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Let F be an algebraically closed eld of zero characteristic, a polynomial ' 2 F X1; : : : ; Xn] have a multiplicative complexity r and f1; : : : ; fk 2 F X1; : : : ; Xn] be some polynomials of degrees not exceeding d, such that ' = f1 = = fk = 0 has a nite number of roots. We show that the number of possible distinct vectors of multiplicities of these roots is small when r; d and k are small. As technical tools we design algorithms which produce Gr obner bases and vectors of multiplicities of the roots for a parametric zerodimensional system. The complexities of these algorithms are singly exponential. We also describe an algorithm for parametric absolute factorization of multivariate polynomials. This algorithm has subexponential complexity in the case of a small (relative to the number of variables) degree of the polynomials.

INTRODUCTION

The main aim of this paper is to prove some new features of polynomials which are easy to compute. Previously, the only known characterizations were the bounds on the sizes of polynomials vanishing on the variety of the coe cients of polynomials which are easy to compute (see BCS 97]).

Let F be an algebraically closed eld of characteristic zero, ' 2 F X1; : : : Xn] be a polynomial which is easy to compute, i.e., having a multiplicative complexity r. Let f1; : : : ; fk 2 F X1; : : : ; Xn] be some polynomials of degrees not exceeding d, such that the system ' = f1 = = fk = 0 has a nite number of roots. We show (see Corollary, Section 3) that the number of possible distinct vectors of multiplicities of these roots is less than (2 r + d) O(n 2 (r 2 +kn d )) :

To prove this bound we design (Theorem 1) an algorithm having singly exponential complexity which produces a reduced Gr obner basis for a parametric zero-dimensional sys-Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage, and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. ISSAC 2000, St. Andrews, Scotland c 2000 ACM 1-58113-218-2/ 00/ 0008 $5.00 tem of polynomial equations.

The Gr obner bases for zero-dimensional systems were intensively studied, see B 85, CGH 89, DGFS 89, FGLM 93, Gi 89, GM 89, GH 93, K 89, KMH 89, Lak 91, Laz 81, T 78] and others. The Gr obner bases for parametric systems were considered in W 89], without addressing the complexity issues.

In Theorem 2 an algorithm is described which, invoking Theorem 1, partitions the space of the parameters of a system of equations into constructive sets, such that under a specialization by any point from a given set, the vector of multiplicities of the roots of the system is the same (provided the system has a nite number of roots). The algorithm also nds vectors of multiplicities. The running time of the algorithm is singly exponential. We mention that in the univariate case (n = 1), an algorithm for parametric solving of equations (i.e., parametric computing of the GCD of a family of univariate polynomials) was suggested in G 87]. In Theorem 3 (Section 4) we describe an algorithm for parametric absolute factorization of multivariate polynomials. This algorithm has a subexponential complexity in the case of a small (relative to the number of variables) degree of the polynomials.

PARAMETRIC GRÖBNER BASIS OF A ZERO-DIMENSIONAL IDEAL

Let F1; : : : ; Fk be polynomials in variables X1; : : : ; Xn of degrees at most d with variable pair-wise distinct coe cients T1; : : : ; Ts, which are considered as parameters. Thus, Fi 2 Z T1; : : : ; Ts] X1; : : : ; Xn];

where s k n+d d kn d . Let for a specialization of all parameters T1; : : : ; Ts in algebraically closed eld F of characteristic zero the corresponding system of equations f1 = = fk = 0 have a nite number of roots in F n . In CGH 89, Lak 91] a Gr obner basis (g1; : : : ; gr) for (f1; : : : ; fk) was constructed such that deg(gi) < d O(n) (here and throughout the paper we x a certain computable monomial ordering, for example deglex BW 93]).

The aim of this section is to describe an algorithm for constructing a parametric Gr obner basis for (F1; : : : ; Fk) and to estimate the algorithm's complexity, in particular to bound the sizes of coe cients of the Gr obner basis (which are ratio-nal functions of T1; : : : ; Ts). In is known (see, e.g., W 89]) that the existing algorithms for Gr obnes basis construction (for arbitrary dimension) can be parametrized. Complexity bounds were not considered, but it is clear that straightforward bounds are doubly exponential in n even in zerodimensional case. Now we proceed to the description of the algorithm.

Fix for a time being a specialization of the parameters T1; : : : ; Ts and introduce the algebra A = F X1; : : : ; Xn]=(f1; : : : ; fk):

The dimension dimF(A) coincides with the sum of multiplicities of all roots of f1 = = fk = 0 (see, e.g., ABRW 96, Ro 99]), therefore, due to the B ezout's inequality, dimF(A) d n (see, e.g., H 83]). Observe that for any i, 1 i n there exists a polynomial qi 2 F Xi] such that deg(qi) dimF(A) and qi 2 p (f1; : : : ; fk). If we require qi to be monic and of the minimal possible degree, then such qi is unique. According to the E ective Nullstellensatz FG 90] for any i; 1 i n there exist polynomials hj; 1 j k of degrees deg(hj) d O(n) and l d O(n) such that q l i = X 1 j k

hjfj:

(1)

