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Exponential Lower Bounds for Depth 3Arithmetic Circuits in Algebras of Functionsover Finite FieldsD. GrigorievIMR Universit�e Rennes-1Beaulieu 35042 Rennes Francedima@maths.univ-rennes1.frA. Razborov1Steklov Mathematical InstituteGubkina 8, 117966, GSP-1Moscow, Russiarazborov@genesis.mi.ras.ruAbstractA depth 3 arithmetic circuit can be viewed as a sum of prod-ucts of linear functions. We prove an exponential complexity lowerbound on depth 3 arithmetic circuits computing some natural sym-metric functions over a �nite �eld F . Also, we study the complexityof the functions f : Dn ! F for subsets D � F . In particular, weprove an exponential lower bound on the complexity of depth 3 arith-metic circuits computing some explicit functions f : (F �)n ! F (inparticular, the determinant of a matrix).1Partially supported by RBRF grants 96-01-01222, 96-15-96090 and by INTAS grant96-753. 1



IntroductionA depth 3 arithmetic circuit can be viewed as a sum of products of linearfunctions. Despite this clear structure, only a handful of lower bounds forexplicit polynomials are known over in�nite �elds. Super-polynomial lowerbounds have been proven only under the assumption that the circuits involvejust (homogeneous) linear forms, rather than arbitrary linear functions, bythe same token, if products in a circuit contain a bounded number of linearfunctions (see [7, 11]). For general circuits no bounds for depth 3 circuitsare known better than the classical 
(n log n) bound [15, 2] for arbitrarydepth circuits (observe that this bound concerns the multiplicative complex-ity, being di�erent from the complexitymeasure of the number of gates at themiddle level of a depth 3 arithmetic circuit (1) which we study in the presentpaper). Using some ideas from [7], [13] recently proved a nearly quadraticlower bound for depth 3 formulae computing some symmetric functions.The situation changes signi�cantly when our underlying �eld is �nite,both in terms of the framework as well as in terms of approaches and results.Let us call syntactical the ordinary framework of algebraic complexity inwhich polynomials from F [X1; : : : ;Xn] are understood as formal syntacticalexpressions. In this framework an exponential exp(
(n)) lower bound on thecomplexity of general depth 3 arithmetic circuits for the determinant of n�nmatrices was recently proved in [9].An equally natural framework, also extensively studied in the literature,treats polynomials from F [X1; : : : ;Xn] as functions F n ! F , and we callthis framework functional. It is equivalent to working in the factor-algebraF [X1; : : : ;Xn]=(Xq1 �X1; : : : ;Xqn�Xn), where q = jF j, and every syntacticalcomputation is also a computation in the functional framework. Respectively,obtaining lower bounds for functions is an even more di�cult task, and priorto this paper exponential lower bounds were known only for the case F =GF (2) [12].Finally, in the seminal paper [14] Smolensky proposed to study also com-putations in the function algebra f0; 1gn ! F for �elds other than GF (2),and, for obvious reasons, we call this framework Boolean (syntactically, thismeans that we impose the relations X2i = Xi for all variables Xi). The bulkof the research in this framework was devoted to Boolean circuits, i.e., to cir-cuits composed entirely of f0; 1g-valued gates. In particular, [12, 14] provedexponential lower bounds for bounded depth Boolean circuits over the basisf:;^;_;MODpg that make the closest approximation to arithmetic circuits2



in the Boolean world. Motivated by a related research in the structural com-plexity, [1] proposed to study in the Boolean framework also computationsby arithmetic circuits. In particular, they showed that after taking the unionover all �nite �elds, bounded depth arithmetic circuits capture exactly thecomplexity class ACC0. So, these circuits form a natural hierarchical struc-ture within the latter class that might be useful for understanding its power,and this feeling is further con�rmed by the current paper. Prior to it, nonon-trivial lower bounds were known in this model for depth 3 circuits overany �eld other than GF (2).Our contributions are as follows.First, we give a short proof of an exp(
(n)) lower bound for depth 3circuit in the functional framework over any �nite �eld. More speci�cally, weshow that every depth 3 circuits over a prime �eld GF (p) computing suitablyde�ned generalizations of MODq and MAJ must have that many gates.Then we give an easy extension to arbitrary (i.e., not necessarily prime)�nite �elds. This in particular gives an alternative (and much simpler) proofof exponential lower bounds over �nite �elds in the syntactical frameworkfor explicitly given symmetric functions (rather than the determinant [9]).In the Boolean framework we can prove new lower bounds only for the�eld GF (3). Our techniques, however, are more general, and a substantialpart of them can be applied to larger �elds as well. In order to understand andprecisely state the corresponding results, we observe that there is no intrinsicdi�erence between functional and Boolean frameworks: these are simply thetwo opposite poles of more general quasi-boolean framework in which we studycomputations of functions f : Dn ! F , where D � F is arbitrary. In theseterms, we can prove an exp(
(n)) lower bound for functions f : (F �)n ! Fover arbitrary �nite �elds with at least three elements, and when F = GF (3)this becomes equivalent (up to a linear transformation on variables) to theBoolean framework. In particular, this result strengthens our previous boundin the functional framework (the reason for including the latter in the paperlies in its simplicity and applicability to symmetric functions).The results of the paper were announced in [10].Table 1 summarizes our current knowledge about the best known lowerbounds for depth 3 arithmetic circuits.The paper is organized as follows. In Section 1 we give a short proof ofour bound in the functional framework (Theorem 1.1).3



FieldnFramework Boolean Functional SyntacticalGF (2) exp(
(n))[12] ) exp(
(n))GF (3) exp(
(n))Corollary 2.3 exp(
(n))Theorem 1.1 ) exp(
(n))GF (q); q > 3 ? exp(
(n))Theorem 1.1 ) exp(
(n))in�nite ? 
(n log n)[15, 2]Table 1: Lower bounds for depth 3 arithmetic circuitsThe rest of the paper is devoted to the quasi-boolean setting. In Section2 we give some basic properties of the algebra of all functions f : Dn ! F ,where D � F , and state our main result which is a combinatorial property offunctions (F �)n ! F that implies large complexity w.r.t. arithmetic depth 3circuits (Theorem 2.2). As one of the applications of this general criteriumweobtain exp(
(pn)) lower bound for the determinant and the permanent ofan n�nmatrix (compare with exp(
(n)) lower bound [9] for the determinantin the syntactical framework).Sections 3-6 are entirely devoted to the proof of Theorem 2.2, and wehope that some of the techniques we introduce on this way might be helpfulin other situations as well.In Section 3 we introduce a slight variation of Valiant's rigidity function[16, 6] that we call m-rigid rank and show a lower bound on this measurein terms of more constructive m-communication rank also introduced in thissection. The bound is shown to be tight in case of constant m (which is theonly case we need in this paper).In Section 4 we prove that a product of linear functions has only a fewnon-zeros on Dn, provided that this product has a large communication (or4



