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A COUNTEREXAMPLE TO THIAGARAJAN’S CONJECTURE

ON REGULAR EVENT STRUCTURES1

JÉRÉMIE CHALOPIN AND VICTOR CHEPOI

Abstract. We provide a counterexample to a conjecture by Thiagarajan (1996 and 2002) that
regular event structures correspond exactly to event structures obtained as unfoldings of finite
1-safe Petri nets. The same counterexample is used to disprove a closely related conjecture by
Badouel, Darondeau, and Raoult (1999) that domains of regular event structures with bounded
\-cliques are recognizable by finite trace automata. Event structures, trace automata, and Petri
nets are fundamental models in concurrency theory. There exist nice interpretations of these
structures as combinatorial and geometric objects and both conjectures can be reformulated in
this framework. Namely, from a graph theoretical point of view, the domains of prime event
structures correspond exactly to median graphs; from a geometric point of view, these domains
are in bijection with CAT(0) cube complexes.

A necessary condition for both conjectures to be true is that domains of regular event
structures (with bounded \-cliques) admit a regular nice labeling (which corresponds to a
special coloring of the hyperplanes of the associated CAT(0) cube complex). To disprove these
conjectures, we describe a regular event domain (with bounded \-cliques) that does not admit a
regular nice labeling. Our counterexample is derived from an example by Wise (1996 and 2007)
of a nonpositively curved square complex X with six squares, whose edges are colored in five

colors, and whose universal cover X̃ is a CAT(0) square complex containing a particular plane
with an aperiodic tiling. We prove that other counterexamples to Thiagarajan’s conjecture
arise from aperiodic 4-way deterministic tile sets of Kari and Papasoglu (1999) and Lukkarila
(2009).

On the positive side, using breakthrough results by Agol (2013) and Haglund and Wise
(2008, 2012) from geometric group theory, we prove that Thiagarajan’s conjecture is true for
regular event structures whose domains occur as principal filters of hyperbolic CAT(0) cube
complexes which are universal covers of finite nonpositively curved cube complexes.

1. Introduction

Event structures, introduced by Nielsen, Plotkin, and Winskel [34, 47, 49], are a widely rec-
ognized abstract model of concurrent computation. An event structure (or more precisely, a
prime event structure or an event structure with binary conflict) is a partially ordered set of
the occurrences of actions, called events, together with a conflict relation. The partial order
captures the causal dependency of events. The conflict relation models incompatibility of events
so that two events that are in conflict cannot simultaneously occur in any state of the computa-
tion. Consequently, two events that are neither ordered nor in conflict may occur concurrently.
More formally, an event structure is a triple E = (E,≤,#), consisting of a set E of events, and
two binary relations ≤ and #, the causal dependency ≤ and the conflict relation # with the
requirement that the conflict is inherited by the partial order ≤. The pairs of events not in
≤ ∪ ≥ ∪ # define the concurrency relation ‖. The domain of an event structure consists of all
computation states, called configurations. Each computation state is a subset of events subject
to the constraints that no two conflicting events can occur together in the same computation
and if an event occurred in a computation then all events on which it causally depends have
occurred too. Therefore, the domain of an event structure E is the set D(E) of all finite con-
figurations ordered by inclusion. An event e is said to be enabled by a configuration c if e /∈ c
and c ∪ {e} is a configuration. The degree of an event structure E is the maximum number of

Key words and phrases. Regular event structures, event domains, trace labelings, median graphs, CAT(0)
cube complexes, universal covers, virtually special cube complexes, aperiodic tilings.

1An extended abstract [16] of this paper appeared in the proceedings of ICALP 2017.
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2 J. CHALOPIN AND V. CHEPOI

events enabled by a configuration of E . The future (or the principal filter, or the residual) of a
configuration c is the set of all finite configurations c′ containing c.

Among other things, the importance of event structures stems from the fact that several
fundamental models of concurrent computation lead to event structures. Nielsen, Plotkin, and
Winskel [34] proved that every 1-safe Petri net N unfolds into an event structure EN . Later
results of [35] and [49] show in fact that 1-safe Petri nets and event structures represent each
other in a strong sense. In the same vein, Stark [42] established that the domains of configu-
rations of trace automata are exactly the conflict event domains; a presentation of domains of
event structures as trace monoids (Mazurkiewicz traces) or as asynchronous transition systems
was given in [39] and [10], respectively. In both cases, the events of the resulting event struc-
ture are labeled (in the case of trace monoids and trace automata—by the letters of a possibly
infinite trace alphabet M = (Σ, I)) in a such a way that any two events enabled by the same
configuration are labeled differently (such a labeling is usually called a nice labeling).

To deal with finite 1-safe Petri nets, Thiagarajan [43, 44] introduced the notions of regular
event structure and regular trace event structure. A regular event structure E is an event
structure with a finite number of isomorphism types of futures of configurations and finite
degree. A regular trace event structure is an event structure E whose events can be nicely
labeled by the letters of a finite trace alphabet M = (Σ, I) in a such a way that the labels of
any two concurrent events define a pair of I and there exists only a finite number of isomorphism
types of labeled futures of configurations. These definitions were motivated by the fact that the
event structures EN arising from finite 1-safe Petri nets N are regular: Thiagarajan [43] proved
that event structures of finite 1-safe Petri nets correspond to regular trace event structures.
This lead Thiagarajan to formulate the following conjecture:

Conjecture 1.1 ([43, 44]). A prime event structure E is isomorphic to the event structure EN
arising from a finite 1-safe Petri net N if and only if E is regular.

Badouel, Darondeau, and Raoult [5] formulated two similar conjectures about conflict event
domain that are recognizable by finite trace automata. The first one is equivalent to Conjec-
ture 1.1, while the second one is formulated in a more general setting with an extra condition.
We formulate their second conjecture in the particular case of event structures:

Conjecture 1.2 ([5]). A conflict event domain is recognizable if and only if the event structure
E is regular and has bounded \-cliques.

In view of previous results, to establish Conjecture 1.1, it is necessary for a regular event
structure E to have a regular nice labeling with letters from some trace alphabet (Σ, I). Nielsen
and Thiagarajan [36] proved in a technically involved but very nice combinatorial way that all
regular conflict-free event structures satisfy Conjecture 1.1. In a equally difficult and technical
proof, Badouel et al. [5] proved that their conjectures hold for context-free event domains,
i.e., for domains whose underlying graph is a context-free graph sensu Müller and Schupp
[33]. In this paper, we present a counterexample to Thiagarajan’s Conjecture based on a more
geometric and combinatorial view on event structures. We show that our example also provides
a counterexample to Conjecture 1.2 of Badouel et al.

We use the striking bijections between the domains of event structures, median graphs, and
CAT(0) cube complexes. Median graphs have many nice properties and admit numerous char-
acterizations. They have been investigated in several contexts for more than half a century, and
play a central role in metric graph theory; for more detailed information, the interested reader
can consult the surveys [6,7]. On the other hand, CAT(0) cube complexes are central objects in
geometric group theory [40, 41, 52]. They have been characterized in a nice combinatorial way
by Gromov [22] as simply connected cube complexes in which the links of 0-cubes are simplicial
flag complexes. It was proven in [17, 38] that 1-skeleta of CAT(0) cube complexes are exactly
the median graphs. Barthélemy and Constantin [9] proved that the Hasse diagrams of domains
of event structures are median graphs and every pointed median graph is the domain of an
event structure. The bijection between pointed median graphs and event domains established
in [9] can be viewed as the classical characterization of prime event domains as prime algebraic
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coherent partial orders provided by Nielsen, Plotkin, and Winskel [34]. More recently, this
result was rediscovered in [3] in the language of CAT(0) cube complexes. Via these bijections,
the events of an event structure E correspond to the parallelism classes of edges of the domain
D(E) viewed as a median graph. We recall these bijections in Section 3.

Since in our paper we deal only with regular event structures, we need to be able to construct
regular event domains from CAT(0) cube complexes. By Gromov’s characterization, CAT(0)
cube complexes are exactly the universal covers of cube complexes satisfying the link condition,
i.e., of nonpositively curved cube (NPC) complexes. Of particular importance for us are the
CAT(0) cube complexes arising as universal covers of finite NPC complexes. In Section 4,
we adapt the universal cover construction to directed NPC complexes (Y, o) and show that

every principal filter of the directed universal cover (Ỹ , õ) is the domain of an event structure.
Furthermore, we show that if the NPC complex Y is finite, then this event structure is regular.
Motivated by this result, we call an event structure strongly regular if its domain is the principal

filter of the directed universal cover (Ỹ , õ) of a finite directed NPC complex (Y, o).
Our counterexample to Conjectures 1.1 and 1.2 is a strongly regular event structure derived

from Wise’s [50,51] nonpositively curved square complex X obtained from a tile set with six tiles.
This counterexample is described in Section 6. In Section 7 we also prove that other counterex-
amples to Thiagarajan’s conjecture arise in a similar way from any aperiodic 4-deterministic
tile set, such as the ones constructed by Kari and Papasoglu [29] and Lukkarila [30].

On the positive side, in Section 5 we prove that Thiagarajan’s conjecture is true for event
structures whose domains arise as principal filters of universal covers of finite special cube com-
plexes. Haglund and Wise [25, 26] detected pathologies which may occur in NPC complexes:
self-intersecting hyperplanes, one-sided hyperplanes, directly self-osculating hyperplanes, and
pairs of hyperplanes, which both intersect and osculate. They called the NPC complexes with-
out such pathologies special. The main motivation for introducing and studying special cube
complexes was the profound idea of Wise that the famous virtual Haken conjecture for hy-
perbolic 3-manifolds can be reduced to solving problems about special cube complexes. In a
breakthrough result, Agol [1, 2] completed this program and solved the virtual Haken conjec-
ture using the deep theory of special cube complexes developed by Haglund and Wise [25, 26].
The main ingredient in this proof is Agol’s theorem that finite NPC complexes whose univer-
sal covers are hyperbolic are virtually special (i.e., they admit finite covers which are special
cube complexes). Using this result of Agol, we can specify our previous result and show that
Thiagarajan’s conjecture is true for strongly regular event structures whose domains occur as
principal filters of hyperbolic CAT(0) cube complexes that are universal covers of finite directed
NPC complexes. Since context-free domains are hyperbolic, this result can be viewed in some
sense as a partial generalization of the result of Badouel et al. [5].

