduced inter-model spreading from CMIP5 to CMIP6. This is true for the total 

ensembles (Fig. 5) and the subset ensembles (results not shown). 

Fig. 6 shows Taylor diagrams and Taylor scores which are a concise performance 

representation of all precipitation indices. The majority of models (both CMIP5 and 

CMIP6) have PCC between 0.6 and 0.9 for Prcptot, R95p and Sdii. This indicates that 

the coupled models have certain capability in simulating the spatial distribution of 

these indices. Especially for Sdii, the PCC is all larger than 0.7 and the RMSE is all 

smaller than 0.75. But they are generally less skillful in simulating CDD and R20mm. 

Especially for CDD, the PCC of almost all models (both CMIP5 and CMIP6) is 

smaller than 0.75, and the RSD is further away from 1. The model spread of most 

precipitation indices is much larger than that of temperature indices (Tav, TXx and 

TNn) in both CMIP5 and CMIP6. MME is generally better than individual models, 

with larger PCC and smaller RMSE. 

The performance of CMIP6 models is clearly improved compared with that of 

CMIP5 models, especially for R95P and Sdii. The PCC for R95p/Sdii has increased 

from 0.80/0.87 (CMIP5-MME) to 0.86/0.92 (CMIP6-MME), respectively. And the TS 

for R95p/Sdii also increases from 0.79/0.83 to 0.86/0.89, respectively. The RSD from 
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CMIP6-MME is also closer to 1, and the RMSE closer to 0, which indicates that the 

performance in simulating the spatial pattern of R95p and Sdii is more significantly 

improved than for other indices from CMIP6-MME. CDD also presents certain 

improvements from CMIP5 to CMIP6, with TS increasing from 0.61 (CMIP5-MME) 

to 0.69 (CMIP6-MME). The subset ensemble CMIP6-six also shows significant 

improvements compared to its counterpart CMIP5-six for most precipitation indices, 

including the ensemble average. A few models (e.g., BCC-CSM2-MR, GFDL-CM4 

and GFDL-ESM4) even systematically outperform their CMIP5 predecessors for all 

precipitation indices. The capability of climate models to reproduce climatological 

precipitation indices over China rises from CMIP5 to CMIP6. This improvement is 

also visible in Fig. 7, which presents the portrait diagram of multiple precipitation 

indices from the subset ensembles, with dominant blue colors for CMIP6-six and 

dominant orange colors for CMIP5-six. 

3.2.2 Interannual variability 

Fig. 8. shows the mean IVS histogram of models for the five precipitation 

indices averaged over China. For all indices, the mean IVS from CMIP6 models is 

lower than that of CMIP5 models. Taking Sdii as an example, the mean score from 

CMIP6 models is 0.91, and the mean score of CMIP5 models is 1.18. The IVS of 

other indices are larger, but CMIP6 models have smaller mean values than CMIP5 

models.  

Generally speaking, both CMIP6-MME and CMIP5-MME have certain 

capabilities of simulating precipitation indices, but not as good as simulating 

temperature indices (Tav, TXx and TNn). The models are more skillful to reproduce 

temperature than precipitation, which is also consistent with previous studies (IPCC, 

2013; Kusunoki and Arakawa, 2015). For different precipitation indices, the 

performance of the models is different, with the best for Sdii and the worst for CDD. 

Consider all precipitation indices, we can conclude that CMIP6 models are superior to 

CMIP5 models in simulating both the spatial distribution and interannual variability, 

and have smaller inter-model spreads than CMIP5 models. In particular, the dry bias 
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of mean and extreme precipitation in southern China is largely reduced in 

CMIP6-MME. However, CMIP6-MME still has wet biases for Prcptot, R95p and Sdii 

in the eastern Tibetan Plateau, but these wet biases are smaller than those of 

CMIP5-MME. This improvement may be partly attributed to the higher model 

resolution and the better description of physical and chemical processes in CMIP6 

models (Eyring et al., 2016). CMIP6 models generally improve the convective 

parameterization schemes and the cloud physics process (Cao et al., 2018; Wu et al., 

2019) and append the indirect effects posed by aerosols onto the formation of clouds 

and precipitation (Wu et al.,2019; Voldoire et al., 2019).  

