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Exponential Lower Bounds for Depth 3 Arithmetic Circuits in Algebras of Functions over Finite Fields

A depth 3 arithmetic circuit can be viewed as a sum of products of linear functions. We prove an exponential complexity lower bound on depth 3 arithmetic circuits computing some natural symmetric functions over a nite eld F. Also, we study the complexity of the functions f : D n ! F for subsets D F. In particular, we prove an exponential lower bound on the complexity of depth 3 arithmetic circuits computing some explicit functions f : (F ) n ! F (in particular, the determinant of a matrix).

Introduction

A depth 3 arithmetic circuit can be viewed as a sum of products of linear functions. Despite this clear structure, only a handful of lower bounds for explicit polynomials are known over in nite elds. Super-polynomial lower bounds have been proven only under the assumption that the circuits involve just (homogeneous) linear forms, rather than arbitrary linear functions, by the same token, if products in a circuit contain a bounded number of linear functions (see [START_REF] Grigor~ev ; V | Ispol~zovanie pon ti$ i otdelennosti i nezavisimosti dl dokazatel~stva ni nih ocenok slo nosti shem. Zapiski nauqnyh seminarov Leningr. otdeleni Matematiqeskogo instituta im[END_REF][START_REF] Grigoriev | Exponential complexity lower bounds for depth 3 arithmetic circuits in algebras of functions over nite elds[END_REF]). For general circuits no bounds for depth 3 circuits are known better than the classical (n log n) bound [START_REF] Smolensky | Algebraic methods in the theory of lower bounds for boolean circuit complexity[END_REF], 2] for arbitrary depth circuits (observe that this bound concerns the multiplicative complexity, being di erent from the complexity measure of the number of gates at the middle level of a depth 3 arithmetic circuit (1) which we study in the present paper). Using some ideas from 7], 13] recently proved a nearly quadratic lower bound for depth 3 formulae computing some symmetric functions.

The situation changes signi cantly when our underlying eld is nite, both in terms of the framework as well as in terms of approaches and results. Let us call syntactical the ordinary framework of algebraic complexity in which polynomials from F X 1 ; : : : ; X n ] are understood as formal syntactical expressions. In this framework an exponential exp( (n)) lower bound on the complexity of general depth 3 arithmetic circuits for the determinant of n n matrices was recently proved in 9].

An equally natural framework, also extensively studied in the literature, treats polynomials from F X 1 ; : : : ; X n ] as functions F n ! F, and we call this framework functional. It is equivalent to working in the factor-algebra F X 1 ; : : :; X n ]=(X q 1 X 1 ; : : : ; X q n X n ), where q = jFj, and every syntactical computation is also a computation in the functional framework. Respectively, obtaining lower bounds for functions is an even more di cult task, and prior to this paper exponential lower bounds were known only for the case F = GF(2) 12]. Finally, in the seminal paper 14] Smolensky proposed to study also computations in the function algebra f0; 1g n ! F for elds other than GF(2), and, for obvious reasons, we call this framework Boolean (syntactically, this means that we impose the relations X 2 i = X i for all variables X i ). The bulk of the research in this framework was devoted to Boolean circuits, i.e., to circuits composed entirely of f0; 1g-valued gates. In particular, 12, 14] proved exponential lower bounds for bounded depth Boolean circuits over the basis f:; ^; _; MOD p g that make the closest approximation to arithmetic circuits in the Boolean world. Motivated by a related research in the structural complexity, 1] proposed to study in the Boolean framework also computations by arithmetic circuits. In particular, they showed that after taking the union over all nite elds, bounded depth arithmetic circuits capture exactly the complexity class ACC 0 . So, these circuits form a natural hierarchical structure within the latter class that might be useful for understanding its power, and this feeling is further con rmed by the current paper. Prior to it, no non-trivial lower bounds were known in this model for depth 3 circuits over any eld other than GF(2).

Our contributions are as follows. First, we give a short proof of an exp( (n)) lower bound for depth 3 circuit in the functional framework over any nite eld. More speci cally, we show that every depth 3 circuits over a prime eld GF(p) computing suitably de ned generalizations of MOD q and MAJ must have that many gates. Then we give an easy extension to arbitrary (i.e., not necessarily prime) nite elds. This in particular gives an alternative (and much simpler) proof of exponential lower bounds over nite elds in the syntactical framework for explicitly given symmetric functions (rather than the determinant 9]).

In the Boolean framework we can prove new lower bounds only for the eld GF(3). Our techniques, however, are more general, and a substantial part of them can be applied to larger elds as well. In order to understand and precisely state the corresponding results, we observe that there is no intrinsic di erence between functional and Boolean frameworks: these are simply the two opposite poles of more general quasi-boolean framework in which we study computations of functions f : D n ! F, where D F is arbitrary. In these terms, we can prove an exp( (n)) lower bound for functions f : (F ) n ! F over arbitrary nite elds with at least three elements, and when F = GF [START_REF] Baur | The complexity of partial derivatives[END_REF] this becomes equivalent (up to a linear transformation on variables) to the Boolean framework. In particular, this result strengthens our previous bound in the functional framework (the reason for including the latter in the paper lies in its simplicity and applicability to symmetric functions).

The results of the paper were announced in 10]. Table 1 summarizes our current knowledge about the best known lower bounds for depth 3 arithmetic circuits.

The paper is organized as follows. In Section 1 we give a short proof of our bound in the functional framework (Theorem 1.1).

FieldnFramework

Boolean

Functional Syntactical

GF(2) exp( (n)) 12] ) exp( (n)) GF(3) exp( (n)) Corollary 2.3 exp( (n)) Theorem 1.1 ) exp( (n)) GF(q); q > 3 ? exp( (n)) Theorem 1.1 ) exp( (n))
in nite ? (n log n) 15, 2] Table 1: Lower bounds for depth 3 arithmetic circuits The rest of the paper is devoted to the quasi-boolean setting. In Section 2 we give some basic properties of the algebra of all functions f : D n ! F, where D F, and state our main result which is a combinatorial property of functions (F ) n ! F that implies large complexity w.r.t. arithmetic depth 3 circuits (Theorem 2.2). As one of the applications of this general criterium we obtain exp( ( p n)) lower bound for the determinant and the permanent of an n n matrix (compare with exp( (n)) lower bound 9] for the determinant in the syntactical framework).

Sections 3-6 are entirely devoted to the proof of Theorem 2.2, and we hope that some of the techniques we introduce on this way might be helpful in other situations as well.

