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Complexity lower bounds for approximation algebraic computation trees

We prove lower bounds for approximate computations of piecewise polynomial functions which, in particular, apply for round-o computations of such functions.

The goal of this paper is to prove lower bounds for approximated computations. As it is customary for lower bounds, we consider some form of algebraic tree as our computational model (cf. B urgisser, Clausen, and Shokrollahi 1996] or Blum, Cucker, Shub, and Smale 1998] for algebraic trees). But, unlike the usual proofs of lower bounds, which deal with decision problems, we will consider computations of real functions. That is, we consider trees computing functions f : IR n ! IR and, also unlike the usual results on lower bounds, we will allow for approximate computations. To understand the nature of our results let us look rst at an example.

Example 1 Given a strictly convex compact polygon P IR 2 consider the function f : IR 2 ! IR de ned by f(c) = max x2P hc; xi 2 :
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Obviously, there is a partition of IR 2 into a nite number of regions V i and for each such region there is a vertex v i of P such that f(c) = hc; v i i 2 for all c 2 V i .

Let T be an algebraic computation tree computing f of Example 1. Then the number of leaves of T is at least the number of 2-dimensional regions V i with pairwise di erent v i . This follows from the fact that two di erent polynomials in IR x; y] can not coincide, as functions, on an open subset of IR 2 . Therefore, since computation trees are binary, we have that the depth of T is at least the log 2 of this number. This argument is independent of the fact that the input space is IR 2 (any IR n could be considered instead; just replace polygon by polyhedra and IR x; y] by IR x 1 ; : : :; x n ]).

We intend to replicate it for approximate computations. Now consider a tree T which computes a -approximation of f in the sense that the output T(c) satis es jf(c) T(c)j for all c 2 IR 2 .

If 6 = 0 a lower bound like the one above is no longer valid. To see why, consider a regular n-sided polygon inscribed in the unit circunference centered at the origin. For large n the polygon becomes \close" to the circumference and for n large enough f(c) is -approximated by kck 2 = c 2 1 + c 2 2 . And this function can be computed with only three operations. So the log 2 n bound above is far to apply.

Thus, in order to obtain meaningfull lower bounds one needs to impose some condition on the value of . We devote the next section to de ne the main concepts of the paper and to state our main theorem, where this condition is made explicit. In Section 3 we extend our main result to round-o trees i.e., trees whose arithmetic operations are subject to some form of error. Finally, in Section 4, we brie y discuss extensions to other settings such as randomized or parallel trees.

Piecewise Polynomial Functions and Round-o Computation Trees

In this paper we will only deal with trees whose computation nodes perform additions, subtractions or multiplications.1 It is immediate to prove that such a tree (with exact arithmetic) computes a very speci c kind of functions, which we describe in the next de nition.

De nition 1 A function f : IR n ! IR is called piecewise polynomial if there exists a nite partition IR n = i V i of IR n into semi-algebraic sets V i and for each i a polynomial f i 2 IR x 1 ; : : :;

x n ] such that f jV i = f i .

Without loss of generality we will assume that if i 6 = j then f i 6 = f j .

The function f of Example 1 is piecewise polynomial. Another example of this kind of function is provided by quanti er elimination in the theory of the reals. Such a procedure de nes a piecewise polynomial function by associating, to each tuple of coe cients of an input formula, a vector of coe cients of an equivalent quanti er-free formula. Apparently, computation of piecewise polynomial (or more generally, rational) functions was considered for the rst time over the complex numbers rather than over the reals, as in our case, by [START_REF] Strassen | The computational complexity of continued fractions[END_REF] for the problem of computing GCDs of univariate polynomials.

Before de ning what we mean by approximation we emphasize that we are considering computation trees rather than decision trees. In particular we recall that, associated to any leaf of a computation tree T, there is a polynomial g 2 IR x 1 ; : : :; x n ] such that, for any input x 2 IR n which reaches in the course of the computation, the output T(x) of T coincides with g (x) (cf. [START_REF] Blum | Complexity and Real Computation[END_REF]] for details).

De nition 2 Let T be an algebraic computation tree with input space IR n and output space IR, and let f : IR n ! IR be a function.