To conclude this introductory section, we briefly describe the construction of our counterex-
ample to Thiagarajan’s conjecture. It is based on Wise’s [50, 51] directed nonpositively curved
square complex X with one vertex and six squares, whose edges are colored in five colors, and

whose colored universal cover X̃ contains a particular directed plane with an aperiodic tiling.
The edges of X are partitioned into two classes (horizontal and vertical edges) and opposite

edges of squares are oriented in the same way. As a result, X̃ is a directed CAT(0) square
complex whose edges are colored by the colors of their images in X and are directed in such a
way that all edges dual to the same hyperplane are oriented in the same way. With respect to

this orientation, all vertices of X̃ are equivalent up to automorphism. We modify the complex
X by taking its first barycentric subdivision and by adding to the middles of the edges of X
directed paths of five different lengths (tips) in order to encode the colors of the edges of X (and

X̃) and to obtain a directed nonpositively curved square complex W . The universal cover W̃ of

W is a directed (but no longer colored) CAT(0) square complex. W̃ can be viewed as the first

barycentric subdivision of the support X̃ of X̃ in which to each vertex arising from a middle of

an edge of X̃ a tip encoding the color of the original edge is added. Since W̃ is the universal

cover of a finite complex W , W̃ has a finite number of equivalence classes of vertices up to

automorphism. From W̃ we derive a domain of a regular event structure W̃ṽ by considering the
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future of an arbitrary vertex ṽ of X̃. Using the fact that X̃ contains a particular directed plane

with an aperiodic tiling, we prove that W̃ṽ does not admit a regular nice labeling, thus W̃ṽ is
the domain of a regular event structure not having a regular trace labeling.

2. Event structures

2.1. Event structures and domains. An event structure is a triple E = (E,≤,#), where

• E is a set of events,
• ≤⊆ E × E is a partial order of causal dependency,
• # ⊆ E × E is a binary, irreflexive, symmetric relation of conflict,
• ↓e := {e′ ∈ E : e′ ≤ e} is finite for any e ∈ E,
• e#e′ and e′ ≤ e′′ imply e#e′′.

What we call here an event structure is usually called a coherent event structure, an event
structure with a binary conflict, or a prime event structure. Two events e′, e′′ are concurrent
(notation e′‖e′′) if they are order-incomparable and they are not in conflict. The conflict e′#e′′

between two elements e′ and e′′ is said to be minimal (notation e′#µe
′′) if there is no event

e 6= e′, e′′ such that either e ≤ e′ and e#e′′ or e ≤ e′′ and e#e′. We say that e is an immediate
predecessor of e′ (notation e l e′) if and only if e ≤ e′, e 6= e′, and for every e′′ if e ≤ e′′ ≤ e′,
then e′′ = e or e′′ = e′.

Given two event structures E1 = (E1,≤1,#1) and E2 = (E2,≤2,#2), a map f : E1 → E2 is
an isomorphism if f is a bijection such that e ≤1 e

′ iff f(e) ≤2 f(e′) and e#1e
′ iff f(e)#2f(e′)

for every e, e′ ∈ E1. If such an isomorphism exists, then E1 and E2 are said to be isomorphic;
notation E1 ≡ E2.

A configuration of an event structure E = (E,≤,#) is any finite subset c ⊂ E of events which
is conflict-free (e, e′ ∈ c implies that e, e′ are not in conflict) and downward-closed (e ∈ c and
e′ ≤ e implies that e′ ∈ c) [49]. Notice that ∅ is always a configuration and that ↓e and ↓e\{e}
are configurations for any e ∈ E. The domain of an event structure is the set D := D(E) of
all configurations of E ordered by inclusion; (c′, c) is a (directed) edge of the Hasse diagram of
the poset (D(E),⊆) if and only if c = c′ ∪ {e} for an event e ∈ E \ c. An event e is said to be
enabled by a configuration c if e /∈ c and c∪{e} is a configuration. Denote by en(c) the set of all
events enabled at the configuration c. Two events are called co-initial if they are both enabled
at some configuration c. Note that if e and e′ are co-initial, then either e#µe

′ or e‖e′. It is
easy to see that two events e and e′ are in minimal conflict e#µe

′ if and only if e#e′ and e and
e′ are co-initial. The degree deg(E) of an event structure E is the least positive integer d such
that |en(c)| ≤ d for any configuration c of E . We say that E has finite degree if deg(E) is finite.
The future (or the (principal) filter) F(c) of a configuration c is the set of all configurations c′

containing c: F(c) = ↑ c := {c′ ∈ D(E) : c ⊆ c′}, i.e., F(c) is the principal filter of c in the
ordered set (D(E),⊆).

For an event structure E = (E,≤,#), let \ be the least irreflexive and symmetric relation on
the set of events E such that e1\e2 if (1) e1‖e2, or (2) e1#µe2, or (3) there exists an event e3
that is co-initial with e1 and e2 at two different configurations such that e1‖e3 and e2#µe3 (see
Figure 1 for examples). (If e1\e2 and this comes from condition (3), then we write e1\(3)e2.) A
\-clique is any complete subgraph of the graph whose vertices are the events and whose edges
are the pairs of events e1e2 such that e1\e2.

A labeled event structure Eλ = (E , λ) is defined by an underlying event structure E = (E,≤,#)
and a labeling λ that is a map from E to some alphabet Σ. Two labeled event structures
Eλ11 = (E1, λ1) and Eλ12 = (E2, λ2) are isomorphic (notation Eλ11 ≡ Eλ22 ) if there exists an
isomorphism f between the underlying event structures E1 and E2 such that λ2(f(e1)) = λ1(e1)
for every e1 ∈ E1.

A labeling λ : E → Σ of an event structure E defines naturally a labeling of the directed
edges of the Hasse diagram of its domain D(E) that we also denote by λ. A labeling λ : E → Σ
of an event structure E is called a nice labeling if any two events that are co-initial have different
labels [39]. A nice labeling of E can be reformulated as a labeling of the directed edges of the
Hasse diagram of its domain D(E)) subject to the following local conditions:
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Figure 1. Two examples where e1\(3)e2: e1‖e3 and e2#µe3

Determinism: the edges outgoing from the same vertex of D(E) have different labels;
Concurrency: the opposite edges of each square of D(E) are labeled with the same labels.

In the following, we use interchangeably the labeling of an event structure and the labeling
of the edges of its domain.

2.2. Regular event structures. In this subsection, we recall the definitions of regular event
structures, regular trace event structures, and regular nice labelings of event structures. We
closely follow the definitions and notations of [36, 43, 44]. Let E = (E,≤,#) be an event
structure. Let c be a configuration of E . Set #(c) = {e′ : ∃e ∈ c, e#e′}. The event structure
rooted at c is defined to be the triple E\c = (E′,≤′,#′), where E′ = E \ (c ∪ #(c)), ≤′ is ≤
restricted to E′ × E′, and #′ is # restricted to E′ × E′. It can be easily seen that the domain
D(E\c) of the event structure E\c is isomorphic to the principal filter F(c) of c in D(E) such
that any configuration c′ of D(E) corresponds to the configuration c′ \ c of D(E\c).

For an event structure E = (E,≤,#), define the equivalence relation RE on its configurations
in the following way: for two configurations c and c′ set cREc

′ if and only if E\c ≡ E\c′. The
index of an event structure E is the number of equivalence classes of RE , i.e., the number of
isomorphism types of futures of configurations of E . The event structure E is regular [36,43,44]
if E has finite index and finite degree.

Now, let Eλ = (E , λ) be a labeled event structure. For any configuration c of E , if we restrict
λ to E\c, then we obtain a labeled event structure (E\c, λ) denoted by Eλ\c. Analogously, define
the equivalence relation REλ on its configurations by setting cREλc

′ if and only if Eλ\c ≡ Eλ\c′.
The index of Eλ is the number of equivalence classes of REλ . We say that an event structure E
admits a regular nice labeling if there exists a nice labeling λ of E with a finite alphabet Σ such
that Eλ has finite index.

We continue by recalling the definition of regular trace event structures from [43, 44]. A
(Mazurkiewicz) trace alphabet is a pair M = (Σ, I), where Σ is a finite non-empty alphabet set
and I ⊂ Σ × Σ is an irreflexive and symmetric relation called the independence relation. As
usual, Σ∗ is the set of finite words with letters in Σ. The independence relation I induces the
equivalence relation ∼I , which is the reflexive and transitive closure of the binary relation ↔I :
if σ, σ′ ∈ Σ∗ and (a, b) ∈ I, then σabσ′ ↔I σbaσ

′. The relation D := (Σ × Σ) \ I is called the
dependence relation.

An M -labeled event structure is a labeled event structure Eφ = (E , λ), where E = (E,≤,#) is
an event structure and λ : E → Σ is a labeling function which satisfies the following conditions:

(LES1) e#µe
′ implies λ(e) 6= λ(e′),

(LES2) if el e′ or e#µe
′, then (λ(e), λ(e′)) ∈ D,

(LES3) if (λ(e), λ(e′)) ∈ D, then e ≤ e′ or e′ ≤ e or e#e′.

We call λ a trace labeling of E with the trace alphabet (Σ, I). The conditions (LES2) and (LES3)
on the labeling function ensures that the concurrency relation ‖ of E respects the independence
relation I of M . In particular, since I is irreflexive, from (LES3) it follows that any two
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concurrent events are labeled differently. Since by (LES1) two events in minimal conflict are
also labeled differently, this implies that λ is a finite nice labeling of E .

An M -labeled event structure Eλ = (E , λ) is regular if Eλ has finite index. Finally, an event
structure E is called a regular trace event structure [43, 44] iff there exists a trace alphabet
M = (Σ, I) and a regular M -labeled event structure Eλ such that E is isomorphic to the
underlying event structure of Eλ. From the definition immediately follows that every regular
trace event structure is also a regular event structure. It turns out that the converse is equivalent
to Conjecture 1.1. Namely, [44] establishes the following equivalence (this result dispenses us
from giving a formal definition of 1-safe Petri nets; the interested readers can find it in the
papers [36,44]):

Theorem 2.1 ([44, Theorem 1]). E is a regular trace event structure if and only if there exists
a finite 1-safe Petri net N such that E and EN are isomorphic.

