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Abstract

A depth 3 arithmetic circuit can be viewed as a sum of prod-
ucts of linear functions. We prove an exponential complexity lower
bound on depth 3 arithmetic circuits computing some natural sym-
metric functions over a finite field F. Also, we study the complexity
of the functions f : D* — F for subsets D C F. In particular, we
prove an exponential lower bound on the complexity of depth 3 arith-
metic circuits computing some explicit functions f : (£*)" — F (in
particular, the determinant of a matrix).

!Partially supported by RBRF grants 96-01-01222, 96-15-96090 and by INTAS grant
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Introduction

A depth 3 arithmetic circuit can be viewed as a sum of products of linear
functions. Despite this clear structure, only a handful of lower bounds for
explicit polynomials are known over infinite fields. Super-polynomial lower
bounds have been proven only under the assumption that the circuits involve
just (homogeneous) linear forms, rather than arbitrary linear functions, by
the same token, if products in a circuit contain a bounded number of linear
functions (see [7, 11]). For general circuits no bounds for depth 3 circuits
are known better than the classical Q(nlogn) bound [15, 2] for arbitrary
depth circuits (observe that this bound concerns the multiplicative complex-
ity, being different from the complexity measure of the number of gates at the
middle level of a depth 3 arithmetic circuit (1) which we study in the present
paper). Using some ideas from [7], [13] recently proved a nearly quadratic
lower bound for depth 3 formulae computing some symmetric functions.

The situation changes significantly when our underlying field is finite,
both in terms of the framework as well as in terms of approaches and results.
Let us call syntactical the ordinary framework of algebraic complexity in
which polynomials from F[Xj, ..., X,] are understood as formal syntactical
expressions. In this framework an exponential exp(£2(n)) lower bound on the
complexity of general depth 3 arithmetic circuits for the determinant of n xn
matrices was recently proved in [9].

An equally natural framework, also extensively studied in the literature,
treats polynomials from F[Xy,..., X,] as functions F" — F, and we call
this framework functional. It is equivalent to working in the factor-algebra
FI Xy, X))/ (X] = Xq,..., X1—X,,), where g = |F|, and every syntactical
computation is also a computation in the functional framework. Respectively,
obtaining lower bounds for functions is an even more difficult task, and prior
to this paper exponential lower bounds were known only for the case F' =
GF(2) [12].

Finally, in the seminal paper [14] Smolensky proposed to study also com-
putations in the function algebra {0,1}" — F' for fields other than GF(2),
and, for obvious reasons, we call this framework Boolean (syntactically, this
means that we impose the relations X? = X; for all variables X;). The bulk
of the research in this framework was devoted to Boolean circuits, i.e., to cir-
cuits composed entirely of {0, 1}-valued gates. In particular, [12, 14] proved
exponential lower bounds for bounded depth Boolean circuits over the basis
{=,A\,V,MOD,} that make the closest approximation to arithmetic circuits



in the Boolean world. Motivated by a related research in the structural com-
plexity, [1] proposed to study in the Boolean framework also computations
by arithmetic circuits. In particular, they showed that after taking the union
over all finite fields, bounded depth arithmetic circuits capture exactly the
complexity class AC'CP. So, these circuits form a natural hierarchical struc-
ture within the latter class that might be useful for understanding its power,
and this feeling is further confirmed by the current paper. Prior to it, no
non-trivial lower bounds were known in this model for depth 3 circuits over

any field other than G'F'(2).

Our contributions are as follows.

First, we give a short proof of an exp(£2(n)) lower bound for depth 3
circuit in the functional framework over any finite field. More specifically, we
show that every depth 3 circuits over a prime field G'F'(p) computing suitably
defined generalizations of MOD, and M AJ must have that many gates.
Then we give an easy extension to arbitrary (i.e., not necessarily prime)
finite fields. This in particular gives an alternative (and much simpler) proof
of exponential lower bounds over finite fields in the syntactical framework
for explicitly given symmetric functions (rather than the determinant [9]).

In the Boolean framework we can prove new lower bounds only for the
field GF(3). Our techniques, however, are more general, and a substantial
part of them can be applied to larger fields as well. In order to understand and
precisely state the corresponding results, we observe that there is no intrinsic
difference between functional and Boolean frameworks: these are simply the
two opposite poles of more general quasi-boolean framework in which we study
computations of functions f : D™ — F, where D C F' is arbitrary. In these
terms, we can prove an exp(€2(n)) lower bound for functions f: (F*)* — F
over arbitrary finite fields with at least three elements, and when F' = GF(3)
this becomes equivalent (up to a linear transformation on variables) to the
Boolean framework. In particular, this result strengthens our previous bound
in the functional framework (the reason for including the latter in the paper
lies in its simplicity and applicability to symmetric functions).

The results of the paper were announced in [10].

Table 1 summarizes our current knowledge about the best known lower
bounds for depth 3 arithmetic circuits.

The paper is organized as follows. In Section 1 we give a short proof of
our bound in the functional framework (Theorem 1.1).



Field\ Framework Boolean Functional Syntactical

GF(2) exp[(lf;n)) N exp(Q(n))
oro | oot | o) e
GF(). >3 | )y = | i)
infinite 2 Q(nlogn)

' [15, 2]

Table 1: Lower bounds for depth 3 arithmetic circuits

The rest of the paper is devoted to the quasi-boolean setting. In Section
2 we give some basic properties of the algebra of all functions f : D" — F,
where D C F, and state our main result which is a combinatorial property of
functions (F*)" — F' that implies large complexity w.r.t. arithmetic depth 3
circuits (Theorem 2.2). As one of the applications of this general criterium we
obtain exp(2(y/n)) lower bound for the determinant and the permanent of
an n x n matrix (compare with exp(Q(n)) lower bound [9] for the determinant
in the syntactical framework).

Sections 3-6 are entirely devoted to the proof of Theorem 2.2, and we
hope that some of the techniques we introduce on this way might be helpful
in other situations as well.

In Section 3 we introduce a slight variation of Valiant’s rigidity function
[16, 6] that we call m-rigid rank and show a lower bound on this measure
in terms of more constructive m-communication rank also introduced in this
section. The bound is shown to be tight in case of constant m (which is the
only case we need in this paper).

