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Abstract
The median of a set of vertices P of a graph G is the set of all vertices x of G minimizing the sum of
distances from x to all vertices of P . In this paper, we present a linear time algorithm to compute
medians in median graphs, improving over the existing quadratic time algorithm. We also present a
linear time algorithm to compute medians in the `1-cube complexes associated with median graphs.
Median graphs constitute the principal class of graphs investigated in metric graph theory and
have a rich geometric and combinatorial structure. Our algorithm is based on the majority rule
characterization of medians in median graphs and on a fast computation of parallelism classes of
edges (Θ-classes or hyperplanes) via Lexicographic Breadth First Search (LexBFS). To prove the
correctness of our algorithm, we show that any LexBFS ordering of the vertices of G satisfies the
following fellow traveler property of independent interest: the parents of any two adjacent vertices of
G are also adjacent.
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1 Introduction

The median problem (also called the Fermat-Torricelli problem or the Weber problem) is
one of the oldest optimization problems in Euclidean geometry [43]. The median problem
can be defined for any metric space (X, d): given a finite set P ⊂ X of points with positive
weights, compute the points x of X minimizing the sum of the distances from x to the points
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10:2 Medians in Median Graphs in Linear Time

of P multiplied by their weights. The median problem in graphs is one of the principal
models in network location theory [35, 62] and is equivalent to finding nodes with largest
closeness centrality in network analysis [14, 15, 57]. It also occurs in social group choice
as the Kemeny median. In the consensus problem in social group choice, given individual
rankings one has to compute a consensual group decision. By Arrow’s impossibility theorem,
there is no consensus function satisfying natural “fairness” axioms. It is also well-known that
the majority rule leads to Condorcet’s paradox, i.e., to the existence of cycles in the majority
relation. In this respect, the Kemeny median [39, 40] is an important consensus function
and corresponds to the median problem in graphs of permutahedra.

The median problem in Euclidean spaces cannot be solved in a symbolic form [6], but it
can be solved numerically by Weiszfeld’s algorithm [66] and its convergent modifications (see
e.g. [51]) and can be approximated in nearly linear time with arbitrary precision [26]. For
the `1-metric the median problem becomes much easier and can be solved by the majority
rule on coordinates, i.e., by taking as median a point whose ith coordinate is the median
of the list consisting of ith coordinates of the points of P . This kind of majority rule was
used in [38] to define centroids of trees (which coincide with their medians [32, 62]). For
graphs with n vertices, m edges, and standard graph distance, the median problem can be
trivially solved in O(nm) time by solving the All Pairs Shortest Paths (APSP) problem. One
may ask if APSP is necessary to compute the median. However, by [1] APSP and median
problem are equivalent under subcubic reductions. It was also shown in [2] that computing
the medians of sparse graphs in subquadratic time refutes the HS (Hitting Set) conjecture.

In this paper, we show that the medians in median graphs can be computed in optimal
O(m) time (i.e., without solving APSP). Median graphs are the graphs in which each triplet
u, v, w of vertices has a unique median, i.e., a vertex metrically lying between u and v, v
and w, and w and u. They originally arise in universal algebra [4, 18] and their properties
have been first investigated in [45, 49]. It was shown in [24, 54] that the cube complexes
of median graphs are exactly the CAT(0) cube complexes, i.e., cube complexes of global
non-positive curvature. CAT(0) cube complexes, introduced and nicely characterized in [33]
in a local-to-global way, are now one of the principal objects of investigation in geometric
group theory [59]. Median graphs also occur in Computer Science: by [3, 13] they are exactly
the domains of event structures (one of the basic abstract models of concurrency) [50] and
median-closed subsets of hypercubes are exactly the solution sets of 2-SAT formulas [48, 60].
The bijections between median graphs, CAT(0) cube complexes, and event structures have
been used in [20, 21, 25] to disprove three conjectures in concurrency [56, 63, 64]. Finally,
median graphs, viewed as median closures of sets of vertices of a hypercube, contain all most
parsimonious (Steiner) trees [12] and as such have been extensively applied in human genetics.
For a survey on median graphs and their connections with other discrete and geometric
structures, see the books [36, 42], the surveys [10, 41], and the paper [22].

As we noticed, median graphs have strong geometric and metric properties. For the
median problem, the concept of Θ-classes is essential. Two edges of a median graph G are
called opposite if they are opposite in a common square of G. The equivalence relation Θ is
the reflexive and transitive closure of this oppositeness relation. Each equivalence class of Θ
is called a Θ-class (Θ-classes correspond to hyperplanes in CAT(0) cube complexes [58] and
to events in event structures [50]). Removing the edges of a Θ-class, the graph G is split
into two connected components which are convex and gated. Thus they are called halfspaces
of G. The convexity of halfspaces implies via [29] that any median graph G isometrically
embeds into a hypercube of dimension equals to the number q of Θ-classes of G.
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Our results and motivation. In this paper, we present a linear time algorithm to compute
medians in median graphs and in `1-cube complexes associated to median graphs. Our main
motivation and technique stem from the majority rule characterization of medians in median
graphs and the unimodality of the median function [8, 61]. Even if the majority rule is simple
to state and is a commonly approved consensus method, its algorithmic implementation is
less trivial if one has to avoid the computation of the distance matrix. On the other hand,
the unimodality of the median function implies that one may find the median set by using
local search. More generally, consider a partial orientation of the input median graph G,
where an edge uv is transformed into the arc −→uv iff the median function at u is larger than
the median function at v (in case of equality we do not orient the edge uv). Then the median
set is exactly the set of all the sinks in this partial orientation of G. Therefore, it remains to
compare for every edge uv the median function at u and at v in constant time. For this we
use the partition of the edge-set of a median graph G into Θ-classes and; for every Θ-class,
the partition of the vertex-set of G into complementary halfspaces. It is easy to notice that
all edges of the same Θ-class are oriented in the same way because for any such edge uv
the difference between the median functions at u and at v, respectively, can be expressed as
the sum of weights of all vertices in the same halfspace as v minus the sum of weights of all
vertices in the same halfspace as u.