Consider the following polynomials with indeterminate coe cients: monic Qi; 1 i n in variables Xi respectively; and Hj; 1 j k, all in variables X1; : : : ; Xn, such that deg(Qi

) = i d O(n) , deg(Hj) = d O(n) , where i l deg(qi), deg(hj). Consider Qi = X 1 j k

HjFj

(2) as a system of linear equations of the size not exceeding d O(n 2 ) in the indeterminate coe cients of Qi; Hj. Observe that for any specialization of the parameters T1; : : : ; Ts with dim((f1; : : : ; fk)) = 0, the linear system (2) has a root over F. Conversely, if (2) has a root over F then the ideal (f1; : : : ; fk) is zero-dimensional. Applying the procedure from H 83] (see also CG 84, G 88, G 90]), for solving parametric systems of linear equations by Gaussian elimination, to the linear system (2), we get the constructive subset V F s of all parameters from F s such that for any v 2 V the specialization of (2) by v has a root in F n . We also get a partition of V into constructive sets V = 1 N V :

The algorithm describes each set V by a system of polynomial equations and inequations (relations with 6 =)

B ( ) 1 = = B ( ) M = 0; B ( ) M +1 6 = 0;
(3) where B ( ) j 2 Z T1; : : : Ts]. For each V the algorithm produces the (uniform) solution of the linear system (2) in the following form. Firstly, a particular solution of (2) as a vector of rational functions fR ( ) 0 g from Q(T1; : : : ; Ts); secondly a basis of solutions of the homogeneous linear system corresponding to (2), as a vector of rational functions fR ( ) ; g from Q(T1; : : : ; Ts), where ranges from 1 to the dimension of the space of the solutions of this homogeneous system. where S 2 (Q 1 ; : : : ; Q n ). Hence, deg X l (S) l +d d O(n) , 1 l n. Dividing S by the family Q 1 ; : : : ; Q n with the remainder, we get S = P 1 i n SiQ i for some Si 2 F X1; : : : ; Xn], where deg X l (SiQ i ) deg X l (S) d O(n) , 1 l n. Plugging this expression for S in f, we obtain f =

X 1 j k Pjfj + X 1 i n SiQ i : (4) 
For a given xed consider the following matrix M of the size at most d O(n) with entries in F(T1; : : : ; Ts). The columns of M correspond to all the monomials (in the descending order with respect to the chosen monomial ordering) X m 1 1 X mn n , where ml l + d; 1 l n; each row of M corresponds to the expansion in the basis of these monomials of either X m 1 1 X mn n Fj or X m 1 1 X mn n Qi for all possible i; j; m1; : : : ; mn such that ml + deg X l (Fj), ml + deg X l (Qi) l + d (cf. (4)).

Fix again a point from V and denote the corresponding specialization of M by M . Using elementary transformations of rows one can reduce M to a following \stairs" form (wij)i;j. Let w1 1 = = wr r = 1 be the rst non-zero elements in the rows 1; : : : ; r respectively, where r = rank(M ), and 1 < < r. We also require that wi j = 0 for any i < j (1 i; j r). Let X ( 1 ) ; : : : ; X ( r) be the monomials corresponding to columns 1; : : : ; r of M . Choose among them all the monomials X ( j 0 ) such that X ( j ) does not divide X ( j 0 ) for all 1 j r; j 6 = j0 and in addition deg X i (X ( j 0 ) ) deg(qi) for all 1 i n.

Then the set of all polynomials corresponding to rows j such that X ( j ) was chosen above, constitutes the reduced Gr obner basis of (f1; : : : ; fk), taking into the account that any element of the reduced Gr obner basis is contained in the linear hull of the rows of M (see (4)).

The algorithm applies the procedure for solving parametric systems of linear equations by means of the Gaussian elimination from H83, CG 84, G 88, G 90] to the matrix M under the condition that the parameters T1; : : : ; Ts satisfy (3). In the process of Gaussian elimination, a current pivot is chosen in the left-most possible column. As a result, the algorithm obtains a \stairs" form of M . More precisely, the algorithm outputs a partition of V into constructive sets

V = 1 N V ; :
Each V ; is de ned by a system of polynomial equations and inequations B ( ; ) 1 = = B ( ; ) M ; = 0; B ( ; ) M ; +1 6 = 0;

(5) where B ( ; ) i 2 Z T1; : : : ; Ts]. For every the algorithm outputs the sequence ( )

1 < < ( )
r of the columns, such that in M ( ) = (w ( ) ij )i;j the entries w ( ) i i = 1 (1 i r ) are the rst non-zero elements in the rows 1; : : : ; r , where r = rank(M ( ) ). Each entry w ( ) ij , where j > i and j 6 = l for all l 6 = i, is given by the algorithm as rational function from Q(T1; : : : ; Ts). Observe that all the rest of the entries w ( ) ij vanish on V ; .

The We summarize the results of this section in the following theorem, which uses the notations introduced previously in this Section.