In view of this theorem, Conjecture 1.1 is equivalent to the following conjecture:

Conjecture 2.2. E is a regular event structure if and only if E is a regular trace event structure.

Badouel et al. [5] considered recognizable conflict event domains that are more general than
the domains of event structures we consider in this paper. Since the domain of an event
structure E is recognizable if and only if E is a regular trace event structure (see [31, Section
5]), Conjecture 1.2 can be reformulated as follows:

Conjecture 2.3. E is a regular event structure iff E is a regular trace event structure and E
has bounded \-cliques.

Since any regular trace labeling is a regular nice labeling, any regular event structure E not
admitting a regular nice labeling is a counterexample to Conjecture 2.2 (and thus to Conjec-
ture 1.1). If, additionally, E has bounded \-cliques, E is also a counterexample to Conjecture 2.3
(and thus to Conjecture 1.2).

3. Domains, median graphs, and CAT(0) cube complexes

In this section, we recall the bijections between domains of event structures and median
graphs/CAT(0) cube complexes established in [3] and [9], and between median graphs and
1-skeleta of CAT(0) cube complexes established in [17] and [38].

3.1. Median graphs. Let G = (V,E) be a simple, connected, not necessarily finite graph.
The distance dG(u, v) between two vertices u and v is the length of a shortest (u, v)-path, and
the interval I(u, v) between u and v consists of all vertices on shortest (u, v)–paths, that is, of
all vertices (metrically) between u and v:

I(u, v) := {x ∈ V : dG(u, x) + dG(x, v) = dG(u, v)}.
An induced subgraph of G (or the corresponding vertex set) is called convex if it includes the
interval of G between any of its vertices. A graph G = (V,E) is isometrically embeddable into
a graph H = (W,F ) if there exists a mapping ϕ : V →W such that dH(ϕ(u), ϕ(v)) = dG(u, v)
for all vertices u, v ∈ V .

A graph G is called median if the interval intersection I(x, y)∩I(y, z)∩I(z, x) is a singleton for
each triplet x, y, z of vertices. Median graphs are bipartite. Basic examples of median graphs are
trees, hypercubes, rectangular grids, and Hasse diagrams of distributive lattices and of median
semilattices [6]. With any vertex v of a median graph G = (V,E) is associated a canonical
partial order ≤v defined by setting x ≤v y if and only if x ∈ I(v, y); v is called the basepoint
of ≤v. Since G is bipartite, the Hasse diagram Gv of the partial order (V,≤v) is the graph G
in which any edge xy is directed from x to y if and only if the inequality dG(x, v) < dG(y, v)
holds. We call Gv a pointed median graph. There is a close relationship between pointed median
graphs and median semilattices. A median semilattice is a meet semilattice (P,≤) such that (i)
for every x, the principal ideal ↓x = {p ∈ P : p ≤ x} is a distributive lattice, and (ii) any three
elements have a least upper bound in P whenever each pair of them does.
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Theorem 3.1 ([4]). The Hasse diagram of any median semilattice is a median graph. Con-
versely, every median graph defines a median semilattice with respect to any canonical order
≤v.

Median graphs can be obtained from hypercubes by amalgams and median graphs are them-
selves isometric subgraphs of hypercubes [8,32]. The canonical isometric embedding of a median
graph G into a (smallest) hypercube can be determined by the so called Djoković-Winkler (“par-
allelism”) relation Θ on the edges of G [21, 46]. For median graphs, the equivalence relation Θ
can be defined as follows. First say that two edges uv and xy are in relation Θ′ if they are oppo-
site edges of a 4-cycle uvxy in G. Then let Θ be the reflexive and transitive closure of Θ′. Any
equivalence class of Θ constitutes a cutset of the median graph G, which determines one factor
of the canonical hypercube [32]. The cutset (equivalence class) Θ(xy) containing an edge xy de-
fines a convex split {W (x, y),W (y, x)} of G [32], where W (x, y) = {z ∈ V : dG(z, x) < dG(z, y)}
and W (y, x) = V \W (x, y) (we call the complementary convex sets W (x, y) and W (y, x) half-
spaces). Conversely, for every convex split of a median graph G there exists at least one edge
xy such that {W (x, y),W (y, x)} is the given split. We denote by {Θi : i ∈ I} the equivalence
classes of the relation Θ (in [9], they were called parallelism classes). For an equivalence class
Θi, i ∈ I, we denote by {Ai, Bi} the associated convex split. We say that Θi separates the
vertices x and y if x ∈ Ai, y ∈ Bi or x ∈ Bi, y ∈ Ai. The isometric embedding ϕ of G into a
hypercube is obtained by taking a basepoint v, setting ϕ(v) = ∅ and for any other vertex u,
letting ϕ(u) be all parallelism classes of Θ which separate u from v.

We conclude this subsection with the following simple but useful local characterization of
convex sets of median graphs (which holds for much more general classes of graphs):

Lemma 3.2. Let S be a connected subgraph of a median graph G. Then S is a convex subgraph
if and only if S is locally-convex, i.e., I(x, y) ⊆ S for any two vertices x, y of S having a common
neighbor in S.

3.2. Nonpositively curved cube complexes. A 0-cube is a single point. A 1-cube is an
isometric copy of the segment [−1, 1] and has a cell structure consisting of 0-cells {±1} and
a single 1-cell. An n-cube is an isometric copy of [−1, 1]n, and has the product structure, so
that each closed cell of [−1, 1]n is obtained by restricting some of the coordinates to +1 and
some to −1. A cube complex is obtained from a collection of cubes of various dimensions by
isometrically identifying certain subcubes. The dimension of a cube complex X is the largest
value of d for which X contains a d-cube. A square complex is a cube complex of dimension
2. The 0-cubes and the 1-cubes of a cube complex X are called vertices and edges of X and
define the graph X(1), the 1-skeleton of X. We denote the vertices of X(1) by V (X) and the

edges of X(1) by E(X). For i ∈ N, we denote by X(i) the i-skeleton of X, i.e., the cube complex
consisting of all j-dimensional cubes of X, where j ≤ i. A square complex X is a combinatorial
2-complex whose 2-cells are attached by closed combinatorial paths of length 4. Thus, one can
consider each 2-cell as a square attached to the 1-skeleton X(1) of X. The star St(v,X) of a
vertex v of X is the subcomplex spanned by all cubes containing v. The link of a vertex x ∈ X
is the simplicial complex Link(x) with a (d − 1)-simplex for each d-cube containing x, with
simplices attached according to the attachments of the corresponding cubes. The link Link(x)
is said to be a flag (simplicial) complex if each (d + 1)-clique in Link(x) spans an d-simplex.
This flagness condition of Link(x) can be restated as follows: whenever three (k+2)-cubes of X
share a common k-cube containing x and pairwise share common (k + 1)-cubes, then they are
contained in a (k+3)–cube of X. A cube complex X is called simply connected if it is connected
and if every continuous mapping of the 1-dimensional sphere S1 into X can be extended to a
continuous mapping of the disk D2 with boundary S1 into X. Note that X is connected iff
G(X) = X(1) is connected, and X is simply connected iff X(2) is simply connected. Equivalently,
a cube complex X is simply connected if X is connected and every cycle C of its 1-skeleton is
null-homotopic, i.e., it can be contracted to a single point by elementary homotopies.

Given two cube complexes X and Y , a covering (map) is a surjection ϕ : Y → X mapping
cubes to cubes and such that ϕ| St(v,Y ) : St(v, Y ) → St(ϕ(v), X) is an isomorphism for every
vertex v in Y . The space Y is then called a covering space of X. A universal cover of X is a
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simply connected covering space; it always exists and it is unique up to isomorphism [27, Sections

1.3 and 4.1]. The universal cover of a complex X will be denoted by X̃. In particular, if X is

simply connected, then its universal cover X̃ is X itself.
An important class of cube complexes studied in geometric group theory and combinatorics

is the class of nonpositively curved and CAT(0) cube complexes. We continue by recalling the
definition of CAT(0) spaces. A geodesic triangle ∆ = ∆(x1, x2, x3) in a geodesic metric space
(X, d) consists of three points in X (the vertices of ∆) and a geodesic between each pair of
vertices (the sides of ∆). A comparison triangle for ∆(x1, x2, x3) is a triangle ∆(x′1, x

′
2, x
′
3) in the

Euclidean plane E2 such that dE2(x′i, x
′
j) = d(xi, xj) for i, j ∈ {1, 2, 3}. A geodesic metric space

(X, d) is defined to be a CAT(0) space [22] if all geodesic triangles ∆(x1, x2, x3) of X satisfy the
comparison axiom of Cartan–Alexandrov–Toponogov: If y is a point on the side of ∆(x1, x2, x3)
with vertices x1 and x2 and y′ is the unique point on the line segment [x′1, x

′
2] of the comparison

triangle ∆(x′1, x
′
2, x
′
3) such that dE2(x′i, y

′) = d(xi, y) for i = 1, 2, then d(x3, y) ≤ dE2(x′3, y
′). A

geodesic metric space (X, d) is nonpositively curved if it is locally CAT(0), i.e., any point has a
neighborhood inside which the CAT(0) inequality holds. CAT(0) spaces can be characterized
in several different natural ways and have many strong properties, see for example [14]. In
particular, a geodesic metric space (X, d) is CAT(0) if and only if (X, d) is simply connected
and is nonpositively curved. Gromov [22] gave a beautiful combinatorial characterization of
CAT(0) cube complexes, which can be also taken as their definition:

Theorem 3.3 ([22]). A cube complex X endowed with the `2-metric is CAT(0) if and only
if X is simply connected and the links of all vertices of X are flag complexes. If Y is a cube

complex in which the links of all vertices are flag complexes, then the universal cover Ỹ of Y is
a CAT(0) cube complex.

In view of the second assertion of Theorem 3.3, the cube complexes in which the links of
vertices are flag complexes are called nonpositively curved cube complexes or shortly NPC com-

plexes. As a corollary of Gromov’s result, for any NPC complex X, its universal cover X̃ is
CAT(0).