Our main technical contribution is a new method for computing the Θ-classes of a
median graph G with n vertices and m edges in linear O(m) time. For this, we prove that
Lexicographic Breadth First Search (LexBFS) [55] produces an ordering of the vertices of
G satisfying the following fellow traveler property: for any edge uv, the parents of u and v
are adjacent. With the Θ-classes of G at hand and the majority rule for halfspaces, we can
compute the weights of halfspaces of G in optimal time O(m), leading to an algorithm of
the same complexity for computing the median set. We adapt our method to compute in
linear time the median of a finite set of points in the `1-cube complex associated with G.
The method can be applied to compute the total distance (the Wiener index) in optimal
O(m) time and the distance matrix of G in optimal O(n2) time (see the full version [16]).

Related work. The study of medians in median graphs originated in [8, 61] and continued
in [7, 44, 46, 47, 53]. Using different techniques and extending the majority rule for trees [32],
the following majority rule has been established in [8, 61]: a halfspace H of a median graph
G contains at least one median iff H contains at least one half of the total weight of G;
moreover, the median of G coincides with the intersection of halfspaces of G containing
strictly more than half of the total weight. Hence the median set is always convex. It was
shown in [61] that the median function of a median graph is weakly convex (an analog of
a discrete convex function). This convexity property characterizes all graphs in which all
local medians are global [9]. A nice axiomatic characterization of medians of median graphs
via three basic axioms has been obtained in [47]. More recently, [53] characterized median
graphs as closed Condorcet domains, i.e., as sets of linear orders with the property that,
whenever the preferences of all voters belong to the set, their majority relation has no cycles
and also belongs to the set. In the full version [16] we show that the median graphs are the
bipartite graphs in which the medians are characterized by the majority rule.

Prior to our work, the best algorithm to compute the Θ-classes of a median graph G has
complexity O(m logn) [34]. It was used in [34] to recognize median graphs in subquadratic
time. The previous best algorithm for the median problem in a median graph G with n

vertices and q Θ-classes has complexity O(qn) [7] which is quadratic in the worst case. Indeed
q may be linear in n (as in the case of trees) and is always at least d( d

√
n− 1) as shown below
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10:4 Medians in Median Graphs in Linear Time

(d is the largest dimension of a hypercube which is an induced subgraph of G). Additionally,
[7] assumes that an isometric embedding of G in a q-hypercube is given. The description of
such an embedding has already size O(qn). The Θ-classes of a median graph G correspond
to the coordinates of the smallest hypercube in which G isometrically embeds (this is called
the isometric dimension of G [36]). Thus one can define Θ-classes for all partial cubes, i.e.,
graphs isometrically embeddable into hypercubes. An efficient computation (in O(n2) time)
of all Θ-classes was the main step of the O(n2) algorithm of [30] for recognizing partial cubes.
The fellow-traveler property (which is essential in our computation of Θ-classes) is a notion
coming from geometric group theory [31] and is a main tool to prove the (bi)automaticity
of a group. In a slightly stronger form it allows to establish the dismantlability of graphs
(see [19, 23, 24] for examples of classes of graphs in which a fellow traveler order was obtained
by BFS or LexBFS). LexBFS has been used to solve optimally several algorithmic problems
in different classes of graphs, in particular for their recognition (for a survey, see [28]).

Cube complexes of median graphs with `1-metric have been investigated in [65]. The
same complexes but endowed with the `2-metric are exactly the CAT(0) cube complexes.
As we noticed above, they are of great importance in geometric group theory [59]. The
paper [17] established that the space of trees with a fixed set of leaves is a CAT(0) cube
complex. A polynomial-time algorithm to compute the `2-distance between two points in
this space was proposed in [52]. This result was recently extended in [37] to all CAT(0) cube
complexes. A convergent numerical algorithm for the median problem in CAT(0) spaces was
given in [5].

2 Preliminaries

All graphs G = (V,E) in this paper are finite, undirected, simple, and connected; V is the
vertex-set and E is the edge-set of G. We write u ∼ v if u, v ∈ V are adjacent. The distance
d(u, v) = dG(u, v) between two vertices u and v is the length of a shortest (u, v)-path, and the
interval I(u, v) = {x ∈ V : d(u, x) + d(x, v) = d(u, v)} consists of all the vertices on shortest
(u, v)–paths. A set H (or the subgraph induced by H) is convex if I(u, v) ⊆ H for any two
vertices u, v of H; H is a halfspace if H and V \H are convex. Finally, H is gated if for every
vertex v ∈ V , there exists a (unique) vertex v′ ∈ V (H) (the gate of v in H) such that for all
u ∈ V (H), v′ ∈ I(u, v). The k-dimensional hypercube Qk has all subsets of {1, . . . , k} as the
vertex-set and A ∼ B iff |A4B| = 1. A graph G is called median if I(x, y) ∩ I(y, z) ∩ I(z, x)
is a singleton for each triplet x, y, z of vertices; this unique intersection vertex m(x, y, z) is
called the median of x, y, z. Median graphs are bipartite and do not contain induced K2,3.
The dimension d = dim(G) of a median graph G is the largest dimension of a hypercube of
G. In G, we refer to the 4-cycles as squares, and the hypercube subgraphs as cubes.

A map w : V → R+ ∪ {0} is called a weight function. For a vertex v ∈ V , w(v) denotes
the weight of v (for a set S ⊆ V , w(S) =

∑
x∈S w(x) denotes the weight of S). Then Fw(x) =∑

v∈V w(v)d(x, v) is called the median function of the graph G and a vertex x minimizing
Fw is called a median vertex of G. Finally, Medw(G) = {x ∈ V : x is a median of G} is
called the median set (or simply, the median) of G with respect to the weight function w.

3 Facts about median graphs

We recall the principal properties of median graphs used in the algorithms. Some of those
results are a part of folklore for the people working in metric graph theory and some other
results can be found in the papers [45, 46] by Mulder.
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Figure 1 (a) In dashed, the Θ-class Ei of D, its two complementary halfspaces H ′
i and H ′′

i and
their boundaries ∂H ′

i and ∂H ′′
i , (b) two peripheral halfspaces of D, and (c) a LexBFS ordering of D.

From now on, G = (V,E) is a median graph with n vertices and m edges. The first three
properties follow from the definition.

I Lemma 1 (Quadrangle Condition). For any vertices u, v, w, z of G such that v, w ∼ z and
d(u, v) = d(u,w) = d(u, z)−1 = k, there is a unique vertex x ∼ v, w such that d(u, x) = k−1.

I Lemma 2 (Cube Condition). Any three squares of G, pairwise intersecting in three edges
and all three intersecting in a single vertex, belong to a 3-dimensional cube of G.

