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Complexity of Null-and Positivstellensatz Proofs

We introduce two versions of proof systems dealing with systems of inequalities: Positivstellensatz refutations and Positivstellensatz calculus. For both systems we prove the lower bounds on degrees and lengths of derivations for the example due to Lazard, Mora and Philippon. These bounds are sharp, as well as they are for the Nullstellensatz refutations and for the polynomial calculus. The bounds demonstrate a gap between the Null-and Positivstellensatz refutations on one hand, and the polynomial calculus and Positivstellensatz calculus on the other.

Introduction

In recent years there was an intensive activity in the research of algebraic proof systems ([BIK 96], [BuGI 99], [BuIK 96], [CEI 96], [G 98], [IPS 97]). The approach relies on the Hilbert's Nullstellensatz and treats the problem of feasibility of a system of polynomial equations

f 1 = • • • = f k = 0,
The aim of a derivation is to reach 1. The degree of a PC derivation is defined as the maximum of the degrees of all intermediately derived polynomials. The first lower bound on the degrees of PC derivations was obtained in [R 96] (see also [IPS 97] and [BuIK 96]). A linear lower bound for PC was proved in [BuGI 99]. Note that the latter bound is sharp.

The aim of the present paper is to involve inequalities along with equations into proof systems, in particular we assume that the input polynomials f 1 , . . . , f k belong to R[X 1 , . . . , X n ]. The case of linear inequalities with added conditions X 2 i = X i (Boolean programming) was widely studied by means of cutting planes proofs, for which an exponential lower bound on the length was obtained (a survey and references can be found in [P 98]). Another approach to systems of linear inequalities was undertaken in [LS 91],

[L 94], [ST 98], where a derivation system was introduced which allows from any linear polynomial e, already derived linear inequalities a 1 ≥ 0, a 2 ≥ 0 and quadratic inequalities p 1 ≥ 0, p 2 ≥ 0, to derive quadratic inequalities e 2 ≥ 0, a 1 + a 2 ≥ 0, a 1 a 2 ≥ 0, p 1 + p 2 ≥ 0. In [P 98] one can find some remarks on the complexity of this Lovász-Schrijver procedure, in particular, an upper bound for the Pigeon Hole Principle which demonstrates an exponential gap between the complexity of cutting planes proofs and the Lovász-Schrijver procedure.

In the present paper we introduce two proof systems for dealing with systems of polynomial inequalities. While NS and PC are based on Hilbert's Nullstellensatz, our systems involve Positivstellensatz (see [BCR 98], [S 74] and Section 2 below). The first (weaker) proof system (Section 2), called Positivstellensatz refutation, is similar to NS and, as NS, can be viewed as a static proof system in the sense that we require to present a refutation as a formula containing all the information about the refutation, and the complexity is the size of this formula.

The second (stronger) system (Section 2) is similar to PC and, as PC, can be viewed as a dynamic system in the sense that a refutation is derived step by step. The complexity is measured by the size of the intermediate polynomials and by the number of steps, i.e., by the length of the derivation.

The main results (Section 3) provide lower bounds for the Lazard-Mora-Philippon example for the Positivstellensatz refutations (Theorem 2), and for Positivstellensatz calculus (Theorem 3). Both bounds are sharp and coincide with the corresponding upper bounds for NS (see [Br 87] and Section 1), and for PC (Theorem 1, Section 1). In particular, the results show that for the example considered in this paper, there is a gap between the degree of derivations for the Positivstellensatz refutations and NS on one hand, and for the Positivstellensatz calculus and PC on the other. Note that in [CEI 96], [Bu 99] there were constructed examples of Boolean systems of equations for which PC has smaller degrees of derivations than the ones of NS.

We also mention that in [LMR 96] a deductive system based on Positivstellensatz was exhibited, for describing an equivalence of two semialgebraic sets defined by systems of polynomial inequalities. In [CLR 99] a system is described for automatic extracting of some constructive consequences from non-constructive proofs of Null-and Positivstellensatz type. However, both papers do not consider complexity issues.

Complexity of polynomial calculus for a telescopic system

Let F be a field. A well-known example of a lower bound for the degrees in NS is due to Lazard, Mora and Philippon [Br 87]. It is called "telescopic system" and is defined by the following polynomials:

1 -Y X 1 , X 2 1 -X 2 , X 2 2 -X 3 , . . . , X 2 n-1 -X n , X n ∈ F [Y, X 1 , . . . , X n ] (1)
Polynomials (1) obviously don't have common roots, and its NS degree is bounded from below by 2 n-1 . Observe that 2 n-1 is close to the known upper bound for NS degree [Br 87]. The proof of the lower bound [Br 87] involves the following substitution of Laurent polynomials:

Y = X -1 1 , X 2 = X 2 1 , X 3 = X 4 1 , . . . , X n = X 2 n-1 1 . (2) 
For any polynomial f ∈ F [Y, X 1 , . . . , X n ] let f be the the Laurent polynomial being the result of the substitution (2) into f ; by its order ord(f ) ∈ Z we mean the lowest (possibly negative) degree of the Laurent monomials occurring in f . Let