To further investigate possible causes for the better performance of 

CMIP6-MME to reproduce precipitation in south China, the regional atmospheric 

circulation patterns from the two MMEs are compared with the NCEP reanalysis. 

Considering the fact that June-August (JJA) is the main season for precipitation 

occurred in China, Fig. 9 shows the difference of meridional circulation and specific 

humidity (shaded) zonally averaged within 110°E-120°E in summer. As shown in Fig. 

9 (middle column), compared with NCEP, CMIP5-MME presents strong descent 

around 30°N. CMIP5-MME also shows less water vapor over south China, so there is 

a large dry bias over south China (Fig. 5b and e). For CMIP6-MME (Fig. 9 left 

column), however, the zone of strong descent is northward shifted, compared to 

CMIP5-MME. CMIP6-MME also shows a little more water vapor and a weak ascent 

around 22°N, compared to NCEP. So, the dry bias is reduced in south China in 

CMIP6-MME (Fig. 5a and d). Furthermore, compared with CMIP5-MME, 

CMIP6-MME presents stronger ascent between 22°N to 30°N. CMIP6-MME also 

shows more water vapor over south China (Fig. 9 right column). Hence, the stronger 

ascent accompanied with more moisture over south China in CMIP6-MME 

contributes to the decrease of dry biases over there. 

4. Conclusions and discussion 

In this study, we quantitatively evaluated the performance of 12 CMIP6 and 30 
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CMIP5 models for simulating climate extremes in China, through an inter-comparison 

against a gridded daily observation dataset. The assessment was done in terms of 

spatial patterns and temporal variability for the period 1961-2005. We used some 

commonly used skill-score methods, such as the Taylor diagram and TS representing 

the spatial pattern and IVS representing the interannual variability. We generally 

privileged the analysis on multi-model ensemble (MME) mean, except for the 

temporal variability that needs examination in each individual member. It is noticed 

that, besides the general ensemble, we used a subset of six simulations from CMIP5 

and CMIP6 belonging to same institution. Results from the subset ensemble 

corroborate those from the general ensemble. The main findings of our study can be 

summarized as follows. 

Both CMIP6 and CMIP5 models show good performance in simulating the 

climatological pattern and the interannual variation for temperature indices over 

China. The spreads among models for most temperature indices are at a comparable 

level in CMIP5 and CMIP6. CMIP6-MME and CMIP5-MME have very good 

capabilities of reproducing Tav, TXx and TNn, with PCC and TS larger than 0.94. But 

they have difficulties to well reproduce TN10p and TX90p. CMIP6-MME generally 

shows slight improvements in comparison with CMIP5-MME. The large warm biases 

of CMIP5-MME for TXx in parts of northwest China are significantly reduced in 

CMIP6-MME. However, the large cold bias of CMIP5-MME over the Tibetan Plateau 

still exists in CMIP6-MME for Tav (exceeding -4℃) and TNn (exceeding -8℃).  

The performance of the CMIP6 and CMIP5 models in simulating precipitation 

indices is not as good as that in simulating temperature indices (Tav, TXx and TNn). 

For different precipitation extremes, the capability of the models is also different, with 

the best for Sdii, the worst for CDD. CMIP6 models have a smaller inter-model 

spread for most precipitation indices than CMIP5 models do, which implies that a 

slightly larger consensus seems in CMIP6 historical simulations. We hope that there 

will be also smaller uncertainties when we deal with projection of future climate 

within CMIP6. Compared with CMIP5-MME, CMIP6-MME shows significant 
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improvements in simulating both the climatological pattern and the interannual 

variation for precipitation indices, except for CDD which remains at the same level. 