I Lemma 3 (Convex=Gated). A subgraph of G is convex if and only if it is gated. Each
convex subgraph S of G is the intersection of all halfspaces containing S.

Two edges uv and u′v′ of G are in relation Θ0 if uvv′u′ is a square of G and uv and u′v′
are opposite edges of this square. Let Θ denote the reflexive and transitive closure of Θ0.
Denote by E1, . . . , Eq the equivalence classes of Θ and call them Θ-classes (see Fig. 1(a)).

I Lemma 4. [45] (Halfspaces and Θ-classes). For any Θ-class Ei of G, the graph Gi =
(V,E \Ei) consists of exactly two connected components H ′i and H ′′i that are halfspaces of
G; all halfspaces of G have this form. If uv ∈ Ei, then H ′i and H ′′i are the subgraphs of G
induced by W (u, v) = {x ∈ V : d(u, x) < d(v, x)} and W (v, u) = {x ∈ V : d(v, x) < d(u, x)}.

Two Θ-classes Ei and Ej are crossing if each halfspace of the pair {H ′i, H ′′i } intersects
each halfspace of the pair {H ′j , H ′′j }; otherwise, Ei and Ej are called laminar.

I Lemma 5 (Crossing Θ-classes). Any vertex v∈V (G) and incident edges vv1∈E1, . . . , vvk∈
Ek belong to a single cube of G if and only if E1, . . . , Ek are pairwise crossing.

The boundary ∂H ′i of a halfspace H ′i is the subgraph of H ′i induced by all vertices v′ of H ′i
having a neighbor v′′ in H ′′i . A halfspace H ′i of G is peripheral if ∂H ′i = H ′i (See Fig. 1(b)).

I Lemma 6 (Boundaries). For any Θ-class Ei of G, ∂H ′i and ∂H ′′i are isomorphic and gated.

From now on, we suppose that G is rooted at an arbitrary vertex v0 called the basepoint.
For any Θ-class Ei, we assume that v0 belongs to the halfspace H ′′i . Let d(v0, H

′
i) =

min{d(v0, x) : x ∈ H ′i}. Since H ′i is gated, the gate of v0 in H ′i is the unique vertex of H ′i

ICALP 2020



10:6 Medians in Median Graphs in Linear Time

at distance d(v0, H
′
i) from v0. Since median graphs are bipartite, the choice of v0 defines

a canonical orientation of the edges of G: uv ∈ E is oriented from u to v (notation −→uv) if
d(v0, u) < d(v0, v). Let −→Gv0 denote the resulting oriented pointed graph.

I Lemma 7. [46] (Peripheral Halfspaces). Any halfspace H ′i maximizing d(v0, H
′
i) is peripheral.

For a vertex v, all vertices u such that −→uv is an edge of −→Gv0 are called predecessors of
v and are denoted by Λ(v). Equivalently, Λ(v) consists of all neighbors of v in the interval
I(v0, v). A median graph G satisfies the downward cube property if any vertex v and all its
predecessors Λ(v) belong to a single cube of G.

I Lemma 8. [45] (Downward Cube Property). G satisfies the downward cube property.

Lemma 8 immediately implies the following upper bound on the number of edges of G:

I Corollary 9. If G has dimension d, then m ≤ dn ≤ n logn.

We give a sharp lower bound on the number q of Θ-classes, which is new to our knowledge.

I Proposition 10. If G has q Θ-classes and dimension d, then q ≥ d( d
√
n−1) and this bound

is tight.

Proof. Let Γ(G) be the crossing graph Γ(G) of G: V (Γ(G)) is the set of Θ-classes of G and
two Θ-classes are adjacent in Γ(G) if they are crossing. Note that |V (Γ(G))| = q. LetX(Γ(G))
be the clique complex of Γ(G). By the characterization of median graphs among ample
classes [11, Proposition 4], the number of vertices of G is equal to the number |X(Γ(G))| of
simplices of X(Γ(G)). Since G is of dimension d, by [11, Proposition 4], Γ(G) does not contain
cliques of size d+ 1. By Zykov’s theorem [68] (see also [67]), the number of k-simplices in
X(Γ(G)) is at most

(
d
k

) (
q
d

)k. Hence n = |V (G)| = |X(Γ(G))| ≤
∑d

k=0
(

d
k

) (
q
d

)k =
(
1 + q

d

)d

and thus q ≥ d( d
√
n− 1). Let now G be the Cartesian product of d paths of length ( d

√
n− 1).

Then G has ( d
√
n−1+1)d = n vertices and d( d

√
n−1) Θ-classes (each Θ-class of G corresponds

to an edge of one of factors). J

4 Computation of the Θ-classes via LexBFS

The Breadth-First Search (BFS) refines the basepoint order and defines the same orientation
−→
Gv0 of G. BFS uses a queue Q and the insertion in Q defines a total order < on the vertices
of G: x < y iff x is inserted in Q before y. When a vertex u arrives at the head of Q, it is
removed from Q and all not yet discovered neighbors v of u are inserted in Q; u becomes the
parent f(v) of v; for any vertex v 6= v0, f(v) is the smallest predecessor of v. The arcs

−−−→
f(v)v

define the BFS-tree of G. The Lexicographic Breadth-First Search (LexBFS), proposed in [55],
is a refinement of BFS. In BFS, if u and v have the same parent, then the algorithm order
them arbitrarily. Instead, the LexBFS chooses between u and v by considering the ordering
of their second-earliest predecessors. If only one of them has a second-earliest predecessor,
then that one is chosen. If both u and v have the same second-earliest predecessor, then the
tie is broken by considering their third-earliest predecessor, and so on (See Fig. 1(c)). The
LexBFS uses a set partitioning data structure and can be implemented in linear time [55].
In median graphs, the next lemma shows that it suffices to consider only the earliest and
second-earliest predecessors, leading to a simpler implementation of LexBFS:

I Lemma 11. If u and v are two vertices of a median graph G, then |Λ(u) ∩ Λ(v)| ≤ 1.
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Figure 2 Animated proof of Theorem 13.

During the execution of BFS (or LexBFS), one can assume that for each vertex v the set
Λ(v) of its predecessors is computed as an ordered list Λ<(v) (ordered by <). By Lemma 8,
|Λ<(v)| ≤ d := dim(G). Note that < also gives rise to a total order on the edges of G: for
two edges uv and u′v′ with u < v and u′ < v′ we have uv < u′v′ iff u < u′ or if u = u′ and
v < v′. The next lemma characterizes the first edge in the order < of each Θ-class Ei.