1 = (1 -Y X 1 )g 1 + (X 2 1 -X 2 )g 2 + • • • + (X 2 n-1 -X n )g n + X n g
be a NS refutation for (1), where g 1 , . . . ,

g n , g ∈ F [Y, X 1 , . . . , X n ]. Then 1 = X 2 n-1 1 g, hence g = X -2 n-1 1
, thus ord(g) = -2 n-1 . On the other hand, ord(g) ≥ -deg Y (g) (see (2)). Therefore, deg Y (g) ≥ 2 n-1 . This proves the mentioned lower bound on the NS refutation degree for the system (1). Below, in Theorem 2 we'll prove a similar lower bound for a stronger proof system. Now we prove an upper bound on the degree of PC refutation for (1). Recall that the length of a PC refutation is the number of applications of the rules of PC.

Theorem 1 For the system (1) one can produce a PC refutation with the degree bounded by O(n) and the length not exceeding O(n2 n ).

Remark 1 This bound is close to sharp. This will follow from the lower bound in Theorem 3 below.

Definition 1 The cone c(h 1 , . . . , h m ) generated by polynomials h 1 , . . . , h m ∈ R[X 1 , . . . , X n ] is the smallest family of polynomials containing h 1 , . . . , h m and satisfying the following rules:

(a) e 2 ∈ c(h 1 , . . . , h m ) for any e ∈ R[X 1 , . . . , X n ]; if a, b ∈ c(h 1 , . . . , h m ), then (b) a + b ∈ c(h 1 , . . . , h m ); (c) ab ∈ c(h 1 , . . . , h m ).
Remark 2 The minimal cone c(∅) consists of all sums of squares of polynomials.

Remark 3 Any element of c(h 1 , . . . , h m ) can be represented in a form I⊂{1,...,m} i∈I

h i j e 2 I,j
for some polynomials e I,j ∈ R[X 1 , . . . , X n ].

Positivstellensatz A system of equations f 1 = • • • = f k = 0 and inequal- ities h 1 ≥ 0, . . . , h m ≥ 0, where f 1 , . . . , f k , h 1 , . . . , h m ∈ R[X 1 , . . . , X n ]
has no common solutions in R n if and only if for a suitable polynomial f ∈ R[X 1 , . . . , X n ] from the ideal (f 1 , . . . , f k ) and a polynomial h ∈ c(h 1 , . . . , h m ) we have: f + h = -1.

Consider a system of equations and inequalities

f 1 = • • • f k = 0, h 1 ≥ 0, . . . , h m ≥ 0.
(3)

The following proof system is stronger than NS refutations and could be viewed as its Positivstellensatz analogue.

Definition 2 A pair of polynomials

(f, h) = 1≤s≤k f s g s , I⊂{1,...,m} i∈I h i j e 2 I,j
with f + h = -1 where g i , e I,j ∈ R[X 1 , . . . , X n ] we call a Positivstellensatz refutation for (3). The degree of the refutation is max s,I,j {deg(f s g s ), deg(e 2

I,j i∈I

h i )}.

The following proof system is stronger than PC and could be viewed as its Positivstellensatz analogue.

Definition 3 Let a polynomial f ∈ (f 1 , . . . , f k ) be derived in PC from the axioms f 1 , . . . , f k , and a polynomial h ∈ c(h 1 , . . . , h m ) be derived, applying the rules (a), (b), (c) (see Definition 1), from the axioms h 1 , . . . , h m . Suppose that f +h = -1. This pair of derivations we call a Positivstellensatz calculus refutation for (3). By its degree we mean the maximum of the degrees of intermediate polynomials from both derivations. The length of the refutation we define as the total number of steps in both derivations. Note that the system of Lovász-Schrijver [LS 91] could be viewed as the degree 2 fragment of the Positivstellensatz calculus.

Lower bounds for Positivstellensatz proof systems

Generalizing the lower bound on NS degree for the telescopic system (1), we prove the following theorem.

Theorem 2 The degree of any Positivstellensatz refutation of the system (1) is greater or equal to 2 n-1 .

Proof. Let h + 1 = -f, (4) 
where h = j e 2 j and

-f = (1 -Y X 1 )g 1 + (X 2 1 -X 2 )g 2 + • • • + (X 2 n-1 -X n )g n + X n g.
Make the substitution (2) into (4) and assume contrary to the statement of the theorem (in fact we need only to assume that deg Y (g) < 2 n-1 ). We conclude that the order of the right-hand side of (4), ord(-f ) = ord(g) + 2 n-1 ≥ 1.

On the other hand consider the result of the substitution (2) into the lefthand side of (4). Let q be the minimal power of X 1 occurring in all e j . If q ≤ 0, then X 2q 1 will occur in the left-hand side h + 1 with a positive coefficient, which contradicts to the proved above inequality ord(-f ) ≥ 1. Otherwise, if q > 0, then ord(h + 1) = 0, and again we get a contradiction.2

The next theorem provides a lower bound for the system (1) for Positivstellensatz calculus, which together with Theorem 1 (Section 1) shows that the obtained complexity bounds are sharp for the Positivstellensatz calculus (and a fortiori, they are sharp for PC).