A square complex X is a V H-complex (vertical-horizontal complex) if the 1-cells (edges)
of X are partitioned into two sets V and H called vertical and horizontal edges respectively,
and the edges in each square alternate between edges in V and H. Notice that if X is a
V H-complex, then X satisfies the Gromov’s nonpositive curvature condition since no three
squares may pairwise intersect on three edges with a common vertex, thus V H-complexes are
particular NPC square complexes. A V H-complex X is a complete square complex (CSC) [51]
if any vertical edge and any horizontal edge incident to a common vertex belong to a common
square of X. By [51, Theorem 3.8], if X is a complete square complex, then the universal cover

X̃ of X is isomorphic to the Cartesian product of two trees. By a plane Π in X̃ we will mean

a convex subcomplex of X̃ isometric to R2 tiled by the grid Z2 into unit squares.
We continue with the bijection between CAT(0) cube complexes and median graphs:

Theorem 3.4 ([17,38]). Median graphs are exactly the 1-skeleta of CAT(0) cube complexes.

The proof of Theorem 3.4 presented in [17] is based on the following local-to-global charac-
terization of median graphs:

Theorem 3.5 ([17]). A graph G is a median graph if and only if its cube complex is simply
connected and G satisfies the 3-cube condition: if three squares of G pairwise intersect in an
edge and all three intersect in a vertex, then they belong to a 3-cube.

A midcube of the d-cube c, with d ≥ 1, is the isometric subspace obtained by restricting
exactly one of the coordinates of d to 0. Note that a midcube is a (d− 1)-cube. The midcubes
a and b of X are adjacent if they have a common face, and a hyperplane H of X is a subspace
that is a maximal connected union of midcubes such that, if a, b ⊂ H are midcubes, either a
and b are disjoint or they are adjacent. Equivalently, a hyperplane H is a maximal connected
union of midcubes such that, for each cube c, either H ∩ c = ∅ or H ∩ c is a single midcube of c.
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Theorem 3.6 ( [40]). Each hyperplane H of a CAT(0) cube complex X is a CAT(0) cube
complex of dimension at most dimX − 1 and X \H consists of exactly two components, called
halfspaces.

A 1-cube e (an edge) is dual to the hyperplane H if the 0-cubes of e lie in distinct halfspaces
of X \H, i.e., if the midpoint of e is in a midcube contained in H. The relation “dual to the
same hyperplane” is an equivalence relation on the set of edges of X; denote this relation by Θ
and denote by Θ(H) the equivalence class consisting of 1-cubes dual to the hyperplane H (Θ is

precisely the parallelism relation on the edges of the median graph X(1)).

3.3. Domains versus median graphs/CAT(0) cube complexes. Theorems 2.2 and 2.3 of
Barthélemy and Constantin [9] establish the following bijection between event structures and
pointed median graphs (in [9], event structures are called sites):

Theorem 3.7 ( [9]). The (undirected) Hasse diagram of the domain (D(E),⊆) of any event
structure E = (E,≤,#) is a median graph. Conversely, for any median graph G and any
basepoint v of G, the pointed median graph Gv is isomorphic to the Hasse diagram of the
domain of an event structure.

The first part of this theorem first establishes that each event domain is a median semilattice
(in fact, the conditions (i) and (ii) of a median semilattice are often taken as the definition
of a domain, see for example, [5, 48]) and follows from Avann’s Theorem 3.1. The bijection
between domains of event structures and median semilattices is equivalent to the bijection
between domains of event structures and prime algebraic coherent partial orders established
in [34]. With the help of Theorem 3.5, we can provide an alternative proof of the first part of
Theorem 3.7, which we hope can be of independent interest. Since we will use it further, we
also recall the construction of an event structure from a pointed median graph presented in [9].

Proof of Theorem 3.7. To prove that the square complex of an event domain D := D(E) is
simply connected one has to show that any cycle σ of the Hasse diagram of D is 0-homotopic.
We proceed by lexicographic induction on the pair (n1(σ), n2(σ)), where n1(σ) is the maximum
cardinality of a configuration of σ and n2(σ) is the number of configurations (vertices) of σ of
size n1(σ). Let c be a configuration of σ of maximum size n1(σ). Then the neighbors c′, c′′ of
c in σ have cardinality n1(σ)− 1, say c′ = c \ {e′} and c′′ = c \ {e′′}. If e′ = e′′, then let σ′ be
the obtained from σ by removing c. If e′ 6= e′′, then the set c0 := c \ {e′, e′′} is conflict-free and
downward closed, thus c0 is a configuration. As a result, the configurations c, c′, c0, c

′′ define a
square. In this case, let σ′ be the cycle obtained obtained from σ by replacing c by c0. Note
that there is an elementary homotopy from σ to σ′ via the square cc′c0c

′′. In both cases, if
n2(σ) > 1, then n1(σ

′) = n1(σ) and n2(σ
′) = n2(σ)− 1. If n2(σ) = 1, then n1(σ

′) = n1(σ)− 1.
In both cases, by induction hypothesis we may assume that σ′ is 0-homotopic. Since there exists
an elementary homotopy from σ to σ′ in both cases, the cycle σ is also 0-homotopic. To show
that the graph of D satisfies the 3-cube condition, one can see that there exist four possible
embeddings of the three squares in D. In each of these cases one can directly conclude that the
vertex v completing them to a 3-cube must be a configuration (see Figure 2). Indeed, in the first
three cases, the set c(v) of events corresponding to this vertex is included in a configuration,
thus it is conflict–free. It can be also easily seen that in all three cases c(v) is downward-closed,
i.e., c(v) is a configuration. In the last case, c(v) = σ ∪ {e1, e2, e3}. Each pair of events of
c(v) is contained in one of the configurations σ ∪ {ei, ej}, i, j ∈ {1, 2, 3}, i 6= j, whence c(v) is
conflict-free. Pick any e ∈ c(v). If e ∈ σ, then ↓ e ⊂ σ. If e ∈ {e1, e2, e3}, say e = e1, then
↓e ⊂ σ ∪ {e1}. In both cases we conclude that ↓e ⊂ c(v), i.e., c(v) is downward-closed, whence
c(v) is a configuration.

Now, we recall how to define the event structure occurring in the second part of the theorem.
Suppose that v is an arbitrary but fixed basepoint of a median graph G. For an equivalence
class Θi, i ∈ I, we denote by {Ai, Bi} the associated convex split, and suppose without loss of
generality that v ∈ Ai. Two equivalence classes Θi and Θj are said to be crossing if there exists
a 4-cycle C of G with two opposite edges in Θi and two other opposite edges in Θj (Θi and
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σ

σ, e1

σ, e2

σ, e3

σ, e1, e2 σ, e2, e3
σ, e1, e3

σ, e1, e2, e3

σ

σ, e1

σ, e2

σ, e3

σ, e1, e2 σ, e2, e3

σ, e1, e2, e3

σ

σ, e1

σ, e2

σ, e3

σ, e1, e2 σ, e2, e3

σ, e1, e2, e3

σ

σ, e1

σ, e2

σ, e3

σ, e1, e2 σ, e2, e3

σ, e1, e2, e3

σ, e1, e3

σ, e1, e3 σ, e1, e3

Figure 2. The four possible embeddings of the three squares in the 3-cube
condition in D.

Θj are called non-crossing otherwise). An equivalence class Θi separates the basepoint v from
the equivalence class Θj if Θi and Θj are non-crossing and all edges of Θj belong to Bi. The
event structure Ev = (E,≤,#) associated with a pointed median graph Gv is defined in the
following way. The set E of events is the set {Θi : i ∈ I} of the equivalence classes of Θ. The
causal dependency is defined by setting Θi ≤ Θj if and only if Θi = Θj or Θi separates v from
Θj . The conflict relation is defined by setting Θi#Θj if and only if Θi and Θj are non-crossing,
Θi does not separate v from Θj and Θj does not separates v from Θi. Finally, the concurrency
relation is defined by setting Θi‖Θj if and only if Θi and Θj are crossing. Since each parallelism
class Θi partitions G into two parts Ai and Bi, it easily follows that Ev = (E,≤,#) satisfies the
axiom Θi#Θj and Θj ≤ Θk imply Θi#Θk; consequently Ev is an event structure. To prove that
Gv is the Hasse diagram of the domain D(Ev) of the event structure Ev, consider an isometric
embedding of G into a hypercube such that v corresponds to ∅. Then any other vertex u of
G is encoded by a finite set U consisting of all Θi such that Θi separates the vertices v and u.
Since Θi ∈ U and Θj ≤ Θi implies that Θj also separates v from u, and thus Θj belongs to
U , we conclude that U is downward-closed. If Θi#Θj and Θi ∈ U , then necessarily Θi and v
belong to a common halfspace defined by Θj . Therefore Θj does not separate u from v. This
shows that U is conflict-free, i.e., U is a configuration of Ev. Conversely, any configuration c of
Ev consists of exactly those Θi that separate v from the vertex representing c. This concludes
the proof of Theorem 3.7. �

Rephrasing the construction of an event structure from a pointed median graph presented
in the proof of Theorem 3.7, to each CAT(0) cube complex X and each vertex v of X one can
associate an event structure Ev such that the domain of Ev is the 1-skeleton of X pointed at v.
The events of Ev are the hyperplanes of X. Hyperplanes H and H ′ define concurrent events if
and only if they cross, and H ≤ H ′ if and only if H = H ′ or H separates H ′ from v. The events
defined by H and H ′ are in conflict if and only if H and H ′ do not cross and neither separates
the other from v.