In Section 4 we prove that a product of linear functions has only a few
non-zeros on D", provided that this product has a large communication (or



thereby, rigid as well) rank (Lemma4.1). This allows us to approximate prod-
ucts of linear functions with large communication rank by a zero function,
and to deal in the sequel only with the products having small communication
rank.

In Section 5 we provide an approximation of a product with small com-
munication rank by a function having some special form, and combine this
with material from Section 4 into Theorem 5.1. In the partial case D = ™
this results in an approximation by a sparse polynomial (Lemma 5.3). More-
over, the support (the set of monomials) of this polynomial lies in a union of
few balls (w.r.t. the Hamming metric), each of a small radius.

Finally, in Section 6 we prove that if the support of a function f : (F*)* —
F has alarge coding distance, and its size is relatively small, then f can not be
approximated well by a sparse polynomial of the above form. This concludes
the proof of our main Theorem 2.2.

1 Exponential lower bound for depth 3 arith-

metic circuits for symmetric functions over
a finite field

We study depth 3 arithmetic circuits, that is representations of functions in

the following form:

1<v<N ¢

where L,; = Z aE;)Xj + ozgy) are linear functions. We call the right-hand
1<j<n
side of (1) a depth 3 arithmetic circuit since it contains 3 layers (with un-
bounded fan-in) of computations: its first layer consists in computing linear
functions L,;, the second layer is computing their products over i, and the
third one is computing the sum over v just according the right-hand side. In
this section we consider the functional framework in which the identity (1)
is understood as the identity of functions f : F'* — F' over the underlying
field F'. Our purpose is to give a short proof of exponential lower bounds
on the complexity (in fact, on the number of gates at the middle level N)
in the representations (1) for quite natural symmetric functions f over any
fixed finite field F'. Let us begin with the case F' = GF(p), where p is a fixed

prime.



Viewing each element © € F' as an integer 0 < z < p — 1, one can define
for any prime ¢ the generalization MOD, p : F* — I of the corresponding
Boolean function MOD, as follows:

1 if ijz() (mod ¢)
A4()l)%F($17"'7xn):: 1<5<n

0 otherwise.

Theorem 1.1 Provided F' = GF(p) and q is another prime, for every rep-
resentation MOD, g in the form (1) the lower bound N > exp(§2(n)) holds.

Proof. Similarly to [12, 14], we want to show that every small size depth
3 arithmetic circuit can be approximated by a low degree polynomial. Let
us consider an individual product II = [[, L;, L; = Z a;; X; + ;. By
1<5<n
its rank rk(1l) we mean the rank of the matrix of coefficients (cvi;) of the
linear functions {L;} without their free terms. Take some threshold r (to be
specified later). We treat separately the products Il with rank greater or less
than r.

Case 1. rk(II) > r.

In this case we have the obvious bound on the probability

Pr :z;EF”:l:[Li(x)%()] < <]%>7 

Case 2. rk(Il) < r.

Then we have the bound on the degree deg (II) < r(p—1). Indeed, express
each L; as a linear combination of (less than r) elements of a basis, thereupon
open the parenthesis in the product and use the relation LP? = L present in
the functional framework.

Applying this case analysis separately to every product in (1), we have
the following:

Lemma 1.2 For every function f representable in the form (1) and every
parameter r there exists a polynomial g with deg(g) < r(p— 1) such that

Priz e F": f(z) # g(2)] < (%)r N.



Unfortunately, we do not know how to apply this lemma directly: it
seems, known lower bounds on the rate of approximation of explicit functions
by low degree polynomials over finite fields other than G'F'(2) are too weak.
We turn around this difficulty by the following simple trick that gives us a
direct reduction to necessary bounds in the Boolean case [14].

Consider the Boolean cube B" = {0,1}" C F”. For any vector ¢ =
(¢1,...,¢,) € F" consider the (shifted) function MOD((;I)? : B" — F defined
by MOD;?I)?(:L'l, cesy) = MOD,p(x1 + ¢y oy + ¢,). Actually, for any
function h : B® + ¢ — F one could define the shifted function A9 : B" —
F by h9(z) = h(x + ¢). We call ¢ nondegenerated if at least n/3 of its

coordinates cy,...,c, are distinct from p — 1, and degenerated otherwise.
Clearly,
1
Pr[c € F": ¢ is nondegenerated]| > 5
Suppose now that MOD, r has a representation (1) with N terms, and

let ¢ be chosen in accordance with Lemma 1.2. Since any point from F”
belongs to the same number 2" of the shifted boolean cubes B™ + ¢, there
exists at least one nondegenerated vector ¢ € F™ for which

Pr |z € B": MODY)(x) # g<c>(x)} <2 (%)r N, (2)

Assume w.l.o.g. that 0 < ¢q,...,¢s < p—2, s > n/3. Then there exists
a fixed 0-1 assignment as11,...,a, to the last n — s variables such that the

bound (2) is preserved, i.e.,
—1\"
<2 (p—> N. (3)
P

Notice that MOD;?I)?(:I;, a) = MOD; ,(x) for some 0 <t < g, where MOD,, :
B* — B is the Boolean function defined in [14]. We need the following
numerical refinement on the main technical tool from that paper:

Pr |z € B®: MOD((;;?(J},G) +* g(c)(:zj,a)

Lemma 1.3 (Smolensky) Let g and p be different primes, 0 < t < ¢
and g(X1,...,X,) be a polynomial over GF(p) of degree at most d. Then

MOD; (x1,...,2,) and g(x1, ..., x,) diverge in at least <E?:/(2)_d_1 (?)) >
Q <<n/2fd_1>> points from B™.



[14], as well as [12] in a similar statement, put here d ~ y/n which ensures
disagreement in at least a polynomial fraction of all inputs. We notice that
one can achieve better results when d is linear in n. In particular, comparing
(3) and Lemma 1.3, the latter with n := s, g := ¢'9(z,a), d := (p — 1)r, we
get in our case:

N2 27 (i) (8/2 —SO(T)>'

When r = es for a constant e, <5/25_65> > 2s(H1/2=)=o(1) " where H(a) =
—alog, o — (1 — a)logy(1 — @) is the entropy function. Since H'(1/2) = 0, it
follows that when ¢ is small enough, N > exp((r)) > exp((n)). Theorem
1.1 is proved.