The areal-mean bias for Prcptot is reduced from 127% (CMIP5-MME) to 79% 

(CMIP6-MME). The dry biases for mean and extreme precipitation in southern China 

are also largely reduced in CMIP6-MME. However, CMIP6-MME still has wet biases 

for Prcptot, R95p and Sdii in the eastern Tibetan Plateau, although these wet biases 

are smaller than those of CMIP5-MME. 

The dry biases for precipitation indices (Prcptot, R95p and Sdii) over south 

China are tightly related to the strong descent and weak water vapor content over 

there. CMIP6-MME, with ascent and moist air over south China, is able to produce 

more precipitation, and to reduce the dry biases over there. CMIP6 models generally 

have higher horizontal resolution and improved physical parameterizations 

(convection, radiation, cloud, land surface, etc.). All together certainly contribute to 

the revealed improvement, although we are not able now to determine the precise 

cause. In eastern China, convective precipitation is the main type of precipitation, so 

deficiencies in convection parameterization are likely to cause the systematic errors in 

precipitation simulation, especially for extreme precipitation (Li et al., 2012; Rosa and 

Collins, 2013; Mehran et al., 2014; Jiang et al., 2015). CMIP6 models generally 

improved the convection parameterization scheme and cloud physics (Cao et al., 2018; 

Wu et al., 2019), which can also partly explain the significant improvement of 

precipitation simulation in southern China. 

It should be pointed out that CMIP6-MME still has large biases for temperature 

indices over the Tibetan Plateau and in Northwest China. The precipitation indices in 

Western China are also not well simulated, especially there are large wet biases in the 

eastern Tibetan Plateau. Topographic forcing has an important influence on the 

simulation of climate (Zhou et al., 2009; Song et al., 2013). It would be relatively 

difficult for models to reproduce the effects of the complex topography in Western 

China (Chen et al., 2012).  

Due to the limited number of temporarily available CMIP6 models, the 
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evaluation of more CMIP6 models still needs to be carried out in the future. However, 

based on the results of the 12 CMIP6 models in this paper, the improvement of 

precipitation simulation compared with CMIP5 models is of great significance to 

provide more comprehensive climate information to end-users or policy-makers. The 

climate projection results of the Scenario Model Intercomparison Project (Scenario 

MIP) for CMIP6 (O’Neill et al., 2016) are also gradually released, which will allow 

us to assess future climate change projections from CMIP6 models. Based on this 

assessment, we would recommend, with more confidence, to use CMIP6 results for 

future climate projection in China. 
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Table 1. Model name, modeling center and country, and atmospheric resolution of 30 

CMIP5 global climate models. 

Model 

number 
Model name Modeling center and country 

Atmospheric 

resolution(lat × lon) 

1 ACCESS1.0 
Commonwealth Scientific and Industrial Research 

Organization and Bureau of Meteorology(Australia) 
1.24°×1.875° 

2 

3 

BCC-CSM1.1 

BCC-CSM1.1-m 

Beijing Climate Center, China Meteorological Administration 

(China) 

2.8°×2.8° 

1.125°×1.125° 

4 BNU-ESM 
College of Global Change and Earth System Science, Beijing 

Normal University (China) 
2.8°×2.8° 

5 

6 

CanCM4 

CanESM2 

Canadian Centre for Climate Modelling and Analysis (Canada) 

2.8°×2.8° 

2.8°×2.8° 

7 CCSM4 National Center for Atmospheric Research (USA) 0.94°×1.25° 

8 

9 

CMCC-CM 

CMCC-CMS 

Centro Euro-Mediterraneo per I Cambiamenti Climatici(Italy) 

0.75°×0.75° 

1.875°×1.875° 

10 CSIRO-Mk3-6-0 

Commonwealth Scientific and Industrial Research 

Organization in collaboration with Queensland Climate Change 

Centre of Excellence (Australia) 