3.4. Related work. The link between event domains, median graphs, and CAT(0) cube com-
plexes allows a more geometric and combinatorial approach to several questions on event struc-
tures (and to work only with CAT(0) cube complexes viewed as event domains). For example,
this allowed [18] to disprove the so-called nice labeling conjecture of Rozoy and Thiagarajan [39]
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asserting that any event structure of finite degree admit a finite nice labeling. The topological
dimension dimX of a CAT(0) cube complex X corresponds to the maximum number of pairwise
concurrent events of Ev and to the clique number of the intersection graph of hyperplanes of X.
The degree deg(Ev) of the event structure Ev is equal to the maximum out-degree of a vertex in
the canonical order ≤v of the 1-skeleton of X (and is equal to the clique number of a so-called
pointed contact graph of hyperplanes of X [18,20]). In particular, dimX ≤ deg(Ev). Notice also
that the maximum degree of a vertex of X is upper bounded by deg(Ev) + dim(X) ≤ 2 deg(Ev)
and is equal to the clique number of the contact graph of hyperplanes of X (the intersection
graph of the carriers of X) [20,23]. Using this terminology, a nice labeling of the event structure
Ev is equivalent to a coloring of the pointed contact graph of X. Using this combinatorial refor-
mulation and the example of Burling [15] of families of axis-parallel boxes of R3 with no three
pairwise intersecting boxes and arbitrarily high chromatic number of the intersection graph, [18]
describes an example of a CAT(0) 4-dimensional cube complex with maximum degree 12 and
infinite chromatic number of the pointed contact graph, thus providing a counterexample to the
nice labeling conjecture of Rozoy and Thiagarajan [39]. On the other hand, it is shown in [20]
that the nice labeling conjecture is true for event structures whose domains are 2-dimensional
(i.e., event structures not containing three pairwise concurrent events).

4. Directed NPC complexes

Since we can define event structures from their domains, universal covers of NPC complexes
represent a rich source of event structures. To obtain regular event structures, it is natural
to consider universal covers of finite NPC complexes. Moreover, since domains of event struc-
tures are directed, it is natural to consider universal covers of NPC complexes whose edges
are directed. However, the resulting directed universal covers are not in general domains of
event structures. In particular, the domains corresponding to pointed median graphs given by
Theorem 3.7 cannot be obtained in this way. In order to overcome this difficulty, we introduce
directed median graphs and directed NPC complexes. Using these notions, one can naturally
define regular event structures starting from finite directed NPC complexes.

4.1. Directed median graphs. A directed median graph is a pair (G, o), where G is a median
graph and o is an orientation of the edges of G in a such a way that opposite edges of squares
of G have the same direction. By transitivity of Θ, all edges from the same parallelism class
Θi of G have the same direction. Since each Θi partitions G into two parts, o defines a partial
order ≺o on the vertex-set of G. For a vertex v of G, let Fo(v,G) = {x ∈ V : v ≺o x} be the
principal filter of v in the partial order (V (G),≺o). For any canonical basepoint order ≤v of
G, (G,≤v) is a directed median graph. The converse is obviously not true: the 4-regular tree
F4 directed so that each vertex has two incoming and two outgoing arcs is a directed median
graph which is not induced by a basepoint order.

Lemma 4.1. For any vertex v of a directed median graph (G, o), the following holds:

(i) Fo(v,G) induces a convex subgraph of G;
(ii) the restriction of the partial order ≺o on Fo(v,G) coincides with the restriction of the

canonical basepoint order ≤v on Fo(v,G);
(iii) Fo(v,G) together with ≺o is the domain of an event structure;
(iv) for any vertex u ∈ Fo(v,G), the principal filter Fo(u,G) is included in Fo(v,G) and

Fo(u,G) coincides with the principal filter of u with respect to the canonical basepoint
order ≤v on Fo(v,G).

Proof. To (i): For each parallelism class Θi, let Ai, Bi be the two convex subgraphs separated
by Θi and suppose without loss of generality that all edges of Θi are directed from Ai to Bi.
Let B be the intersection of all of the Bis containing the vertex v. We assert that Fo(v,G)
coincides with B. Fo(v,G) consists of all vertices u of G such that there is a path from v to
u in the Hasse diagram of ≺o. Since each Θi is a cutset of G and all edges of Θi are directed
from Ai to Bi, we conclude that Fo(v,G) ⊆ B. Conversely, let u ∈ B and pick any shortest
path P (v, u) = (v0 = v, v1, . . . , vk−1, vk = u) in G between v and u. We claim that all edges
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of P (v, u) are directed from v to u, yielding u ∈ Fo(v,G). Pick any edge vjvj+1 of P (v, u);
suppose that vjvj+1 belongs to the parallelism class Θi. By convexity of Ai and Bi, necessarily
Θi separates the vertices v and u. Since v, u ∈ B, this implies that v ∈ Ai and u ∈ Bi, i.e., the
edge vjvj+1 is directed from vj to vj+1.

To (ii): First suppose that u′, u ∈ Fo(v,G) and u′ ≤v u. This implies that u′ ∈ I(v, u).
Let P (v, u) = (v0 = v, v1, . . . , vk−1, vk = u) be a shortest path of G between v and u passing
via u′. By what we have shown in (i), in the Hasse diagram of ≺o all the edges of P (v, u)
are directed from v to u. This implies that all the edges of the subpath of P (v, u) comprised
between u′ and u are directed from u′ to u, yielding u′ ≺o u. To prove the converse assertion,
suppose by way of contradiction that Fo(v,G) contains two vertices u′, u such that u′ ≺o u
however u′ ≤v u is not true, i.e., u′ /∈ I(v, u). Among all vertices u for which this holds, suppose
that u is chosen so that to minimize the length of a shortest directed path from u′ to u. Let
w be a neighbor of u on a shortest directed path from u′ to u. Since u′ �o w, w ∈ Fo(v,G)
and from the choice of u it follows that u′ ≤v w, i.e., u′ ∈ I(v, w). Since G is bipartite, either
w ∈ I(v, u) or u ∈ I(v, w) holds. If w ∈ I(v, u), since u′ ∈ I(v, w), we conclude that u′ ∈ I(v, u),
a contradiction. Therefore u ∈ I(v, w). Since the edge wu is oriented from w to u and u lies on
a shortest path from v to w, we obtain a contradiction with the fact that all the edges of such
a shortest path must be directed from v to w. This contradiction establishes that the partial
orders ≺o and ≤v coincide on Fo(v,G).

To (iii)&(iv): By (i), the subgraph G′ of G induced by Fo(v,G) is a median graph. By (ii),
the partial order ≺o coincides on G′ with the canonical basepoint order ≤v. By Theorem 3.7,
(V (G′),≺o) is the domain of an event structure, establishing (iii). Finally, (iv) is an immediate
consequence of (ii). �

4.2. Directed NPC cube complexes. A directed NPC complex is a pair (Y, o), where Y is
a NPC complex and o is an orientation of the edges of Y in a such a way that the opposite
edges of the same square of Y have the same direction. Such an orientation o of the edges of a
NPC complex Y is called an admissible orientation of Y . Note that there exist NPC complexes
that do not admit any admissible orientation: consider a Möbius band of squares, for example.
An admissible orientation o of Y induces in a natural way an orientation õ of the edges of its

universal cover Ỹ , so that (Ỹ , õ) is a directed CAT(0) cube complex and (Ỹ (1), õ) is a directed
median graph. A directed plane in a directed CAT(0) cube complex Y is a plane Π in Y such
that for any vertex (i, j) of the grid Z2 tiling Π, (i, j) is the source of the edges (i, j)(i, j + 1)
and (i, j)(i+ 1, j).

In the following, we need to consider directed colored NPC complexes and directed colored
median graphs. A coloring ν of a directed NPC complex (Y, o) is an arbitrary map ν : E(Y )→ Υ
where Υ is a set of colors. Note that a labeling is a coloring, but not the converse: labelings
are precisely the colorings in which opposite edges of any square have the same color. In the
following, we will denote a directed colored NPC complexes by bold letters like Y = (Y, o, ν).
Sometimes, we need to forget the colors and the orientations of the edges of these complexes.
For a complex Y, we denote by Y the complex obtained by forgetting the colors and the
orientations of the edges of Y (Y is called the support of Y), and we denote by (Y, o) the
directed complex obtained by forgetting the colors of Y. We also consider directed colored
median graphs that will be the 1-skeletons of directed colored CAT(0) cube complexes. Again
we will denote such directed colored median graphs by bold letters like G = (G, o, ν). Note that
(uncolored) directed NPC complexes can be viewed as directed colored NPC complexes where
all edges have the same color.

When dealing with directed colored NPC complexes, we consider only homomorphisms that
preserve the colors and the directions of the edges. More precisely, Y′ = (Y ′, o′, ν ′) is a covering
of Y = (Y, o, ν) via a covering map ϕ if Y ′ is a covering of Y via ϕ and for any edge e ∈ E(Y ′)
directed from s to t, ν(ϕ(e)) = ν ′(e) and ϕ(e) is directed from ϕ(s) to ϕ(t). Since any coloring

ν of a directed colored NPC complex Y leads to a coloring of its universal cover Ỹ , one can

consider the colored universal cover Ỹ = (Ỹ , õ, ν̃) of Y.
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When we consider principal filters in directed colored median graphs G = (G, o, ν) (in partic-

ular, when G is the 1-skeleton of the universal cover Ỹ of a directed colored NPC complex Y),
we say that two filters are isomorphic if there is an isomorphism between them that preserves
the directions and the colors of the edges.

We now formulate the crucial regularity property of directed colored median graphs

(Ỹ (1), õ, ν̃) when (Y, o, ν) is finite.

Lemma 4.2. If Y = (Y, o, ν) is a finite directed colored NPC complex, then Ỹ(1) = (Ỹ (1), õ, ν̃)
is a directed median graph with at most |V (Y )| isomorphism types of colored principal filters. In

particular, if (Y, o) is a finite directed NPC complex, then (Ỹ (1), õ) is a directed median graph
with at most |V (Y )| isomorphism types of principal filters.

Proof. Consider a covering map ϕ : Ỹ = (Ỹ , õ, ν̃)→ Y = (Y, o, ν). We first show that (Ỹ (1), õ)

is a directed median graph. By Theorem 3.7, Ỹ (1) is a median graph. Since the image of a

square in Ỹ (1) is a square in Y , since ϕ preserves the direction of the edges, and since two
opposite edges of a square of Y have the same direction, any two opposite edges of a square of

Ỹ (1) have the same direction. Consequently, Ỹ (1) is a directed median graph.

Consider now two vertices ũ, ũ′ ∈ V (Ỹ ) such that ϕ(ũ) = ϕ(ũ′). In the following, we show

that Fo(ũ, Ỹ(1)) and Fo(ũ′, Ỹ(1)) are isomorphic, which implies that there are at most |V (Y )|
different isomorphism types of colored principal filters by Lemma 4.1. The proof is based on
the two following claims. The first claim can be easily proved by induction on the length of P .

