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1.  Introduction
The NASA Discovery mission Psyche plans to orbit the asteroid (16) Psyche in 2026 and measure its magnetic 
field (Elkins-Tanton et al., 2017). With an estimated mean radius of 113 km (Shepard et al., 2017) and mean 
density of 3,700 ± 300 kg m−3, (16) Psyche is estimated to contain up to 60 vol. % metal (Elkins-Tanton et al., 
2020), making it the largest known metal-rich body in the solar system. A leading hypothesis to explain 
the asteroid's metal-rich composition is that it is the iron core of an ancient protoplanet. This protoplanet 
likely would have undergone several energetic impacts, stripping away most of its rocky mantle (Asphaug & 
Reufer, 2014). The energy deposited by the impacts could have melted the core and the subsequent advection 

Abstract  Meteorites contain records of past magnetic fields in the form of natural remanent 
magnetization (NRM). A key property of meteorite magnetization that provides information about 
its origin is its dependence on spatial scale. In particular, understanding how the mean remanent 
magnetization varies from the scale of meteorites to the global scale of their parent bodies would 
aid in the interpretation of spacecraft magnetometry data. However, the vast majority of meteorite 
samples whose remanent magnetization have been measured have sizes <10 cm due to the limited 
size range accommodated by laboratory magnetometers. To address this limitation, we developed a 
portable magnetometer array that enables remanence measurements of meter-size meteorites in a non-
magnetically shielded environment. The instrument measures both NRM and induced magnetization 
using two orthogonal square Helmholtz coil pairs that compensate the vertical and horizontal 
components of the background magnetic field. An array of four magnetometers mounted on a movable 
aluminum rail measures the magnetic field at multiple locations around the sample. The instrument is 
transportable and can be adapted to different sample sizes. After distinguishing the induced component 
from the remanent component of a sample's total field, the remanence can be estimated from a 
multipole field inversion combined with nonlinear least squares method. We validated the instrument 
and data processing on a magnet of known magnetic moment and measured the NRM of a meter-sized 
iron meteorite.

Plain Language Summary  Meteorites are remnant fragments of planetary bodies. 
Their physical properties reflect the history of their environment and that of on their parent bodies. 
In particular, some meteorites preserve records of past magnetic fields experienced on their parent 
asteroids in the form of natural remanent magnetization. This remanence can be probed by spacecraft 
magnetometers to infer the intensity and direction of ancient magnetizing fields. However, it is unclear 
how to relate global scale measurements of planetary magnetization to that of meteorites measured 
in the laboratory. A major limitation is that the scaling of meteorite magnetization with size is largely 
unknown. Establishing such scaling requires measuring the remanent magnetizations of larger and 
larger meteorites. However, nearly all meteorites previously analyzed were typically smaller than ∼10 cm 
in diameter owing to the limited size and portability of the instruments. To facilitate the measurements 
of larger meteorites, we designed and built a portable instrument that enables measurements of the 
remanent and induced magnetizations of meter-size meteorites at their storage location. We validated the 
instrument performance against a sample of known magnetic moment and then used it to measure a large 
iron meteorite.
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of this conductive fluid could have powered a dynamo, generating a magnetic field magnetizing the solid 
outermost layers of the body (Neufeld et al., 2019; Weiss et al., 2010). This hypothesis will be supported if 
the Psyche spacecraft's fluxgate Magnetometer detects a substantial remanent magnetic field (Polanskey 
et al., 2018).

Past magnetic fields are recorded by planetary materials in the form of remanent magnetization (i.e., rema-
nent magnetic moment per unit mass, A m2 kg−1). Remanent magnetization reflects the semi-permanent 
alignment of electron spins within the object's constituent ferromagnetic grains. Remanent magnetization 
is typically sensed by measuring its magnetic field using a magnetometer outside the sample. This field 
depends on the orientation and intensity of the magnetization throughout the body, which in turns depend 
on the ferromagnetic minerals present, their crystal sizes, and the processes by which they were magnet-
ized. For example, the average magnetization of a uniformly-magnetized object remains constant as its 
volume increases, while the average magnetization decreases with increasing volume if the object is com-
posed of blocks whose magnetizations are collectively randomly oriented. As a consequence, the magnetic 
field of an object cannot be readily predicted based on knowledge of its size and fine-scale magnetization 
alone. This is in stark contrast to the gravity field, which instead is a function of a scalar property (mass 
density) that is shared by all materials, thereby enabling first-order predictions for the planetary gravity 
field as a function of body size (e.g., Ermakov et al., 2018).

The Psyche Magnetometer is designed to detect fields between ∼0.2 nT 
and ∼80,000 nT (Polanskey et al., 2018). The sensitivity and dynamic 
range of the Magnetometer are defined by simulating Psyche's magnetic 
field using uniformly magnetized spherical volumes with known mag-
netization directions. The predicted remanent field strengths critically 
depend on the size and number of these consitutent spheres and the 
strength of their individual magnetic moments (e.g., Biersteker et al., 
2019). However, nearly all existing laboratory magnetometry measure-
ments have only measured meteorite subsamples 90 cm3 in volume 
(i.e., with effective diameter 10 cm and typical mass 1 kg; Terho 
et al., 1993). However, there exist hundreds of iron meteorites weighing 
>10 kg that could be analyzed magnetically to determine the depend-
ence of magnetization scale on size (Buchwald, 1975).

