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Abstract: Four bias correction methods, i.e. Gamma Cumulative Distribution Function (GamCDF), 

Quantile-Quantile Adjustment (QQadj), Equidistant CDF Matching (EDCDF) and Transform CDF 

(CDF-t), are applied to five daily precipitation datasets over China produced by LMDZ4-regional that 

was nested into five global climate models (GCMs), BCC-CSM1-1m, CNRM-CM5, FGOALS-g2, 

IPSL-CM5A-MR and MPI-ESM-MR, respectively. A unified mathematical framework can be used to 

define the four bias correction methods, which helps understanding their natures and essences for 

identifying the most reliable probability distributions of projected climate. CDF-t is shown to be the 

best bias correction method based on a comprehensive evaluation of different precipitation indices. 

Future precipitation projections corresponding to the global warming levels of 1.5°C and 2°C under 

RCP8.5 were obtained using the bias correction methods. The multi-method and multi-model ensemble 

characteristics allow to explore the spreading of projections, considered as a surrogate of climate 

projection uncertainty, and to attribute such uncertainties to different sources. It is found that the spread 

among bias correction methods is smaller than that among dynamical downscaling simulations. The 

four bias correction methods, with CDF-t at the top, all reduce the spread among the downscaled results. 

Future projection using CDF-t is thus considered having higher credibility.  

Key words: Climate downscaling, Bias correction, Daily precipitation, 1.5°C and 2°C global warming, 

Climate projection uncertainty 
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1 Introduction 

To simulate future climate change scenarios, Global Climate Models (GCMs) are indispensable 

tools. GCMs are generally reliable in simulating large-scale climate, but are not able to accurately 

describe regional climate, due to their coarse spatial resolution. Regional Climate Models (RCMs) are 

thus necessary in order to dynamically downscale outputs of GCMs. Actually, a number of RCMs 

including LMDZ, PRECIS, WRF and RegCM4 have been used in China with demonstrated value 

added and ability in realistically simulating seasonal variations and spatial distribution of the regional 

precipitation (Yu et al. 2015; Yang et al. 2016; Zhang et al. 2017). 

RCMs have biases in their simulated regional climate which can be caused by deficiencies in 

RCMs themselves (such as imperfect parameterizations) and/or by biases from driving GCMs which 

provide initial and boundary conditions for RCMs (Dosio et al. 2011). In many cases, such biases are 

not small enough for outputs of RCMs to be directly used for assessment of climate change impacts at 

regional scale. It is therefore necessary to find and apply appropriate ways to remove or reduce the 

biases. 

Bias correction is a widely-used practice in the current literature (Seneviratne and Nicholls, 2012) 

with some variants in its technical realization. Among them, the quantile mapping method (QM) is 

based on a simple idea of adjusting cumulative probability distribution function (CDF) of the simulated 

variables to match that of observation. The major advantage of this method is that it adjusts all 

moments (i.e., the entire distribution matches that of the observations for the control period) while 

maintaining the rank correlation between models and observations. However, it ignores potential 

changes in CDF of meteorological variables under the background of future climate change (Panofsky 

et al. 1958; Wood et al. 2004; Sharma et al. 2007), which can be problematic. 

To remediate this issue, Michelangeli et al. (2009) proposed the transform cumulative distribution 

function method (CDF-t) with the idea of constructing a transfer function (TF) between the observation 

and simulation during the calibration period. It was shown that CDF-t generally behaves in a much 

better way than QM does, especially for simulating extreme values (Michelangeli et al. 2009; Sun et al. 

2011; Vrac et al. 2012).  

Li et al. (2010) proposed a bias correction method which introduces a shift of the CDFs and allows 

the consideration of changing PDF under climate change. Under the title of equidistant cumulative 

distribution function matching method (EDCDF), the methodology consists of translating the 

difference between the observed CDF and the modelled one during the control period into the CDF of 

future climate for all given percentiles.  

In parallel, Amengual et al. (2012) proposed a quantile-quantile adjustment method (QQadj) with 

the idea of adjusting quantiles and variances of simulated daily precipitation series. They used a 

nonparametric function to correct mean, variance, and shape errors of CDF. They applied QQadj to 

correct multi-model dynamical downscaling simulations over a small Spanish Mediterranean costal 

area, and showed that QQadj results in clear improvements in mean, variabilities and probability 

distribution of the studied variables. However, QQadj applied on bounded variables could produce 

anomalous behaviors in some situations. Specially, projected quantiles should always remain 

nonnegative, but admittedly this requirement cannot be generally guarantied. For example, negative 

winds or negative rainfalls don’t make any physical sense and must be avoided.  

For all these bias correction methods, many interesting results were reported in the literature for 

different regions and with varied performances (Lavaysse et, al, 2012; Lafon et, al, 2012; Tramblay et, 

al, 2013; Yang et al. 2017; Guo et al. 2018). Simultaneously, the European Union founded VALUE 



Guo et al. 2020, Climatic Change 2020-08, https://doi.org/10.1007/s10584-020-02841-z  page 3 

project provides an active research network devoted to validation and development of climate 

downscaling in Europe (Maraun et al. 2015). There is, however, a lack of systematic comparison of 

different downscaling schemes and approaches for their performances in reproducing climate in East 

Asia. A recently-available ensemble of climate change downscaling simulations for China provides us 

the opportunity to do just that. We would like to take precipitation simulations to perform such a 

comparison and to provide reliable future projections based on a number of evaluated bias correction 

methods. China is located in the East Asian monsoon region with complex terrain. Diverse climatic 

conditions and frequent extreme climate events can occur in the region and provide an interesting test 

bed for methods of bias correction. 

The study presented here is in the general framework of climate change assessment under two 

different global warming levels of 1.5°C and 2°C above the pre-industrial, targets recommended by the 

2015 Paris Agreement (UNFCC, 2015). The special report on impacts of global warming of 1.5°C 

recently issued by the Intergovernmental Panel on Climate Change (IPCC) shows that compared with 

the 2°C global warming target, the 1.5°C target may drastically reduce the frequency and intensity of 

extreme events (Schaeffer et al. 2012; Knutti et al. 2016). Projected changes of precipitation in China 

under 1.5°C and 2°C targets have been reported in recent literature. Yang et al. (2018) used a 

statistically-downscaled and bias-corrected dataset as performed by Wood et al. (2004) from outputs of 

CESM (Community Earth System Model) low-warming experiment. However, Zhai et al. (2017), Li et 

al. (2017) and Wang et al. (2018) used direct outputs of GCMs from the Coupled Model 

Intercomparison Project Phase 5 (CMIP5) for future precipitation changes over China. There is 

generally a large disagreement in the future projections of precipitation in China using different climate 

models and downscaling methods. 

This study intends to revisit the issue of precipitation changes, with an independent dataset that 

was produced with a regionally-oriented climate model forced by multiple GCMs. To increase the 

reliability, we also perform bias correction to the dynamically downscaled simulations. The four bias 

correction methods presented above are used and compared to each other, to find out the most reliable 

method for future precipitation projections over China.  

