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It is established a linear (thereby, sharp) lower bound on degrees of Positivstellensatz calculus refutations over a real field introduced in [GV99], for the Tseitin tautologies and for the parity (the mod 2 principle). We use the machinery of the Laurent proofs developped for binomial systems in [BuGI 98], [BuGI 99].

Introduction

In recent years there was an intensive activity in the research of algebraic proof systems ([BIK 96], [BuGI 98], [BuGI 99], [BuIK 96], [CEI 96], [G 98], [IPS 97]). The approach relies on the Hilbert's Nullstellensatz and treats the problem of feasibility of a system of polynomial equations

f 1 = • • • = f k = 0,
where among the polynomials f 1 , . . . , f k ∈ F [X 1 , . . . , X n ], there appear the polynomials X 2 1 -X 1 , . . . , X 2 n -X n (so-called, Boolean case). Note that this problem is, in general, N P -complete. The Nullstellensatz proof system (NS) was first considered in [BIK 96]. The aim of the system is to find the polynomials g 1 , . . . , g k ∈ F [X 1 , . . . , X n ] such that 1 = g 1 f 1 + • • • + g k f k . The latter representation is sometimes called a Nullstellensatz refutation. The number max 1≤i≤k {deg(g i f i )} is called the Nullstellensatz degree. A linear upper bound O(n) on the Nullstellensatz degree is evident, in [BIK 96] a non-constant lower bound was proved, while in [G 98] a linear (and thus sharp) lower bound was proved.

In [CEI 96] a stronger proof system -polynomial calculus (PC) was introduced. Starting from axioms f 1 , . . . , f k , PC allows to derive from the already obtained polynomials a, b ∈ F [X 1 , . . . , X n ] more polynomials, according to the following two rules:

1. (additive) a, b αa + βb, where α, β ∈ F ; 2. (multiplicative) a X i a for 1 ≤ i ≤ n.

The aim of a derivation is to reach 1. The degree of a PC derivation is defined as the maximum of the degrees of all intermediately derived polynomials. The first lower bound on the degrees of PC derivations was obtained in [R 96] (see also [IPS 97] and [BuIK 96]). A linear lower bound for PC was proved in [BuGI 99]. Note that the latter bound is sharp.

In [GV 99] inequalities were involved along with equations into proof systems, in particular we assume that the input polynomials f 1 , . . . , f k belong to R[X 1 , . . . , X n ]. The case of linear inequalities with added conditions X 2 i = X i (Boolean programming) was widely studied by means of cutting planes proofs, for which an exponential lower bound on the length was obtained (a survey and references can be found in [P 98]). Another approach to systems of linear inequalities was undertaken in [LS 91], [L 94], [ST 98], where a derivation system was introduced which allows from any linear polynomial e, already derived linear inequalities a 1 ≥ 0, a 2 ≥ 0 and quadratic inequalities p 1 ≥ 0, p 2 ≥ 0, to derive quadratic inequalities e 2 ≥ 0, a 1 + a 2 ≥ 0, a 1 a 2 ≥ 0, p 1 + p 2 ≥ 0. In [P 98] one can find some remarks on the complexity of this Lovász-Schrijver procedure, in particular, an upper bound for the Pigeon Hole Principle which demonstrates an exponential gap between the complexity of cutting planes proofs and the Lovász-Schrijver procedure.

More precisely, following [GV 99], let a system of equations and inequal-ities

f 1 = • • • f k = 0, h 1 ≥ 0, . . . , h m ≥ 0. ( 1 
)
be given. Dealing with systems of inequalities one could get profit from using the axiom that any square is non-negative, and the rules of adding or multiplying inequalities. This is formalized in the following notion of the cone (which replaces the role of ideals for systems of equations) and in two proof systems described below for refuting systems of inequalities, they extend the systems NS and PC, respectively. 

f ∈ R[X 1 , . . . , X n ] from the ideal (f 1 , . . . , f k ) and a polynomial h ∈ c(h 1 , . . . , h m ) we have: f + h = -1.
The first (static) proof system is stronger than NS refutations and could be viewed as its Positivstellensatz analogue.