thereby, rigid as well) rank (Lemma 4.1). This allows us to approximate prod-ucts of linear functions with large communication rank by a zero function,and to deal in the sequel only with the products having small communicationrank.In Section 5 we provide an approximation of a product with small com-munication rank by a function having some special form, and combine thiswith material from Section 4 into Theorem 5.1. In the partial case D = F �this results in an approximation by a sparse polynomial (Lemma 5.3). More-over, the support (the set of monomials) of this polynomial lies in a union offew balls (w.r.t. the Hamming metric), each of a small radius.Finally, in Section 6 we prove that if the support of a function f : (F �)n !F has a large coding distance, and its size is relatively small, then f can not beapproximated well by a sparse polynomial of the above form. This concludesthe proof of our main Theorem 2.2.1 Exponential lower bound for depth 3 arith-metic circuits for symmetric functions overa �nite �eldWe study depth 3 arithmetic circuits, that is representations of functions inthe following form: f = X1���NYi L�i; (1)where L�i = X1�j�n�(�)ij Xj + �(�)i are linear functions. We call the right-handside of (1) a depth 3 arithmetic circuit since it contains 3 layers (with un-bounded fan-in) of computations: its �rst layer consists in computing linearfunctions L�i, the second layer is computing their products over i, and thethird one is computing the sum over � just according the right-hand side. Inthis section we consider the functional framework in which the identity (1)is understood as the identity of functions f : F n ! F over the underlying�eld F . Our purpose is to give a short proof of exponential lower boundson the complexity (in fact, on the number of gates at the middle level N)in the representations (1) for quite natural symmetric functions f over any�xed �nite �eld F . Let us begin with the case F = GF (p), where p is a �xedprime. 5



Viewing each element x 2 F as an integer 0 � x � p � 1, one can de�nefor any prime q the generalization MODq;F : F n ! F of the correspondingBoolean function MODq as follows:MODq;F (x1; : : : ; xn) = 8<: 1 if X1�j�nxj � 0 (mod q)0 otherwise.Theorem 1.1 Provided F = GF (p) and q is another prime, for every rep-resentation MODq;F in the form (1) the lower bound N � exp(
(n)) holds.Proof. Similarly to [12, 14], we want to show that every small size depth3 arithmetic circuit can be approximated by a low degree polynomial. Letus consider an individual product � = Qi Li; Li = X1�j�n�ijXj + �i. Byits rank rk(�) we mean the rank of the matrix of coe�cients (�ij) of thelinear functions fLig without their free terms. Take some threshold r (to bespeci�ed later). We treat separately the products � with rank greater or lessthan r.Case 1. rk(�) � r.In this case we have the obvious bound on the probabilityPr "x 2 F n :Yi Li(x) 6= 0# � �p � 1p �r :Case 2. rk(�) < r.Then we have the bound on the degree deg (�) � r(p�1). Indeed, expresseach Li as a linear combination of (less than r) elements of a basis, thereuponopen the parenthesis in the product and use the relation Lp = L present inthe functional framework.Applying this case analysis separately to every product in (1), we havethe following:Lemma 1.2 For every function f representable in the form (1) and everyparameter r there exists a polynomial g with deg (g) � r(p� 1) such thatPr [x 2 F n : f(x) 6= g(x)] � �p� 1p �rN:6



Unfortunately, we do not know how to apply this lemma directly: itseems, known lower bounds on the rate of approximation of explicit functionsby low degree polynomials over �nite �elds other than GF (2) are too weak.We turn around this di�culty by the following simple trick that gives us adirect reduction to necessary bounds in the Boolean case [14].Consider the Boolean cube Bn = f0; 1gn � F n. For any vector c =(c1; : : : ; cn) 2 F n consider the (shifted) function MOD(c)q;F : Bn ! F de�nedby MOD(c)q;F (x1; : : : ; xn) = MODq;F (x1 + c1; : : : ; xn + cn). Actually, for anyfunction h : Bn + c ! F one could de�ne the shifted function h(c) : Bn !F by h(c)(x) = h(x + c). We call c nondegenerated if at least n=3 of itscoordinates c1; : : : ; cn are distinct from p � 1, and degenerated otherwise.Clearly, Pr [c 2 F n : c is nondegenerated] � 12 :Suppose now that MODq;F has a representation (1) with N terms, andlet g be chosen in accordance with Lemma 1.2. Since any point from F nbelongs to the same number 2n of the shifted boolean cubes Bn + c, thereexists at least one nondegenerated vector c 2 F n for whichPr hx 2 Bn :MOD(c)q;F (x) 6= g(c)(x)i � 2�p� 1p �r N: (2)Assume w.l.o.g. that 0 � c1; : : : ; cs � p � 2; s � n=3. Then there existsa �xed 0-1 assignment as+1; : : : ; an to the last n� s variables such that thebound (2) is preserved, i.e.,Pr hx 2 Bs :MOD(c)q;F (x; a) 6= g(c)(x; a)i � 2�p� 1p �r N: (3)Notice thatMOD(c)q;F (x; a) �MODt;q(x) for some 0 � t < q, whereMODt;q :Bs ! B is the Boolean function de�ned in [14]. We need the followingnumerical re�nement on the main technical tool from that paper:Lemma 1.3 (Smolensky) Let q and p be di�erent primes, 0 � t < qand g(X1; : : : ;Xn) be a polynomial over GF (p) of degree at most d. ThenMODt;q(x1; : : : ; xn) and g(x1; : : : ; xn) diverge in at least 
�Pn=2�d�1i=0 �ni�� �
�� nn=2�d�1�� points from Bn. 7