Theorem 3 Any Positivstellensatz calculus refutation for (1) has a degree greater than n -log 2 n -2, and the length at least 2 n-1 .

Proof. Consider (4). As it was shown in the proof of Theorem 2, ord(-f ) ≤ 0. Let us consider a PC derivation from (1) of f provided by Positivstellensatz calculus refutation (see Definition 3).

At the beginning of the derivation the only non-vanishing (after the substitution (2)) axiom is X n = X 2 n-1 1 . The minimum of the orders of the polynomials, intermediate in the course of the derivation, could decrease on one step by at most 1 (only due to the multiplication by Y ). Thus, this minimum attains successively the values 2 n-1 , 2 n-1 -1, . . . , 1, 0 because ord(-f ) ≤ 0. It follows that the length of the derivation is at least 2 n-1 . In particular, there is a polynomial p, intermediate in the course of the derivation, with the order ord(p) = 2 n-1 -2 log 2 n +1 . Take a monomial

X i 1 l 1 • • • X i k l k Y s with l 1 > • • • > l k ≥ 1 occurring in p with the order exactly ord(X i 1 l 1 • • • X i k l k Y s ) = ord(p). Since s ≤ n (otherwise the theorem is proved), 2 n-1 -2 log 2 n +1 ≤ ord(X i 1 l 1 • • • X i k l k ) = ord(p) + s ≤ 2 n-1 -2 log 2 n +1 + 2 log 2 n .
Thus, the binary representation of the integer ord(

X i 1 l 1 • • • X i k l k ) contains at least n -log 2 n -2 digits 1 at the positions from log 2 n + 2 to n -1. We prove that i 1 + • • • + i k ≥ n -log 2 n -2. Indeed, replacing in the monomial X i 1 l 1 • • • X i k l k any X i j l j with i j ≥ 2 by X l j +1 X i j -2 l j
, and keeping doing this as long as possible, we do not change the order whereas decreasing the degree of the monomial. At the end we arrive to a monomial of the form

X n-1 X n-2 • • • X log 2 n +2 X t 1 • • • X tr , log 2 n + 2 > t 1 > • • • > t r ≥ 1
with the degree at least n -log 2 n -2.2

Further research

One could further extend the Positivstellensatz calculus by admitting a following derivation of two polynomials f, H. The polynomial f ∈ (f 1 , . . . , f k ) is derived by means of PC from the axioms f 1 , . . . , f k . The polynomial H ∈ (f 1 , . . . , f k ) + c(h 1 , . . . , h m ) is derived from the axioms f 1 , . . . , f k , h 1 , . . . h m using the rules (a), (b), (c), and allowing to take f as a, b (see Definition 1). Thus, we derive separately the elements from (f 1 , . . . , f k ) and from (f 1 , . . . , f k ) + c(h 1 , . . . , h 1 ). The aim is to derive H = -1, i.e., a refutation for the initial system of equations and inequalities. It would be interesting to obtain lower bounds for this extended calculus.

Another challenging problem is to obtain lower bounds for the Boolean problems, e.g., for the ones studied in [BuIK 96], with respect to the Positivstellensatz calculi introduced in this paper.

It would be also interesting to construct examples of a system of equations for which Positivstellensatz derivations have the degrees or lengths less than their Nullstellensatz analogues.

Observe that the lower bounds in Theorems 2 and 3 remain true for the sum of squares of polynomials from (1):

f 0 = (1 -Y X 1 ) 2 + (X 2 1 -X 2 ) 2 + • • • + (X 2 n-1 -X n ) 2 + X 2 n .
The proofs for f 0 go through almost literally. What are the upper bounds for the complexities of Positivstellensatz refutation and calculus for the equation f 0 = 0?
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Proof. We start with the axiom X n and derive on each step of the proof a certain monomial of one of the two types:

If l k > 1 (we call it a regular step), then in case (i) we derive the monomial

, and applying k-1 times the multiplication rule of PC and, subsequently, once the addition rule. In case (ii) we derive the monomial

l k -1 in a similar way using the same axiom.

If l k = 1 (we call it a singular step), then in case (i) we derive first

Observe that after each step of the described derivation the order of the current monomial does not increase in all cases. More precisely, at a regular step the order remains the same, while on a singular step the order decreases by either 1 or 2. Thereby, the number of singular steps does not exceed O(2 n ). Moreover, if as a result of a singular step we derive a monomial X l 1 • • • X l k , then after that we perform l k -1 regular steps, followed by a singular one. Since ord(X l

, the total number of regular steps in the derivation can be bounded from above by O(2 n ). Because each (regular or singular) step involves at most O(n) derivation rules of PC, we obtain the bound O(n2 n ) on the length of the derivation.

While the order of a current monomial is positive we are able to perform either a regular or a singular step. The derivation terminates when we attain the order 0, thereby the monomial 1. Obviously, the degree of any intermediately derived polynomial does not exceed O(n).2 
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