I Lemma 12. An edge uv ∈ Ei with d(v0, u) < d(v0, v) is the first edge of Ei iff Λ<(v) = {u}.

A graph G satisfies the fellow-traveler property if for any LexBFS ordering of the vertices
of G, for any edge uv with v0 /∈ {u, v}, the parents f(u) and f(v) are adjacent.

I Theorem 13. Any median graph G satisfies the fellow-traveler property.

Proof. Let < be an arbitrary LexBFS order of the vertices of G and f be its parent map.
Since any LexBFS order is a BFS order, < and f satisfy the following properties of BFS:
(BFS1) if u < v, then f(u) ≤ f(v); (BFS3) if v 6= v0, then f(v) = min<{u : u ∼ v};
(BFS2) if f(u) < f(v), then u < v; (BFS4) if u < v and v ∼ f(u), then f(v) = f(u).
Notice also the following simple but useful property:

I Lemma 14. If abcd is a square of G with d(v0, c) = k, d(v0, b) = d(v0, d) = k+1, d(v0, a) =
k + 2 and f(a) = b, and the edge ad satisfies the fellow-traveler property, then f(d) = c.

We prove the fellow-traveler property by induction on the total order on the edges of
G defined by <. The proof is illustrated by several figures (the arcs of the parent map are
represented in bold). We use the following convention: all vertices having the same distance
to the basepoint v0 will be labeled by the same letter but will be indexed differently; for
example, w1 and w2 are two vertices having the same distance to v0.

Suppose by way of contradiction that e = u1v3 with v3 < u1 is the first edge in the order
< such that the parents f(u1) and f(v3) of u1 and v3 are not adjacent. Then necessarily
f(u1) 6= v3. Set v1 = f(u1) and w3 = f(v3) (Fig. 2a). Since d(v0, v1) = d(v0, v3) and
u1 ∼ v1, v3, by the quadrangle condition v1 and v3 have a common neighbor at distance

ICALP 2020



10:8 Medians in Median Graphs in Linear Time

d(v0, v1)−1 from v0. This vertex cannot be w3, otherwise f(u1) and f(v3) would be adjacent.
Therefore there is a vertex w4 ∼ v1, v3 at distance d(v0, v1)−1 from v0 (Fig. 2b). By induction
hypothesis, the parent x3 = f(w4) of w4 is adjacent to w3 = f(v3). Since u1 ∼ v1 = f(u1), v3
and v3 ∼ w3 = f(v3), w4, by (BFS3) we conclude that v1 < v3 and w3 < w4. By (BFS2),
f(v1) ≤ f(v3), whence f(v1) ≤ w3 and since f(v1) 6= f(v3) (otherwise, f(u1) ∼ f(v3)),
we deduce that f(v1) < w3 < w4. Hence f(v1) 6= w4. Set w1 = f(v1). By the induction
hypothesis, f(v1) = w1 is adjacent to f(w4) = x3 (Fig. 2c). By the cube condition applied to
the squares w4v1w1x3, w4v1u1v3, and w4v3w3x3 there is a vertex v2 adjacent to u1, w1, and
w3. Since u1 ∼ v2 and f(u1) = v1, by (BFS3) we obtain v1 < v2. Since v2 is adjacent to w1
and w1 = f(v1), by (BFS4) we obtain f(v2) = f(v1) = w1, and by (BFS2), v2 < v3. Since
f(v2) = w1, by Lemma 14 for v2w1x3w3, we obtain f(w3) = x3 (Fig. 2d). Since v1 < v2,
f(v1) = f(v2) = w1, and v2 ∼ w1, w3, by LexBFS v1 is adjacent to a predecessor different
from w1 and smaller than w3. Since w3 < w4, this predecessor cannot be w4. Denote by w2
the second smallest predecessor of v1 (Fig. 2e) and note that w1 < w2 < w3 < w4.

By the quadrangle condition, w2 and w4 are adjacent to a vertex x5, which is necessarily
different from x3 because G is K2,3-free. By the induction hypothesis, f(w2) and f(v1) = w1
are adjacent. Then f(w2) 6= x3, x5, otherwise we obtain a forbidden K2,3. Set f(w2) = x2.
Analogously, f(x5) = y5 and f(w2) = x2 are adjacent as well as f(x5) = y5 and f(w4) = x3
(Fig. 2f). By (BFS1), x2 = f(w2) < f(w3) = x3 and by (BFS3), x3 = f(w4) < x5. Since
w3 < w4 with f(w3) = f(w4) and w4 is adjacent to x5, by LexBFS w3 must have a predecessor
different from x3 and smaller than x5. This vertex cannot be x2 by (BFS3) since f(w3) = x3.
Denote this predecessor of w3 by x4 and observe that x2 < x3 < x4 < x5. By the induction
hypothesis, the parent of x4 is adjacent to f(w3) = x3. Let y4 = f(x4).

If y4 = y5, applying the cube condition to the squares x3w3x4y5, x3w4x5y5, and x3w4v3w3
we find a vertex w adjacent to x4, v3, and x5. Applying the cube condition to the squares
w4v3wx5, w4v1w2x5, and w4v1u1v3 we find a vertex v adjacent to u1, w2, and w. Since
v ∼ w2, by (BFS3) f(v) ≤ w2 < w3 = f(v3), hence by (BFS2) we obtain v < v3. Therefore
we can apply the induction hypothesis, and by Lemma 14 for u1v1w2v, we deduce that
f(v) = w2. By Lemma 14 for v3w3x4w, we deduce that f(w) = x4 (Fig. 2g). Applying
the induction hypothesis to the edge vw we have that f(v) = w2 is adjacent to f(w) = x4,
yielding a forbidden K2,3 induced by v, x5, x4, w, w2 (Fig. 2g). All this shows that y4 6= y5.
By the quadrangle condition, y5 and y4 have a common neighbor z3 (Fig. 2h).

Recall that x2 < x3 < x4 < x5, and note that by (BFS1), y4 = f(x4) < f(x5) = y5. We
denote by H the subgraph of G induced by the vertices V ′ = {w1, x2, x3, x4, x5, y4, y5, z3}.
The set of edges of H is E′ = {z3y4, z3y5, y4x3, y4x4, y5x2, y5x3, y5x5, x2w1, x3w1}. To
conclude the proof, we use the following technical lemma.