In Section 3 we introduce a slight variation of Valiant's rigidity function [START_REF] Strassen | Die Berechnungskomplexit at von Elementarsymmetrischen Funktionen und von Interpolationskoe zienten[END_REF][START_REF] Gathen | Feasible arithmetic computations: Valiant's hypothesis[END_REF] that we call m-rigid rank and show a lower bound on this measure in terms of more constructive m-communication rank also introduced in this section. The bound is shown to be tight in case of constant m (which is the only case we need in this paper).

In Section 4 we prove that a product of linear functions has only a few non-zeros on D n , provided that this product has a large communication (or thereby, rigid as well) rank (Lemma 4.1). This allows us to approximate products of linear functions with large communication rank by a zero function, and to deal in the sequel only with the products having small communication rank.

In Section 5 we provide an approximation of a product with small communication rank by a function having some special form, and combine this with material from Section 4 into Theorem 5.1. In the partial case D = F this results in an approximation by a sparse polynomial (Lemma 5.3). Moreover, the support (the set of monomials) of this polynomial lies in a union of few balls (w.r.t. the Hamming metric), each of a small radius.

Finally, in Section 6 we prove that if the support of a function f : (F ) n ! F has a large coding distance, and its size is relatively small, then f can not be approximated well by a sparse polynomial of the above form. This concludes the proof of our main Theorem 2.2.

1 Exponential lower bound for depth 3 arithmetic circuits for symmetric functions over a nite eld

We study depth 3 arithmetic circuits, that is representations of functions in the following form:

f = X 1 N Y i L i ; (1) 
where L i = X 1 j n ( ) ij X j + ( ) i are linear functions. We call the right-hand side of (1) a depth 3 arithmetic circuit since it contains 3 layers (with unbounded fan-in) of computations: its rst layer consists in computing linear functions L i , the second layer is computing their products over i, and the third one is computing the sum over just according the right-hand side. In this section we consider the functional framework in which the identity (1) is understood as the identity of functions f : F n ! F over the underlying eld F. Our purpose is to give a short proof of exponential lower bounds on the complexity (in fact, on the number of gates at the middle level N) in the representations (1) for quite natural symmetric functions f over any xed nite eld F. Let us begin with the case F = GF(p), where p is a xed prime.

Viewing each element x 2 F as an integer 0 x p 1, one can de ne for any prime q the generalization MOD q;F : F n ! F of the corresponding Boolean function MOD q as follows:

MOD q;F (x 1 ; : : :; x n ) = 8 < :

1 if X 1 j n x j 0 (mod q) 0 otherwise. Theorem 1.1 Provided F = GF(p) and q is another prime, for every representation MOD q;F in the form (1) the lower bound N exp( (n)) holds.

Proof. Similarly to 12, 14], we want to show that every small size depth 3 arithmetic circuit can be approximated by a low degree polynomial. Let us consider an individual product = Q i L i ; L i = X 1 j n ij X j + i . By its rank rk( ) we mean the rank of the matrix of coe cients ( ij ) of the linear functions fL i g without their free terms. Take some threshold r (to be speci ed later). We treat separately the products with rank greater or less than r.

Case 1. rk( ) r.

In this case we have the obvious bound on the probability Pr "

x 2 F n :

Y i L i (x) 6 = 0 # p 1 p r :
Case 2. rk( ) < r.

Then we have the bound on the degree deg ( ) r(p 1). Indeed, express each L i as a linear combination of (less than r) elements of a basis, thereupon open the parenthesis in the product and use the relation L p = L present in the functional framework.

Applying this case analysis separately to every product in (1), we have the following: Lemma 1.2 For every function f representable in the form (1) and every parameter r there exists a polynomial g with deg (g) r(p 1) such that Pr x 2 F n : f(x) 6 = g(x)] p 1 p r N:

Unfortunately, we do not know how to apply this lemma directly: it seems, known lower bounds on the rate of approximation of explicit functions by low degree polynomials over nite elds other than GF(2) are too weak. We turn around this di culty by the following simple trick that gives us a direct reduction to necessary bounds in the Boolean case 14].

Consider the Boolean cube B n = f0; 1g n F n . For any vector c = (c 1 ; : : :; c n ) 2 F n consider the (shifted) function MOD (c) q;F : B n ! F de ned by MOD (c) q;F (x 1 ; : : : ; x n ) = MOD q;F (x 1 + c 1 ; : : :; x n + c n ). Actually, for any function h : B n + c ! F one could de ne the shifted function h (c) : B n ! F by h (c) (x) = h(x + c). We call c nondegenerated if at least n=3 of its coordinates c 1 ; : : :; c n are distinct from p 1, and degenerated otherwise. Clearly, Pr c 2 F n : c is nondegenerated] 1 2 : Suppose now that MOD q;F has a representation (1) with N terms, and let g be chosen in accordance with Lemma 1.2. Since any point from F n belongs to the same number 2 n of the shifted boolean cubes B n + c, there exists at least one nondegenerated vector c 2 F n for which Pr h

x 2 B n : MOD (c) q;F (x) 6 = g (c) (x) i 2 p 1 p r N:

(2) Assume w.l.o.g. that 0 c 1 ; : : : ; c s p 2; s n=3. Then there exists a xed 0-1 assignment a s+1 ; : : :; a n to the last n s variables such that the bound (2) is preserved, i.e., Pr h

x 2 B s : MOD (c) q;F (x; a) 6 = g (c) (x; a) i 2 p 1 p r N:

Notice that MOD (c) q;F (x; a) MOD t;q (x) for some 0 t < q, where MOD t;q :

B s ! B is the Boolean function de ned in 14]. We need the following numerical re nement on the main technical tool from that paper:

Lemma 1.3 (Smolensky) Let q and p be di erent primes, 0 t < q and g(X 1 ; : : : ; X n ) be a polynomial over GF(p) of degree at most d. Then MOD t;q (x 1 ; : : : ; x n ) and g(x 1 ; : : :

; x n ) diverge in at least P n=2 d 1 i=0 n i n n=2 d 1 points from B n .
14], as well as 12] in a similar statement, put here d p n which ensures disagreement in at least a polynomial fraction of all inputs. We notice that one can achieve better results when d is linear in n. In particular, comparing (3) and Lemma 1.3, the latter with n := s; g := g (c) (x; a); d := (p 1)r, we get in our case:

N 2 s exp( (r)) s s=2 O(r) : When r = s for a constant , s s=2 s 2 s(H(1=2 ) o(1))
, where H( ) = log 2 (1 ) log 2 (1 ) is the entropy function. Since H 0 (1=2) = 0, it follows that when is small enough, N exp( (r)) exp( (n)). Theorem 1.1 is proved.