We say that T approximates f with absolute accuracy if for every input x 2 IR n the output T(x) of T satis es jT(x) f(x)j .

We say that T approximates f with relative accuracy if for every input x 2 IR n the output T(x) of T satis es jT(x) f(x)j jf(x)j. Remark 1 1) Approximate algorithms for a problem are a current practice to improve the e ciency over the known algorithms computing the exact solutions of that problem.

2) To the best of our knowledge very little is know on lower bounds for approximate (or round-o ) computations. A worth noting exception is a paper by Renegar [START_REF] Renegar | On the worst case arithmetic complexity of approximating zeros of polynomials[END_REF]] which gives lower bounds for approximating zeros of univariate polynomials.

We now describe the condition we will impose on in order to obtain lower bounds for the depth of approximate computations. This condition takes the form of a bound where is a quantity depending only on the piecewise function f (rather than on the tree). We actually provide a family of conditions parameterized by a positive parameter whose meaning will be discussed soon.

Let > 0. If f is piecewise polynomial we de ne w( ) = #fi j V i contains an n-dimensional cube of side g: For the rest of this paper we assume that satis es w( ) > 0. Let B = inffb 2 IR j there exist cubes as above which are contained in b; b] n g: Denote by I the set of indices i satis ying the condition in the de nition of w( ) and let d = max i2I degree (f i ) and C = min 

B = ( B D 2 if B 1 B D 1 if B < 1:
We can now state our main theorem.

Theorem 1 If T approximates a piecewise polynomial function f with absolute accuracy and then the depth k of T satis es k log 2 w( ):

Remark 2 Before proving Theorem 1 it may be helpful to say a few words on the meaning of . Let I be the set of indices such that dim V i = n. Then, we can de ne = inffr j V i contains an n-dimensional cube of side r for all i 2 Ig:

For the inclusion I I may be strict and therefore w( ) may be smaller than w( ). But, in exchange, we have D D and C C . Therefore, may be greater than . We conclude that by increasing beyond the lower bound may be decreased but the accuracy requirement may be relaxed. The exact form of this trade-o will depend on the function f at hand and when applying Theorem 1 we will choose a which best ts our interests.

In proving Theorem 1 the following lemma is essential.

Lemma 1 Let f 2 IR x 1 ; : : :; x n ] with degree x i (f) d and M = kfk 1 . Let b 1 ; : : :; b n 2 IR, jb i j B, N 2 IN, N > d, and consider the uniform grid S with mesh =N in the cube

n Y i=1 b i ; b i ]: Let S S with jSj = s. If s > s n = N n 1 1 d N n = N n (N d) n then there exists x 2 S such that jf(x)j > = M 0 @ 2 (d 1) 2 4 1 (d + 1)B N d(d+1) 2 1 A n where B = ( B d 2 if B 1 B d 1 if B < 1: Proof.
By induction on n. Base case, n = 1. In this case, s 1 = d, so assume there is a subset S 0 of S having d + 1 points w 0 ; : : :; w d in S such that jf(w i )j for i = 0; : : :; d. Then, interpolating f at these points we express each coe cient of f as a fraction On the other hand, by bounding each of the d! terms in the de nition of determinant

we have ja x j B d 2 d! if B 1 and ja x j B d 1 d! if B < 1. That is, ja x j Bd!.
Therefore, the absolute value of each coe cient of f is less than

(d + 1)Bd! N d(d+1) 2 Q d i=1 i! (d + 1)B N d(d+1) 2 2 (d 1) 2 4 1 the last inequality since d Y i=1 i! 2 d 2 4 1 for all d 1. But then M < (d + 1)B N d(d+1) 2 2 (d 1) 2 4 1 5
which is in contradiction with the de nition of .

Induction step, n 2. Write f = P I f I X I where f I 2 IR x n ] and X I is a monomial in x 1 ; : : :; x n 1 . Now, take f I 0 such that kf I 0 k 1 = M. By the base of the induction, for all but at most d points x in the set :

(1)

Therefore, there are more than s n dN n 1 points in S whose last coordinate satis es (1). We conclude that there exists one such point x 2 L such that, moreover, jS \ fx n = x gj s n dN n 1 N d = s n 1 : Now apply the inductive hypothesis to the polynomial f jxn=x 2 IR x 1 ; : : :

; x n 1 ] using that kf jxn=x k 1 > M 2 (d 1) 2 4 1 N d(d 1)
2 (d + 1)B and the conclusion follows.