The outline of this paper is as follows. Section 2 describes data and methodology. Section 3 

presents a comparison of the four bias correction methods applied to daily precipitation from the RCM. 

Section 4 provides future changes in mean and extreme precipitation over China under the global 

warming of 1.5°C and 2°C. Further, we also explore and compare the differences among different 

methods and models. Finally, Section 5 gives a general discussion and conclusion. 

 

2 Data and methodology 

2.1 Datasets 

The RCM used is LMDZ4 (Hourdin et al. 2006). It is zoomed in East Asia with zoom center at 

30°N, 110°E and a domain covering 5~55°N, 85~135°E. The spatial resolution of the model is 

approximately 0.6°×0.6°. The key physical processes used in the model correspond to the atmospheric 

component of the IPSL-CM5A couple model, as described in Li (1999), Hourdin et al. (2006) and 

Dufresne et al. (2013). Five GCMs from the CMIP5 archive were used as drivers for LMDZ4, 

including BCC-CSM1-1-m, CNRM-CM5, FGOALS-g2, IPSL-CM5A-MR and MPI-ESM-MR, as 

shown in Table S1. LMDZ4 is used in its regional configuration and its main variables are nudged by 

6-hourly outputs of the GCMs. The nudged variables include zonal wind, meridional wind, temperature 

and specific humidity. The downscaling method is a one-way nesting approach, which means that there 
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is no feedback from RCM to GCMs. Our bias correction procedure is divided into three periods: 

calibration period (1961-1980), validation period (1986-2005) and projection period (2006-2100). 

It is to be noted that Yang et al (2016) evaluated some spatial and temporal patterns of the 

downscaled climate of China with LMDZ4 when it was nested into three GCMs: BCC-csm1-1-m, 

FGOALS-g2 and IPSL-CM5A-MR. Their assessment included trends during the last 40 years, 

statistical properties of sub-regions, and seasonal cycle of rainfall and surface air temperature. LMDZ4 

did show its superiority, compared to GCMs, which is due to its more realistic representation of 

regional terrain including the Tibetan Plateau, the Sichuan Basin and the Qilian Mountains, among 

others. In the present work, two other GCMs (CNRM-CM5 and MPI-ESM-MR) are used to extend the 

ensemble size from three to five. 

The 0.5°×0.5° daily precipitation dataset (Chen et al. 2010), deduced from 753 stations of the 

China Meteorological Administration network, is used as an observational reference. For the 

convenience of comparison, we used a bilinear interpolation to convert daily precipitation of LMDZ4 

into the grid of 0.5°×0.5°. More detailed information is shown in Table S1. Our study area covers 

Central and Eastern China (19.75-53.75°N, 86.25-134.25°E) with a part of Western China excluded, 

due to a configuration limitation of LMDZ4. 

 

2.2 Bias correction methods 

One of the goals of our study is to provide to climate users more reliable future projection of daily 

precipitation over China. To meet this objective, we need to remove biases of the daily precipitation 

generated by multi-model dynamical downscaling. We want to improve simulations of both the number 

of rainy days and daily precipitation intensity. In view of the significant seasonal and spatial variation 

of precipitation in China, we perform our bias correction for each grid cell and each month. 

Considering the fact that daily precipitation generated by the RCM has many false small values, it 

is necessary to firstly define a threshold, in such way that a non-rainy day is declared when the daily 

precipitation is below this threshold. The introduction of the threshold is important since it directly 

impacts the precipitation probability distribution which is the starting point for all CDF-based bias 

correction methods. One straightforward solution would be to choose an appropriate threshold which 

makes the simulated daily precipitation sequence of the calibration period possess the same number of 

non-rainy days as in the observation. But this method may not be appropriate for future climate. In this 

work, we decided to use an approach proposed by Amengual et al. (2012) to deduce 𝑍𝐶𝐹, the adjusted 

number of non-rainy days for the future period: 

𝑍𝐶𝐹 = (𝑍𝑀𝐹 𝑍𝑀𝐻⁄ )𝑍𝑂𝐻     (1) 

where 𝑍𝑂𝐻  is number of non-rainy days for the observed precipitation sequence during the 

calibration period, and 𝑍𝑀𝐹/𝑍𝑀𝐻  denotes the ratio of number of non-rainy days for the simulation 

during the future and calibration period. In practice, a threshold of 0.1 mm/day was firstly used to 

discriminate the non-rainy days 𝑍𝑂𝐻 in observation. It is then applied to both historical and future 

simulated time series to obtain 𝑍𝑀𝐻 and 𝑍𝑀𝐹. The proportional formula (Eq. 1) can now be used to 

obtain 𝑍𝐶𝐹 which constitutes a constraint for us to define the right threshold leading to the expected 

future 𝑍𝐶𝐹.Four bias correction methods based on QM were applied to daily precipitation generated by 

multi-model dynamical downscaling. We evaluate the performance of each method by investigating 

PDF of daily precipitation and spatial distribution of a number of precipitation indices, and then select 

the best method to investigate the behaviors of future changes in daily precipitation over China under 

the global warming of 1.5 °C and 2 °C. 
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In this paper, let 𝐹𝑂𝐻 and 𝐹𝑀𝐻 designate CDF of the observed and modelled daily precipitation 

during the calibration (or historical) period, respectively; 𝐹𝑀𝐹 and 𝐹𝐶𝐹 denote CDF of the simulated 

and corrected precipitation during the future (or our target) period. In what follows a brief description 

of the four bias correction methods is presented. 

 

1) Gamma Cumulative Distribution Function Matching Method (GamCDF) 

We assume that CDF of daily precipitation for each grid point matches a gamma distribution for 

both observed and modelled daily precipitation. 

F(x; α,  β) =
1

𝛽𝛼𝛤(𝛼)
𝑥𝛼−1 exp (−

𝑥

𝛽
) ; 𝑥 ≥ 0    (2) 

where α is a shape parameter, β is a scale parameter, x denotes the precipitation amount and 𝛤(𝛼) 

represents the gamma function. The basic assumption of GamCDF is that CDF of a climatic variable 

remains unchanged under the background of global warming, even if it may not match the actual 

situation perfectly (Panofsky et al 1958; Haddad et al 1997). It means that the CDF of daily 

precipitation during the future period is identical to that during the calibration period in our study. We 

thus obtain 

𝐹𝑀𝐹 = 𝐹𝑀𝐻    (3) 

𝐹𝐶𝐹 = 𝐹𝑂𝐻    (4) 

Substituting Eq. (3) and Eq. (4) into the mapped formula yields an apparent form. 