One can introduce a symmetric function MAJ F : F n ! F similar to the customary MAJ : B n ! f0; 1g and being universal for all symmetric functions. Namely, MAJ F (x 1 ; : : :;

x n ) = 1 if 0 1
p 1 where i equals to the number of i among x 1 ; : : : ; x n for 0 i p 1, otherwise MAJ F (x 1 ; : : :; x n ) = 0. One can show (similar to 12, Theorem 4]) that any symmetric function f(x 1 ; : : :; x n ) : F n ! F could be represented as a F-linear combination of polynomially many functions of the form MAJ F (X 1 ; : : :; X n ; 1 ; : : :; n(p 1) ) for suitable i 2 F, 1 i n(p 1). This entails the following corollary. Corollary 1.4 For the complexity of any depth 3 arithmetic circuit (1) representing MAJ F the lower bound N exp( (n)) holds.

Finally, we notice that there are many natural ways of extending the de nitions of MOD q;F ; MAJ F to the elds F = GF(p ); > 1 such that the same method gives lower bounds also in this case. For example, we might x an arbitrary GF(p)-linear retraction : F ! GF(p) and then let MOD q;F (x 1 ; : : : ; x n ) = MOD q;GF(p) ( (x 1 ); : : :; (x n )); and similarly for MAJ F . It is easy to see that with this de nition the proofs of Theorem 1.1 and Corollary 1.4 extend to arbitrary nite elds.

2 Quasi-boolean functions over nite elds and main results

In the rest of the paper we deal with the following quasi-boolean setting. Let q = p , F = GF(q), and x a subset D F of cardinality d = jDj 2. We are interested in functions f : D n ! F and call them quasi-boolean extending the Boolean framework from 14] where D was just f0; 1g. Alternatively, one could also view f as a partial function on the entire space F n .

Let g(X) = Q a2D (X a). Then the F-algebra of all functions f : D n ! F is isomorphic to the quotient algebra A = F X 1 ; : : :; X n ]=(g(X 1 ); : : : ; g(X n )):

The main purpose in the rest of the paper is to obtain lower bounds on the complexity of depth 3 arithmetic circuits (1) for certain explicit functions f 2 A, equality (1) being viewed also in the algebra A, in the case d = q 1. Before formulating our results, however, let us mention some easy properties of A (cf. 14], also 8]). Lemma 2.1 a) A is an algebra of principal ideals; b) for any f 2 A the number of nonzeroes jfx 2 D n : f(x) 6 = 0gj coincides with the dimension of the principal ideal (f) A.

Clearly, monomials of the form X u 1 1 : : : X un n , 0 u 1 ; : : :; u n < d, constitute a basis of A; for an element f 2 A we refer to its degree w.r.t. this basis. In abuse of notation we identify sometimes f with the corresponding polynomial in this basis. Below it will be sometimes convenient to imagine a metric geometry in the space of monomials M = fX u 1 1 : : : X un n g 0 u 1 ;:::;un<d endowed with the Hamming distance (being equal to the number of distinct coordinates). For an n-tuple u = (u 1 ; : : :; u n ) we will abbreviate the corresponding monomial Q n j=1 X u j j to X u . Suppose now that D F and, moreover, that D is a coset modulo some (cyclic) subgroup in F . Then the minimal polynomial g = Q a2D (X a) of D is a binomial q = X d b and M is the multiplicative basis in the sense that the following two properties are satis ed:

1. The set of functions D n ! F representable as X u , where 2 F ; X u 2 M, forms a group w.r.t. multiplication;

2. the Hamming distance is invariant under multiplication in this group: (m 0 m 1 ; m 0 m 2 ) = (m 1 ; m 2 ).

For N M, de ne its coding distance R(N) as the minimumof (m 1 ; m 2 ) over all pairs m 1 6 = m 2 ; m 1 ; m 2 2 N. Thus, R(N) is equal to the ordinary coding distance R(U) of the set U = fuj X u 2 N g considered as an errorcorrecting code in d] n . For f 2 A represented in the basis M, let supp (f) be the set of all monomials that occur in f with a non-zero coe cient. Our main lower bound criterium is the following theorem.

Theorem 2.2 For every xed nite eld F there exists a positive constant = (F ) > 0 such that the following holds. Let N M satisfy the inequality jNj + n exp( R(N) 3 =n 2 ):

Then for any function f : (F ) n ! F with supp (f) = N, any depth 3 arithmetic circuit (1) computing f has at least jNj gates at the middle level. Corollary 2.3 There exists a positive constant > 0 such that for any U B n satisfying jUj + n exp( R(U) 3 =n 2 ) any depth 3 arithmetic circuit of the form (1) computing the function X u2U n Y j=1 (X j + 1) u j : B n ! GF [START_REF] Baur | The complexity of partial derivatives[END_REF] must have at least jUj gates at the middle level. Proof. Immediate from Theorem 2.2 after the linear substitution X j 7 ! X j + 1. Let p 0 be any prime divisor of q 1, and let U (GF (p 0 )) n be any explicit GF(p 0 )-linear code with the coding distance R = 0 n and dimension k = 0 n for some positive constants 0 ; 0 . Among examples of such codes are e.g. Justensen codes 19] and Goppa codes 18]. Let u 1 ; : : : ; u k be an explicit basis of U over GF(p 0 ). Removing, if necessary, some vectors from this basis, we may assume w.l.o.g. that 0 < 3 0 =(log p 0 ), where is the constant from Theorem 2.2. Then Theorem 2.2 implies in particular an exp( (n)) lower bound on the complexity of any depth 3 arithmetic circuit computing the function f U = X u2U X q 1 p 0 u : (F ) n ! F:

Next, since U is an GF(p 0 )-linear space with basis u 1 ; : : :; u k we have

f U = X 1 ;:::; k 2GF(p 0 ) X q 1 p 0 ( 1 u 1 +:::+ k u k ) = k Y i=1 0 @ X 2GF(p 0 ) X q 1 p 0 u i 1 A ; thus f U can be obtained as a projection of the following function k Y i=1 p 0 X =1 n(q 1) Y j=1 X i j : F ! F: (5) 
Hence, the complexity of (5) w.r.t. 3 arithmetic circuits is exp( (n)); on the other hand, this function is represented as a 3 arithmetic circuit of size O(n 2 ). This gives us a separation between these two classes. Finally, we make use of the construction from 17] (see also 5]). Following 17] we say that a polynomial f 2 F X 1 ; : : :; X n ] is a projection of a polynomial g 2 F Y 1 ; : : :; Y m ] if substituting in g for each variable Y j in a suitable way either one of the variables X 1 ; : : :; X n or a constant from F, one gets f. It is proved in 17] that if f is representable by an arithmetic formula of a size t then f is a projection of Determinant P 2S t+2 ( 1) sgn( ) Q

1 i t+2 X i; (i) ; Permanent P 2S t+2 Q 1 i t+2 X i; (i) ;
Hamiltonian cycles polynomial P Q 1 i t+2 X i; (i) , where the summation is taken over all permutations which consist of a single cycle. gates at the middle level.