Theorem 1. There is an algorithm which for a system of parametric polynomials F1; : : : ; Fk 2 Z T1; : : : ; Ts] X1; : : : ; Xn] produces the constructive subset V F s of all points v for which the specializations f1; : : : ; fk of F1; : : : ; Fk generate zero-dimensional ideals. The algorithm produces the partition

V = 1 N 1 N V ;
into constructive sets de ned by systems (5), and for each V ; the algorithm outputs a family of polynomials G1; : : : ; G 2 Q(T1; : : : ; Ts) X1; : : : ; Xn] (being monic with respect to the xed monomial ordering of X1; : : : ; Xn) such that for any point v 2 V ; the specialization g1; : : : ; g 2 F X1; : : : ; Xn] of G1; : : : ; G at v is the reduced Gr obner basis for f1; : : : ; fk. The degrees with respect to T1; : : : ; Ts of all produced rational functions do not exceed d O(n 2 ) , and deg X 1 ;::: ;Xn (Gi) d O(n) for 1 i < d O(n 2 ) . The running time of the algorithm is less than d O(n 2 s) .

Remark 1. Obviously the theorem remains true if F is a eld with a positive characteristic, and Fi 2 GF(p) T1; : : : ; Ts] X1; : : : ; Xn] for a prime number p.

VECTORS OF MULTIPLICITIES FOR A PARAMETRIC SYSTEM

In what follows we adopt the notations from Theorem 1.

Fix some values of indices ; . For any value of the parameters from V ; we construct in a usual way BW 93] the monomial basis and the multiplication tables for the algebra A = F X1; : : : ; Xn]=(f1; : : : ; fk), involving the Gr obner basis produced in Theorem 1. More precisely, the table represents the product of some two monomials from the basis as a linear combination of elements of the basis with the coe cients being rational functions from Q(T1; : : : ; Ts) of degrees not exceeding d O(n 2 ) . The running time of this construction is less than d O(n 2 s) .

Fix for a time being a specialization of the parameters T1; : : : ; Ts. Introduce indeterminates U1; : : : ; Un. ( 1; : : : ; n) coincide. Note that deg Z ( (Z)) = dim(A). Let i be the vector (1; i; i 2 ; : : : ; i n 1 ) 2 Q n for any 1 i (n 1)d 2n . Consider the multiplication map Ui : A ! A by the linear form X1 + iX2 + i 2 X3 + + i n 1 Xn, and the characteristic polynomial (U-Chow polynomial) i (Z) of Ui (see ABRW 96, Ca 89]). Then there exists the integer i0; 1 i0 (n 1)d 2n , such that the inner products i 0 ( 1; : : : ; n) are distinct for distinct roots ( 1 : : : ; n) of f1 = = fk = 0 (cf. CG 84]). For each i; 1 i (n 1)d 2n the algorithm constructs the polynomial i 2 Q T1; : : : ; Ts] Z], and computes the vector of multiplicities of its roots, as described below. The degree deg T 1 ;::: ;Ts ( i ) does not exceed d O(n 2 ) and i can be found in time not exceeding d O(n 2 s) . For any j; 1 j deg Z ( i ) the algorithm, using G 90], computes the GCD( i ; 0 i ; : : : ; (j) i ) representing it in the form (i;j) l Z l + (i;j) l 1 Z l 1 + + (i;j) 0 ;

where (i;j) l ; : : : ; (i;j) 0 2 Q T1; : : : ; Ts] are some minors of a relevant matrix, whose entries are coe cients of the polynomials i ; 0 i ; : : : ; (j) i of the sizes not exceeding d O(n) , with deg T 1 ;::: ;Ts ( (i;j) m ) d O(n 2 ) and l deg(A) j. Note that the polynomials (i;j) l ; : : : ; (i;j) 0 are generalizations of subresultants for the case of GCD of many polynomials (rather than just two). Observe that the degrees of GCD( i ; 0 i ; : : : ; (j) i ) for all j determine the multiplicities of i .

The algorithm lists all the non-empty constructive sets W of the form f (i;j) m i;j;m 0g V ; F s ;

(6) where i;j;m 2 f=; 6 =g, using H 83]. The number of the sets does not exceed d O(n 2 s) H 83], the running time of the listing is less than d O(n 2 s) CG 83].

Each of the constructive sets W determines the degrees with respect to Z of GCD( i ; 0 i ; : : : ; (j) i ), and thereby the vectors of multiplicities of all i . The algorithm nds among vectors of multiplicities the one with the maximal number of components, which is the vector of multiplicities of the roots of f1 = = fk = 0 for any specialization from W. We summarize the results of this section, using Theorem 1, in the following theorem.

Theorem 2. There is an algorithm, which for a system of parametric polynomials F1; : : : ; Fk 2 Z T1; : : : ; Ts] X1; : : : ; Xn] produces a constructive subset V F s of all points v for which the specializations f1; : : : ; fk of F1; : : : ; Fk respectively, generate zero-dimensional ideals. The algorithm produces a partition V = 1 N W into constructive subsets of the form (6). For every ; 1 N the vector of multiplicities of the roots is the same for a specialization f1 = = fk = 0 by any point w 2 W .