One can introduce a symmetric function MAJr : F* — F similar to
the customary MAJ : B" — {0,1} and being universal for all symmetric
functions. Namely, MAJp(x1,...,2,) = Lif 9 <y < -+ < 4,21 where
~; equals to the number of ¢ among zy,...,z, for 0 <1 < p— 1, otherwise
MAJp(xy,...,2,) = 0. One can show (similar to [12, Theorem 4]) that
any symmetric function f(xy,...,2,) : F" — F could be represented as a
F-linear combination of polynomially many functions of the form

MAJF(Xl, ce ,Xn, My ey nn(p—l))
for suitable n; € F, 1 <7 < n(p—1). This entails the following corollary.

Corollary 1.4 For the complexity of any depth 3 arithmetic circuit (1) rep-
resenting M AJp the lower bound N > exp(€2(n)) holds.

Finally, we notice that there are many natural ways of extending the
definitions of MOD, p, MAJp to the fields F = GF(p"), X > 1 such that
the same method gives lower bounds also in this case. For example, we might
fix an arbitrary G'F(p)-linear retraction ¢ : F' — G'F(p) and then let

MODgp(xq,...,2,) = MODgar@p) (o(x1), ..., d(xn)),

and similarly for M AJg. It is easy to see that with this definition the proofs
of Theorem 1.1 and Corollary 1.4 extend to arbitrary finite fields.



2 Quasi-boolean functions over finite fields
and main results

In the rest of the paper we deal with the following quasi-boolean setting. Let
q=p", F' = GF(q), and fix a subset D C F of cardinality d = |D| > 2. We
are interested in functions f : D™ — F and call them quasi-boolean extending
the Boolean framework from [14] where D was just {0,1}. Alternatively, one
could also view f as a partial function on the entire space F™.

Let g(X) = [[,ep(X —a). Then the F-algebra of all functions f: D" —

F'is isomorphic to the quotient algebra
A=F[X1,...,X,]/(9(X1),...,9(X)).

The main purpose in the rest of the paper is to obtain lower bounds on
the complexity of depth 3 arithmetic circuits (1) for certain explicit functions
I € A, equality (1) being viewed also in the algebra A, in the case d = ¢— 1.
Before formulating our results, however, let us mention some easy properties

of A (cf. [14], also [8]).

Lemma 2.1 a) A is an algebra of principal ideals;

b) for any f € A the number of nonzeroes |{x € D" : f(x) # 0}
coincides with the dimension of the principal ideal (f) C A.

Clearly, monomials of the form X{* -... - X' 0 < uy,...,u, < d, con-
stitute a basis of A; for an element f € A we refer to its degree w.r.t. this
basis. In abuse of notation we identify sometimes f with the corresponding
polynomial in this basis.

Below it will be sometimes convenient to imagine a metric geometry in
the space of monomials M = {X{" - ... - X" }o<u,,....un<a endowed with the
Hamming distance p (being equal to the number of distinct coordinates). For
an n-tuple u = (uy,...,u,) we will abbreviate the corresponding monomial
H?ﬂ X;” to X*.

Suppose now that D C F* and, moreover, that D is a coset modulo some
(cyclic) subgroup in F™*. Then the minimal polynomial g = [],.p(X — a) of
D is a binomial ¢ = X? — b and M is the multiplicative basis in the sense
that the following two properties are satisfied:

1. The set of functions D" — F' representable as « - X", where a €
Fr, X" e M, forms a group w.r.t. multiplication;



2. the Hamming distance is invariant under multiplication in this group:
p(m'my, m'ms) = p(mq, ma).

For N C M, define its coding distance R(N') as the minimum of p(my,m3)
over all pairs my # may, my,my € N. Thus, R(N) is equal to the ordinary
coding distance R(U) of the set U = {u| X* € N'} considered as an error-
correcting code in [d]". For f € A represented in the basis M, let supp (f)
be the set of all monomials that occur in f with a non-zero coefficient. Our
main lower bound criterium is the following theorem:.

Theorem 2.2 For cvery fized finite field I there exists a positive constant
€ = €(F) > 0 such that the following holds. Let N C M satisfy the inequality

N |+ n <exp(e: R(N)?/n?). (4)

Then for any function f : (F*)* — F with supp(f) = N, any depth 3
arithmetic circuit (1) computing f has at least |N'| gates at the middle level.

Corollary 2.3 There exists a positive constant € > 0 such that for any U C
B™ satisfying
U] +n < exp(e- R(U)*[n?)

any depth 3 arithmetic circuit of the form (1) computing the function

> ﬁ(Xj +1)% : B" — GF(3)

uwel j=1

must have at least |U| gates at the middle level.

Proof. Immediate from Theorem 2.2 after the linear substitution X;

X+ 1.

Let po be any prime divisor of ¢ — 1, and let U C (GF(py))" be any
explicit GF'(po)-linear code with the coding distance R = don and dimension
k = ¢on for some positive constants dg, ¢g. Among examples of such codes are
e.g. Justensen codes [19] and Goppa codes [18]. Let uy, ..., ux be an explicit
basis of U over GF(pg). Removing, if necessary, some vectors from this basis,
we may assume w.l.o.g. that ey < ed3/(log po), where € is the constant from
Theorem 2.2. Then Theorem 2.2 implies in particular an exp(€(n)) lower

10



bound on the complexity of any depth 3 arithmetic circuit computing the
function

=S Xy

welU
Next, since U is an G'F(pg)-linear space with basis us, ..., u, we have
—1 k 1
fU _ Z X<qp—0>(mu1+..~+ukuk) _ H Z Xqu;oui
B 5eees b EGF (o) =1 \ u€GF(po)

thus fy can be obtained as a projection of the following function

po n(g—1)
11 Xip i F* = F. (5)

=1 p=1 j=1

Hence, the complexity of (5) w.r.t. Y5 arithmetic circuits is exp(€2(n)); on
the other hand, this function is represented as a Il3 arithmetic circuit of size
O(n?). This gives us a separation between these two classes.