Claim 1. For any path P = (ũ = ũ0, ũ1, . . . , ũk) in Ỹ , there exists a unique path P ′ = (ũ′ =
ũ′0, ũ

′
1, . . . , ũ

′
k) such that ϕ(ũ′i) = ϕ(ũi) for all 0 ≤ i ≤ k.

Claim 2. For any four paths P1 = (ũ = ũ0, ũ1, . . . , ũk), P
′
1 = (ũ′ = ũ′0, ũ

′
1, . . . , ũ

′
k), P2 = (ũ =

ṽ0, ṽ1, . . . , ṽ`), and P ′2 = (ũ′ = ṽ′0, ṽ
′
1, . . . , ṽ

′
`) in Ỹ such that ϕ(ũ′i) = ϕ(ũi) for all 0 ≤ i ≤ k and

ϕ(ṽ′j) = ϕ(ṽj) for all 0 ≤ j ≤ `, we have ũk = ṽ` if and only if ũ′k = ṽ′`.

Proof. For each 0 ≤ i ≤ k, let ui = ϕ(ũi) = ϕ(ũ′i) and for each 0 ≤ j ≤ `, let vj = ϕ(ṽj) =

ϕ(ṽ′j). Suppose that ũk = ṽ` and consider the cycle C = P1 · P2 = (ũ = ũ0, ũ1, . . . , ũk =

ṽ`, ṽ`−1, . . . , ṽ1, ṽ0 = ũ). Let n1(C) = max{d(ũ, w̃) : w̃ ∈ C} and n2(C) = |{w̃ : d(ũ, w̃) =
n1(C)}|. We prove the claim by lexicographic induction on (n1(C), n2(C)). If n1(C) = 0, then
k = ` = 0 and we are done. Suppose now that n1(C) ≥ 1.

Suppose that there exists 0 < i < k such that d(ũ, ũi) = n1(C). Suppose first that ũi−1 =

ũi+1. Then, since ϕ is an isomorphism between St(ũi, Ỹ ) and St(ui, Y ) and between St(ũ′i, Ỹ )
and St(ui, Y ), necessarily ũ′i−1 = ũ′i+1. By induction hypothesis applied to the paths P3 =
(ũ = ũ0, ũ1, . . . , ũi−1 = ũi+1, . . . , ũk), P

′
3 = (ũ′ = ũ′0, ũ

′
1, . . . , ũ

′
i−1 = ũ′i+1, . . . , ũ

′
k), P2, and P ′2,

we have ũ′k = ṽ′` and we are done. Assume now that ũi−1 6= ũi+1. Since the graph Ỹ (1) is

bipartite, we have d(ũ, ũi−1) = d(ũ, ũi+1) = n1(C) − 1 and d(ũi−1, ũi+1) = 2. Since Ỹ (1) is
median, there exists w̃i such that d(w̃i, ũi−1) = d(w̃i, ũi+1) = 1 and d(w̃i, ũ) = n1(C) − 2.

Note that ũiũi−1w̃iũi+1 is a square in St(ũi, Ỹ ). Consequently, since ϕ is an isomorphism

between St(ũi, Ỹ ) and St(ui, Y ) and between St(ũ′i, Ỹ ) and St(ui, Y ), there exists w̃′i such that

ũ′iũ
′
i−1w̃

′
iũ
′
i+1 is a square in St(ũ′i, Ỹ ) and ϕ(w̃′i) = ϕ(w̃i). By induction hypothesis applied to the

paths P4 = (ũ = ũ0, ũ1, . . . , ũi−1, w̃i, ũi+1, . . . , ũk), P
′
4 = (ũ′ = ũ′0, ũ

′
1, . . . , ũ

′
i−1, w̃

′
i, ũ
′
i+1, . . . , ũ

′
k),

P2, and P ′2, we have ũ′k = ṽ′` and we are done. Analogously, if there exists 0 < j < ` such that
d(ũ, ṽj) = n1(C), we can show that ũ′k = ṽ′`.

Suppose now that n1(C) = d(ũ, ũk = ṽ`) and n2(C) = 1. Since Ỹ (1) is bipartite, d(ũ, ũk−1) =

d(ũ, ṽ`−1) = n1(C) − 1 and d(ũk−1, ṽ`−1) = 2. Since Ỹ (1) is median, there exists w̃ such that
d(w̃, ũk−1) = d(w̃, ṽ`−1) = 1 and d(w̃, ũ) = n1(C)− 2. Since ϕ(ũk−1) = ϕ(ũ′k−1), there exists a
unique neighbor w̃′ of ũ′k−1 such that ϕ(w̃′) = ϕ(w̃). Similarly, there exists a unique neighbor
w̃′′ of ṽ′`−1 such that ϕ(w̃′′) = ϕ(w̃). By induction hypothesis applied to the paths P5 =
(ũ = ũ0, ũ1, . . . , ũk−1, w̃), P ′5 = (ũ′ = ũ′0, ũ

′
1, . . . , ũ

′
k−1, w̃

′), P6 = (ũ = ṽ0, ṽ1, . . . , ṽ`−1, w̃), and
P ′6 = (ũ′ = ṽ′0, ṽ

′
1, . . . , ṽ

′
`−1, w̃

′′), we have that w̃′ = w̃′′. Consequently, since ϕ induces a bijection
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between St(w̃, Ỹ ) and St(ϕ(w̃), Y ) and between St(w̃′, Ỹ ) and St(ϕ(w̃′), Y ) = St(ϕ(w̃), Y ),
necessarily ũ′k = ṽ′` and we are done. �

Define now a map fũ,ũ′ from V (Ỹ ) to V (Ỹ ) such that fũ,ũ′(ũ) = ũ′. For any vertex ṽ ∈ Ỹ ,

consider a path P = (ũ = ũ0, ũ1, . . . , ũk = ṽ) from ũ to ṽ in Ỹ . By Claim 1, there exists a
unique path P ′ = (ũ′ = ũ′0, ũ

′
1, . . . , ũ

′
k = ṽ′) such that ϕ(ũ′i) = ϕ(ũi) for all 0 ≤ i ≤ k and we

let fũ,ũ′(ṽ) = ṽ′. Note that ϕ(f(ṽ)) = ϕ(ṽ) and by Claim 2, f(ṽ) is independent of the choice

of the path P . Similarly, we can define a map fũ′,ũ from Ỹ to Ỹ such that fũ′,ũ(ũ′) = ũ and
one can easily see that fũ,ũ′ ◦ fũ′,ũ = fũ′,ũ ◦ fũ,ũ′ = id. Consequently, fũ,ũ′ is a bijection from

V (Ỹ ) to V (Ỹ ). Moreover, from the definition of fũ,ũ′ and from Claim 1, if ṽ1ṽ2 is an edge of Ỹ ,

then fũ,ũ′(ṽ1)fũ,ũ′(ṽ2) is also an edge of Ỹ . Since the orientation of ṽ1ṽ2 in (Ỹ , õ) is the same
as the orientation of the edge v1v2 = ϕ(ṽ1)ϕ(ṽ2) in (Y, o), it is also the same as the orientation

of fũ,ũ′(ṽ1)fũ,ũ′(ṽ2) in (Ỹ , õ). Furthermore since ν̃(ṽ1ṽ2) = ν(v1v2) = ν̃(fũ,ũ′(ṽ1)fũ,ũ′(ṽ2)), fũ,ũ′

preserves the colors of the edges of Ỹ . Consequently, fũ,ũ′ is an automorphism of Ỹ = (Ỹ , õ, ν̃)

such that fũ,ũ′(ũ) = ũ′, and thus Fo(ũ, Ỹ(1)) and Fo(ũ′, Ỹ(1)) are isomorphic. �

Proposition 4.3. Consider a finite (uncolored) directed NPC complex (Y, o). Then for any

vertex ṽ of the universal cover Ỹ of Y , the principal filter Fõ(ṽ, Ỹ (1)) with the partial order ≺õ
is the domain of a regular event structure with at most |V (Y )| different isomorphism types of
principal filters.

Proof. By Theorem 3.3, Ỹ is a CAT(0) cube complex. Combining Lemma 4.1 (iii)-(iv) and

Lemma 4.2, we deduce that (Fõ(ṽ, Ỹ (1)),≺õ) is the domain of a regular event structure with at
most |V (Y )| different isomorphism types of principal filters. �

We will call an event structure E = (E,≤,#) and its domain D(E) strongly regular if D(E)
is isomorphic to a principal filter of the universal cover of some finite directed NPC complex.
In view of Proposition 4.3, any strongly regular event structure is regular.

5. Thiagarajan’s conjecture and special NPC complexes

5.1. Special NPC complexes. Consider an NPC complex Y , let Ỹ be its universal cover and

let ϕ : Ỹ → Y be a covering map. Analogously to CAT(0) cube complexes, one can define
the parallelism relation Θ′ on the set of edges E(Y ) of Y by setting that two edges of Y are in
relation Θ′ iff they opposite edges of a common 2-cube of Y . Let Θ be the reflexive and transitive
closure of Θ′ and let {Θi : i ∈ I} denote the equivalence classes of Θ. For an equivalence class
Θi, the hyperplane Hi associated to Θi is the NPC complex consisting of the midcubes of all
cubes of Y containing one edge of Θi. The edges of Θi are dual to the hyperplane Hi. Let H(Y )
be the set of hyperplanes of Y .

The hyperplanes of an NPC complex Y do not longer satisfy the nice properties of the
hyperplanes of CAT(0) cube complexes: they do not longer partition the complex in exactly
two parts, they may self-intersect, self-osculate, two hyperplanes may at the same time cross
and osculate, etc. Haglund and Wise [25] detected five types of pathologies which may occur in
an NPC complex (see Figure 3):

(a) self-intersecting hyperplane;
(b) one-sided hyperplane;
(c) directly self-osculating hyperplane;
(d) indirectly self-osculating hyperplane;
(e) a pair of hyperplanes, which both intersect and osculate.