The algorithm nds such vector of multiplicities for every W . The number N of sets does not exceed d O(n 2 s) , the degrees of the polynomials de ning W is less than d O(n 2 ) , and the running time of the algorithm is bounded by d O(n 2 s)

Remark 2. The algorithm from the theorem can be modied to express the solutions of a parametric polynomial system via primitive element using the \Shape Lemma" (see, e.g., KP 94, GH 93]). More precisely, the algorithm produces a partition of W into constructive sets W ; . Each set W ; is equipped with a linear combination 1X1 + + nXn where 1 i d O(n) and rational functions p1; : : : ; pn 2 Q(T1; : : : ; Ts) Z]. Herewith, for any v 2 W ; the set of all roots of the specialization f1 = = fk = 0 of F1 = = Fk = 0 by v coincides with the set of points (p1(v)( );: : : ; pn(v)( )) where runs over all distinct roots of the characteristic polynomial (v) Z] of the linear multiplication map by the element 1X1+ + nXn in the algebra A. The number of sets W ; does not exceed d O(n 2 s) , the degrees deg Z (pi); deg Z ( ) d 2n ; deg T 1 ;::: ;Ts (pi), deg T 1 ;::: ;Ts ( ) d O(n 2 ) . The running time of the algorithm is less than d O(n 2 s) .

Remark 3. In the case when the polynomials F1; : : : Fk are homogeneous in X0; X1; : : : ; Xn one can prove a projective version of Theorem 1. Namely, the algorithm produces a partition V = V F s of the constructive set V of points in F s for which the specializations f1 = = fk = 0 of F1 = = Fs = 0 have nite numbers of roots in the projective space P s (F). For each V the algorithm, using Laz 81], constructs a polynomial R 2 Q T1; : : : ; Ts; U0; U1; : : : ; Un] such that for any specialization by a point from V , the polynomial R converts to U-resultant of the system f1 = = fk = 0. Both, the degrees of polynomials de ning V and deg(R ) do not exceed d O(n) . The running time of the algorithm is less than d O(ns) .

Remark 4. One can also prove a projective analogue of Theorem 2. Namely, the algorithm partitions V into at most d O(ns) constructive sets V such that the specializations f1 = = fk = 0 of F1 = = Fk = 0 by all points from V have the same vector of multiplicities of their roots. The degrees of polynomials de ning V do not exceed d O(n) and the running time of the algorithm is bounded by d O(ns) .

APPLICATION TO POLYNOMIALS WHICH ARE EASY TO COMPUTE

In this section we consider a multivariate analogue of the construction of Strassen and Schnorr (see BCS 97]). In what follows we use the notations from Sections 1 and 2. One can apply the algorithms from Sections 1 and 2 to polynomials ; F1; : : : ; Fk. We apply Theorem 2 to elements of the set C ( ) r;D;n B which are treated as the polynomials in X1 1; : : : ; Xn n of degrees at most D. for small values of r and d.

Remark 6. Obviously, D 2 r .

Remark 7. In case n = 1 we conclude, in particular, that for each D there exists a vector of multiplicities m1; : : : ; ml with m1 + + ml = D such that the multiplicative complexity of any polynomial (X a1) m 1 (X al) m l for arbitrary roots a1; : : : ; al is greater than ( p D= log D) (in fact almost all vectors of multiplicities satisfy this bound).

Remark 8. The bound from Corollary becomes meaningful, for example, for d = 2 and r being polynomial in n log D.

PARAMETRIC ABSOLUTE FACTORING OF POLYNOMIALS OF SMALL DEGREE

Let G 2 Z T1; : : : ; Ts] X1; : : : ; Xn] be a polynomial with degrees deg X 1 ;::: ;Xn (G) d; deg T 1 ;::: ;Ts (G) ; and bit-sizes of integer coe cients not exceeding L. Here variables T1; : : : ; Ts are considered as parameters. In this section we describe an algorithm for parametric factoring of G over F.

We call a vector = ( 1; : : : ; n) 2 Z n + (d; n)-separating if for all vectors j = (j1; : : : ; jn) 2 Z n + such that j1+ +jn d the inner products j are pair-wise distinct.

Let N = n+d n 2 (n 1)+1. Then there exists a prime number p such that N < p 2N. Consider an (N n)-matrix D whose (i; j)-entry is the residue r; 0 r p 1 of i j modulo p, where 1 i N, 0 j n 1. Lemma 1. At least one of the rows of the matrix D is (d; n)-separating.

Proof. Suppose, contrary to the claim of the lemma, that for any row of D there exist two distinct vectors j = (j1; : : : ; jn); j 0 = (j 0 1 ; : : : ; j 0 n ) 2 Z n + such that j1 + +jn d; j 0 1 + +j 0 n d and j = j 0 . Observe that each (n n)minor of D is non-zero being a Vandermonde determinant modulo p (cf. GKS 90]). It follows that for each pair of distinct vectors j; j 0 as above, there exist at most n 1 rows such that j = j 0 . The obtained contradiction proves the lemma.

Fix the row of D satisfying Lemma 1. Consider the 

where 2 i n. Applying this transformation to g we obtain the polynomial g . Note that the coe cient at the monomial X d 1 1 of g equals to ĝ( 1; : : : ; n). Then, according to Lemma 2, there exists a row of E such that the corresponding polynomial g contains the monomial X d 1 1 .