I Lemma 15. Let H = (V ′, E′) (Fig. 3a) be an induced graph of G, where d(v0, w1) =
d(v0, x2) + 1 = · · · = d(v0, x5) + 1 = d(v0, y4) + 2 = d(v0, y5) + 2 = d(v0, z3) + 3 and
f(x5) = y5 and f(x4) = y4, such that x2 < x3 < x4 < x5 and y4 < y5. If G satisfies
the fellow-traveler property up to distance d(v0, w1), then there exists a vertex x0 such that
x0 < x2 and x0 ∼ w1, y4 (Fig. 3b).

Since G contains a subgraph H satisfying the conditions of Lemma 15, there exists a
vertex x0 such that x0 < x2 and x0 ∼ w1, y4 (Fig. 2i). By the cube condition applied to
the squares x3w1x0y4, x3w1v2w3, and x3w3x4y4, there exists w0 ∼ x0, v2, x4 (Fig. 2i). Since
x0 is adjacent to w0, by (BFS3) f(w0) ≤ x0 < x2 = f(w2). By (BFS2), w0 < w2. Recall
that f(v1) = w1 = f(v2) and that w2 is the second-earliest predecessor of v1. Since w0 < w2
and w0 is a predecessor of v2, by LexBFS we deduce that v2 < v1. Since v1 and v2 are
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Figure 3 The induced subgraph H in Lemma 15.

both adjacent to u1 we obtain a contradiction with f(u1) = v1. This contradiction shows
that any median graph G satisfies the fellow-traveller property. This finishes the proof of
Theorem 13. J

Now we use Theorem 13 to compute the Θ-classes of G. We run LexBFS and return
a LexBFS-ordering of V (G) and E(G) and the ordered lists Λ<(v), v ∈ V . Then consider
the edges of G in the LexBFS-order. Pick the first unprocessed edge uv and suppose that
u ∈ Λ<(v). If Λ<(v) = {u}, by Lemma 12, uv is the first edge of its Θ-class, thus we create
a new Θ-class Ei and insert uv as the first edge of Ei. We call uv the root of Ei and keep
d(v0, v) as the distance from v0 to H ′i. Now suppose |Λ<(v)| ≥ 2. We consider two cases:
(i) u 6= f(v) and (ii) u = f(v). For (i), by Theorem 13, uv and f(u)f(v) are opposite edges
of a square. Therefore uv belongs to the Θ-class of f(u)f(v) (which was already computed
because f(u)f(v) < uv). In order to recover the Θ-class of the edge f(u)f(v) in constant
time, we use a (non-initialized) matrix A whose rows and columns correspond to the vertices
of G such that A[x, y] contains the Θ-class of the edge xy when x and y are adjacent and the
Θ-class of xy has already been computed and A[x, y] is undefined if x and y are not adjacent
or if the Θ-class of xy has not been computed yet. For (ii), pick any x ∈ Λ<(v), x 6= u. By
Theorem 13, uv = f(v)v and f(x)x are opposite edges of a square. Since f(x)x appears
before uv in the LexBFS order, the Θ-class of f(x)x has already been computed, and the
algorithm inserts uv in the Θ-class of f(x)x. Each Θ-class Ei is totally ordered by the order
in which the edges are inserted in Ei. Consequently, we obtain:

I Theorem 16. The Θ-classes of a median graph G can be computed in O(m) time.

5 The median of G

We use Theorem 16 to compute the median set Medw(G) of a median graph G in O(m) time.
We also use the existence of peripheral halfspaces and the majority rule.

5.1 Peripheral peeling
The order E1, E2, . . . , Eq in which the Θ-classes Ei of G are constructed corresponds to the
order of the distances from v0 to H ′i: if i < j then d(v0, H

′
i) ≤ d(v0, H

′
j) (recall that v0 ∈ H ′′i ).

By Lemma 7, the halfspace H ′q of Eq is peripheral. If we contract all edges of Eq (i.e., we
identify the vertices of H ′q = ∂H ′q with their neighbors in ∂H ′′q ) we get a smaller median
graph G̃ = H ′′q ; G̃ has q−1 Θ-classes Ẽ1, . . . , Ẽq−1, where Ẽi consists of the edges of Ei in G̃.
The halfspaces of G̃ have the form H̃ ′i = H ′i ∩H ′′q and H̃ ′′i = H ′′i ∩H ′′q . Then Ẽ1, . . . , Ẽq−1

corresponds to the ordering of the halfspaces H̃ ′1, . . . , H̃ ′q−1 of G̃ by their distances to v0.
Hence the last halfspace H̃ ′q−1 is peripheral in G̃. Thus the ordering Eq, Eq−1, . . . , E1 of
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the Θ-classes of G provides us with a set Gq = G,Gq−1 = G̃, . . . , G0 of median graphs such
that G0 is a single vertex and for each i ≥ 1, the Θ-class Ei defines a peripheral halfspace
in the graph Gi obtained after the successive contractions of the peripheral halfspaces of
Gq, Gq−1, . . . , Gi+1 defined by Eq, Eq−1, . . . , Ei+1. We call Gq, Gq−1, . . . , G0 a peripheral
peeling of G. Since each vertex of G and each Θ-class is contracted only once, we do not need
to explicitly compute the restriction of each Θ-class of G to each Gi. For this it is enough
to keep for each vertex v a variable indicating whether this vertex belongs to an already
contracted peripheral halfspace or not. Hence, when the ith Θ-class must be contracted, we
simply traverse the edges of Ei and select those edges whose both ends are not yet contracted.

5.2 Computing the weights of the halfspaces of G

We use a peripheral peeling Gq, Gq−1, . . . , G0 of G to compute the weights w(H ′i) and w(H ′′i ),
i = 1, . . . , q of all halfspaces of G. As above, let G̃ be obtained from G by contracting the
Θ-class Eq. Consider the weight function w̃ on G̃ = H ′′q defined as follows:

w̃(v′′) =
{
w(v′′) + w(v′) if v′′ ∈ ∂H ′′q , v′ ∈ H ′q, and v′′ ∼ v′,
w(v′′) if v′′ ∈ H ′′q \ ∂H ′′q .

(5.1)

I Lemma 17. For any Θ-class Ẽi of G̃, w̃(H̃ ′i) = w(H ′i) and w̃(H ′′i ) = w(H ′′i ).