Finally, we make use of the construction from [17] (see also [5]). Following
[17] we say that a polynomial f € F[Xy,...,X,] is a projection of a polyno-
mial g € F[Y1,...,Y,,] if substituting in ¢ for each variable Y; in a suitable
way either one of the variables Xy,..., X, or a constant from F', one gets f.
It is proved in [17] that if f is representable by an arithmetic formula of a
size t then f is a projection of

e Determinant Ewesﬂﬂ(—l)sgn(w) H1§i§t+2 Xir(i)s
e Permanent Ewesﬂﬂ HlSiSt+2 Xir (i)

e Hamiltonian cycles polynomial ], ;<,45 Xix(;), Where the summa-
tion is taken over all permutations 7 which consist of a single cycle.

Thus, m = (¢ + 2)? in the construction of [17]. Applying this result to the
function fy in algebra A, we conclude with the following corollary.

Corollary 2.4 For each of the following three functions : (F*)”2 — F:
o Determinant

o Permanent

11



o Hamiltonian cycles polynomial

any depth 3 arithmetic circuit (1) computing f must have at least exp(Q(y/n))
gates at the middle level.

The rest of the paper is entirely devoted to the proof of Theorem 2.2.
As we noted in Introduction, we will try to present as many techniques as
possible for as general D as possible, and we will employ the same idea of
approximation as in Section 1. For doing that we need some properties of
individual products II = []. L; which would ensure that II(z) = 0 holds
with high probability on D”. Clearly, the ordinary notion of rank is already
not good enough: for example, members of the multiplicative basis M never
evaluate to 0 on D". More generally, the same holds if L; are arbitrary linear
functions without zeros in D", and we begin our analysis with identifying
the case when we at least know that such “unpleasant” L; must have only a
constant number of variables.

Definition 2.5 For any integer 2 < d < ¢ a linear d-sweep {s(d) (w.r.t. the
field F' = GGF(q)) is the minimal m (provided that it does exist) such that for
any m subsets Dq,.... D, C F,|D{| = ... =|D,| = d any linear function
L(X1,..., X)) =a X1+ -+ an X, + a with nonvanishing coefficients a; #
0,...,a, # 0, sweeps the entire F' in the sense a1Dy + --- + a,, D, = F.

Lemma 2.6 a) (s(d) is defined if and only if d > p*~', in this case (s(d) <
b) forq/2 < d < q we have (s(d) = 2.

Proof. a) The part only if is obvious since in case A > 1, d < p*~! one can

take arbitrary Dy = ... = D,, C GF(p*™) and ay,...,a,m,a € GF(p*~)*.
To prove the inverse, let us show that

la1 D1 + -+ + app1 Doga| > laa D1+ -+ - + aeDy|, (6)

unless already a1 Dy + -+ + ayD, = F. Together with |a;Dq| = d, this will
entail a) by induction on /.

Pick arbitrarily ag € Dyyq. Since |Dpyq| > p* Y, Dy — o generates I
as a GF(p)-linear space. Hence, there exist elements oy, ..., o) € Dyyq such
that A elements (a; — ap),. .., (o) — ap) constitute a basis of F' over GF(p).

12



We claim that a1 Dy + -+ 4+ ay Dy + appr0; # a1 Dy + -+ + ap Dy + apypr00 for
at least one 1 < ¢ < A. The claim implies (6) because |a; Dy + -+ + a¢ Dy +
appr00] = a1 Dy + - 4+ @Dy + appr0u] = lar Dy + - + arDyl.

To prove the claim, suppose the contrary. Then a1D; 4+ --- + a, Dy +
appr00 = arDy 4+ -+ + arDe + agpr00 + appr(a; — ap), for any 1 <0 < A
Therefore, 1Dy + -+ 4+ a¢D¢ + apy100 = a1Dy + -+ + aDy + 100 +
Qo1 Y q<iey bilos — ap) for arbitrary by, ..., by € GF(p). But since the latter
sum sweeps the entire F', we get a contradiction.

b) Let L = a1 X1 + a2 Xz + a. If |Dq],|D2| > ¢/2, then for any a € F
the sets a1 D1 4+ a C F and a — ay Dy C F have nonempty intersection. This
implies a € a1 D1 4+ a3 Dy + a.

3 Rigid rank and communication rank of a
matrix

In this section we continue our search for assumptions on a product II = []. L;
that ensure its vanishing almost everywhere on D". We already know one
class of non-vanishing products of large rank: these are those products in
which L; do not represent 0 on D", and we know from Lemma 2.6 that L;
then must have only O(1) variables each. This class of “bad” products can
be clearly further extended to products of the form

T+ 1), (7)

K3

where L do not represent 0, and [], LY has a low rank. Our eventual goal is
to show that this example encompasses already essentially all non-vanishing
products.

The fact that a product can not be represented in the form (7), where
L?s depend on few variables and rk([[,; L) is low, is clearly akin to the
standard matrix rigidity function R4(r) [16, 6], and in this section we give
its satisfactory description in terms of internal properties of the matrix.

Let A = (a;;) be a k X n matrix over some (not necessarily finite in this
section) field, and let m > 0 be an integer. For subsets [ C {1,...,k}, J C
{1,...,n} we denote by A;; the submatrix of A formed by its rows from [/
and the columns from J. Fori € {1,...,k}, A;s is the corresponding subrow
of the ith row.

13



Definition 3.1 The m-rigid rank rrk,,(A) of A is defined as the minimal
possible rank of matrices B which differ from A by at most m entries in each
row.

Definition 3.2 The m-communication rank crk,,(A) of A is defined as the
maximal possible number r of its rows I C {1,...,k}, [I| = r such that there
exist pairwise disjoint sets of columns Jy,...,J,,, also of cardinality r each,
with the property that all submatrices Ayy,, 0 < ¢ < m are non-singular.

Notice that both rrk,, and crk,, are not invariant in general with respect
to transposing the matrix A. Obviously, rrky and erkq coincide with the
usual rank. The connection with the standard rigidity function Ra(r) (the
minimal overall number of changes in A required to reduce its rank to r) is
provided by the inequality

Ra(rrk,(A)) < km.

The term “communication” is suggested by the resemblance to the common
(worst-case partition) scenario in communication complexity.
The following lemma relates the rigid and communication ranks.

Lemma 3.3 rrk, (A) < (m+2) erk,(A) < (m+2)(m + )rrk,(A).