To this end, we developed a portable magnetometer array and associ-
ated data processing software that enable estimation of magnetic mo-
ments of meter-size meteorites outside the laboratory to uncertainties 
of better than a factor of ∼2. Simple modifications to our instrument 
should enable measurements of samples of any size, so long as coils can 
be placed around it. For the configuration of the instrument presented 
in this paper, magnetic moments from ∼10−2 to at least 400 A m2 can be 
estimated. Both lower and upper limits mainly depend on the size of 
the system, the resolution of the sensors used and the sensor-to-sample 
distance. The magnetometer array measures the magnetic field result-
ing from the sample's total magnetization. The total magnetization is 
the sum of the induced magnetization and a remanent magnetization. 
The magnetic moment is then estimated using a nonlinear least-squares 
multipole inversion of the portion of the field produced by the remanent 
magnetization only.

Depending on the sensitivity required, magnetic measurements of mm- 
and cm-size meteorite samples are typically acquired using supercon-
ducting or spinner magnetometers in a magnetically-shielded environ-
ment (Figure 1; Fuller et al., 1985; Uehara et al., 2017; Weiss et al., 2007). 
However, none of these instruments are designed to accommodate me-
ter-size samples. Magnetic moments of larger objects such as spacecraft 
(Mehlem, 1978) and meteorites of volume ~0.1 m3 (Wasilewski et al., 
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Figure 1.  Ranges of detectable magnetic moment and volume of the 
sample accommodated by various magnetometers. The maximum 
magnetic moment that can be estimated with the superconducting 
quantum interference device (SQUID) microscope (Weiss et al., 2007) 
was calculated assuming a dipole field of 40 µT measured at a distance 
of 500 µm. For the 2G Enterprises Superconducting Rock Magnetometer 
(Fuller et al., 1985), the maximum magnetic moment is dictated by the 
saturation level of the field sensors. The detectable magnetic moments 
for the spinner magnetometer are given by the manufacturer Advanced 
Geoscience Instruments Company for the model JR-6. For the large spinner 
magnetometer, the minimum and maximum magnetic moments are 
calculated using a minimum and maximum detectable dipole field by the 
fluxgate of 1 nT at 10 cm and 100 µT at 30 cm, respectively (Uehara et al., 
2017). The minimum sample size that we have measured with our array 
is ∼1 cm, although the instrument could in principle be adapted to detect 
smaller samples. The minimum magnetic moment corresponds to a case 
where the field components are below the fluxgate detection limit of 1 nT in 
more than 25% of the positions for the medium-size instrument presented 
in this paper; this limit could potentially be lowered, for example, by 
decreasing the sensor-to-sample distance. Our instrument could be readily 
adapted to accommodate larger volumes and estimate larger magnetic 
moments.
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2002) have been estimated when the samples could be brought to the measurement site. On the other hand, 
our instrument was specifically designed for large meteorites that cannot be moved outside their storage 
location or cannot be subsampled: it is transportable, can be assembled in less than a day and does not re-
quire magnetic shielding.

The instrument is described in Section 2 and its theory of operation is explained in Section 3. Section 4 pre-
sents a test case in which we estimate the magnetization of a well-characterized sample. We also describe 
the sources of uncertainty in our measurements and how we take them into account in the final estimates. 
In Section 5, we present the measurements of an iron meteorite's magnetization.

2.  Description of the Magnetometer Array
2.1.  Architecture

The requirement of making measurements without magnetic shielding presents a major challenge not typ-
ically encountered when using smaller laboratory magnetometers (Figure 1). In addition to contributing 
measurement noise from temporal flucutations, the background magnetic field at the measurement site 
introduces a secondary component to the magnetization of the sample, which results in an induced field 
that contributes to the total magnetic field of the sample. To isolate the constant remanent component of 
the sample's total field from the induced component, our instrument exposes the sample to fields of con-
trolled intensities.

The instrument consists of a two-axis square Helmholtz coil system whose main axes are oriented vertically 
and horizontally (Figure 2). The frames of the coils and their support structure are composed of nonmag-
netic aluminum rails, available in different lengths (10, 15, 30, 60, and 120 cm) and which can be com-
bined to obtain the desired coil size. The rails are attached with nonmagnetic aluminum brackets and nylon 
screws and bolts. The coils are wound with enameled 18 American wire gauge copper wire. To facilitate the 
winding of the coils, the wire is taped to the coil frames. Each set of two coils is wired in series and powered 
by a separate output of a BK Precision 9130 power supply operated in constant current mode. The sample 
is placed at the center of the system on a rigid nonmagnetic mounting. In total, five commercial three-axis 
fluxgate magnetometers are used: four Macintyre Electronic Design Associates (MEDA) FVM400s to sense 
the sample's field and one Bartington Instruments Mag-03MS100 for measurements of the applied field. The 
MEDA fluxgates are rigidly attached to a movable aluminum rail and the distance between the fluxgates is 
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Figure 2.  Schematic and picture of the magnetometer array. (a) Three-dimensional view. The origin of the reference frame is indicated by the cross at the 
center of the system, the central plane is shown in gray. The system is manually oriented such that the background field vector is contained in the x–z plane. 
The gray and orange rectangles represent the horizontal and vertical coils, respectively. (b) Top view with five sequential positions of the movable rail (black 
lines) above and below the central plane. The blue rectangles represent the fluxgates on the rail. Fluxgates locations are numbered from 1 to 20. The gray and 
orange rectangles represent the horizontal and vertical coils, respectively. (c) Picture of the two-axis square Helmholtz coil system at the storage facility of the 
Smithsonian Museum of Natural History. The coils are wrapped with green wire. The Casas Grandes IIIAB iron meteorite (Section 5) is at the center of the 
system and the rail is in position 5.
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chosen so that there is no crosstalk (>15 cm). As much as possible, they should be placed away (∼20 cm) 
from the Helmoltz coils when the rail is in place to avoid saturation of the fluxgates in this region where 
generated fields are > 250 µT. While the rail may be placed anywhere inside the system, preference should 
be given to positions that maximize the measurement spatial coverage. During our experiments, we placed 
the rail at five different positions: four positions on each side of the sample above and below the horizontal 
central plane, and one above the sample (Figure 2). When no sample is inside the system, the Bartington 
fluxgate is located at the center of the coil system and is employed in the adjustment of the compensating 
field. In the following, the z axis denotes the vertical axis of the coils and the x axis denotes the horizontal 
one, with the y axis completing the right-handed triad (Figure 2). The origin of the reference frame is taken 
at the center of the system.