Definition 2 A pair of polynomials

(f, h) = 1≤s≤k f s g s , I⊂{1,...,m} i∈I h i j e 2 I,j
with f + h = -1 where g i , e I,j ∈ R[X 1 , . . . , X n ] we call a Positivstellensatz refutation (denote it by P S >) for (1). The degree of the refutation is

max s,I,j {deg(f s g s ), deg(e 2 I,j i∈I h i )}.
The second (dynamic) proof system is stronger than PC and could be viewed as its Positivstellensatz analogue.

Definition 3 Let a polynomial f ∈ (f 1 , . . . , f k ) be derived in PC from the axioms f 1 , . . . , f k , and a polynomial h ∈ c(h 1 , . . . , h m ) be derived, applying the rules (a), (b), (c) (see Definition 1), from the axioms h 1 , . . . , h m . Suppose that f +h = -1. This pair of derivations we call a Positivstellensatz calculus refutation (denote it by P C >) for (1). By its degree we mean the maximum of the degrees of intermediate polynomials from both derivations. The length of the refutation we define as the total number of steps in both derivations.

In the present paper we consider just the systems of equations f 1 = • • • = f n = 0 (the polynomials h 1 , . . . , h m are absent). In this case a polynomial h is just a sum of squares j h 2 j (cf. remark 1). In [GV 99] a so-called telescopic system of equations due to Lazard-Mora-Philippon (see [Br 87]) is considered and an exponential lower bound on the degree of any its P S > refutation (see definition 2) is proved. On the other hand it is shown a linear upper bound for the telescopic system on the degree of PC, being sharp because a linear lower bound is proved in [GV 99] for the stronger system of the P C > refutations (see definition 3), and for the latter one also an exponential lower bound on the lengths of proofs is established.

However, the telescopic system is not Boolean, whereas the main interest in the proof theory is just in the Boolean systems. In the present paper we prove a linear lower bound on the degree of P C > refutations for the Tseitin tautologies (see Corollary 1 in section 3) and for the parity (see Corollary 2 in section 3), the proofs extend the argument from [BuGI 98], [BuGI 99]. They follow from the theorem in section 2 in which a lower bound on the degree of the P C > refutations is established for Boolean binomial systems in terms of the Laurent proofs (see [BuGI 98], [BuGI 99] and also section 1 below). Let us mention that unlike the results of [BuGI 98], [BuGI 99] being valid over an arbitrary field F , the results of the present paper involving inequalities, make sense just over real fields.

Laurent proofs for Boolean Thue systems

Let F be a field.

A product of variables m

= X i 1 1 • • • X in n is called a monomial, and am is called a term where a coefficient a ∈ F * = F -{0}. Definition 4 (cf. [G 98], [BuGI 98], [BuGI 99]). A Boolean (multiplicative) Thue system over F in variables X 1 , . . . , X n is a family T = {(a 1 m 1 , a 2 m 2 )} of pairs of terms such that (X 2 i , 1) ∈ T for any 1 ≤ i ≤ n.
Throughout first two sections we fix a Boolean Thue system T .

As in [BuGI 98], [BuGI 99] we consider Laurent monomials l

= X i 1 1 • • • X in n
with (possibly negative) integer exponents i 1 , . . . , i n . A product al where a ∈ F * is called a Laurent term. Laurent terms constitute a multiplicative group L. We define the degree deg(l) = max{ i j >0 i j ,i j <0 i j }.

Definition 5 (cf. [BuGI 98], [BuGI 99]). For any natural number d we construct recursively a subset L d ⊂ L of the terms of degrees at most d.