Proof of the left inequality. Choose I, Jy,. .., J,, accordingly to Definition
3.2, so that |[I| = |Jo| = ... = |Jn]| =7 = erky,(A). Denote J ={1,...,n}\
(JoU...UJp).

Take any row p € {1,...,k}\I. For every 0 < ¢ < m there exists a unique
linear combination A, ;, = ZO{,EZ)AZ'7JZ. Consider the set J; C J consisting

el
of all the columns j € J such that a,; — Zay)aij # 0. Observe that for any
el
J € Jy, the (r +1) x (r + 1) matrix Azug,,7,0g is non-singular.

We claim that |Jéo| < m for some 0 < /5 < m. Assuming the contrary,
one can sequentially for £ = 0,...,m pick pairwise distinct j, € J]. Then all
(r+1) x (r 4+ 1) matrices Arugpy,50g), 0 < £ < m are non-singular, that
contradicts to the equality r = crk,, (A).

Now take (m 4 2)r n-dimensional vectors, among which there are r rows
Ait,.n)> ¢ € I 'and (m + 1)r unit vectors e; = (0,...,0,1,0,...,0) (where
one is located at j-th position) for j € U Ji. To complete the proof of the

0<t<m

14



left inequality in the lemma, it suffices to show that each row of A equals
to a suitable linear combination of these (m + 2)r vectors up to at most m
entries.

This is obvious for the rows A; ¢, .y, 7 € I.

Take p € {1,...,k} \ I and utilize the notation introduced above. Then
the difference A, 11, ) — ZQEZO)AL{L.W} equals to a linear combination of

el

(m + 1)r vectors e; up to at most m entries from Jéo.

Proof of the right inequality. Again we denote r = crk,,(A) and choose
I,Jy,...,J, accordingly to Definition 3.2. Choose a matrix B accordingly
to Definition 3.1 so that rk(B) = rrk, (A), and mark all the entries at which

A and B differ. There are at most (rm) marked entries in the rows from I.

Therefore, for some 0 < ¢ < m at mos o of these entries are located in
Ar,g,. This implies rk(B) > rk(Br,j,) > ol and completes the proof of the
right inequality.

4 Products of large communication rank van-
ish almost everywhere

In this section we show that products of large communication rank do vanish
almost everywhere on D”. In combination with Lemma 3.3, this will imply
that every non-vanishing product must be representable in the form (7),
where L’ depends on few variables, and [[, LY has low (ordinary) rank.
Throughout the section, we fix a product of linear functions II = [[. L;
and a subset D C F' = GF(p") of cardinality d > p*~'. Il is viewed as a
quasi-boolean function I : D" — F' (see Section 2). Let L; = Z a;; X;+a;
1<j<n
where a;;,a; € F. By the my-communication rank crk.,, (II) of Il we mean
the my-communication rank of the matrix A = (a;;) of its coefficients (thus,
the free coefficients of L; are excluded). Since d > p*~!, the linear d-sweep
(s(d) is defined and does not exceed ¢ — d + 1 by Lemma 2.6 a); we denote
it by m.

Lemma 4.1

Priz e D" : 1l(x) # 0] < exp(—=Q(crkm,—1(11))).
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Proof. Let r = crk,,_1(Il). Selecting r rows from the matrix (a;;) in accor-
dance with Definition 3.2, we can assume w.l.o.g. that Il is the product of
just r linear functions. Moreover, varying the specifications from D for all
the variables corresponding to the complement {1,2,... n}\(JoU...UJy_1),
we can assume w.l.o.g. that the matrix of the coefficients A = (a;;) is of size
r x rm and consists of m non-singular r x r submatrices A1, ..., At Since
the bound claimed in the lemma will be proved for an arbitrary specification,
this would imply the lemma by the standard averaging argument.

For each 1 < ¢ < m denote by z* a random vector from D", and denote
by x4, ..., 2" d independent copies of z%; thus, all dm vectors z* (1 < ( <
m, 1 < o < d) are picked out independently. Our first purpose is to prove
the following bound on the probability:

Pri¥oy,...,on € {1, dy (2", . .. ™) £ 0] <exp(—Q(r)). (8)

We show by induction on ¢ < m that for suitable constants v, > 1, §, > 0
with probability greater than 1 — exp(—d,r) there exist s > r /v, rows [ C
{1,...,7} in A such that for every 1 < ¢t < £ all d values of the vectors
AWt AWM in every of these rows are pairwise distinct.

The base for / = 0 is obvious. For the inductive step from ¢ to ¢ + 1,
we will treat the newly introduced vectors A L1 AW 2414 By ap
internal induction on ¢ < d. More specifically, we show, increasing o one by
one that for suitable constants v, > 1, d;,,, > 0 with probability greater
than 1 — exp(—dy,, ,r) there exist s’ > s/4] rows I’ C [ in AU such that
all the entries of the vectors AHD 411 A+ 410 i every row from
I" are pairwise distinct. Suppose that for some value of o we already have
such an I’ and denote by p : F” — F* the projection onto the coordinates
from I'.

The number of vectors in F'*' such that at most s’/ (for a certain constant

v > 1) its entries differ from all the corresponding entries of the vectors
pAUFD L, AUFD 419 g equal to

s' [y o
> (5)eHa-or ()
We claim that for any fixed v € F*,

Pr [pA(Z-I-l)xZ-I-l,U-I-l — U] < d_SI. (10)
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Indeed, select s’ columns J of the matrix A" such that A(Il;i}l) is non-
singular. Varying specifications from D for all the variables not in J, and
noticing that for every such specification all the d* vectors p AUttt
are pairwise distinct, we get (10).

Combining (9) and (10), we see that the probability that at most s’/
(for a certain constant 4 > 1) entries of the vector p A+ 1o+ differ from
all the corresponding entries of the vectors pAUFD gL 5 AUHD) 410
does not exceed

s' [

o ; ( Z ) o HK(g— o)t < <%>§ ( ‘z ) (g—o).  (11)

Since 0 < d — 1, for large enough constant + there exists a constant n > 0
such that the latter expression is less than exp(—ns’).
Thus, if we set v, = 7.7 (so that v, =+7, v, = 4* and &' = r /y¥¥7),

the probability that the entries of the vectors

pA(Z—I—l)xZ—I—l,l ) pA(Z—I—l)xZ—I—l,cr—I—l

ey

are pairwise distinct in at least s/, rows is greater than

(1 = exp(=0j41 ,7))(1 —exp(=ns")) = 1 — exp(=8jy; 5447)

for an appropriate d;,, ,,; > 0. This completes the inner induction (on o),
to complete the external induction (on £) put §p1 = &, 4.