Data acquisition with the MEDA fluxgates consists of 30-s-long signals recorded at a 17.4-Hz sampling 
frequency. The electronics boxes of the MEDA fluxgates are directly connected to the computer through 
RS232 connectors. The Bartington magnetometer's sampling frequency is 625 Hz. This magnetome-
ter is connected to the computer through a signal processing unit (SCU-3, Bartington Instruments), a 
four-channel 24-bit analog-to-digital converter unit (NI9239, National Instruments) and a universal serial 
bus chassis (NI cDAQ-9174). A LabVIEW virtual instrument (VI) controls the magnetometers through 
serial port communication for the MEDA instruments and a DAQ Assistant for the Bartington. The VI 
simultaneously records and saves the raw data acquired by all the magnetometers. Prior to any subsequent 
data processing, the raw data acquired with the Bartington fluxgate are downsampled by only keeping 
the points of the time series that match the sampling frequency of the MEDA fluxgates. The gain of all 
fluxgates was set to 1.

2.2.  Generation of a Controlled Magnetic Field

When electric currents run through the coils, the Helmholtz coil system generates a magnetic field in the 
direction following Faraday's law of induction. The intensity of the field and its spatial uniformity are func-
tions of the number of coils, their size and relative location, the number of wire turns and the current 
applied to the coils. Helmholtz coils were selected for two practical reasons: they only consist of two coils, 
which facilitates the system's transportation and assembly, and their performance is relatively insensitive 
to deviations from the theoretical configuration, unlike other systems such as the Merritt four-coil sys-
tems (Kirschvink, 1992). Square coils were chosen because they are much easier to build and store than 
circular coils.

The field applied at the center of the two sets of coils 

Bapplied� � is the sum of the background field 


Bbg� � and 

the compensation field generated by the coils 

Bcomp� �:

�
  
B B Bapplied bg comp� � (1)

To provide partial or total suppression of the uncontrolled background field, the compensation field and 
the background field must be antiparallel. Otherwise, only part of the compensation field will contribute 
to controlling the magnitude of the applied field. In the two-axis Helmholtz coil system, 


Bcomp is in the y = 

0 plane (Figure 2). We must therefore orient the system (and its reference frame) to ensure that 

Bbg is also 

in the y = 0 plane. The whole system is manually rotated until the Bartington fluxgate placed at the center 
indicates that the component of the background field along y is minimal. Manual imprecision and temporal 
fluctuations of the background field act against a perfect alignment of the horizontal components and the 
resulting uncertainties are taken into account in the postprocessing of the data (Section 4). The orientation 
of 


Bcomp within the y = 0 plane is controlled by the respective currents running through the z and x coil 

systems.

2.3.  Adjusting the System Parameters to a Given Sample and Environment

We designed the magnetometer array to address (1) constraints of sample size, space, time, and resources 
allocated for the measurements, (2) transportability, and (3) variability of the background field on site. 
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The sample size dictates the minimum volume of the region in which the compensation field must be 
uniform, which depends on the size of the coils. The coil size in turn determines the distance between the 
coils for the Helmholtz configuration (Kirschvink, 1992) as well as the wire turns. The number of wire turns 
for the x and z coils controls the maximum intensity of the compensation field for a given current. Given 
that winding the coils is the most time-consuming step of the assembly, the number of wire turns can be 
adjusted to the minimum required to compensate the background field up to a chosen level. It is important 
to confirm that the power supply can deliver the desired current and the wire gauge used can properly 
dissipate the heat generated by ohmic losses. The measurements are repeated for increasing input current 
(i.e., compensation field intensity) from 0 A to the maximum current selected. The number of positions of 
the fluxgate rail mainly depends on the time available for the experiment. It dictates the number of data 
points and the spatial coverage; as a consequence, it may influence the accuracy of estimated magnetic 
moment. In practice, we have found (Section 4) that the 20 locations spaced on average by ∼30° adopted 
here (Figure 2) are sufficient to estimate the magnetic moment of a small magnet to within ∼5% of its 
nominal value.

To choose the system parameters, we simulated the compensation field generated by the coil system. For 
this, we computed the magnetic field generated at any point in space by a current in a rectangular loop of 
wire (Misakian, 2000). For a square loop centered on the origin of the z = 0 plane, the three components of 
the compensation field at a given point of coordinates (x, y, z) are:
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(2)