𝑋𝐶𝐹 = 𝐹𝐶𝐹
−1(𝐹𝑀𝐹(𝑋𝑀𝐹)) = 𝐹𝑂𝐻

−1(𝐹𝑀𝐻(XMF))    (5) 

where XMF represents the simulated values for the future period. It is noted that 𝐹𝐶𝐹 is just equal to 

𝐹𝑂𝐻 for GamCDF. Obviously, the stationary assumption about GamCDF can be problematic, since 

most recent studies did suggest that the CDF of future precipitation changes in time (Michelangeli et al. 

2009; Amengual et al. 2012). 

 

2) Transform Cumulative Distribution Function Method (CDF-t) 

The CDF-t method is based on the assumption that a transfer function T exists, which establishes 

the relationship between the CDFs of the observation and simulation (Michelangeli et al. 2009). 

T(𝐹𝑀𝐻(𝑋)) = 𝐹𝑂𝐻(𝑋)    (6) 

We define u = 𝐹𝑀𝐻(𝑋), and thus X = 𝐹𝑀𝐻
−1 (𝑢) with u ∈ [0, 1]. Substituting X  into Eq. (6) 

yields a transform T: 

T(u) = 𝐹𝑂𝐻(𝐹𝑀𝐻
−1 (𝑢))    (7) 

Assuming that the above relationship will keep valid over the future period (see Eq. (8)), the CDF 

of corrected output 𝐹𝐶𝐹(𝑋) is as follow. 

T(𝐹𝑀𝐹(𝑋)) = 𝐹C𝐹(𝑋)    (8) 

𝐹𝐶𝐹(𝑋) = 𝐹𝑂𝐻 (𝐹𝑀𝐻
−1 (𝐹𝑀𝐹(𝑋)))    (9) 

As an example, the CDF-t correction process works as follows once a function T between CDFs 

of the historical observation 𝐹𝑂𝐻 and simulation 𝐹𝑀𝐻 is established. Take a future-projection value 

𝑋𝑀𝐹 = 30, then the CDF of future corrected values 𝐹𝐶𝐹(30) = 𝐹𝑂𝐻 (𝐹𝑀𝐻
−1 (𝐹𝑀𝐹(30))) (Eq. 9, see the 

segment ① in Fig. 1a). Finally, the future corrected value is 𝐹𝐶𝐹
−1(𝐹𝑀𝐹(30)) (see the segment ② in Fig. 

1a). 
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3) Equidistant Cumulative Distribution Function Matching Method (EDCDF) 

The method is based on the assumption that for a given percentile, the difference between the 

modelled and observed value during the calibration period also transmits to the future period, which 

means the adjustment function remains the same. However, the difference between the CDFs during the 

future and historical period is also considered (Li et al 2010). The method can be written 

mathematically as 

XCF = XMF +△ x = XMF + FOH
−1(FMF(XMF)) − FMH

−1 (FMF(XMF))    (10) 

where XCF represents the future outputs corrected by EDCDF. Fig. 1b illustrates the principle of the 

method after the CDFs were fitted. For the historical observation at each grid, the historical and future 

simulations follow the Bernoulli-gamma distribution. Take the example of XMF = 30, we can deduce 

FMF(XMF) = 0.2. Under the corresponding current climate, the difference between 𝐹𝑂𝐻
−1(0.2) and 

𝐹𝑀𝐻
−1 (0.2) is noted as △ x which can be transposed into the future period. Finally, the corrected value 

can be deduced as 30 +△ x. 

 

4) Quantile-Quantile Adjustment (QQadj) 

Considering changes in both mean and variance of climate variables under the background of 

global warming, Amengual et al. (2012) proposed the approach QQadj. It consists of taking the 

observed CDF, that is 𝐹𝑂𝐻, as the corrected 𝐹𝐶𝐹 for future, but with adjustments for both mean and 

variance of the data. The procedure is done at each level i of the percentile with ∆𝑖= 𝐹𝑀𝐹
−1(𝑖) − 𝐹𝑀𝐻

−1 (𝑖). 

∆𝑖 is the difference between future and historical values for the ith percentile. We can thus obtain the 

average difference as:  

∆̅= ∑ ∆𝑖𝑖     (11) 

which represents the shift of mean values predicted by model for the future. Amengual et al. (2012) 

proposed to adjust this shift following a ratio g of the modelled mean value itself (𝐴𝑀) to the observed 

one (𝐴𝑂):  

𝑔 = 𝐴𝑂 𝐴𝑀⁄ = ∑ 𝐹𝑂𝐻
−1(𝑖)𝑖 ∑ 𝐹𝑀𝐻

−1 (𝑖)𝑖⁄     (12) 

 

They also proposed to incorporate an additional term to take into account the variance inflation: 

𝑓 = 𝑆𝑂 𝑆𝑀⁄ , 𝑆𝑂 and 𝑆𝑀being the standard deviation (SD) of the observed and modelled datasets. 

Following Amengual et al. (2012), the difference between the 90th and 10th percentiles can be used to 

approximate SD: 

𝑆𝑂 = 𝐹𝑂𝐻
−1(𝑖90) − 𝐹𝑂𝐻

−1(𝑖10)    (13) 

𝑆𝑀 = 𝐹𝑀𝐻
−1 (𝑖90) − 𝐹𝑀𝐻

−1 (𝑖10)    (14) 

 

Once the percentile level i is determined by 𝑖 = 𝐹𝑀𝐹(XMF) for a given XMF, the final variable 

after the adjustment is 

𝑋𝐶𝐹 = 𝐹𝐶𝐹
−1(𝑖) = 𝐹𝑂𝐻

−1(𝑖) + 𝑔∆̅ + 𝑓(∆𝑖 − ∆̅)    (15) 
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Figure 1. Schematic illustration of Transform Cumulative Distribution Function Method (a), 

Equidistant Cumulative Distribution Function Matching Method (b) and Quantile-Quantile Adjustment 

(c, d). CDFs of daily rainfall are shown for the observed control (OBS 61-80, black solid curve), raw 

control (SIM 61-80, blue solid curve), raw validation (SIM 86-05, blue dotted curve) and corrected 

(CORR 86-05, red solid curve) data. Black (red) arrows denote the segment ① (②) for (a). △ x 

represents the difference between the observation and the simulation at a specific percentile for (b). 

Black and blue dotted vertical lines represent mean values for observations and simulations over the 

historical period for (c). Blue solid and dotted vertical lines denote mean values for raw and future 

simulated period for (d). 

 

Actually, the four methods described above and all other CDF-based correction methods have a 

similar philosophy but different technical realizations. The basic principle is to deduce a relationship 

(or a functional) between CDFs of observed and simulated values during the calibration period, or 

between CDFs of current and future RCM’s outputs, and then apply it in the calculation of CDF of 

future-period simulations. Therefore, constructing the CDF of corrected outputs during the future 

period 𝐹𝐶𝐹 is the key element for each method. Once 𝐹𝐶𝐹 is available, the corrected value 𝑋𝐶𝐹 can 

be written mathematically as 

𝑋𝐶𝐹 = 𝐹𝐶𝐹
−1(𝐹𝑀𝐹(XMF))    (16) 

where XMF represents the simulated values during the future period. 