[14], as well as [12] in a similar statement, put here d � pn which ensuresdisagreement in at least a polynomial fraction of all inputs. We notice thatone can achieve better results when d is linear in n. In particular, comparing(3) and Lemma 1.3, the latter with n := s; g := g(c)(x; a); d := (p� 1)r, weget in our case: N � 2�s � exp(
(r)) �� ss=2 �O(r)�:When r = �s for a constant �, � ss=2��s� � 2s(H(1=2��)�o(1)), where H(�) =�� log2 �� (1��) log2(1��) is the entropy function. Since H 0(1=2) = 0, itfollows that when � is small enough, N � exp(
(r)) � exp(
(n)). Theorem1.1 is proved.One can introduce a symmetric function MAJF : F n ! F similar tothe customary MAJ : Bn ! f0; 1g and being universal for all symmetricfunctions. Namely, MAJF (x1; : : : ; xn) = 1 if 
0 � 
1 � � � � � 
p�1 where
i equals to the number of i among x1; : : : ; xn for 0 � i � p � 1, otherwiseMAJF (x1; : : : ; xn) = 0. One can show (similar to [12, Theorem 4]) thatany symmetric function f(x1; : : : ; xn) : F n ! F could be represented as aF -linear combination of polynomially many functions of the formMAJF (X1; : : : ;Xn; �1; : : : ; �n(p�1))for suitable �i 2 F , 1 � i � n(p � 1). This entails the following corollary.Corollary 1.4 For the complexity of any depth 3 arithmetic circuit (1) rep-resenting MAJF the lower bound N � exp(
(n)) holds.Finally, we notice that there are many natural ways of extending thede�nitions of MODq;F ;MAJF to the �elds F = GF (p�); � > 1 such thatthe same method gives lower bounds also in this case. For example, we might�x an arbitrary GF (p)-linear retraction � : F ! GF (p) and then letMODq;F (x1; : : : ; xn) = MODq;GF (p)(�(x1); : : : ; �(xn));and similarly for MAJF . It is easy to see that with this de�nition the proofsof Theorem 1.1 and Corollary 1.4 extend to arbitrary �nite �elds.8



2 Quasi-boolean functions over �nite �eldsand main resultsIn the rest of the paper we deal with the following quasi-boolean setting. Letq = p�, F = GF (q), and �x a subset D � F of cardinality d = jDj � 2. Weare interested in functions f : Dn ! F and call them quasi-boolean extendingthe Boolean framework from [14] where D was just f0; 1g. Alternatively, onecould also view f as a partial function on the entire space F n.Let g(X) =Qa2D(X � a). Then the F -algebra of all functions f : Dn !F is isomorphic to the quotient algebraA = F [X1; : : : ;Xn]=(g(X1); : : : ; g(Xn)):The main purpose in the rest of the paper is to obtain lower bounds onthe complexity of depth 3 arithmetic circuits (1) for certain explicit functionsf 2 A, equality (1) being viewed also in the algebra A, in the case d = q�1.Before formulating our results, however, let us mention some easy propertiesof A (cf. [14], also [8]).Lemma 2.1 a) A is an algebra of principal ideals;b) for any f 2 A the number of nonzeroes jfx 2 Dn : f(x) 6= 0gjcoincides with the dimension of the principal ideal (f) � A.Clearly, monomials of the form Xu11 � : : : �Xunn , 0 � u1; : : : ; un < d, con-stitute a basis of A; for an element f 2 A we refer to its degree w.r.t. thisbasis. In abuse of notation we identify sometimes f with the correspondingpolynomial in this basis.Below it will be sometimes convenient to imagine a metric geometry inthe space of monomialsM = fXu11 � : : : �Xunn g0�u1;:::;un<d endowed with theHamming distance � (being equal to the number of distinct coordinates). Foran n-tuple u = (u1; : : : ; un) we will abbreviate the corresponding monomialQnj=1Xujj to Xu.Suppose now that D � F � and, moreover, that D is a coset modulo some(cyclic) subgroup in F �. Then the minimal polynomial g =Qa2D(X � a) ofD is a binomial q = Xd � b and M is the multiplicative basis in the sensethat the following two properties are satis�ed:1. The set of functions Dn ! F representable as � � Xu, where � 2F �; Xu 2 M, forms a group w.r.t. multiplication;9



2. the Hamming distance is invariant under multiplication in this group:�(m0m1;m0m2) = �(m1;m2).ForN �M, de�ne its coding distance R(N ) as the minimumof �(m1;m2)over all pairs m1 6= m2; m1;m2 2 N . Thus, R(N ) is equal to the ordinarycoding distance R(U) of the set U = fu jXu 2 N g considered as an error-correcting code in [d]n. For f 2 A represented in the basis M, let supp (f)be the set of all monomials that occur in f with a non-zero coe�cient. Ourmain lower bound criterium is the following theorem.Theorem 2.2 For every �xed �nite �eld F there exists a positive constant� = �(F ) > 0 such that the following holds. Let N �M satisfy the inequalityjN j+ n � exp(� �R(N )3=n2): (4)Then for any function f : (F �)n ! F with supp (f) = N , any depth 3arithmetic circuit (1) computing f has at least jN j gates at the middle level.Corollary 2.3 There exists a positive constant � > 0 such that for any U �Bn satisfying jU j+ n � exp(� �R(U)3=n2)any depth 3 arithmetic circuit of the form (1) computing the functionXu2U nYj=1(Xj + 1)uj : Bn ! GF (3)must have at least jU j gates at the middle level.Proof. Immediate from Theorem 2.2 after the linear substitution Xj 7!Xj + 1.Let p0 be any prime divisor of q � 1, and let U � (GF (p0))n be anyexplicit GF (p0)-linear code with the coding distance R = �0n and dimensionk = �0n for some positive constants �0; �0. Among examples of such codes aree.g. Justensen codes [19] and Goppa codes [18]. Let u1; : : : ; uk be an explicitbasis of U over GF (p0). Removing, if necessary, some vectors from this basis,we may assume w.l.o.g. that �0 < ��30=(log p0), where � is the constant fromTheorem 2.2. Then Theorem 2.2 implies in particular an exp(
(n)) lower10



bound on the complexity of any depth 3 arithmetic circuit computing thefunction fU =Xu2UX� q�1p0 �u : (F �)n ! F:Next, since U is an GF (p0)-linear space with basis u1; : : : ; uk we havefU = X�1;:::;�k2GF (p0)X� q�1p0 �(�1u1+:::+�kuk) = kYi=10@ X�2GF (p0)X� q�1p0 ui1A ;thus fU can be obtained as a projection of the following functionkYi=1 p0X�=1 n(q�1)Yj=1 Xi�j : F � ! F: (5)Hence, the complexity of (5) w.r.t. �3 arithmetic circuits is exp(
(n)); onthe other hand, this function is represented as a �3 arithmetic circuit of sizeO(n2). This gives us a separation between these two classes.Finally, we make use of the construction from [17] (see also [5]). Following[17] we say that a polynomial f 2 F [X1; : : : ;Xn] is a projection of a polyno-mial g 2 F [Y1; : : : ; Ym] if substituting in g for each variable Yj in a suitableway either one of the variables X1; : : : ;Xn or a constant from F , one gets f .It is proved in [17] that if f is representable by an arithmetic formula of asize t then f is a projection of� DeterminantP�2St+2(�1)sgn(�)Q1�i�t+2Xi;�(i);� PermanentP�2St+2Q1�i�t+2Xi;�(i);� Hamiltonian cycles polynomialP�Q1�i�t+2Xi;�(i), where the summa-tion is taken over all permutations � which consist of a single cycle.Thus, m = (t + 2)2 in the construction of [17]. Applying this result to thefunction fU in algebra A, we conclude with the following corollary.Corollary 2.4 For each of the following three functions : (F �)n2 ! F :� Determinant� Permanent 11