where (ai, bi, 0) are the coordinates of the corners of the coil (i= 1, 2, 3, 4), ri is the distance in m between 
corner i of the loop and the point (x, y, z), µ0 (H m−1) is the vacuum permeability and I (A) is the current run-
ning clockwise through the loop (Misakian, 2000). We sum the magnetic fields generated by each electrical 
loop of the two sets of coils after having translated and rotated the field vectors to match the configuration 
of the actual system. The system's parameters can be varied in the simulation to obtain the desired total 
compensation field where the sample is located during the experiment (Figure 3).
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Figure 3.  Simulation of the magnitude of compensation field in the z = 0 plane of a two-axis square Helmholtz coil 
system. (a) Contour plot of the field intensity inside the z coils with length d. The four areas of high field strength are 
at the intersections of the x coils with the central plane (x coils are inside the z coils). Dashed area is plotted in (b). (b) 
Contour plot of the field intensity inside the central area of the system where the field is most uniform.
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Before assembling the coils, the background field must be measured close to where the sample will be locat-
ed. Based on the strength of the background field, the simulation enables the determination of the number 
of wire turns required for each coil. Once the coils are assembled and the structure positioned, the currents 
running through the x and z coils are varied to find the values that reduce the applied field to a minimum 
(zero or otherwise, depending on the capacity of the power supply). The data processing requires making 
measurements at several intermediate current values between 0 A and the maximum value. The ratio of the 
current values in the x and z coils, which can be computed from the simulations, must be constant at each 
step to ensure that the compensation field is always aligned with the background field.

The time required for assembling and using the system depends on its size and, in particular, on the num-
ber of wire turns needed to compensate the background field. For example, with two people, coils of size 
1.5 m and about 15 wire turns (Section 4) take ∼1 h to be assembled and ∼1.5 h to be wound. Coils of size 
2.5 m and about 25 wire turns (Section 5) take ∼6 h to be assembled and wound. Depending on the size of 
the system, aligning its reference frame with the background field can take up to 30 min. For meter-size 
meteorites (Section 5) bringing and centering the sample inside the system could take up to 30 min. Finally, 
a complete series of measurements take ∼2.5 h. For small samples (e.g., requiring coils < 1 m), one could 
consider upgrading the system to make it collapsible for transportation. This would avoid having to rewind 
the coils at every location visited.

3.  Theory of Operation
Here we describe the protocol for estimating a sample's remanent magnetic moment using field measure-
ments conducted with and without the sample. The following sections present the successive data process-
ing steps to obtain the magnetic moment.

3.1.  Sequence of Measurements for the Different Fields of Interest

For a given position of the fluxgate rail, two 30-s data acquisitions (Section 2.1) are conducted for each 
current step and averaged. Measurements at no current (I = 0 A) are taken in the first and last steps of the 
series to account for variations in the background field. The rail is sequentially moved to the other positions 
and the measurements are conducted again. This whole sequence is first performed without the sample and 
then again with the sample centered in the system. Without the sample, the Bartington sensor is placed at 
the center of the system to provide a reference value of the background field; the applied field is obtained by 
adding to the background field the simulated values of the compensation field generated for each current 
step (Equation 1, Figure 4a). The measurements conducted at each position (x, y, z) of the other fluxgates 
are concatenated into 


Btotal

no sample (Figure 4b). These values will be subtracted from the corresponding ones 
obtained with the sample inside 


Btotal

with sample� � and averaged to estimate the sample's total field:

�
  
B B Bsample total

with sample
total
no sample� � (3)

The difference between 

Btotal

no sample and 

Bapplied is that the former is measured at each position of the fluxgates 

while the latter is measured at the center of the system.

3.2.  Isolation of the Sample's Remanent Field

The sample's total field is the sum of its remanent 

Brem� � and induced component 


Bind� �:

�
  
B B Bsample ind rem� � (4)

The induced field is produced by a magnetic moment, mind, induced in the sample by the applied field. 
The vector mind  is related to 


Bapplied via the volume magnetic susceptibility (χ, unitless in SI), a second-rank 
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tensor that characterizes the strength of the magnetic response of a material to an external field (Tauxe 
et al., 2018). χ can be approximated by a scalar if the induced magnetization in the sample lies close to the 
applied field direction. However, for natural samples such as iron meteorites whose anisotropy of suscepti-
bility can range from a few percent to 300% (Gattacceca et al., 2005), we retain χ in tensor form. We denote 
rapplied  the unit radial vector in the direction of the applied field such that 


B B rapplied applied applied= , with Bapplied 

the magnitude of the applied field. We can write:

� 


ind applied applied
0

ˆχ
μ
Vm B r (5)

where V (m3) is the volume of the sample. Approximating the induced field of the sample as that of a dipole 
(i.e., assuming the distance between the center and the magnetic source r is sufficiently large), we have:

�    
     

 
 


 applied

ind applied applied3 2

3 . χ
χ

π

ˆ
ˆ

4

r rVB B r r
r r

(6)

Each component of the induced field is proportional to the magnitude of the applied field; the proportion-
ality factors are functions of the magnetic susceptibility of the material, the position where the measure-
ment is made, and the orientation of the applied field (Equation 6). Therefore, for a constant applied field 
direction, each component of 


Bsample is a linear function of Bapplied, which is controlled and measured. For all 

positions of the fluxgates, each component of 

Bsample is plotted against Bapplied. The intercept of a regression 

line fitting these data provides the corresponding component of 

Brem (Figure 4c), which is independent from 

the susceptibility.

3.3.  Estimation of the Magnetic Moment

To estimate the magnetic moment of the sample (Figure 4d), we take advantage of the fact that any magnet-
ic field produced by sources distributed within a finite volume can be described in the form of a spherical 
harmonic expansion (Cain et al., 1967):

̭ ̭
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Figure 4.  Data processing flow. The four boxes (a–d) illustrate the four main steps of the protocol. (a) The field applied 
to the sample is estimated by adding the average of (1) the background field measured at the center of the system 
without sample and for I = 0 A and (2) the compensation field at a random point (px, py, pz) within the volume of the 
sample obtained by simulation for each current step (Equation 1, Sections 3.1 and 3.4). (b) In parallel, the sample's total 
field is obtained by subtracting the measurements of the field inside the system with and without the sample, averaged 
over the acquisition time, for each fluxgate position and each current values (Section 3.1). (c) The three components of 
the sample's remanent field are found for each fluxgate position at the intercept of the regression line fitting the values 
of the sample's total field plotted against the magnitude of the applied field (Section 3.2). (d) A multipole inversion of 
the remanent field provides an estimate of the remanent magnetic moment of the sample (Section 3.3).