To sum up, if we want to use a unified mathematical framework to define the four bias correction 

methods, we can formally write 𝐹𝐶𝐹 as follows. 

{
 
 

 
 
𝐹𝐶𝐹(𝑋) = 𝐹𝑂𝐻(𝑋)                                                                        𝐺𝑎mCDF

𝐹𝐶𝐹(𝑋) = 𝐹𝑂𝐻 (𝐹𝑀𝐻
−1 (𝐹𝑀𝐹(𝑋)))                                                𝐶𝐷𝐹 − 𝑡

𝐹𝐶𝐹 (𝑋 + FOH
−1(FMF(𝑋)) − FMH

−1 (FMF(𝑋))) = 𝐹𝑀𝐹(𝑋)          𝐸𝐷𝐶𝐷𝐹

𝐹𝐶𝐹(𝑋 + 𝑔∆̅ + 𝑓(∆𝑖 − ∆̅)) = 𝐹𝑂𝐻(𝑋)                                         𝑄𝑄𝑎𝑑𝑗

    (17) 
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The first two formulas are quite obvious, but the last two ones need some explanations for their 

obtention. For the case of EDCDF, we combine Eqs. (10) and (16) to deduce an intermediate equation: 

X + FOH
−1 (FMF(X)) − FMH

−1 (FMF(X)) = 𝐹𝐶𝐹
−1(𝐹𝑀𝐹(X))    (18) 

which permits us to obtain the final form as in Eq. (17). 

For the case of QQadj, we define 𝑖 = 𝐹𝑂𝐻(𝑋), and deduce X = 𝐹𝑂𝐻
−1(𝑖) with 𝑖 ∈ [0, 1]. Since Eq. (15) 

can be transformed into: 

𝑋𝐶𝐹 = 𝑋 + 𝑔∆̅ + 𝑓(∆𝑖 − ∆̅)    (19) 

and 

𝐹𝐶𝐹(𝑋𝐶𝐹) = 𝑖    (20) 

We can easily obtain the final form by introducing Eq. (19) and 𝑖 = 𝐹𝑂𝐻(𝑋) into Eq. (20). 

 

2.3 Precipitation indices and evaluation methods 

Four indices including total precipitation (PRCPTOT), precipitation intensity (SDII), number of 

rainy days for daily precipitation more than 10mm (R10mm) and maximum consecutive dry days 

(CDD) are used to measure climate characteristics of simulated precipitation, and their definitions are 

given in Table S2. They are calculated with the diagnostic software provided by the Statistical and 

Regional Dynamical Downscaling of Extremes for European Regions (Haylock et al. 2006). A 

parameter assessing the distribution of daily precipitation, skill score 𝑆𝑠𝑐𝑜𝑟𝑒 (Perkins et al. 2007), and 

another describing the spatial pattern agreement in terms of the Taylor diagram (Taylor, 2001) are used 

to measure the performance of the four bias correction methods. 

𝑆𝑠𝑐𝑜𝑟𝑒  measures the similarity between the observed and modelled PDFs by calculating the 

cumulative minimum value of two distributions. If a model simulates the observed PDF poorly, 𝑆𝑠𝑐𝑜𝑟𝑒 

is close to 0 with negligible overlap between the two PDFs. 

Taylor diagram provides a statistical summary of comparisons between simulations and 

observations in terms of their spatial correlation coefficient, their centered root-mean-square difference, 

and the ratio of spatial standard deviations of the model and observations. A perfect simulation would 

be that the centered root-mean-square error (RMSE) is equal to 0, and both the spatial correlation 

coefficient and ratio of spatial standard deviations are close to 1. 

 

2.4 Timing determination for the global warming levels of 1.5 °C and 2 °C 

Time series of global mean temperature anomalies under the RCP8.5 emission scenario is 

smoothed by a 21-year moving average, and the 1.5 °C and 2 °C global warming thresholds which is 

firstly reached are selected relative to the pre-industrial period (1861-1900). Finally, the consecutive 10 

years before the crossing point, together with the consecutive 10 years after the crossing point, form 

our investigation period of 21 years. It is noted that changes of climate variables in this study are 

accounted relative to the current reference period (1986-2005), as generally practiced in this field of 

research. 

For the timing of 1.5 ℃ and 2 ℃ global warming levels, there exists an overlap for almost all 

models as shown in Table S3. King et al. (2017) pointed out that although individual years may 

contribute to both the 1.5℃ and 2℃ ensembles, none of the analysis assumes independence between 

the two worlds. They furthermore found that using a narrower range reduced the sample size but made 

little difference after all. We also remind that many previous studies selected the time window of 

twenty-one years (Shi et al. 2018; Yu et al. 2018), and even thirty-one years (Hu et al. 2017; Wang et al. 

2018), with a larger overlap. 
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3 Evaluation of the four bias correction methods 

In this section, we use the four bias correction methods (GamCDF, QQadj, EDCDF and CDF-t) to 

improve the daily precipitation simulated by LMDZ4 (zoom version over East China) driven by five 

GCMs. We put emphasis on the benefits of the bias correction compared to performance of the original 

RCM simulations. We focus on evaluating the properties in relation to the probability distribution of 

daily precipitation and the spatial patterns of the selected precipitation indices (PRCPTOT, SDII, 

R10mm and CDD) during the validation period (1986-2005). 

3.1 Statistical properties of daily precipitation 

To evaluate the statistical properties of daily precipitation, we firstly show the Quantile-Quantile 

plots deduced from the twenty-year daily precipitation time series for six grid points located in the 

Tibetan Plateau, Southwest China, Northeast China, North China, South China and in the middle and 

low reaches of the Yangtze River, respectively (Fig. 2). Results are displayed in a single array gathering 

all RCM simulations without referring to any particular one. We did not average the simulations before 

calculating percentiles in order to preserve the whole probability distribution of precipitation. LMDZ 

simulations are significantly lower than the observation within a threshold, but larger than the observed 

one when exceeding that threshold for each of the selected grid points. This behavior of LMDZ is 

somehow surprising since most other models underestimate heavy precipitation in their simulation. Our 

result is nevertheless consistent with Chen et al. (2011) who also found that LMDZ in its 

high-resolution regional configuration could overestimate heavy precipitation. In our results shown 

here in Fig. 2, the largest difference is above 60 mm/day. After bias corrections, all methods, namely 

GamCDF, QQadj, EDCDF and CDF-t, improve the quality of the daily precipitation. However, 

GamCDF and EDCDF have similar improvements with a performance inferior to that of QQadj and 

CDF-t. Except for the grid point in North China (Fig. 2d1, 2d2), CDF-t outperforms QQadj for all other 

locations. 