Proof of Theorem 1

Recall that I is the set of indices i satis ying the condition of the de nition of w( ), D = maxfw( ); d g, and N = w( )D n + 1. Let i 2 I and consider the grid S V i as in Lemma 1. We say that a leaf of T is attached to V i if is reached by at least N n =w( ) points of S.

We claim that one leaf of T can not be attached to two di erent sets V i . From this claim it follows that k log 2 w( ). Indeed, if k < log 2 w( ) then jLeaves(T)j < w( ) and, by the pigeonhole principle, there is a leaf of T attached to V i . So, every V i has a leaf attached to it. And, by hypothesis, each leaf of T is attached to at most one V i . But then jLeaves(T)j w( ) and therefore, k log 2 w( ).

To prove the claim, assume that there exist sets V i and V j , i 6 = j 2 I , such that a leaf is attached to both of them. Let g be the polynomial computed along the branch leading to and C 0 = kf i f j k 1 . Then either kf i g k 1 C 0 =2 or kf j g k 1 C 0 =2. We can assume, w.l.o.g., that the rst inequality holds.

Let S S be the set of points reaching the leaf . Then, jSj N n w( ) :

Since N > w( )D n, we have jSj > N n D n N = N n 1 D n N n (N D ) n : Thus we can apply Lemma 1 to the polynomial f = f i g with M = C 0 =2, d = D and B = B and we deduce that there is a point x 2 S such that Remark 3 In the sequel we will state our results only for approximations with absolute accuracy . Results for those with relative accuracy , such as Corollary 1, follow immediately from the former.

jf i (x) g (x)j > C 0 2 0 @ 2 (D 1) 2 4 1 (D + 1)B N D (D +1) 2 1 A n since C 0 C . But
Remark 4 The lower bound in Theorem 1 (or that in Corollary 1) is on the depth of T. A more involved issue is the consideration of the topological complexity of f (cf. [START_REF] Smale | On the topology of algorithms I[END_REF] for this concept, see also [START_REF] Vassiliev | Complements of Discriminants of Smooth Maps: Topology and Applications[END_REF]), i.e. the number of leaves of T. This number is essentially the amount of branching necessary for solving the problem. In our discussion of Example 1 we saw that the topological complexity of f is at least the number of 2-dimensional regions V i with pairwise di erent v i which is at least w( ) for each > 0.

For the problem MAX, consisting of nding the largest coordinate of an input

x 2 IR n and for which the number of pieces is n, the question of the topological complexity is open (see [START_REF] Grigoriev | An exponential lower bound on the size of algebraic decision trees for MAX problem[END_REF]] for the discussion and the exponential lower bound for ternary rathen than the usual binary computation trees).

Implicit in the proof of Theorem 1 is the fact that, if k = log 2 w( ), then the topological complexity of T, TC(T), satis es TC(T) w( ). It is unclear to us whether one can trade topological for arithmetical complexity, that is, whether one can reduce the topological complexity of an approximated computation at the expense of increasing the degree of the computed polynomials. We can prove, however, a trade-o between these complexities (and the approximation accuracy ). Let T be an algebraic computation tree and g the polynomial computed at leaf . In what follows, we will prove lower bounds for round-o trees. We will not rely on any special kind of error. These errors can be produced by rounding or by chopping, and can satisfy bounds either for their absolute or relative magnitude. Actually, the only hypothesis for our lower bounds to hold will be the usual bound on the outcome's accuracy and an additional hypothesis requiring that the sequence of arithmetic operation performed by the tree produces an equally accurate result. Let's describe this more precisely.

If is a leave of T, denote by g the polynomial computed with exact arithmetic along the path ending in and by f g the function computed along this path when errors are allowed.

De nition 3 Let T be a round-o tree with input space IR n and output space IR, and let f : IR n ! IR be a function.