We continue with the definition of each of these pathologies (in which we closely follow [25,
Section 3]). Two hyperplanes H1 and H2 intersect if there exists a cube Q and two distinct
midcubes Q1 and Q2 of Q such that Q1 ⊆ H1 and Q2 ⊆ H2, i.e., there exists a square with two
consecutive edges e1, e2 such that e1 is dual to H1 and e2 is dual to H2.
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(a) (b) (c) (d) (e)

Figure 3. A self-intersecting hyperplane (a), a one-sided hyperplane (b), a
directly self-intersecting hyperplane (c), an indirectly self-intersecting hyperplane
(d), and a pair of hyperplanes that inter-osculate (e).

A hyperplane H of Y self-intersects if it contains more than one midcube from the same
cube, i.e., there exist two edges e1, e2 dual to H that are consecutive in some square of Y (see
Figure 3(a)).

A hyperplane H is two-sided if N(H) is homeomorphic to the product H× (−1, 1), and there
is a combinatorial map H × [−1, 1]→ X mapping H ×{0} identically to H. The hyperplane is
one-sided if it is not two-sided (see Figure 3(b)). As noticed in [25, p.1562], requiring that the
hyperplanes of Y are two-sided is equivalent to defining an orientation on the dual edges of H
such that all sources of such edges belong to one of the setsH×{−1}, H×{1} and all sinks belong
to the other one. This orientation is obtained by taking the equivalence relation generated by
elementary parallelism relation: declare two oriented edges e1 and e2 of Y elementary parallel if
there is a square of Y containing e1 and e2 as opposite sides and oriented in the same direction.
Notice that if (Y, o) is a directed NPC complex, then every hyperplane H of Y is two-sided.
Conversely, if every hyperplane H of Y is two-sided, then Y admits admissible orientations (one
can choose an admissible orientation for each hyperplane independently).

Let v be a vertex of Y and let e1, e2 be two distinct edges incident to v but such that e1
and e2 are not consecutive edges in some square containing v. The hyperplanes H1 and H2

osculate at (v, e1, e2) if e1 is dual to H1 and e2 is dual to H2. The hyperplane H self-osculate
at (v, e1, e2) if e1 and e2 are dual to H. Consider a two-sided hyperplane H and an admissible
orientation o of its dual edges. Suppose that H self-osculate at (v, e1, e2). If v is the source
of both e1 and e2 or the sink of both e1 and e2, then we say that H directly self-osculate at
(v, e1, e2) (see Figure 3(c)). If v is the source of one of e1, e2, and the sink of the other, then
we say that H indirectly self-osculate at (v, e1, e2) (see Figure 3(d)). Note that a self-osculation
of a hyperplane H is either direct or indirect, and this is independent of the orientation of the
edges dual to H.

Two hyperplanes H1 and H2 inter-osculate if they both intersect and osculate (see Fig-
ure 3(e)).

Haglund and Wise [25, Definition 3.2] called an NPC complex Y special if its hyperplanes
are two-sided, do not self-intersect, do not directly self-osculate, and no two hyperplanes inter-
osculate.

5.2. Trace labelings of special event structures. Consider a finite NPC complex Y and
let H = H(Y ) be the set of hyperplanes of Y . We define a canonical labeling λH : E(Y ) → H
by setting λH(e) = H if the edge e is dual to H. For any covering map ϕ : Ỹ → Y , λH is

naturally extended to a labeling λ̃H of E(Ỹ ) where λ̃H(e) = λH(ϕ(e)).
We show that strongly regular event structures obtained from finite special cube complexes

admit regular trace labellings.

Proposition 5.1. A finite NPC complex Y with two-sided hyperplanes is special if and only if
there exists an independence relation I on H = H(Y ) such that for any admissible orientation
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o of Y , for any covering map ϕ : Ỹ → Y , and for any principal filter D = (Fõ(ṽ, Ỹ (1)),≺õ) of

(Ỹ , õ), the canonical labeling λ̃H is a regular trace labeling of D with the trace alphabet (H, I).

Proof. Suppose first that there exists an independence relation I ⊆ H2 such that for any admis-

sible orientation o of Y , for any covering map ϕ : Ỹ → Y , and any principal filter D of (Ỹ , õ),

λ̃H is a regular trace labeling of D with the trace alphabet (H, I).
If Y contains a self-intersecting hyperplane H, then there exist a square Q such that the

four edges of Q are dual to H. Consider an admissible orientation o of Y and note that there

exist two edges e1, e2 in Q that have the same source v. In (Ỹ , õ), consider a vertex ṽ ∈ ϕ−1(v)
and note that ṽ has two outgoing edges ẽ1, ẽ2 such that ϕ(ẽ1) = e1 and ϕ(ẽ2) = e2. Since

λ̃H(ẽ1) = λH(e1) = λH(e2) = λ̃H(ẽ2), the labeling λ̃H violates the determinism condition in the

principal filter (Fõ(ṽ, Ỹ (1)),≺õ).
If Y contains a hyperplane H that directly self-osculate at (v, e1, e2), then there exists an

orientation o of Y such that e1 and e2 have the same source v. In (Ỹ , õ), consider a vertex
ṽ ∈ ϕ−1(v) and note that ṽ has two outgoing edges ẽ1, ẽ2 such that ϕ(ẽ1) = e1 and ϕ(ẽ2) = e2.

Since λ̃H(ẽ1) = λH(e1) = λH(e2) = λ̃H(ẽ2), the labeling λ̃H violates the determinism condition

in the principal filter (Fõ(ṽ, Ỹ (1)),≺õ).
Finally if Y contains two hyperplanes H1 and H2 that inter-osculate, then they osculate at

(v, e1, e2) and they intersect on a square Q. We can choose an orientation o of Y such that v is
the source of both e1 and e2. Then there exists a source u in Q that has two outgoing edges e′1
and e′2 that are parallel respectively to e1 and e2. Let ũ ∈ ϕ−1(u) and ṽ ∈ ϕ−1(v). Let ẽ1, ẽ2
be the respective preimages of the edges e1, e2 such that ṽ is the source of ẽ1, ẽ2. Similarly, let
ẽ′1, ẽ

′
2 be the respective preimages of the edges e1, e2 such that ũ is the source of ẽ′1, ẽ

′
2. Note that

λ̃H(ẽ1) = λH(e1) = λH(e′1) = λ̃H(ẽ′1) and λ̃H(ẽ2) = λH(e2) = λH(e′2) = λ̃H(ẽ′2). Consider the

principal filters Dv = (Fõ(ṽ, Ỹ (1)),≺õ) and Du = (Fõ(ũ, Ỹ (1)),≺õ). In Dv, ẽ1 and ẽ2 correspond

to two events that are in minimal conflict, and thus the pair (λ̃H(ẽ1), λ̃H(ẽ2)) does not belong
to the independence relation I. On the other hand, in Du, ẽ′1 and ẽ′2 belong to a square, and

thus they correspond to two concurrent events. Consequently, the pair (λ̃H(ẽ′1), λ̃H(ẽ′2)) belongs

to I. Since λ̃H(ẽ1) = λ̃H(ẽ′1) and λ̃H(ẽ2) = λ̃H(ẽ′2), we have a contradiction.
Conversely, suppose that Y is a finite special NPC complex. We define the independence

relation I ⊆ H×H as follows: (H1, H2) ∈ I if and only if the hyperplanes H1 and H2 intersect.
From its definition, the binary relation I is symmetric. Since no hyperplane of Y self-intersects,
I is also irreflexive, and thus (H, I) is a finite trace alphabet.

Consider an admissible orientation o of Y , a vertex ṽ ∈ V (Ỹ ), a covering map ϕ : Ỹ → Y

and consider the principal filter D = (Fõ(ṽ, Ỹ (1)),≺õ). By Proposition 4.3, D is the domain of
a regular event structure E . As explained in Subsection 3.3, the events of E are the hyperplanes

of D. Hyperplanes H̃ and H̃ ′ are concurrent if and only if they cross, and H̃ ≤ H̃ ′ if and only

if H̃ = H̃ ′ or H̃ separates H̃ ′ from v. The events H̃ and H̃ ′ are in conflict iff H̃ and H̃ ′ do not

cross and neither separates the other from v. Note that this implies that H̃ l H̃ ′ iff H̃ separate

H̃ ′ from v and H̃ and H̃ ′ osculate, and H̃#µH̃
′ iff H̃ and H̃ ′ osculate and neither of H̃ and H̃ ′

separates the other from v. Notice also that each hyperplane H̃ ′ of D is the intersection of a

hyperplane H̃ of Ỹ with D.

We show that λ̃H is a regular trace labeling of D with the trace alphabet (H, I). First note
that if ẽ1, ẽ2 are opposite edges of a square of D, then e1 = ϕ(ẽ1) and e2 = ϕ(ẽ2) are opposite

edges of a square of Y and thus λ̃H(ẽ1) = λH(e1) = λH(e2) = λ̃H(ẽ2). Consequently, λ̃H is
a labeling of the edges of D. From Lemma 4.2, D has at most |V (Y )| isomorphism types of

colored principal filters. Therefore, in order to show that λ̃H is a regular trace labeling of D,

we just need to show that λ̃H satisfies the conditions (LES1),(LES2), and (LES3).

For any two hyperplanes H̃1, H̃2 in minimal conflict in D, there exist an edge ẽ1 dual to H̃1

and an edge ẽ2 dual to H̃2 such that ẽ1 and ẽ2 have the same source ũ. Note that since H̃1 and

H̃2 are in conflict, ẽ1 and ẽ2 do not belong to a common square of D. Moreover, if ẽ1 and ẽ2
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are in a square Q̃ in Ỹ , then since there is a directed path from ṽ to ũ, and since ũ is the source

of Q̃, all vertices of Q̃ are in (Fõ(ṽ, Ỹ (1)),≺õ) = D. Consequently, the hyperplane H̃1 and H̃2

osculate at (ũ, ẽ1, ẽ2) in Ỹ . Let u = ϕ(ũ), e1 = ϕ(ẽ1), and e2 = ϕ(ẽ2), and note that u is the
source of e1 and e2. Let H1 and H2 be the hyperplanes of Y that are respectively dual to e1
and e2. Since ϕ is a covering map, e1 and e2 do not belong to a common square. Consequently,
H1 and H2 osculate at (u, e1, e2). If H1 = H2, H1 directly self-osculates at (u, e1, e2), which

is impossible because Y is special. Consequently, λ̃H(ẽ1) = λH(e1) = H1 is different from

λ̃H(ẽ2) = λH(e2) = H2, establishing (LES1). Moreover, since no two hyperplanes of Y inter-
osculate, we know that H1 and H2 do not intersect, and thus (H1, H2) /∈ I, establishing (LES2)

when H̃1#µH̃2.