The corrected precipitation (more than 30 mm/day) from bias correction, such as CDF-t and 

QQadj, is even worse than the simulated precipitation from the raw RCM outputs in Fig. 2d1. Heavy 

precipitation is a challenging issue for the arsenal of our current climate simulation, GCM, RCM, 

statistical downscaling, etc. Bias correction algorithms are also quite often challenged in terms of heavy 

precipitation. That said, we believe that the fact that the validation period may present significant 

variation (internal random variability, or low-frequency natural variability) from the calibration period 

can be responsible for some of the performance degradation of our bias correction algorithms. We 

should anyway recognize that further investigation is needed to achieve a better understanding for this 

issue. 
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Figure 2. Quantile-Quantile plots of simulated daily precipitation during the validation period 

(1986-2005) in multi-model ensemble of RCMs (black), GamCDF (orange), QQadj (blue), EDCDF 

(green) and CDF-t (red) after correction, and observations at six grid points locating in Tibet Plateau 

(34.25°N, 95.25°E, a1, a2), Southwestern (24.25°N, 100.25°E, b1, b2), Northeastern, Northern 

(46.25°N, 125.25°E, c1, c2), Northern (38.25°N, 115.25°E, d1, d2), middle and low reaches of the 

Yangtze River (32.25°N, 115.25°E, e1, e2) and Southern region (24.25°N, 115.25°E, f1, f2), 

respectively. 

 

To evaluate all grid points in the study region, we use the box-and-whisker plot showing the 

distribution of all 𝑆𝑠𝑐𝑜𝑟𝑒 values which are a measure of the overlapping degree between the two PDFs 

(Fig. 3). Results indicate that all GamCDF, QQadj, EDCDF and CDF-t significantly improve the 

probability distribution of daily precipitation, the medians of 𝑆𝑠𝑐𝑜𝑟𝑒  being 0.95 in LMDZ and 

increasing to 0.96 in GamCDF, 0.98 in QQadj, 0.96 in EDCDF and 0.98 in CDF-t, respectively. QQadj 

and CDF-t show satisfactory results and a significant improvement. However, there is a large spreading 

of 𝑆𝑠𝑐𝑜𝑟𝑒 for QQadj among different grid points. CDF-t is thus considered the most robust method that 

is our first choice to correct daily precipitation in the study region. 

 

0 10 20 30
0

10

20

30

Observed (mm)

M
o

d
e
ll
e
d

 (
m

m
)

(a1)          Station 1  (TP, 34.25N, 95.25E)

 

 

LMDZ

GAMCDF

QQADJ

EDCDF

CDF-t

0 2 4 6 8 10
0

2

4

6

8

10

Observed (mm)

M
o

d
e
ll
e
d

 (
m

m
)

(a2)

 

 

LMDZ

GAMCDF

QQADJ

EDCDF

CDF-t

0 30 60 90 120
0

30

60

90

120

Observed (mm)

M
o

d
e
ll
e
d

 (
m

m
)

(b1)          Station 2  (SW, 24.25N, 100.25E)

0 10 20 30
0

10

20

30

Observed (mm)

M
o

d
e
ll
e
d

 (
m

m
)

(b2)

0 10 20 30
0

10

20

30

Observed (mm)

M
o

d
e
ll
e
d

 (
m

m
)

(c2)

0 30 60 90
0

30

60

90

Observed (mm)

M
o

d
e
ll
e
d

 (
m

m
)

(c1)          Station 3  (NE, 46.25N, 125.25E)

0 30 60 90
0

30

60

90

Observed (mm)

M
o

d
e
ll
e
d

 (
m

m
)

(d1)          Station 4  (NC, 38.25N, 115.25E)

0 10 20 30
0

10

20

30

Observed (mm)

M
o

d
e
ll
e
d

 (
m

m
)

(d2)

0 30 60 90 120
0

30

60

90

120

Observed (mm)

M
o

d
e
ll
e
d

 (
m

m
)

(e1)          Station 5  (YZ, 32.25N, 115.25E)

0 10 20 30 40 50
0

10

20

30

40

50

Observed (mm)

M
o

d
e
ll
e
d

 (
m

m
)

(e2)

0 10 20 30 40 50
0

10

20

30

40

50

Observed (mm)

M
o

d
e
ll
e
d

 (
m

m
)

(f2)

0 30 60 90 120
0

30

60

90

120

Observed (mm)

M
o

d
e
ll
e
d

 (
m

m
)

(f1)          Station 6  (SE, 24.25N, 115.25E)

Grid point 1 Grid point 2 Grid point 3

Grid point 4 Grid point 5 Grid point 6



Guo et al. 2020, Climatic Change 2020-08, https://doi.org/10.1007/s10584-020-02841-z  page 11 

 

Figure 3. Box-and-whisker plot (The five-number summary is the minimum, first quartile, median, 

third quartile, and maximum) of 𝑆𝑠𝑐𝑜𝑟𝑒 measuring PDFs of daily precipitations during the validation 

period (1986-2005) at all grid points over China before (black) and after corrections of GamCDF 

(orange), QQadj (blue), EDCDF (green) and CDF-t (red). 

3.2 Spatial distribution of the precipitation indices 

We further assess behaviors of the four bias correction methods in reproducing the spatial pattern 

of precipitation indices shown in Fig. 4. The observed and simulated mean annual precipitation indices 

during the validation period (1986-2005) over all the grid cells in the study region before and after 

correction results are displayed. For the whole year, there is a relatively mediocre performance for 

direct outputs of RCM. Specifically, spatial correlation coefficients are smaller than 0.70, RMSEs are 

larger than 0.8 mm and normalized SDs are between 0.75 and 1.25. After correction, GamCDF, QQadj, 

EDCDF and CDF-t all improve the spatial pattern of precipitation indices. CDF-t shows the best 

overall performance. Except CDD that shows few changes, other indices including PRCPTOT, SDII 

and R10mm show obvious improvements with spatial correlation coefficients being increased to higher 

than 0.88, RMSEs were reduced to less than 0.5 and normalized SDs was kept between 0.90 and 1.10. 

For the CDF-t method, the spatial correlation coefficient is above 0.95, RMSE is smaller than 0.3 and 

normalized SD is almost 1. 

The fact that only limited (or no) improvements are found for CDD is consistent with the 

theoretical analysis of Dosio et al. (2016). They also found that indices based on the duration of events 

are hardly affected by bias adjustment, because bias adjustment does not alter the temporal structure of 

the original data. 
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Figure 4. Taylor diagram showing the performance in reproducing the spatial pattern of four rainfall 

indices (PRCPTOT, SDII, R10mm and CDD) during the validation period (1986-2005) before (black) 

and after corrections using GamCDF (orange), QQadj (blue), EDCDF (green) and CDF-t (red). 