We say that T approximates f with absolute accuracy if for every input x 2 IR n the output T(x) of T satis es 1) jT(x) f(x)j , and 2) If the round-o computation of T with input x leads to the leave then jf g (x) g (x)j . Similarly, we say that T approximates f with relative accuracy upon replacing by jf(x)j in the two conditions above. Remark 5 Notice that the adjectives \absolute" and \relative" can apply to both the errors occuring along the computation (round-o errors) and the accuracy of its outcome. However, there is no need to bound in the same way the accuracy and the round-o errors and one nds instances of algorithms with combinations of di erent kinds. For instance, algorithms in numerical linear algebra, say for linear equation solving, usualy consider both relative round-o errors and relative accuracy (see [START_REF] Demmel | Applied Numerical Linear Algebra[END_REF]); relative round-o errors are actually common in numerical analysis since they correspond to oating-point arithmetic. The main result of [START_REF] Cucker | Complexity estimates depending on condition and round-o error[END_REF]] considers absolute round-o errors but in nite accuracy in the answer (the problem considered there, being decisional, does not allow for approximate answers). Also, for some results on integration (cf. [START_REF] Koiran | Approximating the volume of de nable sets[END_REF]), absolute accuracy is considered for exact algorithms. The list of combinations may continue but we will stop here.

A version of Theorem 1 for round-o trees follows.

Theorem 3 Let T be a round-o tree with depth k. If T approximates a piecewise polynomial function f with absolute accuracy and 2 then k log 2 w( ).

Proof.

One proceeds as in the proof of Theorem 1 to show that if k < log 2 (w( ) then there is a point x 2 IR n whose computation ends in a leave of T satisfying jf(x) g (x)j > : But since T -approximates f we have jf(x) T(x)j 2 and jT(x) g (x)j 2 the latter since T(x) = f g (x). Therefore jf(x) g (x)j which is a contradiction.

4 Extensions

Theorem 1 can be extended to some contexts where trees are endowed with additional capabilities. In this section we brie y discuss how this is carried out for two such capabilities: randomization and parallelism. We will state our results only for exact approximation trees. The result for round-o trees holds as well in the case of randomized trees but we do not know how to prove it for parallel trees.

Randomized Trees

One can de ne randomized versions of approximation trees by allowing \coin tossing" and requiring the output to be a -approximation with high probability. More precisely, we consider trees with input space IR n f0; 1g m (for the arguments which follow the exact value of m is not important) and we x a con dence degree satisfying 0 < 1. Then, such a tree approximates f with absolute accuracy when, for each x 2 IR n and for at least 2 m points b in f0; 1g m , we have jT(x; b) f(x)j .

Assume that this happens and let X be the union of the grids S associated to the sets V i with i 2 I . Then there exists a point b 2 f0; 1g m such that for at least jXj points in X we have jT(x; b) f(x)j . Fix the coin tossing b and call these points good (with respect to b ).

Lemma 2 At least 2 w( ) sets V i contain more than 2 N n good points.

Proof.

Let be the number of sets V i containing more than 2 N n good points. Then jgood pointsj N n + (w( ) )N n 2 and since the number of good points is at least N n w( ) the result follows.

2

To replicate the proof of Theorem 1 we now consider the deterministic tree resulting from replacing the coin tossing by the xed point b and we modify the quantities appearing in the de nition of to allow for the con dence . Thus, we de ne I ( ; ) to be the subset of I with those indices i such that V i satis es Lemma 2. Then, one de nes d ( ; ) ; C ( ; ) ; D ( ; ) , N ( ; ) and ( ; ) as in Section 1. Notice that d ( ; ) d , C ( ; ) C , etc. and so ( ; ) .

Theorem 4 If T is a randomized tree which approximates f with absolute accuracy and con dence , and ( ; ) then the depth k of T satis es k log 2 2 w( ) :

Sketch of proof.

We say that a leaf is attached to V i if is reached by at least N n ( ; ) =w( ) good points in S. Again, we claim that a leaf can not be attached to two di erent sets V i and from this claim it follows the theorem. Indeed, if k < log 2 2 w( ) then jLeaves(T)j < w( )=2 and, by the pigeonhole principle, there is a leaf of T attached to V i . So, every V i has a leaf attached to it. And, by hypothesis, each leaf of T is attached to at most one V i . But then jLeaves(T)j 2 w( ) 2 w( ) and therefore, k log 2 ( 2 w( )).