We call a polynomial from F X1; : : : ; Xn] monic (in X1), if the coe cient at the highest power of X1 belongs to F. Note that g is monic.

The algorithm performs the transformation (7) of G for the various rows of the matrix D and the various rows of the matrix E. For a xed denote the result of the transformation by G . The algorithm partitions the space F s of the parameters into the constructive sets V such that all specializations g of G by the points from V are of the same degree d1 and are monic. W.l.o.g. we assume that the coe cient at X d 2 1 of G is 1 (dividing G by this coe cient). The number of sets V does not exceed n+d n O(1) . Each set V is de ned by a system of polynomial equations and inequations of degrees at most in variables T1; : : : ; Ts. For deciding the non-emptiness of these sets, the algorithm uses the procedure from C 84, G 84], whence the running time of the algorithm at this stage is bounded by L s n+d n O(1) , taking into the account that the bit-size of j is bounded by

n+d n O(1) .
Fix for a time being a set V . The algorithm reduces the absolute factorization of G to the absolute factorization of a separable polynomial. Namely, note that for any specialization g of G (by the points from V ), the polynomial g=GCD(g; @g=@X1) is separable. The algorithm computes the GCD(g; @g=@X1) (treating g as a polynomial in X1)

parametrically, using the subresultant algorithm Co 67]. Namely, the algorithm constructs the minors of the Sylvester matrix for G and @G =@X1, and partitions the set V into constructive subsets Vd 2 . For each set Vd 2 the algorithm pro- duces a polynomial d 2 X d 2 1 + d 2 1X d 2 1 1 + + 0, where j 2 Z T1; : : : ; Ts] X2; : : : ; Xn], 0 j d2. Each specialization d 2 (v) of d 2 by the points v 2 Vd 2 is a non-zero element of F X1; : : : ; Xn]. The specialization d 2 (v)X d 2 1 + + 0(v) coincides with the GCD(g; @g=@X1) in the ring F(X2; : : : ; Xn) X1]. Since g is monic, the polynomial d 2 (v) divides j(v) for all 0 j d2 1 in F X2; : : : Xn], due to the Gauss Lemma.

The algorithm computes the quotients j= d 2 parametrically. Namely, the coe cients of the quotients are the unique solutions of the suitable systems of linear equations with coe cients in Z T1; : : : ; Ts] (provided that v 2 Vd 2 ).

As a result, the algorithm produces a monic polynomial

X d 2 1 + ^ d 2 1X d 2 1 1 + + ^ 0,
where ^ j 2 Q(T1; : : : ; Ts) X2; : : : ; Xn], 0 j d2 1. For any point v 2 Vd 2 the specialization X d 2

1 + ^ d 2 1(v)X d 2 1 1 + + ^ 0(v)
coincides with the GCD(g; @g=@X1) in the ring F X1; : : : ; Xn].

The algorithm computes the quotient g=GCD(g; @g=@X1) parametrically (cf. computing of j= d 2 above). Namely, the coe cients of the quotient are unique solutions of suitable systems of linear equations with coe cients in Z T1; : : : ; Ts] (provided that v 2 Vd 2 ). Thus, the algorithm provides a polynomial

H = X d 1 d 2 1 + d 1 d 2 1X d 1 d 2 1 1 + + 0;
where j 2 Q(T1; : : : ; Ts) X2; : : : ; Xn], 0 j d1 d2 1. For any point v 2 Vd 2 the specialization H

(v) = X d 1 d 2 1 + + 0(v)
coincides with g=GCD(g; @g=@X1) in the ring F X1; : : : ; Xn].

We now estimate the complexity of the just described stage of the algorithm. The number of distinct sets Vd 2 does not exceed d1 d. Each Vd 2 is de ned by a system of poly- nomial equations and inequations of degrees not exceeding O( d) since the size of the Sylvester matrix involved is O(d).

For the same reason the degrees of j; ^ j and j with respect to T1; : : : ; Ts also are bounded by O( d). The degrees with respect to X2; : : : ; Xn of the minors of the Sylvester matrix do not exceed O(d 2 ), and therefore, the degrees of j; ^ j and j also do not exceed O(d 2 ). The running time of the algorithm on this stage is less than

L( d) s n + d 2 n ! O (1) 
; since the non-emptiness of Vd 2 is decided using C 84, G 84] in time (L( d) s ) O(1) . Denote by D 2 Q(T1; : : : ; Ts) X2; : : : ; Xn] the discriminant of the polynomial H with respect to X1. Recall that for any v 2 Vd 2 the specialization D(v) 2 F X2; : : : ; Xn] of D is non-zero.

Observe that deg X 2 ;::: ;Xn (D) O(n 3 ), deg T 1 ;::: ;Tn (D) O( d 2 ).