 

In summary, GamCDF and EDCDF show similar skills in bias-correcting daily precipitation, but 

inferior performance compared to QQadj and CDF-t. In terms of assumptions underlying the methods, 

the one behind CDF-t is more physically justified, since it takes into account eventual changes in CDF 

from the historical (calibration) to future (projection) times, while GamCDF can only project future 

values with the historical CDF, which implies that GamCDF cannot provide new values outside 

historical observations. This can be a clear disadvantage in a changing climate context. CDF-t provides 

a solution to this problem by taking into account simulated future CDF. As far as EDCDF is concerned, 

it does consider such change of CDF for a given percentile, but it assumes an identical shift between 

the model and observation for both calibration and future projection periods. CDF-t and QQadj both 

consider CDF changes over time, which is closer to the real world. 

Our general approach in conducting this bias correction work can be basically decomposed into 

three steps: calibration, validation and application into future climate projection. Our validation is 

actually the holdout method, which does not totally belong to the category of cross validation, i.e. we 

calibrate the method on a calibration period and evaluate it on a non-overlapping validation period. A 

caveat of this approach is the eventual appearance of mis-leading results due to strong internal 

variability of the climate system (Maraun et al. 2018). With the necessary precautions in mind, we 

think that our approach is still a valid and useful one, since the four methods were validated under an 

identical circumstance. 

 

4 Future projection of precipitation and associated uncertainties 

4.1 Changes of mean and extreme precipitation under 1.5°C and 2°C warming targets 

In this section, we use the bias correction method CDF-t, our best choice as shown in Section 3, to 

correct future projections simulated by the multi-ensemble regional climate simulations under the 
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global warming of 1.5°C and 2°C. Previous studies have shown that regional-scale responses of 

temperature and precipitation are almost independent of the precise emission scenarios, but are more 

closely related to the global warming level (Hu et al. 2017; Zhai et al. 2017). Therefore, our 

future-climate analyses are performed only for the RCP8.5 scenario. 

The spatial pattern of changes in PRCPTOT, SDII and R10mm based on CDF-t under the global 

warming of 1.5°C and 2°C, relative to 1986-2005, is shown in Fig. 5. PRCPTOT has an increasing 

trend in most areas of North China under the global warming of 1.5°C. The increase is above 60% over 

Northwest China and 40% over the northern region of Northeast China. A significant increase of 

PRCPTOT in the northern region of Northeast China is in accord with Wang et al. (2018) using fifteen 

CMIP5 models without any downscaling or bias-correction. However, there is a weak decreasing trend 

in Central China and south of the Yangtze River, which is consistent with Chen et al. (2018) using raw 

outputs from nineteen CMIP5 models. The additional half-degree warming results in an increase in 

precipitation over Central China and south of the Yangtze River, and a decrease over Northwest China 

and Northeast China (Fig. 5c). 

For SDII, there is an increasing trend over almost whole China under the global warming of 1.5°C, 

with a significant increase of over 50% for the southern region of Northeast China (Fig. 5d). The 

additional half-degree warming from 1.5°C to 2°C implies no obvious difference in spatial 

characteristics of precipitation with slightly decreasing in Inner Mongolia and South China (Fig. 5f). 

R10mm increases over the northern region of the Yellow River basin, especially in Northeast 

China, the western region of Northwest China and the western region of the Tibetan Plateau with a 

value of above 60% under 1.5°C warming target, while there are significant decreases over the eastern 

region of Northwest China and the eastern region of the Tibetan Plateau with a value of more than 40%. 

Additionally, there is a weak decrease in the south of the Yangtze River in accord with Zhou et al. 

(2014) using twenty-four CMIP5 models (Fig. 5g). The additional half-degree warming from 1.5°C to 

2°C causes a decrease in the north of the Yellow River, and an increase in the Yangtze River Basin and 

in West China (Fig. 5i). The conclusion that SDII and R10mm increase over Northeast China, is 

consistent with Yang et al. (2018) using a statistical downscaling method from outputs of CESM 

low-warming experiment. 

It is expected that the bias-corrected results are different from the direct outputs of the RCM (Fig. 

S1, S2 and S3), since the four methods use different strategies to make adjustment on the CDF of the 

downscaled daily precipitation. However, the spatial patterns of three precipitation indices from the raw 

RCMs are similar with these from four bias correction methods. Actually, in Fig. 5, the areas marked 

by dots represent zones where the four methods agree with the sign of change in the raw RCM. Such 

zones are large and dominant, which proves that the four bias-adjustment techniques just remove biases 

from the outputs of RCM, but largely preserve spatial patterns from RCM simulations. 

Following Dosio et al. (2016), we examined the adjustment of CDF before and after the bias 

corrections. The difference of frequency between present and future daily precipitation for the original 

and bias-adjusted RCM is now given in the Supplementary materials (Fig. S4). It displays however 

only one simulation: LMDZ4 driven by BCC-CSM1-1-m (other simulations show very similar results). 

It appears that all the four bias-correction methods can preserve the statistical properties of the RCM 

simulation, with nevertheless some subtle differences. 
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Figure 5. Relative changes in PRCPTOT (a, b, c), SDII (d, e, f) and R10mm (g, h, i) based on CDF-t 

under the global warming of 1.5°C (first column), 2°C (second column) and the half-degree addition 

(third column), relative to 1986-2005 (unit: %). The areas which all four methods agree with the sign of 

change in the raw RCM are indicated by dots. 

 

4.2 Uncertainties of the precipitation projection 

We now assess issues of uncertainty for precipitation change projection by exploring the 

multi-method and multi-model characteristics of our approach. Actually, the spreading offered by the 

collection of available RCM simulations provides a useful proxy to reveal the climate-change 

projection uncertainty. As a climate-change scenario provider to policy makers and other end users, we 

have the responsibility to deal with uncertainty issues when a climate change scenario is released. Our 

data collection comprises five RCM realizations from five different GCMs and their bias corrected data 

with the four bias correction methods. We examine their spread among the members of the ensemble. 

Spreading is generally considered as an indicator of uncertainties (Knutti et al. 2013; Chen et al. 2013; 

Fatichi et al. 2016; Her et al. 2019).  

Fig. 6 presents the cumulative distribution functions (CDFs) showing the cumulative probability 

of relative changes in PRCPTOT, SDII and R10mm under the global warming of 2°C. Each curve was 

constructed with all values over the study region for each of the four bias correction methods and each 

of the five RCM simulations. The 25 scenarios are grouped by bias correction methods and separated 

by the RCM simulations, indicating that the uncertainty related to driving GCMs is larger than that 

linked to bias correction methods, which is consistent with Chen et al. (2013). The CDF curves for 

PRCPTOT seem to be more dispersed than for SDII and R10mm. It is to be noted that very similar 

results (not shown) were obtained for projections under the 1.5°C target. 
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Figure 6. Cumulative probability Distribution Functions (CDFs) constructed over whole China for 

values of relative changes (in %) in PRCPTOT (a), SDII (b) and R10mm (c) under the 2.0-degree 

warming target. There are 25 curves in the first three panels, with five RCM simulations shown in 

different colors, and the original (LMDZ) and four bias correction results shown in different symbols. 