The rest of the paper is entirely devoted to the proof of Theorem 2.2. As we noted in Introduction, we will try to present as many techniques as possible for as general D as possible, and we will employ the same idea of approximation as in Section 1. For doing that we need some properties of individual products = Q i L i which would ensure that (x) = 0 holds with high probability on D n . Clearly, the ordinary notion of rank is already not good enough: for example, members of the multiplicative basis M never evaluate to 0 on D n . More generally, the same holds if L i are arbitrary linear functions without zeros in D n , and we begin our analysis with identifying the case when we at least know that such \unpleasant" L i must have only a constant number of variables.

De nition 2.5 For any integer 2 d q a linear d-sweep `s(d) (w.r.t. the eld F = GF(q)) is the minimal m (provided that it does exist) such that for any m subsets D 1 ; : : :; D m F, jD 1 j = : : : = jD m j = d any linear function L(X 1 ; : : : ; X m ) = a 1 X 1 + + a m X m + a with nonvanishing coe cients a 1 6 = 0; : : : ; a m 6 = 0, sweeps the entire F in the sense a 1 D 1 + + a m D m = F. Lemma 2.6 a) `s(d) is de ned if and only if d > p 1 , in this case `s(d) q d + 1; b) for q=2 < d < q we have `s(d) = 2.

Proof. a) The part only if is obvious since in case > 1; d p 1 one can take arbitrary D 1 = : : : = D m GF(p 1 ) and a 1 ; : : :; a m ; a 2 GF(p 1 ) .

To prove the inverse, let us show that ja 1 D 1 + + a `+1 D `+1 j > ja 1 D 1 + + a `D`j ; [START_REF] Gathen | Feasible arithmetic computations: Valiant's hypothesis[END_REF] unless already a 1 D 1 + + a `D`= F. Together with ja 1 D 1 j = d, this will entail a) by induction on `.

Pick arbitrarily 0 2 D `+1 . Since jD `+1 j > p 1 , D `+1 0 generates F as a GF(p)-linear space. Hence, there exist elements 1 ; : : :; 2 D `+1 such that elements ( 1 0 ); : : :; ( 0 ) constitute a basis of F over GF(p).

We claim that a 1 D 1 + + a `D`+ a `+1 i 6 = a 1 D 1 + + a `D`+ a `+1 0 for at least one 1 i . The claim implies (6) because ja 1 D 1 + + a `D`+ a `+1 0 j = ja 1 D 1 + + a `D`+ a `+1 i j = ja 1 D 1 + + a `D`j .

To prove the claim, suppose the contrary. Then a 1 D 1 + + a `D`+ a `+1 0 = a 1 D 1 + + a `D`+ a `+1 0 + a `+1 ( i 0 ), for any 1 i . Therefore, a 1 D 1 + + a `D`+ a `+1 0 = a 1 D 1 + + a `D`+ a `+1 0 + a `+1 P 1 i b i ( i 0 ) for arbitrary b 1 ; : : :; b 2 GF(p). But since the latter sum sweeps the entire F, we get a contradiction. b) Let L = a 1 X 1 + a 2 X 2 + a. If jD 1 j; jD 2 j > q=2, then for any 2 F the sets a 1 D 1 + a F and a 2 D 2 F have nonempty intersection. This implies 2 a 1 D 1 + a 2 D 2 + a.

3 Rigid rank and communication rank of a matrix

In this section we continue our search for assumptions on a product = Q i L i that ensure its vanishing almost everywhere on D n . We already know one class of non-vanishing products of large rank: these are those products in which L i do not represent 0 on D n , and we know from Lemma 2.6 that L i then must have only O(1) variables each. This class of \bad" products can be clearly further extended to products of the form Y i (L 0 i + L 00 i ); [START_REF] Grigor~ev ; V | Ispol~zovanie pon ti$ i otdelennosti i nezavisimosti dl dokazatel~stva ni nih ocenok slo nosti shem. Zapiski nauqnyh seminarov Leningr. otdeleni Matematiqeskogo instituta im[END_REF] where L 0 i do not represent 0, and Q i L 00 i has a low rank. Our eventual goal is to show that this example encompasses already essentially all non-vanishing products.

The fact that a product can not be represented in the form [START_REF] Grigor~ev ; V | Ispol~zovanie pon ti$ i otdelennosti i nezavisimosti dl dokazatel~stva ni nih ocenok slo nosti shem. Zapiski nauqnyh seminarov Leningr. otdeleni Matematiqeskogo instituta im[END_REF], where L 0 i 's depend on few variables and rk( Q i L 00 i ) is low, is clearly akin to the standard matrix rigidity function R A (r) [START_REF] Strassen | Die Berechnungskomplexit at von Elementarsymmetrischen Funktionen und von Interpolationskoe zienten[END_REF][START_REF] Gathen | Feasible arithmetic computations: Valiant's hypothesis[END_REF], and in this section we give its satisfactory description in terms of internal properties of the matrix.

Let A = (a ij ) be a k n matrix over some (not necessarily nite in this section) eld, and let m 0 be an integer. For subsets I f1; : : : ; kg; J f1; : : : ; ng we denote by A IJ the submatrix of A formed by its rows from I and the columns from J. For i 2 f1; : : : ; kg, A iJ is the corresponding subrow of the ith row.

De nition 3.1 The m-rigid rank rrk m (A) of A is de ned as the minimal possible rank of matrices B which di er from A by at most m entries in each row.

De nition 3.2 The m-communication rank crk m (A) of A is de ned as the maximal possible number r of its rows I f1; : : : ; kg, jIj = r such that there exist pairwise disjoint sets of columns J 0 ; : : : ; J m , also of cardinality r each, with the property that all submatrices A IJ `, 0 ` m are non-singular. Notice that both rrk m and crk m are not invariant in general with respect to transposing the matrix A. Obviously, rrk 0 and crk 0 coincide with the usual rank. The connection with the standard rigidity function R A (r) (the minimal overall number of changes in A required to reduce its rank to r) is provided by the inequality R A (rrk m (A)) km: The term \communication" is suggested by the resemblance to the common (worst-case partition) scenario in communication complexity.

The following lemma relates the rigid and communication ranks.

Lemma 3.3 rrk m (A) (m + 2) crk m (A) (m + 2)(m + 1)rrk m (A).
Proof of the left inequality. Choose I; J 0 ; : : : ; J m accordingly to De nition 3.2, so that jIj = jJ 0 j = : : : = jJ m j = r = crk m (A). Denote J = f1; : : : ; ng n (J 0 : : : J m ).