� Hamiltonian cycles polynomialany depth 3 arithmetic circuit (1) computing f must have at least exp(
(pn))gates at the middle level.The rest of the paper is entirely devoted to the proof of Theorem 2.2.As we noted in Introduction, we will try to present as many techniques aspossible for as general D as possible, and we will employ the same idea ofapproximation as in Section 1. For doing that we need some properties ofindividual products � = Qi Li which would ensure that �(x) = 0 holdswith high probability on Dn. Clearly, the ordinary notion of rank is alreadynot good enough: for example, members of the multiplicative basisM neverevaluate to 0 on Dn. More generally, the same holds if Li are arbitrary linearfunctions without zeros in Dn, and we begin our analysis with identifyingthe case when we at least know that such \unpleasant" Li must have only aconstant number of variables.De�nition 2.5 For any integer 2 � d � q a linear d-sweep `s(d) (w.r.t. the�eld F = GF (q)) is the minimalm (provided that it does exist) such that forany m subsets D1; : : : ;Dm � F , jD1j = : : : = jDmj = d any linear functionL(X1; : : : ;Xm) = a1X1+ � � �+ amXm+ a with nonvanishing coe�cients a1 6=0; : : : ; am 6= 0, sweeps the entire F in the sense a1D1 + � � � + amDm = F .Lemma 2.6 a) `s(d) is de�ned if and only if d > p��1, in this case `s(d) �q � d + 1;b) for q=2 < d < q we have `s(d) = 2.Proof. a) The part only if is obvious since in case � > 1; d � p��1 one cantake arbitrary D1 = : : : = Dm � GF (p��1) and a1; : : : ; am; a 2 GF (p��1)�.To prove the inverse, let us show thatja1D1 + � � �+ a`+1D`+1j > ja1D1 + � � �+ a`D`j; (6)unless already a1D1 + � � � + a`D` = F . Together with ja1D1j = d, this willentail a) by induction on `.Pick arbitrarily �0 2 D`+1. Since jD`+1j > p��1, D`+1 � �0 generates Fas a GF (p)-linear space. Hence, there exist elements �1; : : : ; �� 2 D`+1 suchthat � elements (�1��0); : : : ; (����0) constitute a basis of F over GF (p).12



We claim that a1D1 + � � �+ a`D` + a`+1�i 6= a1D1 + � � � + a`D` + a`+1�0 forat least one 1 � i � �. The claim implies (6) because ja1D1 + � � � + a`D` +a`+1�0j = ja1D1 + � � �+ a`D` + a`+1�ij = ja1D1 + � � �+ a`D`j.To prove the claim, suppose the contrary. Then a1D1 + � � � + a`D` +a`+1�0 = a1D1 + � � � + a`D` + a`+1�0 + a`+1(�i � �0), for any 1 � i � �.Therefore, a1D1 + � � � + a`D` + a`+1�0 = a1D1 + � � � + a`D` + a`+1�0 +a`+1P1�i�� bi(�i��0) for arbitrary b1; : : : ; b� 2 GF (p). But since the lattersum sweeps the entire F , we get a contradiction.b) Let L = a1X1 + a2X2 + a. If jD1j; jD2j > q=2, then for any � 2 Fthe sets a1D1 + a � F and �� a2D2 � F have nonempty intersection. Thisimplies � 2 a1D1 + a2D2 + a.3 Rigid rank and communication rank of amatrixIn this section we continue our search for assumptions on a product � =Qi Lithat ensure its vanishing almost everywhere on Dn. We already know oneclass of non-vanishing products of large rank: these are those products inwhich Li do not represent 0 on Dn, and we know from Lemma 2.6 that Lithen must have only O(1) variables each. This class of \bad" products canbe clearly further extended to products of the formYi (L0i + L00i ); (7)where L0i do not represent 0, and Qi L00i has a low rank. Our eventual goal isto show that this example encompasses already essentially all non-vanishingproducts.The fact that a product can not be represented in the form (7), whereL0i's depend on few variables and rk(Qi L00i ) is low, is clearly akin to thestandard matrix rigidity function RA(r) [16, 6], and in this section we giveits satisfactory description in terms of internal properties of the matrix.Let A = (aij) be a k � n matrix over some (not necessarily �nite in thissection) �eld, and let m � 0 be an integer. For subsets I � f1; : : : ; kg; J �f1; : : : ; ng we denote by AIJ the submatrix of A formed by its rows from Iand the columns from J . For i 2 f1; : : : ; kg, AiJ is the corresponding subrowof the ith row. 13