Fix for a time being a point v 2 Vd 2 . The algorithm com- putes the matrix D, and for each row of D it produces the matrix E (as described above, see Lemmas 1, 2), replacing d by O(d 3 ) and n by n 1 respectively. Due to Lemmas 1, 2, there exists a row ( 2; : : : ; n) in one of these matrices E such that 0 6 = D(v)( 2; : : : ; n) 2 F. Denote by Ĥ 2 Q(T1; : : : ; Ts) X1; : : : ; Xn] the result of the linear change of variables X2 ! X2 2; : : : ; Xn ! Xn n in H, and by h 2 F X1; : : : ; Xn] the specialization Ĥ(v).

Note that h is monic. The discriminant of the univariate polynomial h(X1; 0; : : : ; 0) 2 F X1] coincides with D(v)( 2; : : : ; n), which does not vanish. Hence h(X1; 0; : : : ; 0) is separable.

The algorithm partitions the set Vd 2 into constructive sub- sets. Each such constructive subset W stems from a certain vector ( 2; : : : ; n) considered above such that for any v 2 W we have D(v)( 2; : : : ; n) 6 = 0. As before, the algorithm makes these sets W to be disjoint. The number of the sets W in Vd 2 is less than n+d n O(1) . Each W is de ned by a system of equations and inequations of degrees O( d 2 ) with respect to T1; : : : ; Ts, since D is the determinant of a matrix of a size of O(d). The bounds on the degrees of Ĥ with respect to T1; : : : ; Ts and X1; : : : ; Xn are similar to the ones for H. The running time of the algorithm at this stage is

L( d) s n + d 3 n ! O (1) 
:

Fix for a time being the set W and the corresponding polynomial Ĥ. Our next goal is to describe a parametric version of a quadratic Hensel lifting which we will apply below to Ĥ (see Ga 84, GK 85, Kal 85]).

For any point v 2 W consider the absolute factorization h = h1 hm. The algorithm retrieves this factorization from the corresponding univariate factorization h1(X1; 0; : : : ; 0) hm(X1; 0; : : : ; 0) using the parametric Hensel lifting described below. The algorithm considers one by one all the partitions (r1; : : : ; rm) of the di erence d1 d2 for diverse m i.e., r1 r2 rm and r1 + + rm = d1 d2. Fix one such partition (r1; : : : ; rm).

Introduce new variables Yi;j, where 1 i m, 0 j ri 1. The algorithm will perform the Hensel lifting of the factorization of the product Ĥ(X1; 0 : : :

; 0) = Y 1 i m Ĥi(X1); (8) 
where Ĥi(X1) = X r i 1 + Yi;r i 1X r i 1 1 + + Yi;0. The result of the Hensel lifting of (8) is a product of power series Ĥ = Y 1 i m Hi;

(9) where Hi = X jJj 0 a (i) J X J ; a (i) J 2 Q(T1; : : : ; Ts)(Y1;1; : : : ; Ym;r m 1) X1];

herewith deg X 1 (a (i) J ) ri 1 for jJj 1, a (i) 0 = Ĥi, and X J = X j 2 2 X jn n . We view (8) as a base of the recursion in the Hensel lifting. As a recursion hypothesis for the recursion step l we assume that the algorithm had already constructed all the coe cients a (i) J for jJj 2 l 1. In particular, all Hi are monic.

Consider a multi-index I with 2 l jIj 2 l+1 1. Then (9) yields a equation for a (i) J ; 1 i m of the following form: a (1) J Ĥ2 Ĥm+a (2) I Ĥ1 Ĥ3 Ĥm+a (m) I Ĥ1 Ĥm 1+A = B:

(10)

Here A = P a (k) K A (k) K ; 1 k m; K I ( denotes a natural partial order on the set of multi-indices), jKj 2 l ;

A (k) K is a polynomial of a degree at most m 1 in a (i) J with jJj 2 l 1; B is a polynomial of a degree not exceeding m in a (i) J with jJj 2 l 1, and B is linear in the coe cient at X J of Ĥ.

Arguing by induction, one shows that each system of the form (10) for all multi-indices K I has the unique solution in a (k) K ; 1 k m under the condition deg X 1 (a (k) K ) ri 1. Therefore, the degrees of A and B with respect to X1 do not exceed d1 d2 1. It follows that there exist unique a (1) I ; : : : ; a (m) I satisfying (10) such that deg X 1 (a (i) I ) ri 1; 1 i m.

The algorithm solves recursively systems of the form (10) according to increasing multi-indices with respect to the partial order and nds the solutions a (i) I ; 1 i m. The Hensel lifting terminates when 2 l+1 exceeds deg X 2 ;::: ;Xn ( Ĥ) O(d 2 ) (see above).

Introduce the truncated power series Ĥi = X 0 jJj 2 l+1 1 a (i) J X J 2 Q(T1; : : : Ts)(Y1;1; : : : ; Ym;r m 1) X1; : : : ; Xn]:

The algorithm should verify the equality Ĥ = Y 1 i m Ĥi:

More precisely, using quanti er elimination CG 84], the algorithm nds the constructive subset Wr 1 ;::: ;rm W of all the points v 2 W such that there exist y1;1; : : : ; ym;r m 1 2 F with the specialization of (11) by v and y1;1; : : : ; ym;r m 1 is true.