Take any row 2 f1; : : : ; kgnI. For every 0 ` m there exists a unique linear combination A ;J `= X i2I (`) i A i;J `. Consider the set J 0 ` J consisting of all the columns j 2 J such that a j X i2I (`) i a ij 6 = 0. Observe that for any j 2 J 0 `, the (r + 1) (r + 1) matrix A I f g;J ` fjg is non-singular.

We claim that jJ 0 `0j m for some 0 `0 m. Assuming the contrary, one can sequentially for `= 0; : : :; m pick pairwise distinct j `2 J 0 `. Then all (r + 1) (r + 1) matrices A I f g;J ` fj `g, 0 ` m are non-singular, that contradicts to the equality r = crk m (A). Now take (m + 2)r n-dimensional vectors, among which there are r rows A i;f1;:::;ng , i 2 I and (m + 1)r unit vectors e j = (0; : : : ; 0; 1; 0; : : : ; 0) (where one is located at j-th position) for j 2 0 ` m J `. To complete the proof of the left inequality in the lemma, it su ces to show that each row of A equals to a suitable linear combination of these (m + 2)r vectors up to at most m entries.

This is obvious for the rows A i;f1;:::;ng , i 2 I. Take 2 f1; : : : ; kg n I and utilize the notation introduced above. Then the di erence A ;f1;:::;ng X i2I (`0 ) i A i;f1;:::;ng equals to a linear combination of (m + 1)r vectors e j up to at most m entries from J 0 `0.

Proof of the right inequality. Again we denote r = crk m (A) and choose I; J 0 ; : : :; J m accordingly to De nition 3.2. Choose a matrix B accordingly to De nition 3.1 so that rk(B) = rrk m (A), and mark all the entries at which A and B di er. There are at most (rm) marked entries in the rows from I. Therefore, for some 0 ` m at most rm m+1 of these entries are located in A I;J `. This implies rk(B) rk(B I;J `) r m+1 and completes the proof of the right inequality.

Products of large communication rank vanish almost everywhere

In this section we show that products of large communication rank do vanish almost everywhere on D n . In combination with Lemma 3.3, this will imply that every non-vanishing product must be representable in the form [START_REF] Grigor~ev ; V | Ispol~zovanie pon ti$ i otdelennosti i nezavisimosti dl dokazatel~stva ni nih ocenok slo nosti shem. Zapiski nauqnyh seminarov Leningr. otdeleni Matematiqeskogo instituta im[END_REF],

where L 0 i depends on few variables, and Q i L 00 i has low (ordinary) rank.

Throughout the section, we x a product of linear functions = Q i L i and a subset D F = GF(p ) of cardinality d > p 1 . is viewed as a quasi-boolean function : D n ! F (see Section 2). Let L i = X 1 j n a ij X j +a i where a ij ; a i 2 F. By the m 1 -communication rank crk m 1 ( ) of we mean the m 1 -communication rank of the matrix A = (a ij ) of its coe cients (thus, the free coe cients of L i are excluded). Since d > p 1 , the linear d-sweep `s(d) is de ned and does not exceed q d + 1 by Lemma 2.6 a); we denote it by m. Proof. Let r = crk m 1 ( ). Selecting r rows from the matrix (a ij ) in accordance with De nition 3.2, we can assume w.l.o.g. that is the product of just r linear functions. Moreover, varying the speci cations from D for all the variables corresponding to the complement f1; 2; : : : ; ngn(J 0 : : : J m 1 ), we can assume w.l.o.g. that the matrix of the coe cients A = (a ij ) is of size r rm and consists of m non-singular r r submatrices A (1) ; : : :; A (m) . Since the bound claimed in the lemma will be proved for an arbitrary speci cation, this would imply the lemma by the standard averaging argument.

For each 1 ` m denote by x `a random vector from D r , and denote by x `1; : : :; x `d d independent copies of x `; thus, all dm vectors x ` (1 ` m; 1 d) are picked out independently. Our rst purpose is to prove the following bound on the probability: Pr 8 1 ; : : : ; m 2 f1; : : : ; dg (x 1; 1 ; : : :; x m; m ) 6 = 0] exp( (r)): [START_REF] Grigor~ev ; V | Ni nie ocenki v algebraiqesko$ i slo nosti vyqisleni$ i. Zapiski nauqnyh seminarov Leningr. otdeleni Matematiqeskogo instituta im[END_REF] We show by induction on ` m that for suitable constants `> 1; `> 0 with probability greater than 1 exp( `r) there exist s r= `rows I f1; : : : ; rg in A such that for every 1 t `all d values of the vectors A (t) x t1 ; : : :; A (t) x td in every of these rows are pairwise distinct.

The base for `= 0 is obvious. For the inductive step from `to `+ 1, we will treat the newly introduced vectors A (`+1) x `+1;1 ; : : : ; A (`+1) x `+1;d by an internal induction on < d. More speci cally, we show, increasing one by one that for suitable constants 0 > 1; 0 `+1; > 0 with probability greater than 1 exp( 0 `+1; r) there exist s 0 s= 0 rows I 0 I in A (`+1) such that all the entries of the vectors A (`+1) x `+1;1 ; : : :; A (`+1) x `+1; in every row from I 0 are pairwise distinct. Suppose that for some value of we already have such an I 0 and denote by : F r ! F s 0 the projection onto the coordinates from I 0 .

The number of vectors in F s 0 such that at most s 0 = (for a certain constant > 1) its entries di er from all the corresponding entries of the vectors A (`+1) x `+1;1 ; : : : ; A (`+1) x `+1; is equal to

s 0 = X k=0 s 0 k s 0 k (q ) k : (9) 
We claim that for any xed v 2 F s 0 , Pr A (`+1) x `+1; +1 = v d s 0 : [START_REF] Grigoriev | An exponential lower bound for depth 3 arithmetic circuits[END_REF] Indeed, select s 0 columns J of the matrix A (`+1) such that A (`+1) I 0 ;J is nonsingular. Varying speci cations from D for all the variables not in J, and noticing that for every such speci cation all the d s 0 vectors A (`+1) x `+1; +1 are pairwise distinct, we get [START_REF] Grigoriev | An exponential lower bound for depth 3 arithmetic circuits[END_REF].

