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Topological Complexity of the Range Searching

.

Our purpose is to solve the range searching problem [FK98] by means of topological decision trees (TDT) [S87]. Namely, TDT allows tests of the form "P (x) > 0?" for arbitrary polynomials P ∈ R[X 1 , . . . , X n ] (thus, we ignore the cost of the computations). We say that a TDT solves the range searching problem for the polynomials f 1 , . . . , f m if any two input points x, y ∈ R n with different signs vectors (sgn(f 1 ), . . . , sgn(f m ))(x) = (sgn(f 1 ), . . . , sgn(f m ))(y) arrive to different leaves of the TDT. As usual, sgn could attain three values. By the topological complexity of a TDT we mean its depth.

Denote by N the number of all feasible signs vectors (sgn(f 1 ), . . . , sgn(f m ))(x). It is well known (see e.g. [G88]) that N ≤ (md) O(n) where deg(f 1) . The following result answers the problem posed in section 4.2 [FK98].

Theorem. There exists a TDT solving the range searching problem with a topological complexity at most O(log N ).

Obviously, the bound is sharp.

Let us also mention that for linear polynomials deg(f i ) = 1, 1 ≤ i ≤ m the range searching problem can be solved even with a small computational complexity log O(1) N by linear decision trees [M88], [M93].

2 Divide-and-conquer of the signs vectors

The desired in the theorem TDT will be designed (notice that the proof is nonconstructive) in two stages. At the first one we design a TDT T 0 which solves the range searching problem with respect to the equality to zero, i.e. if for two input points x, y truncated signs vectors (sgn 0 (f 1 ), . . . , sgn 0 (f m ))(x) = (sgn 0 (f 1 ), . . . , sgn 0 (f m ))(y) are different (where sgn 0 attains just two values distinguishing zero and nonzeroes), then x, y should arrive in different leaves.

For conveniency reasons we represent a truncated signs vector (sgn 0 (f 1 ), . . . , sgn 0 (f m ))(x) by a subset I ⊂ {1, . . . , m} consisting of all 1 ≤ i ≤ m such that f i (x) = 0. Denote by N 0 ≤ N the number of all feasible truncated signs vectors.

For a subset I ⊂ {1, . . . , m} denote f [I] = i∈I f 2 i . Ordering all subsets I corresponding to the feasible truncated signs vectors in any way compatible with non-increasing of their cardinalities, we take in this ordering the first [N 0 /2] subsets and denote the family of these subsets by S. The polynomial f S = I∈S f [I] is the first testing polynomial attached to the root of TDT T 0 which we design. Observe that the inputs with truncated signs vectors from S satisfy the test f S = 0 (or equivalently f S ≤ 0) and the inputs with the truncated signs vectors from the rest of N 0 -[N 0 /2] ones satisfy the test f S > 0.

Continuing this divide-and-conquer process we each time take the first half of the set of truncated sign vectors w.r.t. the chosen ordering. This completes the design of TDT T 0 . In fact, one could diminish the degrees of testing polynomials by taking the products only over the minimal (now w.r.t. the set inclusion relation) subsets I (say, from the family S in the first testing polynomial above), but anyway we are interested just in the topological complexity and do not need this remark.

To design the entire TDT T we fix for the time being a certain truncated signs vector I 0 and consider any leaf a of T 0 which corresponds to I 0 . The next purpose is to design a TDT T 1 which deals just with I 0 and to glue T 1 to a. The design of T 1 relies on the following lemma.

Lemma. Let vectors u 1 , . . . , u N ∈ GF (2) k be pairwise distinct (N ≥ 6). Then there exists a vector v ∈ GF (2) k such that

(1/3)N ≤ |{1 ≤ i ≤ N : vu i = 0}| ≤ (2/3)N . Proof. Suppose the contrary. Consider the subset V of all vectors v ∈ GF (2) k such that |{1 ≤ i ≤ N : vu i = 1}| < (1/3)N . We claim that (i) V is a subspace; (ii) dim(V ) ≥ k -1.
To prove (i) take any two vectors v 1 , v 2 ∈ V , then N 1 = |{1 ≤ i ≤ N : (v 1 +v 2 )u i = 1}| < (2/3)N , therefore, due to the supposition, N 1 < (1/3)N which proves (i). To prove (ii) take any two vectors

w 1 , w 2 ∈ GF (2) k -V , then N 2 = |{1 ≤ i ≤ N : (w 1 + w 2 )u i = 1}| < (2/3)N , hence again due to the supposition N 2 < (1/3)N , i.e. w 1 + w 2 ∈ V which proves (ii).
For each vector u i , 1 ≤ i ≤ N except, perhaps, u i = 0 and a unique vector presumably orthogonal to V (which does exist if dim(V ) = k -1), exactly half among the inner products vu i , v ∈ V are equal to zero. Thus, there exists v ∈ V such that |{1 ≤ i ≤ N : vu i = 0}| ≥ (N -2)/2 that contradicts the supposition. The lemma is proved.

We apply the lemma to the set of N (0) ≤ N signs vectors in GF (2) m-|I 0 | obtained from vectors of GF (2) m by deleting coordinates at the positions from I 0 , and moreover, replacing each sign "<" by 1 and each sign ">" by 0. Take a vector v ∈ GF (2) m-|I 0 | provided by the lemma, and as the first testing polynomial of T 1 attached to its root we consider j / ∈I 0 f v (j) j where v (j) are the coordinates of v indexed by the elements from the set {1, . . . , m} -I 0 . Then the input points with the signs vectors u ∈ GF (2) m-|I 0 | satisfying uv = 0 or uv = 1, respectively, are separated just by the first test.

Continuing this divide-and-conquer process (in a similar way to the first stage) we apply the lemma at each step to the current set of signs vectors. The depth of the designed TDT T 1 is thereby O(log N (0) ). Together with the design of T 0 at the first stage this completes the proof of the theorem.

Comments and an open question

Similar to [M88] one can prove that any problem which can be solved with a polynomial parallel complexity over the reals (in other words, belonging to the class P AR R [START_REF] Fournier | Are Lower Bounds Easier over the Reals?[END_REF]) has also a polynomial topological complexity.

It would be also interesting to design a TDT with a small (similar to the theorem) topological complexity solving the range searching problem for a set of polynomials f 1 , . . . , f m ∈ F [X 1 , . . . , X n ] where F is an algebraically closed field and the sign vectors are understood as the truncated ones (see above).
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