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Approximation and complexity: Liouvillean type theorems for linear di erential equations on an interval

Let u; v be solutions on an interval I of linear di erential equations (LDE) P = 0; Q = 0, respectively. We obtain a lower bound on the approximation of v by u in terms of bounds on the coe cients of LDE S i = 0 (for several i) satis ed by the i-th derivative of v and by the i-th derivatives of a basis of the LDE P = 0.

One could view this result as a di erential analog of the Liouville's theorem which states that two di erent algebraic numbers are well separated if they satisfy algebraic equations with small enough integer coe cients. Unlike the algebraic situation, in the di erential setting, in order to bound from below the di erence ju vj we need to involve not only the coe cients of P; Q themselves, but also those of S i .

Introduction

The well-known Liouville's theorem states that if f(a) = g(b) = 0 where f = X 0 i n f i X i ; g = X 0 i m g i X i 2 Z X] and a 6 = b then one can bound from below the di erence ja bj. For the sake of simplicity assume that f; g have no common roots. One possible approach to its proof is to consider the resultant (a l b j )j

and from the upper bounds on the roots ja l j maxf1; jf i =f n jg; jb j j maxf1; jg i =g m jg one obtains a lower bound on ja 1 b 1 j. Note that this argument provides a lower bound on ja l b j j for any pair of the roots of f and g.

We recall also that R = g n m Q f(b j ) and alternatively, one could obtain similar to above a lower bound on jf(b 1 )j. The proof of the Liouville's theorem uses two basic ingredients: a lower bound on jRj and an upper bound on the roots ja i j; jb j j.

If one would try to transfer this argument to the solutions P(u

) = Q(v) = 0 of linear ordinary di erential operators P = X 0 i n p i d i dX i ; Q = X 0 i m q i d i
dX i one needs a replacement of the resultant.

Informally speaking, the approach can be viewed as follows. We have X 0 i n p i d i dX i (u v) = P(u v) = P(v): In fact, P(v) plays a role of the resultant: it could be represented as the determinant of an appropriate (n + 1) (n + 1) matrix with the last column formed by the derivatives d i dX i (u v); 0 i n and other entries being the derivatives of the elements of a basis u 1 ; : : :; u n of the space of solutions of LDE P = 0. Assume that a certain lower bound on jjP(v)jj is given where jj; jj denotes some norm, this replaces the rst of the mentioned ingredients. We want to derive a contradiction from the supposition that jju vjj is small.

For this purpose we have to guarantee that under the supposition the norms of the derivatives jj d i dX i (u v)jj; 1 i n, should be small as well (it is an extra e ort in comparison with the algebraic situation). Together with the upper bounds on the entries of the matrix which occur in the rate of approximation (this replaces the second of the mentioned ingredients), that leads to a contradiction by means of expanding P(v) with respect to its last column.

This plan is ful lled in the theorem below which provides a lower bound on approximations max x2I jv P 1 j n j u j (x)j of a function v by means of any linear combination of the form P 1 j n j u j ; j 2 R, of functions u 1 ; : : : ; u n de ned on a nite closed interval I R. The bound depends on n which could be informally treated as a complexity measure of an approximation, having in mind that a function v is given and we try to minimize the number n of functions u 1 ; : : : ; u n taken from a xed set of \basic" ones, for example, monomials, or trigonometric monomials sin( X), or exponential monomials exp( X) etc.

Let us underline that unlike the case of algebraic equations where the bound depends separately on both polynomials f and g, we consider approximations of a xed solution of one operator by means of any solution of another operator, rather than the di erence of any pair of solutions which could be arbitrary small on the interval, and the bound depends on suitable minors composed of the derivatives of v and of u 1 ; : : : ; u n .

As an application of the theorem we provide a lower bound for approximations by means of linear combinations of functions of the forms sin( X); cos( X).

Observe that it is more di cult to prove analogs of Liouvillean type theorems for solutions of linear di erential equations on an interval than on the whole real line. Moreover, one can obtain lower bounds on approximations on R not only for solutions of LDE, but for their compositions G 92] making use of a more general approach involving the Wronskian.

It is an interesting question whether one can prove Liouvillean type theorems for approximations on an interval for two classes of functions studied in G 92], G 93], respectively, namely, compositions of solutions of linear differential equations and Pfa an functions Kh] (or in other terms, for nested solutions of rst-order non-linear di erential equations). We mention also that beyond these two classes of functions one could hardly expect any Liouvillean type theorem due to the example (see B]) of a second-order non-linear di erential equation with arbitrarily closeness to zero.

One could also view the result of the paper as a trade-o between approximations and complexity. It would be interesting to understand more on this trade-o . We mention that in this direction a lower bound was proved in CG] on the complexity of approximating algebraic computation trees.