 

Beyond the visual inspection which is possible in Fig. 6, we can also use the concept of 

signal-to-noise ratio (SNR) (as used in Li 1999, and Zhou and Yu 2006) which provides more 

quantitative measures for uncertainty considerations. In our case of five available dynamic simulations, 

the SNR can be simply defined as the mean projected changes under 1.5- and 2.0-degree warming 

targets (signal) divided by the inter-simulation standard deviation (noise). If we calculate the SNR 

before and after each bias correction method, we can assess how the uncertainty of future climate 

projection is impacted. Fig. 7 provides a boxplot showing the relative changes of SNR for PRCPTOT, 

SDII and R10mm using each of the four bias correction methods (compared to raw RCMs) at 2-degree 

warming target. There is a clear increase in terms of SNR for the majority of grid points and for the 
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three climate indices. CDF-t shows a satisfactory performance with increasing SNR. We further give 

the percentage of grid points in the study region where there is an increase of the SNR achieved by bias 

correction at the two warming targets (Table 1). It is clear that all the four methods reduce the 

uncertainty among simulation members and enhance the SNR over 73.4%~77.7% of areas in the study 

region for PRCPTOT and SDII, and about 55.7%~58.4% of areas for R10mm. In particular, CDF-t 

significantly decreases the uncertainty for different precipitation indices and warming targets. Finally, 

we try to clarify why the SNR is larger for the bias adjusted results. It is a consequence of the slightly 

larger signal after corrections for most parameters, and the significantly smaller noise (inter-model 

spread) after corrections (Fig. S5). 

In summary, the spread among bias correction methods is relatively small, smaller than the spread 

among dynamical downscaling simulations. It is important to note that all the four methods enhance 

SNR in our multi-member ensemble approach. This is especially true for CDF-t. We thus consider that 

future projection using CDF-t in Section 4.1 is of high credibility. 

Finally, a summary of shared and distinctive features of four bias correction methods from the 

view of the principle and their impact on future projections is given in Table S4. 

 

Figure 7. Boxplot showing relative changes (%) of the signal-to-noise ratio for PRCPTOT, SDII and 

R10mm using GamCDF (yellow), QQadj (blue), EDCDF (green) and CDF-t (red) compared with the 

raw RCMs at 2 degree warming target. The upper and lower limits of the box indicate the 75th and 

25th percentiles among all grid points over the study area; the horizontal line inside the box indicates 

the 50th percentile (median); and the whiskers show the range among all grid points. 

 

Table 1. The percentage (%) of grid points over China where there is an amelioration of the 

signal-to-noise ratio achieved by bias correction. The grey represents the largest improvement. 

 1.5degree 2.0degree 

 PRCPTOT SDII R10mm PRCPTOT SDII R10mm 

GamCDF 75.8 74.5 57.8 76.0 73.4 55.7 

QQadj 76.6 74.1 60.0 75.9 77.6 58.4 

EDCDF 78.5 72.4 57.5 75.8 73.4 55.8 

CDF-t 81.2 77.3 60.0 76.3 77.7 58.4 

 

5 Summary and conclusions 
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Bias correction is often a necessary step for regionally-oriented climate change projections, after 

performing regional climate simulations, even with a very high spatial resolution. The reason is a quite 

pragmatic one: many climate impact studies would not be possible if climate information as input has a 

too-large bias. In this work, we implemented four bias correction methods (GamCDF, QQadj, EDCDF 

and CDF-t) and apply them to an ensemble of regional climate simulations for China performed with 

LMDZ4-regional that was driven by five global climate models: LMDZ4/BCC-CSM1-1m, 

LMDZ4/CNRM-CM5, LMDZ4/FGOALS-g2, LMDZ4/IPSL-CM5A-MR and LMDZ4/MPI-ESM-MR. 

After a comprehensive evaluation on the probabilistic characteristics (PDF) of daily precipitation and 

spatial distribution of precipitation indices (PRCPTOT, SDII, R10mm and CDD), we selected the 

best-behaved method to further assess future changes of daily precipitation in the study region under 

the RCP8.5 emission scenario at 1.5 °C and 2 °C targets. Finally, we explored the difference of 

projections among our different dynamical simulations and bias correction methods to evaluate 

uncertainties in the projected regional climate changes. Main conclusions can be drawn as follows. 

1) GamCDF, QQadj, EDCDF and CDF-t can all significantly improve the quality of the RCM 

simulations in terms of both probability density (PDF) of daily precipitation and spatial patterns of 

precipitation indices. It was determined that QQadj has the largest improvement and CDF-t is the 

second one. But the whole range of 𝑆𝑠𝑐𝑜𝑟𝑒  for CDF-t is the smallest among all grid points in the study 

region, which motivated us to take CDF-t as our privileged bias correction method. Except CDD, other 

indices such as PRCPTOT, SDII and R10mm all have significant improvements compared to the raw 

data from the RCM. For the selected method CDF-t, the spatial correlation coefficient is larger than 

0.95, the RMSE is smaller than 0.3 and the SD is almost 1. 

2) Under the global warming of 1.5°C, and after the CDF-t bias correction, PRCPTOT shows 

an increasing trend in Northern China, an increase of more than 60% over Northwest China and more 

than 40% over the north region of Northeast China. However, there is a weak decreasing trend in 

Central China and south of the Yangtze River for PRCPTOT. For SDII, there is an increasing trend over 

almost the whole Chinese territory, with a significant increase by over 50% for the southern region of 

Northeast China. R10mm increases over the northern region of the Yellow River, Northeast China, the 

western region of Northwest China, and the western region of the Tibetan Plateau with a value of above 

60%. 

3) The spread introduced by different bias correction methods in the ensemble approach of 

future climate projection is relatively small, and generally smaller than the spread among dynamical 

downscaling simulations. The four methods all enhance the signal-to-noise ratio by 73.4%~77.7% for 

PRCPTOT and SDII, and by 55.7%~58.4% for R10mm. CDF-t shows the best performance in terms of 

uncertainty reduction for different precipitation indices and warming targets. In our study, actually, the 

spread among the five simulations is relatively small for their future-climate projection in terms of 

daily precipitation in the study region. 

Among the four bias correction methods, GamCDF is a basic and simple method, but its ability of 

correction is equivalent to EDCDF. CDF-t and QQadj show a more robust behavior and a certain 

superiority compared to the former two methods. In addition, we found that the performance of each 

correction method, to certain extent, also depends on the datasets from the RCM and GCM. The 

correction plays a more important role if the drift in the RCM is large. Finally, we find that there are 

disagreements and agreements in future rainfall projections over China between our results and those of 

other studies. The disagreement mainly results from different GCMs, downscaling and bias-correction 

methods, and transient or equilibrium warming response (Zhou et al. 2014; Zhai et al. 2017; Wang et al. 
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2018; Chen et al. 2018; Yang et al. 2018). 
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Supplementary materials 

 

 

Figure S1. Relative changes (unit: %) in PRCPTOT from the raw RCMs (a), GamCDF (b), QQadj 

(c), EDCDF (d) and CDF-t (e) under the global warming of 2°C, relative to 1986-2005. 