De�nition 3.1 The m-rigid rank rrkm(A) of A is de�ned as the minimalpossible rank of matrices B which di�er from A by at most m entries in eachrow.De�nition 3.2 The m-communication rank crkm(A) of A is de�ned as themaximal possible number r of its rows I � f1; : : : ; kg, jIj = r such that thereexist pairwise disjoint sets of columns J0; : : : ; Jm, also of cardinality r each,with the property that all submatrices AIJ`, 0 � ` � m are non-singular.Notice that both rrkm and crkm are not invariant in general with respectto transposing the matrix A. Obviously, rrk0 and crk0 coincide with theusual rank. The connection with the standard rigidity function RA(r) (theminimal overall number of changes in A required to reduce its rank to r) isprovided by the inequality RA(rrkm(A)) � km:The term \communication" is suggested by the resemblance to the common(worst-case partition) scenario in communication complexity.The following lemma relates the rigid and communication ranks.Lemma 3.3 rrkm(A) � (m+ 2) crkm(A) � (m+ 2)(m+ 1)rrkm(A).Proof of the left inequality. Choose I; J0; : : : ; Jm accordingly to De�nition3.2, so that jIj = jJ0j = : : : = jJmj = r = crkm(A). Denote J = f1; : : : ; ng n(J0 [ : : : [ Jm).Take any row � 2 f1; : : : ; kgnI. For every 0 � ` � m there exists a uniquelinear combination A�;J` = Xi2I �(`)i Ai;J`. Consider the set J 0̀ � J consistingof all the columns j 2 J such that a�j �Xi2I �(`)i aij 6= 0. Observe that for anyj 2 J 0̀, the (r + 1) � (r + 1) matrix AI[f�g;J`[fjg is non-singular.We claim that jJ 0̀0 j � m for some 0 � `0 � m. Assuming the contrary,one can sequentially for ` = 0; : : : ;m pick pairwise distinct j` 2 J 0̀. Then all(r + 1) � (r + 1) matrices AI[f�g;J`[fj`g, 0 � ` � m are non-singular, thatcontradicts to the equality r = crkm(A).Now take (m+ 2)r n-dimensional vectors, among which there are r rowsAi;f1;:::;ng, i 2 I and (m + 1)r unit vectors ej = (0; : : : ; 0; 1; 0; : : : ; 0) (whereone is located at j-th position) for j 2 [0�`�mJ`. To complete the proof of the14



left inequality in the lemma, it su�ces to show that each row of A equalsto a suitable linear combination of these (m + 2)r vectors up to at most mentries.This is obvious for the rows Ai;f1;:::;ng, i 2 I.Take � 2 f1; : : : ; kg n I and utilize the notation introduced above. Thenthe di�erence A�;f1;:::;ng �Xi2I �(`0)i Ai;f1;:::;ng equals to a linear combination of(m+ 1)r vectors ej up to at most m entries from J 0̀0.Proof of the right inequality. Again we denote r = crkm(A) and chooseI; J0; : : : ; Jm accordingly to De�nition 3.2. Choose a matrix B accordinglyto De�nition 3.1 so that rk(B) = rrkm(A), and mark all the entries at whichA and B di�er. There are at most (rm) marked entries in the rows from I.Therefore, for some 0 � ` � m at most rmm+1 of these entries are located inAI;J`. This implies rk(B) � rk(BI;J`) � rm+1 and completes the proof of theright inequality.4 Products of large communication rank van-ish almost everywhereIn this section we show that products of large communication rank do vanishalmost everywhere on Dn. In combination with Lemma 3.3, this will implythat every non-vanishing product must be representable in the form (7),where L0i depends on few variables, and Qi L00i has low (ordinary) rank.Throughout the section, we �x a product of linear functions � = Qi Liand a subset D � F = GF (p�) of cardinality d > p��1. � is viewed as aquasi-boolean function � : Dn ! F (see Section 2). Let Li = X1�j�naijXj+aiwhere aij; ai 2 F . By the m1-communication rank crkm1(�) of � we meanthe m1-communication rank of the matrix A = (aij) of its coe�cients (thus,the free coe�cients of Li are excluded). Since d > p��1, the linear d-sweep`s(d) is de�ned and does not exceed q � d + 1 by Lemma 2.6 a); we denoteit by m.Lemma 4.1 Pr[x 2 Dn : �(x) 6= 0] � exp(�
(crkm�1(�))):15



Proof. Let r = crkm�1(�). Selecting r rows from the matrix (aij) in accor-dance with De�nition 3.2, we can assume w.l.o.g. that � is the product ofjust r linear functions. Moreover, varying the speci�cations from D for allthe variables corresponding to the complement f1; 2; : : : ; ngn(J0[: : :[Jm�1),we can assume w.l.o.g. that the matrix of the coe�cients A = (aij) is of sizer�rm and consists of m non-singular r�r submatrices A(1); : : : ; A(m). Sincethe bound claimed in the lemma will be proved for an arbitrary speci�cation,this would imply the lemma by the standard averaging argument.For each 1 � ` � m denote by x` a random vector from Dr, and denoteby x`1; : : : ; x`d d independent copies of x`; thus, all dm vectors x`� (1 � ` �m; 1 � � � d) are picked out independently. Our �rst purpose is to provethe following bound on the probability:Pr[8 �1; : : : ; �m 2 f1; : : : ; dg�(x1;�1; : : : ; xm;�m) 6= 0] � exp(�
(r)): (8)We show by induction on ` � m that for suitable constants 
` > 1; �` > 0with probability greater than 1 � exp(��`r) there exist s � r=
` rows I �f1; : : : ; rg in A such that for every 1 � t � ` all d values of the vectorsA(t)xt1; : : : ; A(t)xtd in every of these rows are pairwise distinct.The base for ` = 0 is obvious. For the inductive step from ` to ` + 1,we will treat the newly introduced vectors A(`+1)x`+1;1; : : : ; A(`+1)x`+1;d by aninternal induction on � < d. More speci�cally, we show, increasing � one byone that for suitable constants 
0� > 1; � 0̀+1;� > 0 with probability greaterthan 1 � exp(�� 0̀+1;�r) there exist s0 � s=
0� rows I 0 � I in A(`+1) such thatall the entries of the vectors A(`+1)x`+1;1; : : : ; A(`+1)x`+1;� in every row fromI 0 are pairwise distinct. Suppose that for some value of � we already havesuch an I 0 and denote by � : F r ! F s0 the projection onto the coordinatesfrom I 0.The number of vectors in F s0 such that at most s0=
 (for a certain constant
 > 1) its entries di�er from all the corresponding entries of the vectors�A(`+1)x`+1;1; : : : ; �A(`+1)x`+1;� is equal tos0=
Xk=0 �s0k��s0�k(q � �)k: (9)We claim that for any �xed v 2 F s0,Pr ��A(`+1)x`+1;�+1 = v� � d�s0 : (10)16