1.875°×1.875° 

11 CNRM-CM5 

Centre National de Recherches Météorologiques–Centre 

Européen de Recherche et de Formation Avancée en Calcul 

Scientifique (France) 

1.4°×1.4° 

12 FGOALS-g2 

LASG, Institute of Atmospheric Physics, Chinese Academy of 

Sciences and Center for Earth System Science, Tsinghua 

University(China) 

3°×2.8° 
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13 FGOALS-s2 
LASG, Institute of Atmospheric Physics, Chinese Academy of 

Sciences(China) 
1.67°×2.8° 

14 

15 

16 

GFDL-CM3 

GFDL-ESM2G 

GFDL-ESM2M 

NOAA Geophysical Fluid Dynamics Laboratory (USA) 

2.0°×2.5° 

2.0°×2.5° 

2.0°×2.5° 

17 

18 

19 

HadCM3 

HadGEM2-CC 

HadGEM2-ES 

Met Office Hadley Centre(United Kingdom) 

2.5°×3.75° 

1.24°×1.875° 

1.24°×1.875° 

20 

21 

IPSL-CM5A-LR 

IPSL-CM5A-MR 

L’Institut Pierre-Simon Laplace(France) 

1.875°×3.75° 

1.26°×2.5° 

22 

23 

24 

25 

MIROC4h 

MIROC5 

MIROC-ESM 

MIROC-ESM-CHEM 

National Institute for Environmental Studies, 

The University of Tokyo (Japan) 

0.56°×0.56° 

1.4°×1.4° 

2.8125°×2.8125° 

2.8125°×2.8125° 

26 

27 

28 

MPI-ESM-LR 

MPI-ESM-MR 

MPI-ESM-P 

Max Planck Institute for Meteorology (Germany) 

1.875°×1.875° 

1.875°×1.875° 

1.875°×1.875° 

29 MRI-CGCM3 Meteorological Research Institute (Japan) 1.125°×1.125° 

30 NorESM1-M Norwegian Climate Centre (Norway) 1.8725°×2.5° 
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Table 2. Model name, modeling center and country, and atmospheric resolution of 12 

CMIP6 global climate models. 

Model 

number 
Model name Modeling center and country 

Atmospheric 

resolution(lat × lon) 

1 

2 

BCC-CSM2-MR 

BCC-ESM1 

Beijing Climate Center, China Meteorological Administration 

(China) 

1.125°×1.125° 

2.8°×2.8° 

3 

4 

CNRM-CM6-1 

CNRM-ESM2-1 

Centre National de Recherches Météorologiques–Centre Européen de 

Recherche et de Formation Avancée en Calcul Scientifique (France) 

1.4°×1.4° 

1.4°×1.4° 

5 EC-Earth3-Veg EC-EARTH consortium 0.7°×0.7° 

6 

7 

GFDL-CM4 

GFDL-ESM4 

NOAA Geophysical Fluid Dynamics Laboratory (USA) 

1°×1.25° 

1°×1.25° 

8 IPSL-CM6A-LR L’Institut Pierre-Simon Laplace(France) 1.26°×2.5° 

9 MRI-ESM2-0 Meteorological Research Institute (Japan) 1.125°×1.125° 

10 NESM3 Nanjing University of Information Science and Technology(China) 1.875°×1.875° 

11 SAM0-UNICON Seoul National University(Republic of Korea) 0.94°×1.25° 

12 UKESM1-0-LL Met Office Hadley Centre(UK) 1.25°×1.875° 
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Table 3. Name, acronym, definition and unit of climate indices used in the study. 