Combining ( 9) and ( 10), we see that the probability that at most s 0 = (for a certain constant > 1) entries of the vector A (`+1) x `+1; +1 di er from all the corresponding entries of the vectors A (`+1) x `+1;1 ; : : :; A (`+1) x `+1; , does not exceed

d s 0 s 0 = X k=0 s 0 k s 0 k (q ) k < d s 0 s 0 = X k=0 s 0 k (q ) k : (11)
Since d 1, for large enough constant there exists a constant > 0 such that the latter expression is less than exp( s 0 ). Thus, if we set 0 +1 = 0 (so that 0 = , `= d`a nd s 0 = r= d`+ ), the probability that the entries of the vectors A (`+1) x `+1;1 ; : : : ; A (`+1) x `+1; +1 are pairwise distinct in at least s= 0 +1 rows is greater than (1 exp( 0 `+1; r))(1 exp( s 0 )) 1 exp( 0 `+1; +1 r) for an appropriate 0 `+1; +1 > 0. This completes the inner induction (on ), to complete the external induction (on `) put `+1 = 0 `+1;d . Now, to prove (8), we simply observe that if there exists a single row i in which for every 1 ` m all d entries A (`) x `1; : : : ; A (`) x `d are pairwise distinct, then also 9 1 ; : : :; m 2 f1; : : : ; dg such that (x 1; 1 ; : : :; x m; m ) = 0. Indeed, since the i-th linear function in the product equals to (A (1) x 1 ) i + +(A (m) x m ) i +a i , De nition 2.5 of the linear d-sweep shows that there exist 1 ; : : : ; m 2 f1; : : : ; dg such that (A (1) x 1; 1 ) i + + (A (m) x m; m ) i + a i = 0, which completes the proof of (8). Our next goal is to prove an inequality for expectations in a rather general probabilistic-theoretical setting: E 2 4 Y 1 ;:::; m2f1;:::;dg m g(Y 1; 1 ; : : :; Y m; m ) 3 5 (E g(Y 1 ; : : :; Y m )]) d m ; (12) where Y 1 ; : : :; Y m are independent random variables, Y `1; : : : ; Y `d are independent copies of Y `, 1 ` m, and g is a real-valued nonnegative function.

Taking as Y 1 ; : : :; Y m the vectors x 1 ; : : : ; x m , and as g(Y 1 ; : : :; Y m ) the characteristic function of the predicate (x 1 ; : : :; x m ) 6 = 0, we infer Lemma 4.1 from (12) together with [START_REF] Grigor~ev ; V | Ni nie ocenki v algebraiqesko$ i slo nosti vyqisleni$ i. Zapiski nauqnyh seminarov Leningr. otdeleni Matematiqeskogo instituta im[END_REF].

To prove ( 12) denote E 2 4 Y `+1 ;:::; m2f1;:::;dg m `g(Y 1 ; : : : ; Y `; Y `+1; `+1 ; : : : ; Y m; m ) 3 5 by e `. We show for every 1 ` m that e ` 1 e d `, which will imply e 0 e d m m , i.e. (12). For any ( xed for the time being) tuple y = (y 1 ; : : :; y ` 1 ; y `+1;1 ; : : :; y `+1;d ; : : : ; y m1 ; : : :; y md ) denote the expectation `g(y 1 ; : : :; y ` 1 ; Y `; `; y `+1; `+1 ; : : :; y m; m ) = (e `(y)) d ; the latter equality holds since Y `1; : : :; Y `d are independent. Taking the expectations against all tuples y, we get e ` 1 = E (e `(Y 1 ; : : : ; Y ` 1 ; Y `+1;1 ; : : : ; Y `+1;d ; : : :; Y m ; : : :; Y md )) d ]: Due to Jensen's inequality (E Z d ] (E Z]) d ) we conclude that the latter expectation is greater or equal to (E e `(Y )]) d = e d `, which completes the proof of (12) and thereby, Lemma 4.1.

5 Approximating depth 3 arithmetic circuits by (N; r)-sparse polynomials

In Sections 2-4 we proved that every product that can not be represented in the form [START_REF] Grigor~ev ; V | Ispol~zovanie pon ti$ i otdelennosti i nezavisimosti dl dokazatel~stva ni nih ocenok slo nosti shem. Zapiski nauqnyh seminarov Leningr. otdeleni Matematiqeskogo instituta im[END_REF], where L 0 i depend on O(1) variables, and Q i L 00 i has low rank, is su ciently well approximated by 0. In this section we complete the analysis and treat the products that can be represented so. Essentially, we are able to approximate them by (sums of moderate number of) the products Q i L i in which every L i does not represent 0 on D n . In particular, in the case D = F we get an approximation by sparse polynomials of a certain special form.

More speci cally, we have the following theorem.

Theorem 5.1 Let F = GF(p ), D F be such that jDj > p 1 , = Q i L i be a product of linear functions, and r be any threshold.

a) There exists a function g of the form

g = exp(O(r)) X =1 g Y i L i ; (13) 
where g are products of at most O(r) linear functions each, L i do not have zeros in D n , and Pr x 2 D n : (x) 6 = g(x)] exp( (r)):

b) If jDj > p =2, then we can additionally require that L i in (13) have the special form L i = (X j i z i ); [START_REF] Smolensky | Algebraic methods in the theory of lower bounds for boolean circuit complexity[END_REF] where X j i is a variable depending only on i, and z i 2 F n D.

Proof. We give a complete proof of part b) (as this is the part which is really used in the next section), and then sketch how to extend the argument to prove part a).

Since d = jDj > p =2, we have `s(d) = 2 by Lemma 2.6 b). If rrk 1 ( ) r then, according to Lemma 3.3, crk 1 ( ) r=3 and, due to Lemma 4.1, Pr x 2 D n : (x) 6 = 0] exp( (r)), so we can simply let g = 0. Henceforth, we assume that rrk 1 ( ) r. Choose r linear forms ( 1 ; : : :; r ) and variables X j i such that each linear function L i can be represented as an F-linear combination

L i = r X s=1 a is s + b i X j i + c i : By Lagrange interpolation, = X 2F r Y 1 s r 0 s 2Fnf sg s 0 s s 0 s Y i (b i X j i + r X s=1 a is s + c i ): (16) 
Let ( ) = Q b i 6 =0 (X j i z i ), z i = ( P r s=1 a is s + c i )=b i be an individual term in this sum (up to a multiplicative constant). Let R = fX j i j 9i(b i 6 = 0 ^z i 2 D)g : Case 1. jRj < (2q log q)r. Choose arbitrarily z 6 2 D, and let

0( ) = Y b i 6 =0 z i 6 2D (X j i z i ) Y b i 6 =0 z i 2D (X j i z):
Then the products 0( ) have the form Q i L i required in [START_REF] Razborov | Ni nie ocenki razmera shem ograniqenno$ i glubiny v polnom bazise, soder awem funkci logiqeskogo slo eni[END_REF], [START_REF] Smolensky | Algebraic methods in the theory of lower bounds for boolean circuit complexity[END_REF]. On the other hand, the term ( ) contributes g 0( ) to the sum [START_REF] Strassen | Die Berechnungskomplexit at von Elementarsymmetrischen Funktionen und von Interpolationskoe zienten[END_REF], where

g = Y 1 s r 0 s 2Fnf sg s 0 s s 0 s Y b i 6 =0 z i 2D
X j i z i X j i z :

The rst term Y 1 s r 0 s 2Fnf sg s 0 s s 0 s here is already a product of r linear functions. The second term

Y b i 6 =0 z i 2D X j i z i X j i z is equal to Y X j 2R
g j (X j ), where g j are some functions in one variable on D; we can represent them as degree O(1) polynomials in one variable. This implies that Y X j 2R g j (X j ) and, henceforth, g can be represented as sums of exp(O(r)) products with O(r) linear functions in each.