Now, to prove (8), we simply observe that if there exists a single row ¢
in which for every 1 < ¢ < m all d entries Az ... AOz are pairwise
distinct, then also oy, ..., 0, € {1,...,d} such that II(z"*, ... 2™") = 0.
Indeed, since the i-th linear function in the product II equals to (AMz!); +

(A(m)xm)i—l—ai, Definition 2.5 of the linear d-sweep shows that there exist
Olyenos0m €41,...,d} such that (AMz'o1); 4o 4 (AW gmom), g, = 0,
which completes the proof of (8).

Our next goal is to prove an inequality for expectations in a rather general

probabilistic-theoretical setting:

E 11 gV Yoy | > (Elg(Y, ., YD, (12)

01 4eeeyom €{1,...,d} ™

where Y1, ... Y are inde-

pendent copies of Y, 1 </ < m, and g is a real-valued nonnegative function.

Y™ are independent random variables, Y', . ..

Y Y
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Taking as Y, ..., Y™ the vectors ',... 2™ and as g(Y',...,Y™) the char-
acteristic function of the predicate II(z',...,2™) # 0, we infer Lemma 4.1
from (12) together with (8).

To prove (12) denote

E 11 gVl Yy ey em)

Oog1 7“.70.m€{17.“7d}m—Z

by e;. We show for every 1 < ¢ < m that ¢_; > e?, which will imply
co > el e (12).
For any (fixed for the time being) tuple

£— l l d m md
y:(ylv"'vy 17y+1717"'7y+177"'7y 17"'7y )

denote the expectation

E 11 gly's .y T Yy o)

Tog1reensomE{ L, d}m—t
by ei(y). Then
er = Ble, (Y, .. . YTyl oy rd o ymL Yy,
On the other hand we have

I3 11 gy, .y T YT ey

0¢:0¢+1 7"'70-m€{17"'7d}m_z+1

ZE{ 11 ( 11 gy -y

or€{1l,0nd} Nopgrseom€{l,.. d}mt

Lo {+1,0 MO m
Y Zvy Z+17‘”7y )>:|

= (ee(y))",

the latter equality holds since Y, ..., Y* are independent. Taking the ex-
pectations against all tuples y, we get

ermy = Bl(e(Y?h, ... YLy Sy erhd oy Ly

Due to Jensen’s inequality (E[Z% > (E[Z])?) we conclude that the latter
expectation is greater or equal to (E[e,(Y)])? = ¢, which completes the
proof of (12) and thereby, Lemma 4.1.
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5 Approximating depth 3 arithmetic circuits
by (N, r)-sparse polynomials

In Sections 2-4 we proved that every product Il that can not be represented in
the form (7), where L depend on O(1) variables, and [[, LY has low rank, is
sufficiently well approximated by 0. In this section we complete the analysis
and treat the products that can be represented so. Essentially, we are able to
approximate them by (sums of moderate number of) the products [[. L; in
which every L; does not represent 0 on D". In particular, in the case D = ™
we get an approximation by sparse polynomials of a certain special form.
More specifically, we have the following theorem.

Theorem 5.1 Lel F'= GF(p*), D C F be such that |D| > p*=', Il =[], L;
be a product of linear functions, and r be any threshold.
a) There exists a function g of the form

exp r

(O(r))
g = Z 9v H Luiv (13)
=1 7

v

where g, are products of at most O(r) linear functions each, L,; do not have

zeros in D™, and

Y

Prlee D" : 1l(x) # g(x)] < exp(—0Q(r)). (14)

b) If |D| > p'/2, then we can additionally require that L,; in (13) have
the special form

where X, is a variable depending only on i, and z,; € F\ D.

Proof. We give a complete proof of part b) (as this is the part which is really
used in the next section), and then sketch how to extend the argument to
prove part a).

Since d = |D| > p*/2, we have s(d) = 2 by Lemma 2.6 b). If rrk, (II) > r
then, according to Lemma 3.3, crky(Il) > r/3 and, due to Lemma 4.1,
Prlz e D™ : Il(z) # 0] < exp(—£(r)), so we can simply let ¢ = 0. Hence-
forth, we assume that rrk;(II) < r. Choose r linear forms (¢1,...,¢,) and
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variables X, such that each linear function L; can be represented as an
F-linear combination

L; = Z aisps + b, X, + ¢

s=1

By Lagrange interpolation,

II = Z H Laf . H(leh + Z: A + Ci)- (16)

acFT 1<s<r 5 7
aleF\{as}

Let T1(®) = Hbi#O(in — Zai)s Zai = —(Di_j @isas + ¢;)/b; be an individual

term in this sum (up to a multiplicative constant). Let
R = {X]l | Hl(bZ 7£ 0/\ZM € D)}

Case 1. |R| < (2qlogq)r.
Choose arbitrarily z € D, and let

b, #0 b, #0
zqi €D zni €D

Then the products II"®) have the form []; L,; required in (13), (15). On the
other hand, the term II®) contributes ¢,I11"® to the sum (16), where

/
Go = || QbS—OéS || X]i_Zai
[0/ - ~ -
oy — o X, —=
1<s<r s b; #0 *
abeF\{as} Zq €D

The first term H

~ here is already a product of r linear func-

1<s<r s
ateF\{as}
. X — Zai .
tions. The second term H —— is equal to H 9aj(X;), where g,
.
b #0 e X,eR
Zoi €D

are some functions in one variable on D; we can represent them as degree

O(1) polynomials in one variable. This implies that H 9aj(X;) and, hence-
X,ER

forth, g, can be represented as sums of exp(O(r)) products with O(r) linear

functions in each.
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Case 2. |R| > (2qlogq)r
This means that I1(*) contains at least (2¢log ¢)r linear functions (X, —
Zai) With z,; € D and pairwise distinct j;’s. Hence,

(2qlogq)r
Pr [:1: cD": H(a)(:zj) +* 0] < (1 — 8) <q%.