Order all the partitions (r1; : : : ; rm) in an arbitrary order consistent with the decrease of m. The algorithm follows this ordering and replaces each next Wr 1 ;::: ;rm by subtracting from it the union of W r 0 1 ;::: ;r 0 m for all previous partitions (r 0 1 ; : : : ; r 0 m ) in the ordering. These new constructive sets constitute a partition of W, we keep for them the same notations Wr 1 ;::: ;rm .

Fix for a time being a set Wr 1 ;::: ;rm . Observe that for any v 2 Wr 1 ;::: ;rm the specialization of the equations (11) by v and every y1;1; : : : ; ym;r m 1 satisfying (11) is the absolute factorization of Ĥ(v) = h.

Recall that for any point v 2 Wr 1 ;::: ;rm there exist 1; : : : ; m 2 Z+ such that g(X1; X2 + 2; : : :

; Xn + n) = Y 1 i m Ĥi(v) i : (12)
The algorithm looks over all possible vectors ( 1; : : : ; m) 2 Z m + such that 1+ + m = d1. For each vector ( 1; : : : ; m) the algorithm produces and tests non-emptiness of the constructive set W ( 1 ;::: ; m) Wr 1 ;::: ;rm of points v 2 Wr 1 ;::: ;rm for which there exist the elements y1;1; : : : ; ym;r m 1 2 F such that (12) holds, and also represents these elements as described in the paragraph. Observe that the sets W ( 1 ;::: ; m) form a partition of Wr 1 ;::: ;rm , and for each v 2 W ( 1 ;::: ; m) there is a nite set of the solutions y1;1; : : : ; ym;r m 1, due to the Gauss Lemma. The algorithms applies to the system of equations ( 12) the procedure from Theorems 1, 2 and the Remark 2. As a result, a parametric Gr obner basis for (12) will be computed (see Theorem 1), as well as the vectors of multiplicities (see Theorem 2) of the roots of (12). The algorithm produces a partition of the set W ( 1 ;::: ; m) . Fix for a time being an element U of the partition. The algorithm produces a primitive element 1;1Y1;1 + + m;rm 1Ym;rm 1, rational functions p1;1; : : : ; pm;r m 1 2 Q(T1; : : : Ts) Z], and the characteristic polynomial 2 Q(T1; : : : ; Ts) Z] of the linear multiplication map by the primitive element in the algebra A, such that for any v 2 U the specializations p1;1(v)( ); : : : ; pm;r m 1(v)( ) run over all solutions y1;1; : : : ; ym;r m 1 of (12) when runs over all roots of the polynomial (v)(Z). Now we estimate the complexity of the algorithm. The algorithm looks through all 2 O(d) partitions (r1; : : : ; rm) of the di erence d1 d2. Then the algorithm, recursively on l, for each multi-index J such that jJj = 2 l+1 1 solves the union of the linear systems of the form (10) for all I J and jIj 2 l . The sizes of the matrices of systems (10) do not exceed 2 2 l d O(1) . For J such that jJj 2 l+1 1 the degrees deg T 1 ;::: ;Ts (a (i) J ) 2 2 l d l O(1) ; Then the algorithm applies quanti er elimination to (11) and produces constructive subsets Wr 1 ;::: ;rm . The number of sets is less than (2 d 2 ) O(s) . Each subset is de ned by a system of polynomial equations and inequations of degrees at most (2 d 2 ) O(1) . The running time of this application of quanti er elimination does not exceed L s 2 d 2 s n+d 2 n O(1) .

After that the algorithm applies the machinery from Sections 1, 2 to the system (12), and produces the constructive sets U and the representations of the solutions y1;1; : : : ; ym;r m 1 via 1;1Y1;1 + + m;rm 1Ym;rm 1, the characteristic polynomial , and the rational functions p1;1; : : : ; pm;r m 1. The number of sets U does not exceed 2 O(d 3 s) . Each set U is de ned by a system of polynomial equations and inequations of degrees not exceeding ( 2 d 3 ) O(1) . The degrees of rational functions deg T 1 ;::: ;Ts (pi;j); deg T 1 ;::: ;Ts ( ) ( 2 d 3 ) O(1) ; deg Z ( ); deg Z (pi;j) 2 O(d 3 ) ; where 1 i m, 1 j rm 1. The running time of this stage of the algorithm is less than L s 2 d 3 s n+d 2 n O(1) .

We summarise the results of this section in the following theorem, using the notations from the beginning of this section. Theorem 3. There is an algorithm which for a parametric polynomial G 2 Z T1; : : : ; Ts] X1; : : : ; Xn] produces the partition of F s into the constructive sets. For each of these sets U the algorithm outputs a family of polynomials G1; : : : ; Gm 2 Q(T1; : : : ; Ts) Z] X1; : : : ; Xn]; the vector of exponents ( 1; : : : ; m) 2 Z m + , and a polyno- mial 2 Q(T1; : : : ; Ts) Z].

For any point v 2 U and each root of the specialization Remark 11. Since the number of possible vectors of degrees deg X 1 ;::: ;Xn (Gi) and the exponents i in the absolute factorization could be exponential in d, the complexity is necessarily exponential in d.