Indeed, select s0 columns J of the matrix A(`+1) such that A(`+1)I 0;J is non-singular. Varying speci�cations from D for all the variables not in J , andnoticing that for every such speci�cation all the ds0 vectors �A(`+1)x`+1;�+1are pairwise distinct, we get (10).Combining (9) and (10), we see that the probability that at most s0=
(for a certain constant 
 > 1) entries of the vector �A(`+1)x`+1;�+1 di�er fromall the corresponding entries of the vectors �A(`+1)x`+1;1; : : : ; �A(`+1)x`+1;�,does not exceedd�s0 s0=
Xk=0 � s0k ��s0�k(q � �)k < ��d�s0 s0=
Xk=0 � s0k � (q � �)k: (11)Since � � d�1, for large enough constant 
 there exists a constant � > 0such that the latter expression is less than exp(��s0).Thus, if we set 
0�+1 = 
0�
 (so that 
 0� = 
�, 
` = 
d` and s0 = r=
d`+�),the probability that the entries of the vectors�A(`+1)x`+1;1; : : : ; �A(`+1)x`+1;�+1are pairwise distinct in at least s=
0�+1 rows is greater than(1� exp(�� 0̀+1;�r))(1 � exp(��s0)) � 1 � exp(�� 0̀+1;�+1r)for an appropriate � 0̀+1;�+1 > 0. This completes the inner induction (on �),to complete the external induction (on `) put �`+1 = � 0̀+1;d.Now, to prove (8), we simply observe that if there exists a single row iin which for every 1 � ` � m all d entries A(`)x`1; : : : ; A(`)x`d are pairwisedistinct, then also 9�1; : : : ; �m 2 f1; : : : ; dg such that �(x1;�1; : : : ; xm;�m) = 0.Indeed, since the i-th linear function in the product � equals to (A(1)x1)i +� � �+(A(m)xm)i+ai, De�nition 2.5 of the linear d-sweep shows that there exist�1; : : : ; �m 2 f1; : : : ; dg such that (A(1)x1;�1)i + � � � + (A(m)xm;�m)i + ai = 0,which completes the proof of (8).Our next goal is to prove an inequality for expectations in a rather generalprobabilistic-theoretical setting:E 24 Y�1;:::;�m2f1;:::;dgm g(Y 1;�1; : : : ; Y m;�m)35 � (E[g(Y 1; : : : ; Y m)])dm; (12)where Y 1; : : : ; Y m are independent random variables, Y `1; : : : ; Y `d are inde-pendent copies of Y `, 1 � ` � m, and g is a real-valued nonnegative function.17



Taking as Y 1; : : : ; Y m the vectors x1; : : : ; xm, and as g(Y 1; : : : ; Y m) the char-acteristic function of the predicate �(x1; : : : ; xm) 6= 0, we infer Lemma 4.1from (12) together with (8).To prove (12) denoteE 24 Y�`+1 ;:::;�m2f1;:::;dgm�` g(Y 1; : : : ; Y `; Y `+1;�`+1 ; : : : ; Y m;�m)35by e`. We show for every 1 � ` � m that e`�1 � ed̀, which will implye0 � edmm , i.e. (12).For any (�xed for the time being) tupley = (y1; : : : ; y`�1; y`+1;1; : : : ; y`+1;d; : : : ; ym1; : : : ; ymd)denote the expectationE 24 Y�`+1;:::;�m2f1;:::;dgm�` g(y1; : : : ; y`�1; Y `; y`+1;�`+1 ; : : : ; ym;�m)35by e`(y). Thene` = E[e`(Y 1; : : : ; Y `�1; Y `+1;1; : : : ; Y `+1;d; : : : Y m1; : : : ; Y md)]:On the other hand we haveE 24 Y�`;�`+1;:::;�m2f1;:::;dgm�`+1 g(y1; : : : ; y`�1; Y `;�`; y`+1;�`+1; : : : ; ym;�m)35= E� Y�`2f1;:::;dg� Y�`+1;:::;�m2f1;:::;dgm�` g(y1; : : : ; y`�1;Y `;�`; y`+1;�`+1 ; : : : ; ym;�m)��= (e`(y))d;the latter equality holds since Y `1; : : : ; Y `d are independent. Taking the ex-pectations against all tuples y, we gete`�1 = E[(e`(Y 1; : : : ; Y `�1; Y `+1;1; : : : ; Y `+1;d; : : : ; Y m; : : : ; Y md))d]:Due to Jensen's inequality (E[Zd] � (E[Z])d) we conclude that the latterexpectation is greater or equal to (E[e`(Y )])d = ed̀, which completes theproof of (12) and thereby, Lemma 4.1.18



5 Approximating depth 3 arithmetic circuitsby (N; r)-sparse polynomialsIn Sections 2-4 we proved that every product � that can not be represented inthe form (7), where L0i depend on O(1) variables, and Qi L00i has low rank, issu�ciently well approximated by 0. In this section we complete the analysisand treat the products that can be represented so. Essentially, we are able toapproximate them by (sums of moderate number of) the products Qi Li inwhich every Li does not represent 0 on Dn. In particular, in the case D = F �we get an approximation by sparse polynomials of a certain special form.More speci�cally, we have the following theorem.Theorem 5.1 Let F = GF (p�), D � F be such that jDj > p��1, � =Qi Libe a product of linear functions, and r be any threshold.a) There exists a function g of the formg = exp(O(r))X�=1 g�Yi L�i; (13)where g� are products of at most O(r) linear functions each, L�i do not havezeros in Dn, and Pr [x 2 Dn : �(x) 6= g(x)] � exp(�
(r)): (14)b) If jDj > p�=2, then we can additionally require that L�i in (13) havethe special form L�i = (Xji � z�i); (15)where Xji is a variable depending only on i, and z�i 2 F nD.Proof. We give a complete proof of part b) (as this is the part which is reallyused in the next section), and then sketch how to extend the argument toprove part a).Since d = jDj > p�=2, we have `s(d) = 2 by Lemma 2.6 b). If rrk1(�) � rthen, according to Lemma 3.3, crk1(�) � r=3 and, due to Lemma 4.1,Pr [x 2 Dn : �(x) 6= 0] � exp(�
(r)), so we can simply let g = 0. Hence-forth, we assume that rrk1(�) � r. Choose r linear forms (�1; : : : ; �r) and19



variables Xji such that each linear function Li can be represented as anF -linear combination Li = rXs=1 ais�s + biXji + ci:By Lagrange interpolation,� = X�2F r Y1�s�r�0s2Fnf�sg �s � �0s�s � �0s �Yi (biXji + rXs=1 ais�s + ci): (16)Let �(�) = Qbi 6=0(Xji � z�i), z�i = �(Prs=1 ais�s + ci)=bi be an individualterm in this sum (up to a multiplicative constant). LetR = fXji j 9i(bi 6= 0 ^ z�i 2 D)g :Case 1. jRj < (2q log q)r.Choose arbitrarily z 62 D, and let�0(�) = Ybi 6=0z�i 62D (Xji � z�i) � Ybi 6=0z�i2D(Xji � z):Then the products �0(�) have the form Qi L�i required in (13), (15). On theother hand, the term �(�) contributes g��0(�) to the sum (16), whereg� = Y1�s�r�0s2Fnf�sg �s � �0s�s � �0s � Ybi 6=0z�i2D Xji � z�iXji � z :The �rst term Y1�s�r�0s2Fnf�sg �s � �0s�s � �0s here is already a product of r linear func-tions. The second term Ybi 6=0z�i2D Xji � z�iXji � z is equal to YXj2R g�j(Xj), where g�jare some functions in one variable on D; we can represent them as degreeO(1) polynomials in one variable. This implies that YXj2R g�j(Xj) and, hence-forth, g� can be represented as sums of exp(O(r)) products with O(r) linearfunctions in each. 20