Since there are at most ¢ different o’s, we can safely approximate all I1(*)
corresponding to Case 2 by 0.

Thus, we simply take E{a| Case 1} Yo 1®) as the required approximation
(13) which proves part b).

Proof of part a) (sketch). m = (s(d) is defined by Lemma 2.6 a), and, for the

same reasons as before, we can assume rrk,,_1(1l) < r. We again decompose

Il in the form 5 .
_ s — Y 1(a)
n=> I s=u
a€FT  1<s<r 5 s
al€F\{as}

where TT(®) = [I; Lai, and Ly, this time have at most (m — 1) variables each.

Let us split II®) in two parts I1(®) = H;ao) . Héa), where H;ao) consists of those
(@)

Lo; which do not have zeros in D", whereas all functions from Il have
there at least one zero. Let i be the maximal number of variables in a linear
function from Héa); thus, originally we have o < m — 1. We are going to
reduce the value of i by applying recursively to Héa) a generalization of the
analysis from the proof of part b).

Case 1. There exists a set R ={X;,,...,X,.} of at most y,r variables
such that every linear function L.; in Héa) essentially depends on at least
one variable from R. Here v, > 0 are some absolute constants such that
Vm—1 2> Ym—2 2> ... 2> V1.

In this case we apply Lagrange interpolation once more and write down
the representation

I Xie =Bt 1160
!

Ts. Be= 0

BlED\ {5}

e — Z
BeD:®

(valid on D™), where I1(®# is obtained from II®) by substituting 3i,..., 3,

for the variables X, ,..., X, respectively. In L,; € Héa) this substitution
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decreases the number of variables (so that now it becomes at most (h — 1)),
and the images of L,; € H;o still do not have zeros in D"~°. Thus, we
have reduced in Case 1 the product I1*) to exp(O(v,r)) products I1(*#) with
smaller values of h.

Case 2. There is no set of variables R described above.
Select among the linear functions in Héa) the maximal possible set

Loty oy Lon

such that no variable occurs in two of them. We claim that M > ~,r/h.
Indeed, otherwise we could take as R the set of all variables occurring in
these M functions: |R| < 4,7 since every L,; has at most h variables. Now,
the events L,i(x) =0 (1 <1 < M) are independent, and each of them occurs
with probability ©(1). Hence,

Pr|ee D" T (x) # 0| < exp(—Q(yr)),

and at most exp(O((y1 + -+ + yu—1)r)) such Héa) resulted from branching
in Case 1 at previous steps. Since v,_1 > Yn_2 > ... > ¥, we still can
approximate all of them by 0.

After applying this recursive procedure (m — 1) times, we completely kill

our Héa) which completes the proof of part a).

Theorem 5.1 looks especially simple in the case D = F’*.

Definition 5.2 A polynomial of the form >, . v ¢, X™ where X is a
monomial and deg (g,) < r is called (N, r)-sparse.

Lemma 5.3 For every finite field I' there exists a positive constant ég =
do(F) such that the following holds. For every parameter r and every func-
tion f: (F*)* — F computed by an arithmetic depth 3 circuit (1) with the
complexity N < exp(dor), there exists an (N, O(r))-sparse polynomial g such
that

Prie € (F)" - f(x) # g(e)] < exp(~9(r)). ()
Proof. Immediate from Theorem 5.1 b): when D = F*, all z,, in (15) must be
0, and (13) simplifies to the (1, O(r))-sparse polynomial g = <EeXP(O(T)) gy>

v=1
[I; X;,. Summing these approximations over all N gates at the middle level
of our circuits, we get (17) (provided dy is smaller than the constant assumed

in (14)).
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6 Lower bound on the number of non-zeroes
for (N, r)-sparse polynomials

Although we are interested mainly in the case D = F™, our main argument in
this section is valid for any D C F* which is a coset modulo some subgroup in
F*. Recall from Section 2 that in that case the algebra A of functions D™ —
F has the multiplicative basis of monomials M = {X"}o<u,, .. un<d, d = |D]|.
One can rephrase Definition 5.2 using the (Hamming metric p) geometric
language in M (see Section 2): if a polynomial ¢ is (N, r)-sparse then supp (g)
lies in a union of N balls each of radius r (centered at X“~). Conversely, if
supp (g) can be covered by N balls of radius r, then ¢ is (N, (d — 1)r)-sparse.

The following lemma provides a lower bound on the number of nonzeroes
of an (N, r)-sparse polynomial.

Lemma 6.1 Let D C [I™* be a coset modulo some subgroup in I, f € A
be a (N,r)-sparse polynomial, such that for a certain R the support supp (f)
contains a monomial X" such that p(X", X*) > R for any other monomial

X* € supp(f). Then

n

Priz € D" : f(z) # 0] > exp (-0 (E (% +log(N + n)>>> . (18)

Proof. Replacing f by f - (a X“)™' where a € F* is the coefficient at the
monomial X* in f (and taking into account that M is a multiplicative basis
of A), we can assume w.l.o.g. that ug = 1 and that the free term of f is 1.
We keep the notation X* (1 < v < N) from Definition 5.2 for the centers of
the radius r balls that cover supp (f). Note that if the ball centered at X*~
contains at least one monomial X* from supp (f) other than 1, then

p(1, X)) 2 p(1, X*) = p(X™, XY) > R — 1. (19)
Put c
5= {%(r + (Rlog(N + n))l/Q)J (20)

for an appropriate sufficiently large constant (' which will be specified later.

W.l.o.g. we can assume that s < dZ_—dln, because otherwise (18) is trivial.

Consider the sphere S C M of the radius djTln — s centered at 1 (w.l.o.g.
we can assume that d|n), i.e. S = {X“ ‘ p(l, X)) = djTln — 5}. Since

=1, n " st dF
|S|=(d—1) 4 (Cleln—s>Zd exp<—0<gd_1—|—logn>>,
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we notice the bound on the probability
2
PriX*e M : X" € 5] > exp (—O (S— —|—logn>> )
n

and the right-hand side of the latter inequality has the same order of mag-
nitude as the right-hand side of the desired inequality (18).