Name Acronym Definition Units 

Avg TM Tav Annual average value of daily temperature(TM) ℃ 

Max TX TXx Annual maximum value of daily maximum temperature(TX) ℃ 

Min TN TNn Annual minimum value of daily minimum temperature(TN) ℃ 

Cold nights TN10p Percentage of days when TN < 10th percentile % 

Warm days TX90p Percentage of days when TX > 90th percentile % 

Total precipitation Prcptot Annual total precipitation in wet days (RR ≥ 1 mm) mm 

Heavy precipitation R95p Annual total precipitation from days > 95th percentile mm 

Precipitation intensity Sdii Total wet days precipitation divided by the number of wet days mm/day 

Consecutive dry days CDD Maximum number of consecutive days with RR <1 mm days 

Extremely heavy rain days R20mm Annual count of days with RR ≥ 20mm days 
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Fig. 1. Box-and-whisker plots (left column) and the spatial pattern of biases 

(simulation minus observation) in CMIP6-MME (middle column, red) and 

CMIP5-MME (right column, blue) of temperature indices for the historical period 
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1961-2005 (Units: ℃, ℃, ℃, %, %). The areal-mean bias (Bias) over China and the 

inter-model standard deviation (SD) of the difference averaged over the country 

(middle and right column) are given on the top of each panel. From top to bottom are 

(a-c) Tav, (d-f) TXx, (g-i) TNn, (j-l) TN10p and (m-o) TX90p, respectively. The 

dotted areas in the middle panels represent regions where biases in CMIP6-MME are 

lower than in CMIP5-MME and the difference is statistically significant at the 5% 

level.  
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Fig. 2. Taylor diagrams (a-e) and skill scores in terms of TS (f) showing the 

performance of models (CMIP6 in red, CMIP5 in blue) in simulating climatological 

fields over China for five temperature indices. Angular axes show pattern correlation 

coefficients between simulated and observed fields; radial axes show the spatial 

centered root mean square error (normalized against the observed). Blue and red 

numbers indicate CMIP5 and CMIP6 models listed in Tables 1 and 2. The larger solid 

circles represent the MME. Scale of Tav, TXx, TNn is on the left y axis, and scale of 

TN10p and TX10p is on the right y axis. 
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Fig. 3. The portrait diagram of relative spatially averaged root mean square errors 

(RMSEs) in the 1961-2005 climatologies of temperature indices simulated by the 

CMIP6 (red) and CMIP5 (blue) models from the same institution with respect to the 

observation. 
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Fig. 4. Skill scores in terms of IVS for the five temperature indices in CMIP6 (red) 

and CMIP5 (blue) models over China. The filled bars show the ensemble mean, and 

the error bars represent ranges of one standard deviation (1σ) among models. 

Asterisks (**) indicates that the differences between CMIP6 and CMIP5 models are 

significant at the 95% confidence level based on the t-test, with an asterisk (*) for 

90%. 
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Fig. 5. Same as Fig. 1., but for (a-c) Prcptot, (d-f) R95p, (g-i) Sdii, (j-l) CDD and 

(m-o) R20mm (Units: mm, mm, mm/day, days, days). The areal-mean percentage bias 

(Bias) over China and the inter-model standard deviation (SD) of the difference in 

percentage averaged over the country (middle and right column) are given on the top 

of each panel (but with bias and inter-model standard deviation of the difference for 

R20mm, Unit: days). 
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Fig. 6. Same as Fig. 2., but for five precipitation indices. 
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Fig. 7. Same as Fig. 3., but for five precipitation indices. 
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Fig. 8. Same as Fig. 4., but for five precipitation indices.  
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Fig. 9. Differences of meridional overturning circulation (vectors in m s-1) and 

specific humidity (shading, in g kg-1, increase in blue and decrease in red) zonally 

averaged within 110°E-120°E for the historical period 1961-2005 in summer (JJA). 

From left to right are CMIP6-MME minus NCEP, CMIP5-MME minus NCEP and 

CMIP6-MME minus CMIP5-MME. The abscissa is the latitude and the ordinate is the 

pressure level ( hPa).(specific humidity has less levels(only to 300mb) from NCEP) 