As a base we include in L d any term a 1 a -1 2 m 1 m -1 2 from T (see definition 4), provided that its degree does not exceed d. As a recursive step for two Laurent terms l 1 , l 2 ∈ L d we adjoin the product

l 1 l 2 in L d if deg(l 1 l 2 ) ≤ d. Along with each l 1 ∈ L d we include l -1 1 ∈ L d . Keep doing the recursion while augmenting L d . Definition 6 (cf. [BuGI 98], [BuGI 99]). Two terms t 1 , t 2 are d-equivalent if t 1 = lt 2 for a certain l ∈ L d . Lemma 1 (cf. [BuGI 98], [BuGI 99]). (i) If t 1 is d-equivalent to t 2 then t 1 X j is d-equivalent to t 2 X j , 1 ≤ j ≤ n.
(ii) d-equivalence is a relation of equivalence on any subset of the set of all the terms of degrees at most d. Then such a linear combination could be chosen in a way that both monomials m 3 , m 4 occur in f (this holds for all occurring binomials t 1 -t 2 ).

Proof. Take any term am occurring in f . The vector of coefficients of a binomial t 1 -t 2 (which has just two nonzero coordinates) is orthogonal to the vector {1/c m } m for the support of every class of d-equivalence (see lemma 2). Hence the vector of the coefficients of f is also orthogonal to the vector {1/c m } m . Therefore, there exists another term a 0 m 0 occurring in f with m 0 from the support of the same class of d-equivalence as am. Due to lemma 2 am is d-equivalent to a suitable term a 0 m 0 . Then the polynomial f -(am -a 0 m 0 ) has less terms than f does, and we complete the proof of the lemma by induction on the number of terms in a polynomial. 2 Lemma 4 (cf. [BuGI 98], [BuGI 99]). If a polynomial f is deduced from P T in the fragment of the polynomial calculus of a degree at most d < D then f can be expressed as a suitable F -linear combination of binomials of the form t 1 -t 2 for d-equivalent t 1 = b 1 m 3 , t 2 = b 2 m 4 where deg(t 1 ), deg(t 2 ) ≤ d. Moreover, such a linear combination could be chosen in a way that both monomials m 3 , m 4 occur in f for any binomial t 1 -t 2 from the linear combination.

The proof of the lemma proceeds by a direct induction along the inference of f in the PC. Herein after each inference step g 1 , g 2 → g 1 + g 2 we apply lemma 3. For justifying any inference step g 1 → aX i g 1 we apply lemma 1(i). 2

The previous lemmas are valid for an arbitrary (not necessary Boolean) Thue system (see [BuGI 98], [BuGI 99]), from now on we take into the account that T is just a Boolean Thue system.

Lemma 5 Let d < D/2 and a Laurent term al ∈ L d . Then a ∈ {-1, +1}. The results of the previous section are valid for an arbitrary field F (actually, over a commutative ring, with some modifications [BuGI 98], [BuGI 99]). In the sequel we suppose that F is a real field [BCR 87] (in particular, -1 cannot be represented as a sum of squares).

Proof. Since al ∈ L d ⊂ L D-1 we obtain (al) 2 ∈ L D-1 because deg(l 2 ) < D. Let l = X i 1 1 • • • X in n . Taking into the account that X 2 1 , . . . , X 2 n ∈ L D-1 , we conclude that l 2 ∈ L D-1 , hence a 2 ∈ L D-1 , i.e.
Assume now that we are given a P C > refutation (see definition 3 and the remark after it) of a Boolean binomial ideal P T (taking into account remark 1 from the introduction):

1 + j h 2 j = i f i g i (2)
where the binomials

f i = a 1 m 1 -a 2 m 2 ∈ P T (cf. definition 4).
The main purpose of this section is to prove the following lower bound on the degree of the P C > refutations.

Theorem. The degree of any P C > refutation of a Boolean binomial ideal P T (over a real field) is greater or equal to D/2. Suppose that the right-hand side i f i g i of (2) is deduced in the PC within a degree d 0 < D/2. Therefore, d 0 is an upper bound on the degree of P C > refutations of P T since deg(h 2 j ) ≤ deg( i f i g i ) (to show the latter inequality consider the highest with respect to the deglex monomial ordering term from all the polynomials h j , then the coefficient at the square of this monomial in the sum 1 + h 2 j should be positive). Due to lemma 4 one can represent

i f i g i = (b 1 m 3 -b 2 m 4 ) (3)
where in each summand from the right-hand side the terms b 1 m 3 and b 2 m 4 are d 0 -equivalent and occur in the left-hand side i f i g i , in particular,