By Lemma 17, to compute all w(H ′i) and w(H ′′i ), it suffices to compute the weight of the
peripheral halfspace of Ei in the graph Gi, set it as w(H ′i), and set w(H ′′i ) := w(G)−w(H ′i).

Let G be the current median graph, let H ′q be a peripheral halfspace of G, and G̃ = H ′′q
be the graph obtained from G by contracting the edges of Eq. To compute w(H ′q), we
traverse the vertices of H ′q (by considering the edges of Eq). Set w(H ′′q ) = w(G)− w(H ′q).
Let w̃ be the weight function on G̃ defined by Equation 5.1. Clearly, w̃ can be computed in
O(|V (H ′q)|) = O(|Eq|) time. Then by Lemma 17 it suffices to recursively apply the algorithm
to the graph G̃ and the weight function w̃. Since each edge of G is considered only when its
Θ-class is contracted, the algorithm has complexity O(m).

5.3 The median Medw(G)
We start with a simple property of the median function Fw that follows from Lemma 4:

I Lemma 18. If xy ∈ Ei with x ∈ H ′i and y ∈ H ′′i , then Fw(x)− Fw(y) = w(H ′′i )− w(H ′i).

A halfspace H of G is majoritary if w(H) > 1
2w(G), minoritary if w(H) < 1

2w(G), and
egalitarian if w(H) = 1

2w(G). Let Medloc
w (G) = {v ∈ V : Fw(v) ≤ Fw(u),∀u ∼ v} be the set

of local medians of G. We continue with the majority rule:

I Proposition 19. [8, 61]. Medw(G) is the intersection of all majoritary halfspaces and
Medw(G) intersects all egalitarian halfspaces. If H ′i and H ′′i are egalitarian halfspaces, then
Medw(G) intersects both H ′i and H ′′i . Moreover, Medw(G) = Medloc

w (G).

We use Proposition 19 and the weights of halfspaces computed above to derive Medw(G).
For this, we define a new orientation of the edges v′v′′ of each Θ-class Ei of G as follows. If
v′ ∈ H ′i and v′′ ∈ H ′′i , then we direct v′v′′ from v′ to v′′ if w(H ′′i ) > w(H ′i) and from v′′ to
v′ if w(H ′i) > w(H ′′i ). If w(H ′i) = w(H ′′i ), then the edge v′v′′ is not directed. We denote this
partially directed graph by −→G . A vertex u of G is a sink of −→G if there is no edge uv directed
in −→G from u to v. From Lemma 18, u is a sink of −→G if and only if u is a local median of G.
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By Proposition 19, Medloc
w (G) = Medw(G) and thus Medw(G) coincides with the set S(−→G)

of sinks of −→G . Note that in the graph induced by Medw(G), all edges are non-oriented in −→G .
Once all w(H ′i) and w(H ′′i ) have been computed, the orientation −→G of G can be constructed
in O(m) by traversing all Θ-classes Ei of G. The graph induced by S(−→G) can then be found
in O(m).

I Theorem 20. The median Medw(G) of a median graph G can be computed in O(m) time.

I Corollary 21. If w(G) > 0, we can find u, v ∈ V (G) in O(m) such that Medw(G) = I(u, v).

6 The median problem in the cube complex of G

We describe a linear time algorithm to compute medians in cube complexes of median graphs.

6.1 The main result
The problem. Let G be the cube complex of a median graph G obtained by replacing each
graphic cube of G by a unit solid cube and by isometrically identifying common subcubes. We
refer to G as to the geometric realization of G (see Fig. 4(a)). We suppose that G is endowed
with the intrinsic `1-metric d1. Let P be a finite set of points of (G, d1) (called terminals) and
let w be a weight function on G such that w(p) > 0 if p ∈ P and w(p) = 0 if p /∈ P . The goal
of the median problem is to compute the set Medw(G) of median points of G, i.e., the set of
all points x ∈ G minimizing the function Fw(x) =

∑
p∈G w(p)d1(x, p) =

∑
p∈P w(p)d1(x, p).

The input. The cube complex G is given by its 1-skeleton G. Each terminal p ∈ P is given
by its coordinates in the smallest cube Q(p) of G containing p. Namely, we give a vertex v(p)
of Q(p) together with its neighbors in Q(p) and the coordinates of p in the embedding of
Q(p) as a unit cube in which v(p) is the origin of coordinates. Let δ be the sum of the sizes
of the encodings of the points of P . Thus the input of the median problem has size O(m+ δ).

The output. Unlike Medw(G) (which is a gated subgraph of G), Medw(G) is not a sub-
complex of G. Nevertheless we show that Medw(G) is a subcomplex of the box complex Ĝ
obtained by subdividing G, using the hyperplanes passing via the terminals of P . The output
is the 1-skeleton M̂ of Medw(Ĝ) and Medw(Ĝ), and the local coordinates of the vertices of
M̂ in G. We show that the output has linear size O(m).

I Theorem 22. The 1-skeleton M̂ of Medw(G) can be computed in linear time O(m+ δ).

6.2 Geometric halfspaces and hyperplanes
In the following, we fix a basepoint v0 of G. For each point x of G, let Q(x) be the smallest
cube of G containing x and let v(x) be the gate of v0 in Q(x). For each Θ-class Ei defining
a dimension of Q(x), let εi(x) be the coordinate of x along Ei in the embedding of Q(x)
as a unit cube in which v(x) is the origin. For a Θ-class Ei and a cube Q having Ei as a
dimension, the i-midcube of Q is the subspace of Q obtained by restricting the Ei-coordinate
of Q to 1

2 . A midhyperplane hi of G is the union of all i-midcubes. Each hi cuts G in two
components [58] and the union of each of these components with hi is called a geometric
halfspace (see Fig. 4(b)). The carrier Ni of Ei is the union of all cubes of G intersecting hi;
Ni is isomorphic to hi × [0, 1]. For a Θ-class Ei and 0 < ε < 1, the hyperplane hi(ε) is the
set of all points x ∈ Ni such that εi(x) = ε. Let hi(0) and hi(1) be the respective geometric
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(a) (b) (c)

Figure 4 (a) The cube complex D of D, (b) a hyperplane of D, and (c) the box complex D̂ and
Medw(D) (in gray) defined by 4 terminals of weight 1.

realizations of ∂H ′′i and ∂H ′i. Note that hi(ε) is obtained from hi by a translation. The open
carrier N ◦i is Ni \ (hi(0)∪ hi(1)). We denote by H′i(ε) and H′′i (ε) the geometric halfspaces of
G defined by hi(ε). Let H′′i := H′′i (0) and H′i := H′i(1); they are the geometric realizations of
H ′i and H ′′i . Note that G is the disjoint union of H′i, H′′i , and N ◦i .