Case 2. jRj (2q log q)r This means that ( ) contains at least (2q log q)r linear functions (X j i z i ) with z i 2 D and pairwise distinct j i 's. Hence, Pr x 2 D n : ( ) (x) 6 = 0 1 1 d (2q log q)r q 2r :

Since there are at most q r di erent 's, we can safely approximate all ( ) corresponding to Case 2 by 0.

Thus, we simply take P f j Case 1 g g 0( ) as the required approximation (13) which proves part b). Proof of part a) (sketch). m = `s(d) is de ned by Lemma 2.6 a), and, for the same reasons as before, we can assume rrk m 1 ( ) r. We again decompose in the form = X 2F r Y 1 s r 0 s 2Fnf sg s 0 s s 0 s ( ) ;

where ( ) = Q i L i , and L i this time have at most (m 1) variables each. Let us split ( ) in two parts ( ) = ( ) 6 =0 ( ) 0 , where ( ) 6 =0 consists of those L i which do not have zeros in D n , whereas all functions from ( ) 0 have there at least one zero. Let h be the maximal number of variables in a linear function from ( ) 0 ; thus, originally we have h m 1. We are going to reduce the value of h by applying recursively to ( ) 0 a generalization of the analysis from the proof of part b).

Case 1. There exists a set R = fX j 1 ; : : : ; X js g of at most h r variables such that every linear function L i in ( ) 0 essentially depends on at least one variable from R. Here h > 0 are some absolute constants such that m 1 m 2 : : : 1 . In this case we apply Lagrange interpolation once more and write down the representation

( ) = X 2D s Y 1 t s 0 t 2Dnf t g X jt 0 t t 0 t ( )
(valid on D n ), where ( ) is obtained from ( ) by substituting 1 ; : : :; s for the variables X j 1 ; : : : ; X js , respectively. In L i 2 ( ) 0 this substitution decreases the number of variables (so that now it becomes at most (h 1)), and the images of L i 2 6 =0 still do not have zeros in D n s . Thus, we have reduced in Case 1 the product ( ) to exp(O( h r)) products ( ) with smaller values of h.

Case 2. There is no set of variables R described above.

Select among the linear functions in ( ) 0 the maximal possible set L 1 ; : : :; L M such that no variable occurs in two of them. We claim that M h r=h. Indeed, otherwise we could take as R the set of all variables occurring in these M functions: jRj h r since every L i has at most h variables. Now, the events L i (x) = 0 (1 i M) are independent, and each of them occurs with probability (1). Hence, Pr h

x 2 D n : ( ) 0 (x) 6 = 0 i exp( ( h r));

and at most exp(O(( 1 + + h 1 )r)) such ( ) 0 resulted from branching in Case 1 at previous steps. Since m 1 m 2 : : :

1 , we still can approximate all of them by 0.

After applying this recursive procedure (m 1) times, we completely kill our ( ) 0 which completes the proof of part a). Theorem 5.1 looks especially simple in the case D = F . De nition 5.2 A polynomial of the form P 1 N g X u where X u is a monomial and deg (g ) r is called (N; r)-sparse. Lemma 5.3 For every nite eld F there exists a positive constant 0 = 0 (F ) such that the following holds. For every parameter r and every function f : (F ) n ! F computed by an arithmetic depth 3 circuit (1) with the complexity N exp( 0 r), there exists an (N; O(r))-sparse polynomial g such that Pr x 2 (F ) n : f(x) 6 = g(x)] exp( (r)): [START_REF] Valiant | Graph-theoretic arguments in low-level complexity[END_REF] Proof. Immediate from Theorem 5.1 b): when D = F , all z i in (15) must be 0, and (13) simpli es to the (1; O(r))-sparse polynomial g = P exp(O(r)) =1 g Q i X j i . Summing these approximations over all N gates at the middle level of our circuits, we get (17) (provided 0 is smaller than the constant assumed in ( 14)).

6 Lower bound on the number of non-zeroes for (N; r)-sparse polynomials

Although we are interested mainly in the case D = F , our main argument in this section is valid for any D F which is a coset modulo some subgroup in F . Recall from Section 2 that in that case the algebra A of functions D n ! F has the multiplicative basis of monomials M = fX u g 0 u 1 ;:::;un<d ; d = jDj.

One can rephrase De nition 5.2 using the (Hamming metric ) geometric language in M (see Section 2): if a polynomial g is (N; r)-sparse then supp (g) lies in a union of N balls each of radius r (centered at X u ). Conversely, if supp (g) can be covered by N balls of radius r, then g is (N; (d 1)r)-sparse.

The following lemma provides a lower bound on the number of nonzeroes of an (N; r)-sparse polynomial. Lemma 6.1 Let D F be a coset modulo some subgroup in F , f 2 A be a (N; r)-sparse polynomial, such that for a certain R the support supp (f) contains a monomial X u 0 such that (X u 0 ; X u ) R for any other monomial

X u 2 supp (f). Then Pr x 2 D n : f(x) 6 = 0] exp O n R r 2 R + log(N + n) : (18) 
Proof. Replacing f by f (a X u 0 ) 1 where a 2 F is the coe cient at the monomial X u 0 in f (and taking into account that M is a multiplicative basis of A), we can assume w.l.o.g. that u 0 = 1 and that the free term of f is 1.

We keep the notation X u (1 N) from De nition 5.2 for the centers of the radius r balls that cover supp (f). Note that if the ball centered at X u contains at least one monomial X u from supp (f) other than 1, then (1; X u ) (1; X u ) (X u ; X u ) R r: (19) Put s = Cn R (r + (R log(N + n)) 1=2 ) (20) for an appropriate su ciently large constant C which will be speci ed later. W.l.o.g. we can assume that s < d 1 2d n, because otherwise ( 18) is trivial.

Consider the sphere S M of the radius d 1 d n s centered at 1 (w.l.o.g. we can assume that djn), i.e. S = X u (1; X u ) = A random monomial X u in S can be constructed in two steps. First, we choose a random I f1; : : : ; ng of cardinality d 1 d n s. Then we pick a random monomial X u in S I S, where S I = fX u : u i 6 = 0 if and only if i 2

Ig. Accordingly to this construction, we split the proof of (21) in two parts.