deg(m 3 ), deg(m 4 ) ≤ d 0 .
We introduce the following linear mapping φ from the space of polynomials of the degree at most d 0 to F . It suffices to define φ for all the monomials of the degree at most d 0 . If a monomial is d 0 -equivalent to a certain element b ∈ F * then φ sends this monomial to b, otherwise φ sends the monomial to zero. The mapping φ is correctly defined because b is unique, provided it does exist, due to lemma 1(ii) and to definition 7. Now let us consider the result of application of φ to the polynomial i f i g i . It can be calculated in two different ways: denote by Σ (2) the result of the evaluation of φ at the polynomial 1 + j h 2 j and by Σ (3) the result of evaluation of φ at the polynomial (b

1 m 3 -b 2 m 4 ). Evidently, Σ (2) = Σ (3) . If b 1 m 3 is d 0 -equivalent to a certain b ∈ F * (see (3)) then b 2 m 4 is also d 0 -equivalent to b (again due to lemma 1(ii)). Therefore, Σ (3) = 0.
On the other hand, we will prove the following

Lemma 6 Σ (2) ≥ 1
which would lead to a contradiction with the supposition d 0 < D/2 and complete the proof of the theorem. Proof of lemma 6. Fix for a time being one of the items h = h j = I a I X I (see (2)) where the latter sum contains q terms of the form a I X I , a I ∈ F * , I ∈ Z n being a multiindex. Then deg(X I ) ≤ (1/2)deg( f i g i ); indeed, to show the latter again as above consider the highest (with respect to the deglex monomial ordering) term in all polynomials h j , see (2). Hence deg(X

I ) ≤ d 0 /2 < D/4.
Introduce an (undirected) graph Q with q vertices which correspond to the monomials X I occurring in h (we identify a vertex with the corresponding I). The graph Q contains an edge (I, J) if and only if bX I X J ∈ L d 0 for a pertinent b ∈ F * . Since (X I ) 2 ∈ L d 0 for any vertex I (cf. the proof of lemma 5), we treat also the loop (I, I) as an edge of Q.

Observe that after opening the parenthesis in the square h 2 = h 2 j , just the terms 2a I a J X I X J (in addition to the terms (a I X I ) 2 ), where (I, J) is an edge of Q not being a loop, give contribution to the sum Σ (2) under consideration.

Let us show that the graph Q is a (disjoint) union of cliques. Indeed, assume that (I, J) and (J,

K) are two edges of Q. Then b 1 X I X J , b 2 X J X K ∈ L d 0 for suitable b 1 , b 2 ∈ F * . We have (b 2 X J X K ) -1 ∈ L d 0 and b 1 (b 2 ) -1 X I (X K ) -1 ∈ L d 0 (see definition 5), hence b 1 (b 2 ) -1 X I X K ∈ L d 0 because (X K ) 2 ∈ L d 0 and deg(X I X K ) ≤ d 0 . Thus, (I, K) is also an edge of Q.
Fix for a time being a clique C of Q. Our next purpose is to prove that the contribution Σ C of the terms corresponding to the egdes of C into the sum Σ (2) is non-negative. Note that the contribution of the term (a I X I ) 2 into Σ (2) equals to a 2 I since (X I ) 2 ∈ L d 0 . For every edge (I, J) of C either X I X J ∈ L d 0 holds (in this case we label (I, J) by 1) or -X I X J ∈ L d 0 holds (in this case we label (I, J) by -1) due to lemma 5. For each triple of vertices I, J, K of C the product of the labels of three edges (I, J), (J, K), (K, I) equals to 1 (see definition 5). Therefore, one can partition the vertices of C into two parts V 1 , V 2 : if an edge links two vertices from the same part then it is labeled by 1, otherwise it is labeled by -1.