6.3 The majority rule for G
The box complex Ĝ. By [65, Theorem 3.16], (G, d1) is a median metric space (i.e., |I(x, y)∩
I(y, z) ∩ I(z, x)| = 1 ∀x, y, z ∈ G). For each p ∈ P and each coordinate εi(p), consider the
hyperplane hi(εi(p)). All such hyperplanes subdivide G into a box complex Ĝ (see Fig. 4(c)).
Clearly, (Ĝ, d1) is a median space. By [65, Theorem 3.13], the 1-skeleton Ĝ of Ĝ is a median
graph and each point of P corresponds to a vertex of Ĝ. The Θ-classes of Ĝ are subdivisions of
the Θ-classes of G. In Ĝ, all edges of a Θ-class of Ĝ have the same length. Let Ĝl be the graph
Ĝ in which the edges have these lengths. Ĝl is a median space, thus Medw(Ĝl) = Medw(Ĝ)
by [61]. By Proposition 19, Medw(Ĝl) is the intersection of the majoritary halfspaces of Ĝ.

I Proposition 23. Medw(G) is the subcomplex of Ĝ defined by M̂ := Medw(Ĝl).

The Ei-median problems. We adapt now Proposition 19 to the continuous setting. For
a Θ-class of G, the Ei-median is the median of the multiset of points of the segment [0, 1]
weighted as follows: the weight wi(0) of 0 is w(H′′i ), the weight wi(1) of 1 is w(H′i), and for
each p ∈ P ∩N ◦i , there is a point εi(p) of [0, 1] of weight wi(εi(p)) = w(p). It is well-known
that this median is a segment [%′′i , %′i] defined by two consecutive points %′′i ≤ %′i of [0, 1] with
positive weights, and for any p ∈ P , εi(p) ≤ %′′i or εi(p) ≥ %′i. Majoritary, minoritary, and
egalitarian geometric halfspaces of G are defined in the same way as the halfspaces of G.

I Proposition 24. Let Ei be a Θ-class of G. Then the following holds:
1. Medw(G) ⊆ H′′i (resp., Medw(G) ⊆ H′i) if and only if H′′i is majoritary (resp., H′i is

majoritary), i.e., ρ′′i = ρ′i = 0 (resp. ρ′′i = ρ′i = 1);
2. Medw(G) ⊆ H′′i ∪N ◦i (resp., Medw(G) ⊆ H′i ∪N ◦i ) and Medw(G) intersects each of the

sets H′′i (resp., H′i) and N ◦i if and only if H′′i (resp. H′i) is egalitarian and H′i (resp.,
H′′i ) is minoritary, i.e., 0 = ρ′′i < ρ′i < 1 (resp. 0 < ρ′′i < ρ′i = 1);

3. Medw(G) ⊆ N ◦i if and only if H′i and H′′i are minoritary, i.e., 0 < ρ′′i ≤ ρ′i < 1;
4. Medw(G) intersects the three sets Hi,H′′i , and N ◦i if and only if H′i and H′′i are egalitarian,

i.e., 0 = ρ′′i ≤ ρ′i = 1 (and thus w(N ◦i ) = 0).
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6.4 The algorithm

Preprocessing the input. We first compute the Θ-classes E1, E2, . . . , Eq of G ordered by
increasing distance from v0 to H ′i. Using this, we can modify the input of the median problem
in linear time O(m+ δ) in such a way that for each terminal p ∈ P , v(p) is the gate of v0 in
Q(p). In this way, the local coordinates of the terminals of P coincide with the coordinates
εi(p) defined in Section 6.2. For each Θ-class Ei, let Pi = P ∩N ◦i = {p ∈ P : 0 < εi(p) < 1},
and for each point v ∈ V (G), let Pv = {p ∈ P : v(p) = v}. By traversing the points of P , we
can compute all sets Pi, 1 ≤ i ≤ q and Pv, v ∈ V and the weights of these sets in time O(δ).

Computing the Ei-medians. We first compute the weights wi(0) = w(H′′i ) and wi(1) =
w(H′i) of the geometric halfspaces H′′i ,H′i of G. For each vertex v of G, let w∗(v) = w(Pv).
Note that w∗(V ) = w(P ). Since v0 ∈ H ′′i , w∗(H ′i) = w(H′i) and w∗(H ′′i ) = w(H′′i ) + w(N o

i )
for each Θ-class Ei. We apply the algorithm of Section 5.2 to G with the weight function w∗
to compute the weights w∗(H ′i) and w∗(H ′′i ) of all halfspaces of G. Since w(N o

i ) = w(Pi) is
known, we can compute w(H′i) = w∗(H ′i) and w(H′′i ) = w∗(H ′′i )− w(Pi). This allows us to
complete the definition of each Ei-median problem which altogether can be solved linearly in
the size of the input [27, Problem 9.2], i.e., in time O(Σq

i=1(|Pi|+ 2)) = O(δ +m).

Computing M̂ . To compute the 1-skeleton M̂ of Medw(G) in Ĝ, we orient the edges of Ei

according to the weights of H′i and H′′i : v′v′′ ∈ Ei with v′ ∈ H′i and v′′ ∈ H′′i is directed from
v′′ to v′ if %′i = %′′i = 1 (H′i is majoritary) and from v′ to v′′ if %′i = %′′i = 0 (H′′i is majoritary),
otherwise the edges of Ei are not oriented. Denote this partially directed graph by −→G and let
S(−→G) be the set of sinks of −→G . A non-directed edge v′v′′ ∈ Ei defines a half-edge with origin
v′′ if %′′i > 0 and a half-edge with origin v′ if %′i < 1 (an edge v′v′′ such that 0 < %′′i ≤ %′i < 1
defines two half-edges).

I Proposition 25. For any vertex v of −→G , all half-edges with origin v define a cube Qv of G.