Denote I = fi : (u ) i 6 = 0g, and let w = jI j. (24) However, j Ĩ \ I j is equal to the sum of w Bernoulli variables 1 ; : : :; w with Pr i = 1] = d 1 d s n . We can assume R 2r since otherwise the lemma becomes trivial due to the presence of the term nr 2 R 2 in (18). Since w R r by [START_REF] Van Der Geer | Introduction to Coding Theory and Algebraic Geometry[END_REF], this implies w R=2: (25) Now we simply apply Cherno inequality 3] for estimating the probability that j Ĩ \ I j deviates from its expectation by at least sw Bernoulli variables attaining 1 with probability 1 d 1 each. Applying once more Cherno inequality, we get (26). This also completes the proof of ( 23), (21) and Lemma 6.1. Now we are ready to complete the proof of Theorem 2.2. Let D = F , N fX u 1 1 : : : X un n g 0 u 1 ;:::;un<q 1 satisfy [START_REF] Cherno | A measure of asymptotic e ciency for tests of a hypothesis based on the sum of observations[END_REF], where the constant will be speci ed later, and f : (F ) n ! F be a function with supp (f) = N computed by a depth 3 circuit (1) with N gates at the middle level. Suppose that N < jNj.

Let r be a parameter satisfying the restriction 1 6C 1 R(N) r 1 0 log jNj;

(27

)
where 0 is the constant from Lemma 5.3, and C 1 is the constant assumed in the expression O(r) in that lemma (the exact value of r will be speci ed later). Applying Lemma 5.3, we will nd an (N; C 1 r)-sparse polynomial g such that (17) holds. Let us look more closely at the di erence f g. For every ball B in our collection of N balls of radius C 1 r covering supp (g) there exists at most one X u 2 supp (f) with (X u ; B) < R=3; R = R(N). Indeed, if we had two di erent monomials X u ; X u 0 with this property in supp (f), then we would also have (X u ; X u 0 ) (X u ; B) + 2C 1 r + (X u 0 ; B) < R;

  Thus, m = (t + 2) 2 in the construction of 17]. Applying this result to the function f U in algebra A, we conclude with the following corollary. Corollary 2.4 For each of the following three functions : (F ) n 2 ! F: Determinant Permanent Hamiltonian cycles polynomial any depth 3 arithmetic circuit (1) computing f must have at least exp( ( p n))

Lemma 4. 1

 1 Pr x 2 D n : (x) 6 = 0] exp( (crk m 1 ( ))):

  :::; m2f1;:::;dg m `g(y 1 ; : : :; y ` 1 ; Y `; y `+1; `+1 ; : : :; y m; m ) 3 5 by e `(y). Then e `= E e `(Y 1 ; : : :; Y ` 1 ; Y `+1;1 ; : : :; Y `+1;d ; : : :Y m1 ; : : : ; Y md )]: On the other hand we have +1 ;:::; m2f1;:::;dg m `+1 g(y 1 ; : : : ; y ` 1 ; Y `; `; y `+1; `+1 ; : : : ; y m; m ) :::; m2f1;:::;dg m

First

  that for every individual I such that jI \ I j < w d and (23) will clearly imply (21). The best way to avoid tedious calculations in proving (22) is to replace I by its Bernoulli variant Ĩ, i.e., every event i 2 Ĩ occurs with probability d 1 d s n , and these events are independent for di erent i. Since E j Ĩj] with jIj = d 1 d n s are attained by Ĩ with the same probability. Hence, for proving (22) it would su ce to prove Pr j Ĩ \ I j w d

  the constant C in (20) is large enough. Thus, (22) is also proved. For proving (23), let us notice that (X u ; X u ) = jIj + jI j jI \ I j j fi 2 I \ I j u i = (u ) 2 I \ I j u i = (u ) i g j:Provided C > 4 in (20), (25) implies ws 2n r. Thus, it is su cient to show that Pr h X u 2 S I : j fi 2 I \ I j u i = (u ) i gj w jfi 2 I \ I : u i = (u ) i gj is once more the sum of jI \ I j
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we notice the bound on the probability Pr X u 2 M : X u 2 S] exp O s 2 n + log n ; and the right-hand side of the latter inequality has the same order of magnitude as the right-hand side of the desired inequality [START_REF] Valiant | Completeness classes in algebra[END_REF].

Let us view a polynomial from A as a row of its d n coe cients at the monomials from M. We supposed proved that one can pick out at least half of the elements X u from S such that the matrix composed of the rows X u f for these X u 2 S contains the unit submatrix just in the set of columns X u . That means that the dimension of the ideal (f) A is greater or equal to jSj=2. Then Lemma 2.1 b) would imply [START_REF] Valiant | Completeness classes in algebra[END_REF] due to the bound on jSj obtained above.

We call X u 2 S remote if (X u ; X u ) > d 1 d n s + r for all those for which the ball centered at X u covers at least one non-trivial monomial from supp (f). Observe that if we compose the above matrix of the rows X u f for all remote X u then it contains the desired unit submatrix. Indeed, any monomial X u 0 2 supp (f); X u 0 6 = 1 belongs to a ball with the radius r centered at X u for some . Therefore, (X u ; X u 0 ) (X u ; X u ) (X u ; X u 0 ) > d 1 d n s:

Hence for any X u 0 2 S (not necessarily remote) we have (X u ; X u 0 X u 0 ) (X u ; X u 0 ) (X u 0 ; X u 0 X u 0 ) = (X u ; X u 0 ) (1; X u 0 ) = (X u ; X u 0 ) d 1 d n s : Thus, (X u ; X u 0 X u 0 ) > 0 which means that the row X u 0 f can not have a non-zero entry in any column X u for a remote X u , except for appearance of an entry equal to 1 in the column X u 0 .

In order to justify the remaining goal, i.e., to show that at least half of the elements X u 2 S are remote, it su ces to prove for every the bound on the probability Pr X u 2 S : (X u ; X u ) d 1 d n s + r 1 2N :

(21) the latter inequality following from the left-hand side of ( 27), and that would contradict the de nition of R. Since N < jNj, by the pigeon-holeprinciple there exists X u 0 2 supp (f) such that (X u 0 ; X u ) R=3 for every X u 2 supp (g) and every X u 2 supp (f) other than X u 0 . Clearly, f g is (2jN j; C 1 r)-sparse. Thus, we can apply to it Lemma 6.1 (with N := 2jN j, Thus, if we choose the constant = (F ) in Theorem 2.2 in such a way that < 0 3 and < 2 3 2 , then (4) will also ensure the lower bound on r in (27), and lead to the contradiction with (29). This contradiction completes the proof of Theorem 2.2.