Another motivation for this trade-o arises from neural networks (see MSS] and the references there) where one considers sigmoids (circuits with certain transcendental functions as gates), and the problem of approximating a sigmoid by another of small complexity.

It is worthwhile also to mention that in K] a version of a di erential analog of the Liouville's theorem was proposed in terms of bounds on valuations, while we consider approximations in L 1 -norm.

The author would like to take this opportunity to thank Georg Schnitger for stimulating discussions. Also the author is indebted to the anonymous referees whose remarks have conduced to improve the exposition.

Approximations of solutions of linear di erential equations

Let I R be a nite interval of length jIj and u 1 ; : : :; u n ; v be 2n + 2di erentiable functions on I. We study the question of how well linear combinations of the form P 1 j n j u j for j 2 R can approximate v, i.e. the problem of bounding from below the norm jjv X 1 j n j u j jj I = max j(v X 1 j n j u j )(x)j where the maximum of absolute values is taken over the points x from the closure of the interval I.

Consider (2n+3) (n+1) matrix with the rows (respectively, columns) numbered from 0 to 2n + 2 (respectively, from 1 to n + 1) de ned as follows. For 1 k n its k-th column is formed by the derivatives u k ; u 0 k ; : : : ; u (2n+2) k and (n + 1)-th column is formed by the derivatives v; v 0 ; : : :; v (2n+2) . For 0 i n + 1; i j i + n + 1 let (i; ĵ) denote the (n + 1) (n + 1) subdeterminant of formed by the rows i; i+1; : : :; j 1; j +1; : : : ; i+n; i+ n + 1.

We assume the following bounds for any point x 2 I: j (i; ĵ)(x)j M; j (i;

d i + n + 1)(x)j > 0 (1)
for all 0 i n + 1; i j i + n + 1 and for certain xed M; . Then the space of solutions of the LDE S i = 0 where S i = X 0 j n+1

( 1) j (i; d j + i) d j dX j ; 0 i n + 1 has a basis u (i) 1 ; : : :; u (i) n ; v (i) due to the condition on in (1). For 0 j n let ( ĵ) be the n n subdeterminant of the rst n columns of and the rows 0; 1; : : : ; j 1; j + 1; : : :; n. Then u 1 ; : : : ; u n is a basis of the space of solutions of the LDE S = 0 where S = X 0 j n ( 1) j ( ĵ) d j dX j :

Assume that for any point x 2 I we have j ( ĵ)(x)j M 0 ; 0 j n (3)

Remark. There exists a closed subinterval I n I (which depends on 1 ; : : : ; n ) of length jI n j minfjIj; =2Mg

(n + 1) 3 such that j(v P 1 j n j u j )(x)j is greater than the right-hand side of (3) for any point x 2 I n .

The following lemma was proved as lemma 2 G 92].

Lemma 1 For each 0 i n + 1 the number of roots on I of the derivative w (i) = v (i) P 1 j n j u (i) j , does not exceed d2MjIj= en; moreover any subinterval of I of length less or equal to =2M contains at most n roots of w (i) .

Proof. Suppose that a certain closed subinterval I 0 I of length jI 0 j =2M contains more than n roots of w (i) . Then each of the derivatives w (i) ; w (i+1) ; : : : ; w (i+n) has a root in I 0 . Let M (j) = jjw (i+j) jj I 0 ; 0 j n + 1.

Then M (j+1) M (j) =jI 0 j 2MM (j) = ; 0 j n by the Mean Value Theorem.

On the other hand according to the Cramer's rule we have the identity

w (i+n+1) (i; d i + n + 1) = X i j i+n
( 1) j i n w (j) (i; ĵ)

taking into the account that the minors (i; ĵ) do not change if to replace the (n+ 1)-th column of the matrix by the derivatives w; w (1) ; : : : ; w (2n+2) , that corresponds to a linear elementary transformation of the columns of .