  



Guo et al. 2020, Climatic Change 2020-08, https://doi.org/10.1007/s10584-020-02841-z  page 23 

 

Figure S2. As in Fig. S1, but for SDII. 
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Figure S3. As in Fig. S1, but for R10mm. 
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We now investigate the impact of the bias-correction on future changes. To more clearly observe 

the adjustment of CDF before and after bias correction, the difference of frequency between 

present and future daily precipitation for the original and bias-adjusted RCM is provided in Fig. 

S4. It is an exemplary RCM simulation (LMDZ4 driven by BCC-CSM1-1-m). It is noted that only 

precipitation with intensities smaller than 20 mm/day is shown, since there are extremely small 

differences for stronger precipitation. Results before and after bias-correction both show a higher 

occurrence probability for strong rainfall (≥5mm/day) and a weaker probability for light rainfalls 

(<5mm/day). There are differences between the original and bias-adjusted results, and among the 

bias-adjustment schemes. 

 

Figure S4. Difference of frequency between present and future daily precipitation under the 2.0°C 

target for the original and bias-adjusted RCM for an exemplary RCM simulation with LMDZ4 

driven by BCC-CSM1-1-m. 
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In order to investigate the possible cause of increase in SNR after corrections, we give the signal 

and noise before and after corrections using GamCDF, QQadj, EDCDF and CDF-t in Fig. S5a and 

S5b. Results show that the average (the signal in Fig. S5a) becomes slightly larger after 

corrections for major outputs. The standard deviation (the inter-model spread in Fig. S5b) 

becomes significantly smaller after corrections except QQadj. We think that the raw results 

underestimate the precipitation (Table S5), and CDFs after corrections are all closer to a “true” or 

“observed” CDF. 

(a) (b)

 

Figure S5. Signal (a) and noise (b) for PRCPTOT, SDII and R10mm before (black) and after 

corrections using GamCDF (yellow), QQadj (blue), EDCDF (green) and CDF-t (red) at 2 degree 

warming target. It’s noted that the average and standard deviation of R10mm is 0 on the 

Northwestern region (NWR) due to the small precipitation. This causes that no SNR over the 

NWR is included in the Fig. 7. 
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Table S1. Source, atmospheric resolution of models and observation data. 

 Data Source Resolution 

RCM LMDZ4 France, LMD 0.6°×0.6° 

Driving GCM 

BCC-CSM1.1(m) China, BCC 1.125°×1.125° 

CNRM-CM5 France, CNRM 1.4°×1.4° 

FGOALS-g2 China, IAP 2.813°×2.813° 

IPSL-CM5A-MR France, IPSL 2.5°×1.268° 

MPI-ESM-MR Germany, MPI 1.875°×1.875° 

OBS Daily precipitation Chen et al. 2010 0.5°×0.5° 
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Table S2. Definition of the four indices chosen 

Indicator Acronym Definition Unit 

Total precipitation PRCPTOT 

Let Amn be the daily precipitation amount for day 

m  of period n . Then the total climatological 

precipitation in period n  is PRCPTOTn =

∑ Amn
M
m=1 . 

mm 

Precipitation intensity SDII 

Let 𝐴𝑚𝑛 be the daily precipitation amount for wet 

day 𝑚 (𝐴 > 1𝑚𝑚) of period 𝑛. Then the mean 

precipitation amount for wet days is SDII𝑛 =

∑ 𝐴𝑚𝑛/𝑀
𝑀
𝑚=1 . 

mm/day 

Number of rainy days 

for daily precipitation 

more than 10mm 

R10mm 

Let 𝐴𝑚𝑛 be the daily precipitation amount for day 

𝑚 of period 𝑛. Then counted are the number of 

days where 𝐴𝑚𝑛 > 10𝑚𝑚. 

day 

Maximum consecutive 

dry days 
CDD 

Let 𝐴𝑚𝑛 be the daily precipitation amount for day 

𝑚  of period 𝑛 . Then counted is the largest 

number of consecutive days where 𝐴𝑚𝑛 < 1𝑚𝑚. 

day 
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Table S3. The time points and study windows in five global models at 1.5℃ and 2.0 ℃ target 

under the RCP8.5 scenario 

Model 

RCP8.5 

1.5℃ warming year 2℃ warming year 

BCC-CSM1-1-m 2014 (2004-2024) 2031 (2021-2041) 

CNRM-CM5 2031 (2021-2041) 2045 (2035-2055) 

FGOALS-g2 2030 (2020-2040) 2046 (2036-2056) 

IPSL-CM5A-MR 2016 (2006-2026) 2031 (2021-2041) 

MPI-ESM-MR 2020 (2010-2030) 2039 (2029-2049) 
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Table S4. A summary of shared and distinctive features of four bias-correction methods from the 

view of the principle and their impact on future projections 

Methods Distinctive features of principle 

Impact on future projections 

Shared features Distinctive features 

GamCDF 

CDF of a climatic variable remains 

unchanged under the global warming, 

so GamCDF cannot provide new 

values outside historical observations. 

1) Enhance the relative 

change in extreme 

precipitation; 

2) Improve the 

signal-to-noise ratio for 

PRCPTOT, SDII and 

R10mm after corrections 

compared with the raw 

RCMs, mainly due to the 

smaller standard deviation; 

3) The spread among 

bias-correction methods is 

smaller than that among 

dynamical downscaling 

simulations. 

Corrected CDFs and spatial 

patterns of precipitation 

indices are similar with 

those using EDCDF. 

QQadj 

It uses a nonparametric function to 

correct mean, variance, and shape 

errors of CDF, and considers CDF 

changes over time. This point is 

similar with CDF-t. 

 

EDCDF 

It does consider such change of CDF 

for a given percentile, but it assumes 

an identical shift between the model 

and observation for both calibration 

and future projection periods. 

 

CDF-t 

It is more physically justified, and 

considers eventual changes in CDF 

from the historical (calibration) to 

future (projection) period. 

1) Significantly improve 

relative changes in each 

rainfall intensity; 

2) The largest increase and 

decrease in the average and 

the standard deviation, 

respectively. 
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Table S5. Regional annual average of PRCPTOT, SDII and R10mm from observations, raw 

RCMs and corrected outputs during the validation period (1986-2005). 

Indice (unit) OBS LMDZ GamCDF QQadj EDCDF CDFt 

PRCPTOT (mm) 1456  1065  1559  1559  1559  1559  

SDII (mm/day) 8.0  5.2  9.8  9.6  9.9  6.8  

R10mm (day) 45.3  27.2  42.2  41.5  35.2  42.5  

 

 