Hence Σ C = I∈V 1 ∪V 2 (a I ) 2 + 2 I 1 ,J 1 ∈V 1 a I 1 a J 1 + 2 I 2 ,J 2 ∈V 2 a I 2 a J 2 -2 I 1 ∈V 1 ,I 2 ∈V 2 a I 1 a I 2 = ( I 1 ∈V 1 a I 1 ) 2 + ( I 2 ∈V 2 a I 2 ) 2 -2( I 1 ∈V 1 a I 1 )( I 2 ∈V 2 a I 2 ) ≥ 0.
Thus, the contribution into the sum Σ (2) of each h j from the left-hand side of ( 2 (2)) we start with an (undirected) graph G. To each its node v a charge u v ∈ {-1, 1} is assigned with the property that v u v = -1. Besides, we assign to each edge e of G a variable X e .

We construct a Boolean Thue system T = T G (see definition 4) according to these data. The system T G contains a pair of terms (for each node v) (X(v) = u v X e , 1) where the product ranges over all the edges e incident to v (apart from the Boolean pairs (X 2 e , 1)). One can obviously deduce in T that v u v = 1 and thereby in the PC the element 1v u v ∈ F * (which actually equals to 2) from the binomial ideal P T (see section 2).

Any Laurent monomial in the variables {X e } e could be reduced using the Boolean pairs to the (uniquely defined) multilinear monomial (we call it reduced). By the pseudo-degree of a monomial we mean the number of variables which occur in its reduction. Observe that the pseudo-degree of a Laurent monomial does not exceed the double degree of this Laurent monomial (see section 1).

From now on we assume that G = G k is an expander [LPS 88], [M 88] with k nodes and being r-regular (r will be a constant, one could take, say r = 6 [LPS 88], [M 88]). That means that for any subset S of the set of the nodes of G the number of adjacent to S nodes in G is at least (1 + (1 -|S|/k))|S| for an appropriate constant > 0. The corresponding to G k Boolean Thue system we denote by T S k (2).

Any Laurent monomial in {X 2 e } e , {X(v)} v could be also (uniquely) reduced invoking the Boolean pairs, to a multilinear monomial in {X(v)} v (obviously, this reduction does not change the pseudo-degree). By a weight of such a Laurent monomial we mean the number of X(v) which occur in the reduced product.

The following lemma is similar to lemma 2 [G 98] (see also [BuGI 98],

[BuGI 99]) and its item (i) justifies the correctness of the described reduction and of the weight because v X(v) = -1 = 1.

Lemma 7 (i) Any reduced monomial in {X 2 e } e , {X(v)} v which is equal to an element of the form am 2 where a ∈ F * and m is a monomial, is either 1 or v X(v) = -1;

(ii) For any 1/2 ≥ 1 > 0 there exists 0 > 0 such that any reduced monomial in {X 2 e } e , {X(v)} v with the weight between 1 k and (1 -1 )k has the pseudo-degree at least 0 k.

Proof. (i) If not all X(v) occur in the reduced (non-empty) product U then (due to the connectedness of expanders) there is an edge e = (v 1 , v 2 ) of G such that X(v 1 ) occurs in U and X(v 2 ) does not occur in U . Hence U contains X e with the exponent 1 and thereby, could not be of the form am 2 .

(ii) Denote by S the set of nodes v of G such that X(v) occurs in U . Then applying to S the property of the expanders, we conclude that there are at least 0 k edges of G with one endpoint in S and another endpoint not in S for a suitable 0 . These edges give a contribution to the pseudo-degree of U . 2

The following lemma is similar to lemma 5.9 Proof. By definition 7 there exists a chain of Laurent monomials l 1 , . . . , l N in {X 2 e } e , {X(v)} v such that 1 = l N ∈ F * and that each l j is either one of {X 2

e } e , {X(v)} v , either l -1 j 1 or l j 1 l j 2 for some j 1 , j 2 < j, moreover the degree of each l j does not exceed D. Then the pseudo-degrees of l j do not exceed 2D (see above). Due to lemma 7(i) l N = -1 and the weight w(l N ) = k. Since w(X(v)) = 1 and w(l j ) ≤ w(l j 1 ) + w(l j 2 ), we conclude that there exists 1 < j 0 < N for which (1/3)k ≤ w(l j 0 ) ≤ (2/3)k. Then lemma 7(ii) implies that the pseudo-degree of l j 0 is greater or equal to 0 k. 2 Lemma 8 and the theorem (see section 2) entail the following linear (thereby, sharp) lower bound on the degree of P C > refutations for the Boolean binomial system corresponding to Tseitin tautologies.