(b)

(a)

(c)

(d)



Geochemistry, Geophysics, Geosystems

�

B a
r

n g k h k Pr
n

N n

n
k

n
k

k

n

n
k�

�

�
�

�

�
� �� � � � � � ��

�
�
�

�

�

�
� �

1

2

0
1 cos sin� � ��� �

� �
�

�
�

�

�
� � � � � ��

�
�
�



�

�

�
� �B a

r
g k h m

P

n

N n

n
k

n
k

k

n
n
k

� � �
�

1

2

0
cos sin

�� �



�
�

�
�

�

�
� � � � � ��

�
�
�

�

�

�
�

�

�
� ��B a

r
k g k h k

n

N n

n
k

n
k

k

1
1

2

0sin
sin cos

nn

n
kP� � ��

(7)

In Equation 7,  are the spherical coordinates of the sensors with respect to the origin of the expansion 
; Br, ,  are the three components of the measured magnetic field; a is the radius of a reference 

sphere encompassing the sources (arbitrarily taken equal to 1 m); N is the number of terms in the expan-
sion; Pn

m are the Schmidt semi-normalized associated Legendre polynomial functions; and gn
m and hn

m are 
the Gauss coefficients (units of T). The net magnetic moment (m) relates to the first three (n=1) Gauss 
coefficients as:

�        
2 2 23 0 1 1

1 1 1
0

4π
μ

m a g g h (8)

We can rewrite Equation 7 in matrix form:

� (9)

where 

Brem is the remanent field vector of size nobs×1 where nobs is the number of observations (three compo-

nents of the remanent field at each position of the fluxgates), A is a matrix of size 3 nobs×N that depends on 
the position of the sensor and the origin r0 0 0, ,� �� � chosen for the spherical harmonics expansion, and 


G  is 

a vector of size N×1 containing the Gauss coefficients. The order of the expansion is limited by the amount 
of data acquired. For five positions of the fluxgate rail, the sensors are collectively located at 20 different 
positions over the course of one experiment such that nobs = 60. We are in this case limited to an expansion 
of order N = 6 (i.e., 48 Gauss coefficients).

The limited number of observations adds complexity to the inversion problem described by Equation 9. In 
theory, any magnetic field can be described by an infinite spherical harmonics expansion independent of 
the choice of the expansion's origin. In typical inversion problems such as determining the net magnetic 
moment of a planetary body, the abundance and wide spatial coverage of the data makes it possible to set 
the origin of the expansion r0 0 0, ,� �� � to the origin of the planetary reference frame (0,0,0). In our case, the 
choice of an arbitrary origin may not necessarily be compensated with a large amount of data points. To 
overcome this problem, we solve Equation 9 for 


G  for different origins of the expansion. We do so using a 

nonlinear least square regression with Tikhonov regularization (Hansen, 2001), which finds the origin that 
minimizes the following constraint:

� (10)

where || ||⋅ 2
2  is the L2 norm squared and λ is a regularization parameter chosen to provide an optimal bal-

ance between minimizing the residuals without overfitting of the noise. In practice, the algorithm starts 
with an initial guess of (0,0,0) for the origin and calculates Equation 10 for a given; it then moves to other 
origins and recomputes Equation 10 until the origin that minimizes it is found. For a given set of data, 
the regression is conducted for a wide range of choices of λ (e.g., 10 to 105). It is common practice to plot 
the residuals || ||⋅ 2

2|| ||remA G B� �
 

2
2|| ||⋅ 2
2 as a function of the norm of the solution || ||⋅ 2

2|| ||


G 2
2|| ||⋅ 2
2 for different λ. If the prob-

lem is not too ill-posed, this plot forms a so-called L-curve, where || ||⋅ 2
2|| ||


G 2
2|| ||⋅ 2
2 first diverges for small residuals, 

then plateaus as residuals increase. The value of λ corresponding to the “knee” of the curve should offer 
the best compromise between minimizing || ||⋅ 2

2|| ||


G 2
2|| ||⋅ 2
2 and || ||⋅ 2

2|| ||remA G B� �
 

2
2|| ||⋅ 2
2. The optimal origin corresponding 

to this value of λ is then used to calculate the Gauss coefficients (Equation 9) and the magnetic moment 
(Equation 8).

A G B r� � � �
 

rem , ,� �
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3.4.  Sources of Uncertainty of the Measurements

We identified and quantified whenever possible both random and systematic sources of uncertain-
ty of the  system. Random errors can be a consequence of the unshielded environment of the experi-
ment or can be intrinsic to the sensors. The dominant sources of random errors due to the environment 
are the spatial and temporal variations of the background field. Spatial variations yield a nonuniform 
background field and therefore a nonuniform applied field throughout the sample, influencing in an 
unknown fashion  the induced component of the sample's field. Spatial variations of the background 
field at each position of the fluxgates are corrected for when computing 


Bsample from the data acquired 

with and without the sample inside. Conversely, temporal fluctuations between two measurements re-
peated with and without the sample will influence 


Bsample. We attempted to perform gradiometry meas-

urements to cancel out the background field fluctuations by placing the Bartington fluxgate at >1 m 
outside the system, oriented along the instrument's reference frame. The distance between the fluxgate 
and the system had to be sufficiently large such that only the background field is sensed. However, spa-
tial variations of the background field and differences in temporal variations inside and far outside the 
system were too significant to make effective use of the gradiometry data. Instead, we simply used these 
data to monitor background field variations  to identify extraordinary variations of several µT over >1 
min that would require repetition of some of the measurements. The fluxgates are additional sources of 
random errors due to their frequency-dependent noise (e.g., flicker and white noise) and their digitiza-
tion noise. The latter relates to the value of the gain used. For a gain of 1, the manufacturer guarantees 
a resolution of ±25 nT (2 s.d.). No information is given by the manufacturer regarding the flicker noise 
and white noise.