Let us view a polynomial from A as a row of its d” coefficients at the
monomials from M. We supposed proved that one can pick out at least
half of the elements X from S such that the matrix composed of the rows
X" f for these X* € S contains the unit submatrix just in the set of columns
X*. That means that the dimension of the ideal (f) C A is greater or equal
to |S|/2. Then Lemma 2.1 b) would imply (18) due to the bound on |S|
obtained above.

We call X* € S remote if

d—1
p(X* Xw) >

n—s+r

for all those v for which the ball centered at X** covers at least one non-trivial
monomial from supp (f). Observe that if we compose the above matrix of
the rows X" f for all remote X™ then it contains the desired unit submatrix.
Indeed, any monomial X* € supp (f), X* # 1 belongs to a ball with the
radius r centered at X" for some v. Therefore,
d—1

d

Hence for any X* € S (not necessarily remote) we have

p(XU, X0XY) > p(XU XYY — p(X¥, X0 XY) = p(X% X)) — p(1, X*)
, d—1
= p(X“,X“)—( y n—s).

Thus, ,o(X“,X“OX“/) > 0 which means that the row X" f can not have a
non-zero entry in any column X" for a remote X", except for appearance of

p(Xu7Xu') > p(Xu7Xuy) o p(qu7Xu') >

n —aS.

an entry equal to 1 in the column X",

In order to justify the remaining goal, i.e., to show that at least half of
the elements X" € S are remote, it suffices to prove for every v the bound
on the probability

d—1 1

n—s4+r| < —. (21)

Pr|X"eS:pX", X") < <3
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A random monomial X* in S can be constructed in two steps. First, we
choose a random [ C {1,...,n} of cardinality djTln — 5. Then we pick a
random monomial X* in S; C S, where S; = {X" : u; # 0 if and only if 7 €
I'}. Accordingly to this construction, we split the proof of (21) in two parts.
Denote I, = {v: (u,); # 0}, and let w = |[,|. First, we show

d—1 S 1
Pr [|IOL,| b ( d 2n>} 4N (22)

Then we show that for every individual I such that |[IN1,| < w- (Clel — %),
we have

Pr [X“ESI:,O(X“,X“”)§ n—s—l—r} §ﬁ. (23)
(22) and (23) will clearly imply (21).

The best way to avoid tedious calculations in proving (22) is to replace
I by its Bernoulli variant I, i.e., every event i € I occurs with probability
2=l — 2 and these events are independent for different i. Since E|] =
n — s, we get

2
.l e
—

d—1

Pr [|]N|: n—s} >n,

and all [ with |[/] = djTln — s are attained by I with the same probability.
Hence, for proving (22) it would suffice to prove

~ d—1 s 1
PrilInl|>w- | —— — — )| < —. 24
TD nifzw ( d 2n>]_4nN (24)
However, |]N N 1,| is equal to the sum of w Bernoulli variables &1, ..., &,
with Pri¢ = 1] = dgl — 2. We can assume R > 2r since otherwise the lemma

becomes trivial due to the presence of the term %L; in (18). Sincew > R—r

by (19), this implies

w > R/2. (25)
Now we simply apply Chernoff inequality [3] for estimating the probability
that |1 N 1,| deviates from its expectation by at least $*, and this gives us

(24):
pelinnze (G -5)] < oo (-0 ()
< oo (-2(5F)) <75

IA
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if the constant C' in (20) is large enough. Thus, (22) is also proved.
For proving (23), let us notice that

p(X*, X"™) = |+ |L]-[InL]—=[{ielnlu = (u)}]
d—1 d—1 s
q ”‘”W“}(T—%)
—{eelnl,|u = (u,)i}]|
d—1 w ws

= y n—|-3—3—|—% [{ielnl,|u=(u)l}|

Provided C' > 4 in (20), (25) implies 52 > r. Thus, it is sufficient to show
that

>

w 1

< .
dl 74N
But {: € In1, : u; = (u,);}| is once more the sum of |[I N [,| <

w (Clel — %) Bernoulli variables attaining 1 with probability di—l each. Ap-

plying once more Chernoff inequality, we get (26). This also completes the
proof of (23), (21) and Lemma 6.1.

PT{X“ES[:|{i€[ﬂ[y|ui:(uy)i}|2 (26)

Now we are ready to complete the proof of Theorem 2.2. Let D = F*,
N C{X{" - oo X Yo<ur,.un<g—1 satisfy (4), where the constant e will
be specified later, and f : (F*)" — F be a function with supp (f) = N
computed by a depth 3 circuit (1) with N gates at the middle level. Suppose
that N < |V].

Let r be a parameter satisfying the restriction

S BN 2 0= Clog ], 0
where g is the constant from Lemma 5.3, and (' is the constant assumed
in the expression O(r) in that lemma (the exact value of r will be specified
later). Applying Lemma 5.3, we will find an (N, Cyr)-sparse polynomial g
such that (17) holds.

Let us look more closely at the difference f — ¢g. For every ball B in our
collection of N balls of radius C1r covering supp (g) there exists at most one
X" € supp (f) with p(X*, B) < R/3, R = R(N). Indeed, if we had two
different monomials X*, X* with this property in supp (f), then we would
also have

p(X", XYY < p(X", B) 4 2Cr + p(X", B) < R,
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the latter inequality following from the left-hand side of (27), and that
would contradict the definition of R. Since N < |N|, by the pigeon-hole-
principle there exists X" &€ supp (f) such that p(X", X*) > R/3 for every
X" € supp (g) and every X" € supp (f) other than X*. Clearly, f — ¢ is
(2| V], Cyr)-sparse. Thus, we can apply to it Lemma 6.1 (with N := 2|V,
r:= Cir and R := R/3) and conclude

Prlz € D" : (f — g)(x) # 0] > exp <_o (% (g + log(|NV] + n)>>> .

Comparing this with (17), we find

n [ r?
for some constant &, > 0.
We let now
A
3= mi 6C," 2
and
95 R?
r= )
n

Our choice of r already ensures the left-hand side of (27), as well as the
bound %L; < 5277’. Comparing this with (28), we get

(SQTR . 525333

>
log(|NV +nl|) > 5 o2

(29)

Thus, if we choose the constant € = ¢(F') in Theorem 2.2 in such a way that
€ < dgd3 and ¢ < %, then (4) will also ensure the lower bound on r in (27),
and lead to the contradiction with (29). This contradiction completes the
proof of Theorem 2.2.
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