Case 2. jRj � (2q log q)rThis means that �(�) contains at least (2q log q)r linear functions (Xji �z�i) with z�i 2 D and pairwise distinct ji's. Hence,Pr �x 2 Dn : �(�)(x) 6= 0� � �1 � 1d�(2q log q)r � q�2r:Since there are at most qr di�erent �'s, we can safely approximate all �(�)corresponding to Case 2 by 0.Thus, we simply takePf�j Case 1g g� ��0(�) as the required approximation(13) which proves part b).Proof of part a) (sketch). m = `s(d) is de�ned by Lemma 2.6 a), and, for thesame reasons as before, we can assume rrkm�1(�) � r. We again decompose� in the form � = X�2F r Y1�s�r�0s2Fnf�sg �s � �0s�s � �0s ��(�);where �(�) =Qi L�i, and L�i this time have at most (m� 1) variables each.Let us split �(�) in two parts �(�) = �(�)6=0 ��(�)0 , where �(�)6=0 consists of thoseL�i which do not have zeros in Dn, whereas all functions from �(�)0 havethere at least one zero. Let h be the maximal number of variables in a linearfunction from �(�)0 ; thus, originally we have h � m � 1. We are going toreduce the value of h by applying recursively to �(�)0 a generalization of theanalysis from the proof of part b).Case 1. There exists a set R = fXj1 ; : : : ;Xjsg of at most 
hr variablessuch that every linear function L�i in �(�)0 essentially depends on at leastone variable from R. Here 
h > 0 are some absolute constants such that
m�1 � 
m�2 � : : :� 
1.In this case we apply Lagrange interpolation once more and write downthe representation �(�) = X�2Ds Y1�t�s�0t2Dnf�tg Xjt � � 0t�t � �0t ��(��)(valid on Dn), where �(��) is obtained from �(�) by substituting �1; : : : ; �sfor the variables Xj1 ; : : : ;Xjs, respectively. In L�i 2 �(�)0 this substitution21



decreases the number of variables (so that now it becomes at most (h� 1)),and the images of L�i 2 ��6=0 still do not have zeros in Dn�s. Thus, wehave reduced in Case 1 the product �(�) to exp(O(
hr)) products �(��) withsmaller values of h.Case 2. There is no set of variables R described above.Select among the linear functions in �(�)0 the maximal possible setL�1; : : : ; L�Msuch that no variable occurs in two of them. We claim that M � 
hr=h.Indeed, otherwise we could take as R the set of all variables occurring inthese M functions: jRj � 
hr since every L�i has at most h variables. Now,the events L�i(x) = 0 (1 � i �M) are independent, and each of them occurswith probability 
(1). Hence,Pr hx 2 Dn : �(�)0 (x) 6= 0i � exp(�
(
hr));and at most exp(O((
1 + � � � + 
h�1)r)) such �(�)0 resulted from branchingin Case 1 at previous steps. Since 
m�1 � 
m�2 � : : : � 
1, we still canapproximate all of them by 0.After applying this recursive procedure (m� 1) times, we completely killour �(�)0 which completes the proof of part a).Theorem 5.1 looks especially simple in the case D = F �.De�nition 5.2 A polynomial of the form P1���N g�Xu� where Xu� is amonomial and deg (g�) � r is called (N; r)-sparse.Lemma 5.3 For every �nite �eld F there exists a positive constant �0 =�0(F ) such that the following holds. For every parameter r and every func-tion f : (F �)n ! F computed by an arithmetic depth 3 circuit (1) with thecomplexity N � exp(�0r), there exists an (N;O(r))-sparse polynomial g suchthat Pr[x 2 (F �)n : f(x) 6= g(x)] � exp(�
(r)): (17)Proof. Immediate from Theorem 5.1 b): when D = F �, all z�i in (15) must be0, and (13) simpli�es to the (1; O(r))-sparse polynomial g = �Pexp(O(r))�=1 g�� �QiXji . Summing these approximations over all N gates at the middle levelof our circuits, we get (17) (provided �0 is smaller than the constant assumedin (14)). 22



6 Lower bound on the number of non-zeroesfor (N; r)-sparse polynomialsAlthough we are interested mainly in the case D = F �, our main argument inthis section is valid for any D � F � which is a coset modulo some subgroup inF �. Recall from Section 2 that in that case the algebra A of functions Dn !F has the multiplicative basis of monomialsM = fXug0�u1;:::;un<d; d = jDj.One can rephrase De�nition 5.2 using the (Hamming metric �) geometriclanguage inM (see Section 2): if a polynomial g is (N; r)-sparse then supp (g)lies in a union of N balls each of radius r (centered at Xu� ). Conversely, ifsupp (g) can be covered by N balls of radius r, then g is (N; (d�1)r)-sparse.The following lemma provides a lower bound on the number of nonzeroesof an (N; r)-sparse polynomial.Lemma 6.1 Let D � F � be a coset modulo some subgroup in F �, f 2 Abe a (N; r)-sparse polynomial, such that for a certain R the support supp (f)contains a monomial Xu0 such that �(Xu0 ;Xu) � R for any other monomialXu 2 supp (f). ThenPr[x 2 Dn : f(x) 6= 0] � exp��O� nR �r2R + log(N + n)��� : (18)Proof. Replacing f by f � (aXu0)�1 where a 2 F � is the coe�cient at themonomialXu0 in f (and taking into account thatM is a multiplicative basisof A), we can assume w.l.o.g. that u0 = 1 and that the free term of f is 1.We keep the notation Xu� (1 � � � N) from De�nition 5.2 for the centers ofthe radius r balls that cover supp (f). Note that if the ball centered at Xu�contains at least one monomial Xu from supp (f) other than 1, then�(1;Xu� ) � �(1;Xu)� �(Xu� ;Xu) � R� r: (19)Put s = �CnR (r + (R log(N + n))1=2)� (20)for an appropriate su�ciently large constant C which will be speci�ed later.W.l.o.g. we can assume that s < d�12d n, because otherwise (18) is trivial.Consider the sphere S �M of the radius d�1d n� s centered at 1 (w.l.o.g.we can assume that djn), i.e. S = �Xu �� �(1;Xu) = d�1d n� s	. SincejSj = (d � 1) d�1d n�s � nd�1d n� s � � dn exp��O�s2n d2d � 1 + log n�� ;23