Systematic errors depend on the MEDA fluxgates and do not significantly vary from one experiment to the 
other. In our system, we identified three potential sources of systematic errors for the fluxgates: (1) their 
scale factor uncertainty, (2) their offset, and (3) their orientation uncertainty. Regarding (1), the manufac-
turer datasheet indicates an accuracy of ±0.25% (2 s.d.) of the measured field. Regarding (2), to quantify 
the offsets of the fluxgates, we measured the field recorded by each fluxgate placed consecutively inside a 
permalloy shield in a transformed-steel magnetically shielded room where the ambient field was reduced to 
<10 nT. The offset of a given component is half the difference between the measured field strength in two 
opposite directions. The largest offsets found were of the order of ∼10 nT, which is negligible compared to 
the other identified sources of noise. Regarding 3), the manufacturer datasheet indicates that each of the 
three sensors (one per axis) inside a fluxgate can be tilted up to 1° (2 s.d.) with respect to the nominal or-
thogonal reference frame. As a consequence, each measured component could differ by up to sin(1°) ∼ 2% 
with respect to its expected value. To verify this value, we built one set of 68.7 cm vertical Helmholtz coils 
separated by 38 cm with 26 wire turns in the shielded room (|| ||⋅ 2

2|| ||bg

B || ||⋅ 2

2 < 100 nT). We placed consecutively each 
fluxgate at the center of the system and recorded the field for currents between 0 and 1 A. We subtracted 
the vertical component of the field at I = 0 A (background field) from the measured applied field to obtain 
the vertical component of the compensation field. This operation was repeated aligning each sensor inside 
each fluxgate with the coil axis. Comparing the measured values and their simulated counterparts we found 
that they were all within <2% of each other, validating the 1° precision on the orientation of the sensors. 
Additional systematic errors were introduced during the assemblage of the instrument. In particular, we 
estimate a possible misalignment of each fluxgate with respect to the system's reference frame up to 2° 
(2 s.d.) in the horizontal and vertical planes.

Because we cannot quantify and correct for all systematic errors, the latter may yield a bias in the mean 
estimate of the magnetic moment. To assess the significance of such bias, we simulated the compensation 
field generated inside our instrument (same positions of the fluxgates) by a 1.9 cm cube uniformly magnet-
ized along its diagonal with a magnetic moment of 8 A m2 (adapted from Yang et al., 1990). For simplicity, 
we assumed the remanent field was directly measured. We sequentially introduced a misalignement of the 
sensors in each fluxgates and a misalignment of the fluxgates. We used the “measured” field to estimate the 
magnetic moment (Section 3.3). We found that the misalignments of the sensors inside the fluxgates and 
of the fluxgates themselves (introduced separately or combined) can create a bias of a few percents in the 
average estimate of the magnetic moment (Figure 6a). This conclusion was verified on real data acquired on 
a well-characterized sample (Section 4.2).
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Finally, the manual orientation of the whole system along the horizontal component of the background 
field has an uncertainty of about ±3°. Because of this offset, the orientation of the applied field will vary 
as the magnitude of the compensation field increases, affecting appliedˆχr  in Equation 6. This effect will not 
be significant when measuring strong samples with isotropic magnetic susceptibility like a magnet, but 
should be acknowledged in the case of weaker, anisotropic natural samples such as meteorites. The only 
way to reduce this uncertainty is to align the background field and the compensation field as closely as 
possible.

4.  Validation: Magnet With Known Magnetic Moment
We tested our protocol using a standard sample with known magnetic moment, a 1.9 × 1.9 × 1.9 cm Nd-Fe-B 
magnet from K&J Magnetics. The magnetic moment m (A m2) is approximately equal to 1

0μrB V  where Br 
(T) is the remanent field and V (m3) is the volume of the magnet. According to the manufacturer, Br = 1.465 
± 0.015 T and V = (6.91 ± 0.053) × 10−6 m3 (uncertainties are 2 standard deviations, s.d.); therefore m = 8.05 
± 0.15 A m2. The measurements were conducted in the Massachusetts Institute of Technology Paleomagne-
tism Laboratory following the protocol detailed in Section 3. Data were acquired for five different positions 
of the fluxgate rail (Figure 2). The sample was placed on a plexiglass base, centered and held in place with 
aluminum brackets. The system parameters and sequence of currents are summarized in Table 1.