FURTHER RESEARCH

1. Theorem 2 provides an algorithm for solving parametric systems of polynomial equations, having nite number of roots, which also computes the multiplicities of the roots. In C 84, G 84] an algorithm was constructed for nding irreducible components of polynomial systems in singly exponential time. It would be interesting to design an algorithm with singly exponential complexity for nding absolutely irreducible components of parametric polynomial systems. 2. In the Corollary 1 the number of possible vectors of multiplicities of roots of a system of polynomials which are easy to compute was bounded. A di cult problem is to describe explicitly the set of all realisable vectors of multiplicities, or at least to indicate a concrete vector not contained in this set. This might shed a light on algebraic complexity lower bounds problem.

  following bounds hold (see CG 84, C 84 G 84]). The number of sets N and the number of polynomials M ; do not exceed d O(n 2 s) , the degrees deg(B ( ; ) j ); deg(w ( ) ij ) < d O(n 2 ) . The running time of reducing M ( ) to \stairs" form does not exceed d O(n 2 s) .

  FollowingABRW 96] (see also Ro 99]), consider the map U : A Q(U1; : : : ; Un) ! A Q(U1; : : : ; Un); which is the multiplication by the linear form U1X1 + + UnXn: It follows from ABRW 96] that all the roots of the characteristic polynomial (Z) of U are of the form 1U1 + + nUn where ( 1; : : : ; n) is a root of f1 = = fk = 0 and the multiplicities of the respective roots 1U1 + + nUn and

Fix a point

  = ( 1; : : : ; n) 2 F n and introduce the algebra B = F X1; : : : ; Xn]=(X1 1; : : : ; Xn n) D+1 : Consider the class C ( ) r;D;n B of the elements with multiplicative complexity not exceeding r. According to (a natural generalization of) the Representation Theorem of Strassen and Schnorr BCS 97], the class C ( ) r;D;n can be represented as a union of 2 r subsets each of which is an image of a polynomial map de ned by the formula = a multi-index, polynomials I 2 F 1; : : : ; (r+1) 2 +1 ], and the degrees deg( I) (2r 1)jIj + 2. Consider the grid = f0; 1; : : : ; 2 2r+2 g n F n . Obviously, any polynomial of the degree at most 2 2r+2 can't vanish at all the points from . Consider now the class Cr;D;n F X1; : : : ; Xn] of polynomials such that deg( ) D, and the multiplicative complexity not exceeding r. For an arbitrary 2 Cr;D;n consider a straight-line program with multiplicative complexity at most r which computes . There exists a point from at which all intermediate rational functions in the program are de ned (and are di erent from zero)to estimate the number of possible distinct multiplicities vectors for the intersections of hypersurfaces = 0; 2 Cr;D;n with several hypersurfaces of small degrees. 140 Fix a point 2 F n . Consider a specialization 2 F X1; : : : ; Xn] of from (7) with respect to a point from F (r+1) 2 +1 .

Corollary 1 .

 1 The number of possible distinct vectors of multiplicities of the roots of any system = f1 = = fk = 0, where ; f1; : : : ; fk 2 F X1; : : : ; Xn] with deg( ) D; deg(fi) d; (1 i k), multiplicative complexity of at most r, does not exceed (D + d) O(n 2 (r 2 +k( d+n d ))) (D + d) O(n 2 (r 2 +kn d )) ; provided that = f1 = = fk = 0 has a nite number of roots. Remark 5. Note that the number of roots of = f1 = = fk = 0 does not exceed (D + nd) n according to the B ezout inequality (see H 83]), thus the a priori number of the partitions of this number is exponential in (D + nd) n , which considerably exceeds the bound from the Corollary 1

  deg Y 1;1 ;::: ;Y m;rm 1 (a (i) j ) 2 2 l d l O(1) : Therefore, deg T 1 ;::: ;Ts ( Ĥi) (2 d ) O(1) ; deg Y 1;1 ;::: ;Y m;rm 1 ( Ĥi) 2 O(d) ; where 1 i m. The running time of the Hensel lifting of Ĥi does not exceed L s 2 ds 2 d 2 n+d 2 n O(1) .

  (v) of by v the absolute factorization of the specialization G(v) of G by v is given by the formula Gpolynomial Gi(v)( ) 2 F X1; : : : ; Xn] is separable, 1 i m. Herewith, the number of elements U of the partition is less than 2 d 3 s n+d n O(1) , each U is de ned by a system of polynomial equations and inequations of degrees not exceeding ( 2 d 3 ) O(1) . The degrees deg Z (Gi); deg Z ( ) 2 O(d 3 ) ; deg T 1 ;::: ;Ts (Gi); deg T 1 ;::: ;Ts ( ) ( 2 d 3 ) O(1) ; where 1 i m. The running time of the algorithm is less than L s 2 d 3 s n + d 3 n ! O(1) : Remark 9. The diverse roots of (v) correspond to permutations of the factors Gi(v) (with some values of the exponents i) in the absolute factorization. Remark 10. The complexity of the algorithm described in Theorem 3, for ; s and d considerably less than n, is of the magnitude n d 3 , being subexponential in the size of the input n d .
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