we notice the bound on the probabilityPr[Xu 2 M : Xu 2 S] � exp��O�s2n + log n�� ;and the right-hand side of the latter inequality has the same order of mag-nitude as the right-hand side of the desired inequality (18).Let us view a polynomial from A as a row of its dn coe�cients at themonomials from M. We supposed proved that one can pick out at leasthalf of the elements Xu from S such that the matrix composed of the rowsXuf for these Xu 2 S contains the unit submatrix just in the set of columnsXu. That means that the dimension of the ideal (f) � A is greater or equalto jSj=2. Then Lemma 2.1 b) would imply (18) due to the bound on jSjobtained above.We call Xu 2 S remote if�(Xu;Xu� ) > d� 1d n� s+ rfor all those � for which the ball centered atXu� covers at least one non-trivialmonomial from supp (f). Observe that if we compose the above matrix ofthe rows Xuf for all remote Xu then it contains the desired unit submatrix.Indeed, any monomial Xu0 2 supp (f); Xu0 6= 1 belongs to a ball with theradius r centered at Xu� for some �. Therefore,�(Xu;Xu0) � �(Xu;Xu� )� �(Xu� ;Xu0) > d� 1d n � s:Hence for any Xu0 2 S (not necessarily remote) we have�(Xu;Xu0Xu0 ) � �(Xu;Xu0)� �(Xu0 ;Xu0Xu0) = �(Xu;Xu0)� �(1;Xu0)= �(Xu;Xu0)��d� 1d n � s� :Thus, �(Xu;Xu0Xu0) > 0 which means that the row Xu0f can not have anon-zero entry in any column Xu for a remote Xu, except for appearance ofan entry equal to 1 in the column Xu0 .In order to justify the remaining goal, i.e., to show that at least half ofthe elements Xu 2 S are remote, it su�ces to prove for every � the boundon the probabilityPr �Xu 2 S : �(Xu;Xu� ) � d� 1d n� s+ r� � 12N : (21)24



A random monomial Xu in S can be constructed in two steps. First, wechoose a random I � f1; : : : ; ng of cardinality d�1d n � s. Then we pick arandom monomial Xu in SI � S, where SI = fXu : ui 6= 0 if and only if i 2Ig. Accordingly to this construction, we split the proof of (21) in two parts.Denote I� = fi : (u�)i 6= 0g, and let w = jI�j. First, we showPr �jI \ I� j � w ��d� 1d � s2n�� � 14N : (22)Then we show that for every individual I such that jI \ I�j < w � �d�1d � s2n�,we have Pr �Xu 2 SI : �(Xu;Xu� ) � d � 1d n� s+ r� � 14N : (23)(22) and (23) will clearly imply (21).The best way to avoid tedious calculations in proving (22) is to replaceI by its Bernoulli variant ~I, i.e., every event i 2 ~I occurs with probabilityd�1d � sn , and these events are independent for di�erent i. Since E[j~Ij] =d�1d n� s, we get Pr �j~Ij = d� 1d n � s� � n�1;and all I with jIj = d�1d n � s are attained by ~I with the same probability.Hence, for proving (22) it would su�ce to provePr �j~I \ I�j � w ��d� 1d � s2n�� � 14nN : (24)However, j~I \ I�j is equal to the sum of w Bernoulli variables �1; : : : ; �wwith Pr[�i = 1] = d�1d � sn . We can assume R � 2r since otherwise the lemmabecomes trivial due to the presence of the term nr2R2 in (18). Since w � R� rby (19), this implies w � R=2: (25)Now we simply apply Cherno� inequality [3] for estimating the probabilitythat j~I \ I�j deviates from its expectation by at least sw2n , and this gives us(24):Pr �j~I \ I�j � w ��d� 1d � s2n�� � exp��
�s2wn2 ��� exp��
�s2Rn2 �� � 14nN25



if the constant C in (20) is large enough. Thus, (22) is also proved.For proving (23), let us notice that�(Xu;Xu� ) = jIj+ jI�j � jI \ I�j � j fi 2 I \ I� j ui = (u�)ig j> d� 1d n� s+ w �w�d� 1d � s2n��j fi 2 I \ I� j ui = (u�)ig j= d� 1d n+ wd � s+ ws2n � j fi 2 I \ I� j ui = (u�)ig j:Provided C > 4 in (20), (25) implies ws2n � r. Thus, it is su�cient to showthat Pr hXu 2 SI : j fi 2 I \ I� j ui = (u�)ig j � wd i � 14N : (26)But jfi 2 I \ I� : ui = (u�)igj is once more the sum of jI \ I�j �w �d�1d � s2n� Bernoulli variables attaining 1 with probability 1d�1 each. Ap-plying once more Cherno� inequality, we get (26). This also completes theproof of (23), (21) and Lemma 6.1.Now we are ready to complete the proof of Theorem 2.2. Let D = F �,N � fXu11 � : : : � Xunn g0�u1 ;:::;un<q�1 satisfy (4), where the constant � willbe speci�ed later, and f : (F �)n ! F be a function with supp (f) = Ncomputed by a depth 3 circuit (1) with N gates at the middle level. Supposethat N < jN j.Let r be a parameter satisfying the restriction16C1R(N ) � r � 1�0 log jN j; (27)where �0 is the constant from Lemma 5.3, and C1 is the constant assumedin the expression O(r) in that lemma (the exact value of r will be speci�edlater). Applying Lemma 5.3, we will �nd an (N;C1r)-sparse polynomial gsuch that (17) holds.Let us look more closely at the di�erence f � g. For every ball B in ourcollection of N balls of radius C1r covering supp (g) there exists at most oneXu 2 supp (f) with �(Xu; B) < R=3; R = R(N ). Indeed, if we had twodi�erent monomials Xu;Xu0 with this property in supp (f), then we wouldalso have �(Xu;Xu0) � �(Xu; B) + 2C1r + �(Xu0 ; B) < R;26
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