4.1.  Isolation of the Magnet's Remanent Field

The first series of measurements were conducted without the magnet. The Bartington fluxgate placed at the 
center was used to measure 


Bbg (t) (I = 0 A; Figures 4a and 5a–5c) and data acquired by the MEDA fluxgates 

were concatenated into 

Btotal

no sample (t) (Figures 4b and 5a–5c). With the second series of measurements and 
the magnet inside, we constructed 


Btotal

with sample (t). These vectors contain the temporal signals recorded during 
the one-minute acquisitions for each position of the rail, fluxgate, and current step. From there, we proceed-
ed by bootstrapping. To account for the effect of temporal fluctuations of the background field (∼100 nT; 
Figures 5a–5c; Section 3.4), we sampled with replacement as many values as there are data points in these 
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Parameter Value

Size of the z coils (cm) 145

Spacing between z coils (cm) 74

Number of turns in the z coil 18

Size of the x coils (cm) 130

Spacing between x coils (cm) 66

Number of turns in the x coil 10

Spacing between the MEDA fluxgates (cm) 27.95

Position of the center of the magnet (x, y, z) (cm) (1.27, 0, −1.27)

Position of the Bartington fluxgate at the center (x, y, z) (cm) (−2.54, 2.54, −0.6)

Height of the fluxgate rail at positions 1, 2, 3, 4, 5 (cm) 10.2, −5.1, 10.2, −5.1, 26.7

Current z coils (A) 0, 0.375, 0.75, 1.125, 1.5, 1.875, 2.255

Corresponding Bapplied, z (µT) −45.85, −37.96, −30.06, −22.17, −14.29, −6.42, 1.54

Currents x coils (A) 0, 0.198, 0.395, 0.593, 0.791, 0.989, 1.19

Corresponding Bapplied, x (µT) −12.72, −10.14, −7.57, −4.99, −2.41, 0.17, 2.79

Note. The first column lists the parameters and the second column the respective values used in our instrument.
Abbreviation: MEDA, Macintyre Electronic Design Associates.

Table 1 
System Parameters
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three raw data vectors and averaged over the acquisition time. From 

Btotal

no sample and 

Btotal

with sample we calculated 

Bsample. To account for the spatial variations of the applied field across the sample—due to the nonzero 
volume of the sample and the fact that it may be only approximately centered in the system—we randomly 
chose a point within the volume of the sample and simulated 


Bcomp in that point (instead of the center of the 

system; Figure 4a). We obtained 

Bapplied by summing 


Bbg and 


Bcomp. Finally, we estimated each component 

of the remanent field at each position of the fluxgates using the intercept of the regression line between the 
corresponding component of 


Bsample and 


Bapplied (Figures 4c and 5d–5f). This sequence of operations was 

repeated 100 times. The remanent field values were sorted in ascending order with the 2nd and 98th values 
representing the 95% confidence interval on each component.

4.2.  Estimation of the Magnet's Magnetic Moment

Using all remanent field components at all positions of the fluxgates (i.e., a total of 60 values) we applied 
the multipole inversion of order N = 6 solving Equation 9 under the constraint of Equation 10 for different 
values of λ. We selected the λthat optimally minimized Equation 10 and used the Gauss coefficients to 
calculate the magnetic moment (Equation 8). This operation was repeated for the 100 values of the rema-
nent field components (Section 4.1). For this sample, the ordinate range of the L-curve (solution norm) is 
only marginally affected by the choice of λ (Figure 6b). The curve is made of discrete clusters of points as 
a consequence of the nonlinear search for the origin of the expansion. Both values of λ at the knee and the 
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Figure 5.  (a–c) Three components of the applied field measured at the center of the system (solid line) and the 
simulated compensation field (dashed line) as a function of measurement time. The difference between the two curves 
is the background field (Equation 1). The small delays accumulated between each 30-s acquisition and between each 
current step are not shown such that the acquisition of this whole sequence took ∼30 min. High-frequency (>0.1 Hz) 
fluctuations are visible in (b) because of the weak values of this field component due the fact that the y component of 
the field is perpendicular to the background field (e.g., Figure 2). (d–f) Three components of the magnet's total field 
(gray circles) as a function of magnitude of the applied field for fluxgate 7 (Figure 2) with coordinates (−10.2, −43.2, 
and −5.1) cm. The two data points at maximum applied field correspond to the first and last current steps (I = 0 A). The 
regression line is shown and the components of the magnet's remanent field are the intercepts. The remanent field is an 
order of magnitude stronger than the induced field, as expected for a magnet. The quasilinear relationship between the 
sample field components and the magnitude of the applied field support the dipole assumption used in Equation 6.
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first point at the onset of the plateau at higher values of the residuals norm (λ= 5,450 and 8,850 on Figure 
6b) yield estimates of the magnetic moment 8.53 ± 0.03 A m2 (2 s.e.) and 7.66 ± 0.04 A m2, respectively. 
These uncertainties only reflect the contribution of the sources of random noise. As expected from our 
simulations (Section 3.4), the mean estimates are within 5% of the nominal average magnetic moment of 
the magnet, most likely due to the sources of systematic errors. This value of 5% will be adopted in future 
measurements to add the contribution of the systematic errors to the total uncertainty of the estimate. In 
addition, both solutions exhibit a power spectrum that has totally decayed by spherical harmonics degree 
6 (Figure 6c), which support the choice of a maximum degree 6 for the inversion. Both model fields can 
reproduce the observed field (Figure 6d). This demonstrates that the magnetometer array can be confidently 
used to estimate the magnetic moment of a sample.