Proof. For any vertex v and two Θ-classes Ei, Ej defining half-edges with origin v, let vi and
vj be the respective neighbors of v in Ĝ along the directions Ei and Ej . By Proposition 24,
vvi and vvj point to two majoritary halfspaces of Ĝ (and G). Since those two halfspaces
cannot be disjoint, Ei and Ej are crossing. The proposition then follows from Lemma 5. J

For any cube Q of G, let B(Q) ⊆ Q be the subcomplex of Ĝ that is the Cartesian product
of the Ei-medians [%′′i , %′i] over all Θ-classes Ei wich define dimensions of Q. By the definition
of the Ei-medians, B(Q) is a single box of Ĝ and its vertices belong to Ĝ.

I Proposition 26. For any cube Q of G, if Q ∩Medw(G) 6= ∅, then B(Q) = Medw(G) ∩Q.

Proof. If a vertex x of B(Q) is not a median of Ĝ, by Proposition 19, x is not a local median
of Ĝ. Thus Fw(x) > Fw(y) for an edge xy of Ĝ. Suppose that xy is parallel to the edges of Ei

of G. Then εi(x) coincides with %′′i or %′i. Since Fw(x) > Fw(y), the halfspace W (y, x) of Ĝ
is majoritary, contrary to the assumption that εi(x) is an Ei-median point. Thus all vertices
of B(Q) belong to M̂ and by Proposition 23, B(Q) ⊆ Medw(G). It remains to show that
any point of Q \B(Q) is not median. Otherwise, by Proposition 23 and since M̂ is convex,
there exists a vertex y /∈ B(Q) of (M̂ ∩Q) \B(Q) adjacent to a vertex x of B(Q). Let xy be
parallel to Ei. Then εi(x) coincides with %′′i or %′i and εi(y) does not belong to the Ei-median
[%′′i , %′i]. Hence the halfspace W (y, x) of Ĝ is minoritary, contrary to Fw(y) = Fw(x). J
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For a sink v of −→G , let g(v) be the point of Qv such that for each Θ-class Ei of Qv,
εi(g(v)) = %′ if v ∈ H′i and εi(g(v)) = %′′ if v ∈ H′′i . Note that g(v) is the gate of v in B(Qv)
and g(v) is a vertex of M̂ . Conversely, let x ∈ M̂ and consider the cube Q(x). Since B(Q(x))
is a cell of Ĝ, for each Θ-class Ei of Q(x), we have εi(x) ∈ {%′i, %′′i }. Let f(x) be the vertex
of Q(x) such that f(x) ∈ H′′i if εi(x) = %′′i and f(x) ∈ H′i otherwise.

I Proposition 27. For any v ∈ S(−→G), g(v) is the gate of v in M̂ and Medw(G). For any
x ∈ M̂ , x = g(f(x)) is the gate of f(x) in M̂ and Medw(G).

Furthermore, for any edge uv of G with u, v ∈ S(−→G), either g(u) = g(v) or g(u)g(v) is
an edge of M̂ . Conversely, for any edge xy of M̂ , f(x)f(y) is an edge of G.

Proof. By Proposition 24 applied to G, Proposition 19 applied to Ĝ, and the definition of sinks
of
−→
Ĝ , g(v) is a sink of

−→
Ĝ , thus g(v) is a median of Ĝ and G. Since B(Qv) = Medw(G) ∩Qv

is gated and non-empty, the gate of v in Medw(G) belongs to B(Qv) and thus the gate of
v in Medw(G) is the gate of v on B(Qv). Conversely, εi(x) /∈ {0, 1} for any Ei defining a
dimension of Q(x), thus there is an Ei-half-edge with origin f(x). Pick now any Ej-edge
incident to v such that Ej does not define a dimension of Q(x). Without loss of generality,
assume that f(x) ∈ H′j . Then x ∈ H′j , yielding w(H′j) ≥ 1

2w(P ). By Proposition 24, %′j = 1
and thus f(x) is not the origin of an Ej-edge or Ej-half-edge. Consequently, Qf(x) = Q(x)
by Proposition 25 and by the definition of f(x) and g(f(x)), we have x = g(f(x)).

Let v′v′′ be an Ei-edge between two sinks of −→G with v′ ∈ H′i and v′′ ∈ H′′i . Let
x′ = g(v′) and x′′ = g(v′′) and assume that x′ 6= x′′. Let u′, u′′ be the points of v′v′′
such that εi(u′) = %′i and εi(u′′) = %′′i . Note that u′ and u′′ are adjacent vertices of
Ĝ and that u′ ∈ I

Ĝ
(v′, x′) and u′′ ∈ I

Ĝ
(v′′, x′′). In Ĝ, x′′ is the gate of u′′ (and x′ is

the gate of u′) in M̂ . Since d
Ĝ

(u′, x′) + d
Ĝ

(x′, x′′) = d
Ĝ

(u′, x′′) ≤ d
Ĝ

(u′′, x′′) + 1 and
d

Ĝ
(u′′, x′′) + d

Ĝ
(x′, x′′) = d

Ĝ
(u′′, x′) ≤ d

Ĝ
(u′, x′) + 1, we obtain that d

Ĝ
(x′, x′′) ≤ 1.

Any edge x′x′′ of M̂ is parallel to a Θ-class Ei of G. For any Θ-class Ej of Q(x′) (resp.
Q(x′′)) with j 6= i, Ej is a Θ-class of Q(x′′) (resp. Q(x′)) and εj(x′) = εj(x′′). By their
definition, f(x′) and f(x′′) can be separated only by Ei, i.e., dG(f(x′), f(x′′)) ≤ 1. Since f
is an injection from V (M̂) to S(−→G), necessarily f(x′) and f(x′′) are adjacent. J

The algorithm computes the set S(−→G) of all sinks of −→G and for each sink v ∈ S(−→G), it
computes the gate of g(v) of v in M̂ and the local coordinates of g(v) in G. The algorithm
returns

{
g(v) : v ∈ S(−→G)

}
as V (M̂) and

{
g(u)g(v) : uv ∈ E and u, v ∈ S(−→G)

}
as E(M̂).

Proposition 27 implies that V (M̂) and E(M̂) are correctly computed and that M̂ contains
at most n vertices and m edges. Moreover each vertex x of M̂ is the gate g(f(x)) of the
vertex f(x) of Q(x) that has dimension at most deg(f(x)). Hence the size of the description
of the vertices of M̂ is at most O(m). This finishes the proof of Theorem 22.
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