Substituting in this identity a point x 2 I 0 at which the derivative jw (i+n+1) j attains its maximum M (n+1) , we bound from below the absolute value of the left-hand side by M (n+1) , and on the other hand, bound from above the absolute value of the right-hand side by M(M (0) + + M (n) ) due to (1), i.e. M (n+1) M(M (n) + + M (0) )= . Hence n+1) ; this contradiction proving the lemma. 2

M (n+1) M M (n+1) (( 2M ) + ( 2M ) 2 + + ( 2M ) n+1 ) < M M (n+1) 2M 2M 2M M ( 
In view of lemma 1, there exists a closed subinterval I 0 I of length jI 0 j minfjIj; =2Mg

(n + 1) 2 without roots of any w (i) ; 0 i n + 1. Under these conditions on I 0 we estimate the norms of the derivatives jjw (1) jj In ; : : :; jjw (n) jj In via the norm jjwjj In for a suitable closed subinterval I n I 0 . Lemma 2 Assume that the derivatives w (0) ; : : : ; w (n+1) have no roots in an interval I 0 . Then there exists a closed subinterval I n I 0 of length jI n j = jI 0 j n+1 such that jjw (j) jj In jjwjj I 0 n + 1 jI 0 j j ; 0 j n:

Proof. Assume that one has already produced (by recursion on j) closed subintervals I 0 I 1 I j with the lengths jI l j = jI 0 j n+1 l n+1 such that jjw (l) jj I l jjwjj I 0 n+1 jI 0 j l ; 0 l j < n.

Denote by a 1 = jw (j+1) (x 1 )j; a 2 = jw (j+1) (x 2 )j the values of the function jw (j+1) j at the endpoints of the interval I j = x 1 ; x 2 ]. If a 1 < a 2 then set x 0 =

x 2 jI 0 j n+1 and the subinterval I j+1 = x 1 ; x 0 ]. Otherwise, if a 1 > a 2 then x 0 = x 1 + jI 0 j n+1 and the subinterval I j+1 = x 0 ; x 2 ] . Then jjw (j+1) jj I j+1 = jw (j+1) (x 0 )j and jw (j+1) (x)j jjw (j+1) jj I j+1 for any point x from the subinterval I j I j+1 since w (j+1) is monotone and has no roots in the subinterval I j I 0 (whence jw (j+1) j is also monotone on the same interval). Observe that a 1 6 = a 2 , indeed, otherwise w (j+2) would vanish identically on the interval I j . Hence jjw (j) jj I j I j+1 jjw (j+1) jj I j+1 (jI j j jI j+1 j) because w (j) has no roots in the subinterval I j I 0 . Thus, jjw (j) jj I j jjw (j+1) jj I j+1 jI 0 j n + 1 which proves the recursion hypothesis. Taking j = n and l = j, and noting that I n I j , we get lemma 2. 2

To complete the proof of the theorem consider the (n+1) (n+1) subdeterminant formed by the rst n+1 derivatives of the functions u 1 ; : : :; u n ; w. Since this subdeterminant is equal to (0; d n + 1), we get (using lemma 2) from its expansion with respect to the last column (taking into account (2) and the bound on the length jI 0 j following lemma 1) that jj (0; d n + 1)jj In (n + 1)M 0 jjwjj I 0 n + 1 jI 0 j n :

The theorem is proved. 2

Now we give an application of the theorem in the case of the functions u 2j 1 = sin( j X); u 2j = cos( j X) for pairwise distinct squares 2 j . Since we deal with 2n functions u 1 ; : : :; u 2n the role of n in the bounds from theorem

  is taken over the roots a i of f and b j of g, respectively. Say, for de niteness a 1 = a; b 1 = b

1 will be played by 2n. About the function v we assume that the derivatives v (0) ; v (2) ; v (4) ; : : :; v (4n+2) of even orders all have the same sign at each point of I, the same holds for all odd order derivatives v (1) ; v (3) ; : : :; v (4n+1) , furthermore the derivatives are bounded above, and away from zero, with A jv (l) (x)j a > 0 for x 2 I; 0 l 4n + 2. In particular, one one could take v = exp.

Denote by i the i-th elementary symmetric function of 2 1 ; : : :; 2 n ; 0 i n, in particular, 0 = 1. Denote by B 0 ; B 1 ; : : : the rows of the matrix , respectively. Then B 2n+j = P 0 i n 1 ( 1) n i+1 n i B 2i+j for j 0 (in fact, this holds for every j 0, but j 2n + 2 in the matrix ). Therefore, j (0; ĵ)j equals j n j=2 (0; c 2n)j when j is even, and equals zero when j is odd. Hence M 0 max 0 l n f l g. Furthermore, a P 0 j n j j (0; c 2n)j and M A max 0 l n f l g P 0 l n j (0; c 2n)j. Let R = maxf1; 2 j g, then max 0 l n f l g (2R) n . The theorem implies that jjv X 1 j 2n j u j jj I (n + 2) n+1 M 0 jI 0 j n = n n (n + 2) 2n+1 M 0 minfjIj n ; ( 2M ) n g Thus, we obtain the following corollary.

Corollary.

jjv X 1 j n ( j sin( j X) + j+n cos( j X))jj I minf jIj n a n O(n) A ; a n+1

A n 2 O(n 2 ) R n 2 g .