5.  Magnetic Measurements of an Iron Meteorite
This instrument was primarily developed to estimate the magnetic moments of large iron meteorites. As 
an example of such an application, we present results obtained for the Casas Grandes IIIAB iron meteorite 
(∼0.6 × 0.5 × 0.45 m, 750 kg, USNM 369-2) measured at the Smithsonian Museum of Natural History's stor-
age facility (Suitland, MD). The system parameters are given in Table 2. The total volume of equipment was 
∼2 m3 and weighted > 100 kg. Assembling and aligning the system took 6.5 h. The system was placed near 
the center of an empty, ∼8 × 8-m area, as far as possible from stray sources of magnetic fields (computer at 
∼3 m, metallic shelves at ∼4 m and outdoor parking at ∼10 m). The series of measurements (with and with-
out the meteorite) consisted of seven current steps (including the first and last steps at I = 0 A; Table 2) and 
five positions of the rail (Figure 2); they each lasted ∼2.5 h. We conducted two series without the meteorite. 
Between them, the meteorite was brought with a forklift and visually centered inside the system (Figure 2c). 
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Figure 6.  (a) Solution norm as a function of residuals norm (L-curve) for one of the random draws of remanent field components and values of λ between 
10 and 105. (b) Power spectrum of one solution of the nonlinear least-square regression, obtain with λ = 5,450. (c) Results of simulations showing the effect of 
systematic errors on the estimate of the magnetic moment. The percentage of error with respect to the nominal magnetic moment is shown as a function of the 
tilt of the fluxgates, assuming each sensor inside the fluxgates is also tilted by 0.5°. (d) Comparison between observation and model field. The three components 
of the sample's remanent field are shown for all 20 positions of the fluxgates with the gray circles. The circles are larger than the 95% confidence interval 
obtained with the bootstrap (not shown here; Section 3.4). The red diamonds show the model field obtained for one draw with λ = 5,450.

(a)

(b)

(c)

(d)
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Parameter Value

Size of the z coils (cm) 249

Spacing between z coils (cm) 142

Number of turns in the z coil 27

Size of the x coils (cm) 233

Spacing between x coils (cm) 134

Number of turns in the x coil 16

Spacing between the MEDA fluxgates (cm) 34

Position of the center of the meteorite (x, y, z) (cm) (10, 2.5, 0.5)

Position of the Bartington fluxgate at the center (x, y, z) (cm) (−2.4, 0.8, 1.2)

Height of the fluxgate rail at positions 1, 2, 3, 4, 5 (cm) 29.7, −16.0, 29.7, −16.0, 60.2

Current range in z coils and x coils (A) 0–2.5 and 0–2.285

Range of Bapplied, z and Bapplied, x (µT) −45.5 to −2.6 and 24.8 to 0.17

Note. The first column lists the parameters and the second column the respective values used in our instrument.
Abbreviation: MEDA, Macintyre Electronic Design Associates.

Table 2 
System Parameters

Figure 7.  (a–c) Three components of the Casas Grandes iron meteorite's total field (gray circles) as a function of magnitude of the applied field for the 
fluxgate 7 (Figure 2) with coordinates (17.9, −78.7, and −16.0) cm. The two data points at maximum applied field correspond to the two measurements at zero 
compensation field acquired at I = 0 A. The regression line is shown. Unlike the magnet, induced and remanent fields are of the same order of magnitude. 
(d) Comparison between observation and model field. The 95% confidence intervals obtained with the bootstrap (Section 3.4) for the three components of 
the sample's remanent field are shown for all 20 positions of the fluxgates with the gray bars. The red diamonds show the model field obtained for one of the 
random draws of the remanent field components.

(a) (b) (c)

(d)
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Safety rules of the museum imposed that the meteorites stayed on their wooden sustaining pallet. We added 
several plastic pallets to center the meteorite vertically. Some of the sustaining pallets had a few metallic 
nails, but given the distance between the nails and the fluxgates, these did not have any influence on the 
measurements.

Compared to the measurements of the magnet, two sources of uncertainty were more prominent: (1) the 
spatial fluctuations of the background field within the sample given the large volume of the meteorite and 
(2) the effect of the anisotropy of the magnetic susceptibility, likely stronger for such a large natural sample 
due to the misalignment (±3°) of the system's axes with the background field. The effect of source (1) was 
accounted for in the bootstrap procedure (Section 3.4) where we simulate the compensation field at a ran-
dom point within the meteorite's volume and use it to estimate 


Bapplied. For a misalignment of the system 

within ±3°, up to sin(3°)∼5% of the applied field is projected onto another axis. However, because the 
anisotropy of the susceptibility is unknown (Section 3.2), we could not correct for this effect in the post-pro-
cessing of the data. We find that the model field falls within all the 95% confidence intervals of the data 
(Figure 7). This implies that a 6th order multipole inversion model was sufficient to explain the data given 
the level of uncertainties. As a result, we find that the magnetic moment of Casas Grandes is 0.5 ± 0.3 A m2 
(2 s.e.). Note that we do not fit for the magnetization distribution within the sample and only recover the 
magnitude of the net magnetic moment. This is because our objective is to constrain the dependence of the 
magnetization intensity as a function of meteorite volume over several orders of magnitude of the radius.

6.  Conclusion
We developed a portable magnetometer array and associated data processing to measure the remanent 
magnetic field of meter-size meteorites and estimate their magnetic moments. A two-axis square Helmholtz 
coil system enables control of the field applied to the meteorite and four three-axis fluxgate magnetometers 
measure the total field inside the system at multiple positions. Measurements are conducted at different 
strengths of the applied field. To isolate the remanent component of the sample's total field from its induced 
component, we characterize the field of the sample as a function of the magnitude of the applied field. A 
least squares regression to these data provides the sample's field at zero applied field corresponding to its 
remanent component. We use a multipole inversion to estimate the net magnetic moment from the rema-
nent field measured at different positions occupied by the fluxgate sensors. The system enables retrieval of 
the magnetic moment of a well-characterized sample within 5% of its nominal value. It has been used to 
estimate the magnetic moment of a 750 kg iron meteorite. This versatile instrument and data processing can 
easily be adapted to analyze samples with different sizes.
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