Corollary 1 The degree of any P C > refutation of the Boolean binomial system P T S k (2) is greater than Ω(k).

  Definition 7 (cf. [BuGI 98], [BuGI 99]). The refutation degree D = D(T ) is the minimal d such that L d contains some 1 = a ∈ F * . By a support of a class of d-equivalence of terms we mean the set of their monomials. The following lemma comprises few properties of classes of d-equivalence of all the terms of degrees at most d. Lemma 2 (cf. [BuGI 98], [BuGI 99]). Let d < D. The supports of two classes of d-equivalence either coincide or disjoint. Two classes with the same support are obtained from one another by simultaneous multiplication of all the terms by an appropriate factor b ∈ F * . Thus, any class could be represented by a vector {c m } m where c m ∈ F * and m runs over the support. Moreover, two classes with the same support has collinear corresponding vectors. As usual (cf. [G 98], [BuGI 98], [BuGI 99]) to each Thue system T one can attach a binomial ideal P T ⊂ F [X 1 , . . . , X n ] generated by the binomials a 1 m 1 -a 2 m 2 (see definition 4). Lemma 3 (cf. [BuGI 98], [BuGI 99]). Let d < D. Assume that one can express a certain f ∈ F [X 1 , . . . , X n ] as a F -linear combination of binomials t 1 -t 2 where t 1 = b 1 m 3 , t 2 = b 2 m 4 are d-equivalent and deg(t 1 ), deg(t 2 ) ≤ d.

2

  a 2 = 1 by definition 7. 2 Positivstellensatz calculus proofs for Boolean binomial systems

  [U 95] and to lemma 4 [G 98] (see also [BuGI 98], [BuGI 99]). Lemma 8 The refutation degree D = D(T S k (2)) is greater than Ω(k).

  Definition 1 The cone c(h 1 , . . . , h m ) generated by polynomials h 1 , . . . , h m ∈ R[X 1 , . . . , X n ] is the smallest family of polynomials containing h 1 , . . . , h m and satisfying the following rules:(a) e 2 ∈ c(h 1 , . . . , h m ) for any e ∈ R[X 1 , . . . , X n ];

	if a, b ∈ c(h 1 , . . . , h m ), then	
	(b) a + b ∈ c(h 1 , . . . , h m );	
	(c) ab ∈ c(h 1 , . . . , h m ).	
	Remark 1 The minimal cone c(∅) consists of all sums of squares of polyno-
	mials.	
	Remark 2 Any element of c(h 1 , . . . , h m ) can be represented in a form
	h i	e 2 I,j
	I⊂{1,...,m} i∈I	j
	for some polynomials e I,j ∈ R[X 1 , . . . , X n ].	
	Two proof systems (which could be viewed as static and dynamic, respec-
	tively) introduced in [GV 99] rely on the following Positivestellensatz (see
	[BCR 87], [S 74]).	
	Positivstellensatz. A system (1) has no common solutions in R n if and
	only if for a suitable polynomial	

Following [BuGI 98], [BuGI 99] we consider (the negation of) mod 2 principle (or the parity) as a system of equations in n 2 variables X e where e ⊂ {1, . . . , n}, |e| = 2, denoted by M OD n 2 : X 2 e = X e ; X e X f = 0 for every e, f such that e = f, e ∩ f = ∅; 1 = i∈e X e for each i ∈ {1, . . . , n}. (where r denotes the valency of the expander G k , one could take r = 6, see above).

Obviously, M OD

Lemmas 9, 10 and Corollary 1 imply the following linear (thereby, sharp) lower bound on the degree of P C > refutations for the parity.

Corollary 2 (cf. [BuGI 98], [BuGI 99]). The degree of any P C > refutation of M OD k 2 is greater than Ω(k).