The claim is proved as in Theorem 1.

2

Remark 6 When dealing with decision problems, the con dence degree is assumed to be greater than 1=2 (or in other words, the probability error " = 1 is assumed to be smaller than 1=2). This is due to the fact that an algorithm consisting of tossing a coin and answering Yes or No according to the outcome of that coin tossing (and independently of the input) is already a probabilistic algorithm of con dence 1=2. Theorem 4 shows that such a simple algorithm is not going to work in the non-decisional case.

We also mention that a complexity lower bound for a probabilistic tree deciding an arrangement of hyperplanes or a polyhedron was obtained in [START_REF] Grigoriev | Randomized complexity lower bounds[END_REF]]. This bound is logarithmic in the number of faces.

Parallel Trees

Parallel computations can be modelled by a particular kind of trees. If p denotes the number of processors, at each computational node, the tree performs an arithmetic operation and stores its result in at most p coordinates of the state space. Also, at each branching node, the sign of at most p such coordinates is tested, giving thus rise to 2 p possible outcomes. An elementary computation yields an upper bound of 2 pk leaves for such a tree with depth k. Since in most parallel models the number of processors is bounded by 2 k this upper bound becomes 2 k2 k .

If the computations are performed exactly (without errors) it turns out that most of these leaves are irrelevant in the sense that there are no points in IR n reaching them. More precisely, [START_REF] Yao | On the parallel computation of the knapsack problem[END_REF]] (see also [START_REF] Montaña | Lower bounds for arithmetic networks[END_REF]) shows that in this case, the number of leaves which are reached by points in IR n is bounded by 2 O(k 2 n) :

Notice that from this it follows the inequality k 0 @ s log jLeaves(T)j n 1 A :

We remark that an upper bound close to the latter lower one (for small dimensions) for the parallel complexity of deciding an arrangement of hyperplanes or a polyhedron (as in Remark 6) was given in [START_REF] Grigoriev | Nearly sharp complexity bounds for multiprocessor algebraic computations[END_REF]].

An almost verbatim repetition of the proof of Theorem 1 yields the following which, we recall, we can only prove for exact trees.

Theorem 5 If T is a parallel tree which approximates f with absolute accuracy and then the depth k of T satis es k 0 @ s log 2 w( ) n 1 A : 2 Remark 7 The requirement of exact arithmetic for T in Theorem 5 seems unavoidable if we want to use Yao's bound on the number of relevant leaves. To see why, consider a set of s lines in IR 2 given by linear polynomials `1; : : :; `s and assume that these lines pass through a common point . Now consider a branch node which tests the signs of `1; : : :; `s at a point x. If x = and round-o errors are allowed when computing `i( ), i = 1; : : :; s, we may get up to 2 s possible outcomes.

  maxfd ; w( )g, N = w( )D n + 1, and

  are the determinants of suitable minors of V . The smallest possible value of j j occurs when w 0 ; : : :; w d are consecutive in S (i.e. w i w i 1 = =N) and in this case

  L = b n ; b n + N ; b n + 2 N ; : : :; b n + N N

  De ne d T = max a leaf of T degree (g ): Note that d T 2 k where k is the depth of T. Now de ne D ( ;T) = maxfd ; d T g and ( ;T) as in Section 1. The arguments of Theorem 1 yield the following. Theorem 2 If T approximates f with absolute accuracy and ( ;T) then the topological complexity TC(T) of T satis es TC(T) w( ): 2 3 Round-o trees A round-o tree is an algebraic computation T whose arithmetic operations are subject to some form of error. Typical examples arise when considering computations in oating-point or xed-point arithmetic.

  this, together with the hypothesis on , contradicts the fact that jT(x) f i (x)j .2

	A lower bound for relative approximations easily follows from the proof of The-orem 1. Let H = max x2 B ;B ] n jf(x)j:
	Corollary 1 If T approximates a piecewise polynomial function f with relative ac-curacy and
	H
	then the depth k of T satis es
	k log 2 w( ):
	2

The extension of our results to the case of trees allowing divisions is an open problem.