Suppose now that H̃1 l H̃2 in D. There exist an edge ẽ1 dual to H̃1 and an edge ẽ2 dual to

H̃2 such that the sink ũ of ẽ1 is the source of ẽ2. Since H̃1 separates H̃2 from ṽ in D, H̃1 also

separates H̃2 from ṽ in Ỹ . Consequently, ẽ1 and ẽ2 do not belong to a common square of Ỹ and

the hyperplanes H̃1 and H̃2 osculate at (ũ, ẽ1, ẽ2). Let u = ϕ(ũ), e1 = ϕ(ẽ1), and e2 = ϕ(ẽ2),
and note that u is the sink of e1 and the source of e2. Let H1 and H2 be the hyperplanes of Y
that are respectively dual to e1 and e2. Since ϕ is a covering map, e1 and e2 do not belong to
a common square. Consequently, H1 and H2 osculate at (u, e1, e2). If H1 = H2, then since I is
irreflexive, (H1, H1) /∈ I. If H1 6= H2, since no two hyperplanes of Y inter-osculate, we know

that H1 and H2 do not intersect, and thus (H1, H2) /∈ I, establishing (LES2) when H̃1 l H̃2.

We prove (LES3) by contraposition. Consider two hyperplanes H̃1, H̃2 that are concurrent,

i.e., they intersect in D. Since H̃1 and H̃2 intersect in Ỹ , there exists a square Q̃ containing two

consecutive edges ẽ1, ẽ2 that are respectively dual to H̃1, H̃2. Let H1 and H2 be the hyperplanes

of Y that are respectively dual to e1 = ϕ(ẽ1) and e2 = ϕ(ẽ2). Note that λ̃H(ẽ1) = H1 and

λ̃H(ẽ2) = H2. Since ϕ is a covering map, e1 and e2 belong to a square in Y . Then H1 and H2

intersect, and therefore (H1, H2) ∈ I, establishing (LES3). �

A finite NPC complex X is called virtually special [25, 26] if X admits a finite special cover,
i.e., there exists a finite special NPC complex Y and a covering map ϕ : Y → X. We will call
a strongly regular event structure E = (E,≤,#) and its domain D(E) cover-special if D(E) is
isomorphic to a principal filter of the universal cover of some virtually special complex with an
admissible orientation.

Theorem 5.2. Any cover-special event structure E admits a regular trace labelling, i.e., Thia-
garajan’s conjecture is true for cover-special event structures.

Proof. Let D = D(E) be the domain of E and suppose that D is the principal filter D =

(Fõ(ṽ, X̃(1)),≺õ) of (X̃, õ) for a virtually special complex X and an admissible orientation o of
its edges. Let Y be a finite special cover of X and let ϕ : Y → X be a covering map. Let o′ be
the orientation of the edges of Y obtained from o via ϕ. Note that (X, o) and (Y, o′) have the

same universal cover (X̃, õ) = (Ỹ , õ′)

In particular, the principal filter D = (Fõ(ṽ, X̃(1)),≺õ) of (X̃, õ) is the principal filter

(Fõ′(ṽ, Ỹ (1)),≺õ′) of (Ỹ , õ′). Since Y is finite and special, by Proposition 5.1 there exists an

independence relation I on the hyperplanes H = H(Y ) of Y such that the canonical labeling λ̃H
of D = (Fõ′(ṽ, Ỹ (1)),≺õ′) is a regular trace labeling with the trace alphabet (H, I). Therefore,
Thiagarajan’s conjecture holds for the event domain D. �

5.3. Strongly hyperbolic regular event structures. In this subsection, we show that Thi-
agarajan’s conjecture holds for a large and natural class of strongly regular event structures,
namely those arising from hyperbolic CAT(0) cube complexes. It turns out that strongly hy-
perbolic regular event structures are cover-special. This is a consequence of the solution by
Agol [1] of the virtual Haken conjecture for hyperbolic 3-manifolds. This breakthrough result of
Agol is based on the theory of special cube complexes developed by Haglund and Wise [25,26].

Similarly to nonpositive curvature, Gromov hyperbolicity is defined in metric terms. However,
as for the CAT(0) property, the hyperbolicity of a CAT(0) cube complex can be expressed
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in a purely combinatorial way. A metric space (X, d) is δ-hyperbolic [14, 22] if for any four
points v, w, x, y of X, the two largest of the distance sums d(v, w) + d(x, y), d(v, x) + d(w, y),
d(v, y) + d(w, x) differ by at most 2δ ≥ 0. A graph G = (X,E) endowed with its standard
graph-distance dG is δ-hyperbolic if the metric space (X, dG) is δ-hyperbolic. In case of geodesic
metric spaces and graphs, δ-hyperbolicity can be defined in other equivalent ways, e.g., via
thin or slim geodesic triangles. For example, a geodesic metric space (X, d) is 2δ-hyperbolic, if
all geodesic triangles ∆(x, y, z) of (X, d) are δ-slim, i.e., for any point u on the side [x, y] the
distance from u to [x, z] ∪ [z, y] is at most δ. This definition expresses the negative curvature
of a geodesic metric space. A metric space (X, d) is hyperbolic if there exists δ < ∞ such that
(X, d) is δ-hyperbolic. In case of median graphs, i.e., of 1-skeletons of CAT(0) cube complexes,
the hyperbolicity can be characterized in the following way:

Lemma 5.3 ([19,23]). Let X be a CAT(0) cube complex. Then its 1-skeleton X(1) is hyperbolic
if and only if all isometrically embedded square grids are uniformly bounded.

We call an event structure E = (E,≤,#) and its domain D(E) hyperbolic if D(E) is isomorphic
to a principal filter of a directed CAT(0) cube complex, whose 1-skeleton is hyperbolic. We call
an event structure E = (E,≤,#) and its domain D(E) strongly hyperbolic regular if there exists

a finite directed NPC complex (X, o) such that X̃ is hyperbolic and D is a principal filter of

(X̃(1), õ). Note that an event structure can be strongly regular and hyperbolic without being
strongly regular hyperbolic (see Remark 7.2).

Hyperbolic CAT(0) cube complexes with uniformly bounded degrees have several strong and
nice properties. It was shown in [24] that such CAT(0) cube complexes can be isometrically
embedded into the Cartesian product of finitely many trees. Analogously to the nice labeling
conjecture of [39], a similar result does not hold for general CAT(0) cube complexes of uniformly
bounded degrees [20]. Modifying the arguments of [24] it can be shown that hyperbolic event
structures with bounded degrees admit finite nice labelings (these labelings are not necessarily
regular). Again this does not hold for general event structures (see Subsection 3.4).

The main result of this section is based on the following very deep and important result of
Agol [1], following much work of Haglund and Wise [25,26]. Agol’s original result is formulated
in group-theoretical terms. Its following reformulation (see, for example, [12, Theorem 6.7]) in
the particular case of finite NPC complexes is particularly appropriate for our purposes:

Theorem 5.4 ([1]). Let X be a finite nonpositively curved cube complex. If the fundamental
group π1(X) of X is hyperbolic, then X is virtually special.

The condition that π1(X) is hyperbolic is equivalent to the fact that the universal cover X̃
of X is hyperbolic. Indeed, it is well-known that π1(X) acts properly by deck transformations

on X̃; see [27] and [14, Remark 8.3(2)]. Since X is finite, this action of π1(X) on X̃ is cocom-

pact. Consequently, π1(X) acts properly and cocompactly by isometries on X̃. By Švarc-Milnor

lemma [14, Proposition 8.19], the Cayley graph of π1(X) is quasi-isometric to X̃. Since hyper-
bolicity is an invariant of quasi-isometry [14, Theorem 1.9], π1(X) is hyperbolic if and only if

X̃ is hyperbolic. Therefore, any finite NPC complex X that has a hyperbolic universal cover is
virtually special.

Theorem 5.5. Any strongly hyperbolic regular event structure admits a regular trace labeling,
i.e., Thiagarajan’s conjecture is true for strongly hyperbolic regular event structures.

Proof. Let D = D(E) be the domain of a strongly hyperbolic regular event structure E . Con-

sider a finite NPC complex (X, o) such that X̃ is hyperbolic and D is the principal filter

(Fõ(ṽ, X̃(1)),≺õ) for some ṽ ∈ X̃. By Theorem 5.4 of Agol, finite NPC complexes with hy-
perbolic universal covers are virtually special, thus E is a cover-special event structure. By
Theorem 5.2, Thiagarajan’s conjecture is true for E . �
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Figure 4. The 6 squares defining the complex X

6. Wise’s event domain (W̃ṽ,≺õ∗)

In this section, we construct the domain (W̃ṽ,≺õ∗) of a regular event structure (with bounded
\-cliques) that does not admit a regular nice labeling. To do so, we start with a directed colored
CSC (complete square complex) X introduced by Wise [51]. Recall that in such complexes, the
edges are classified vertical or horizontal, each edge has an orientation and a color, and any two
incident edges belong to a square.

6.1. Wise’s square complex X and its universal cover X̃. The complex X consists of six
squares as indicated in Figure 4 (reproducing Figure 3 of [51]). Each square has two vertical
and two horizontal edges. The horizontal edges are oriented from left to right and vertical
edges from bottom to top. Denote this orientation of edges by o. The vertical edges of squares
are colored white, grey, and black and denoted a, b, and c, respectively. The horizontal edges
of squares are colored by single or double arrow, and denoted x and y, respectively. The six
squares are glued together by identifying edges of the same color and respecting the directions
to obtain the square complex X. Note that X has a unique vertex, five edges, and six squares.
It can be directly checked that X is a complete square complex, and consequently (X, o) is a
directed NPC complex. Let HX denote the subcomplex of X consisting of the 2 horizontal
edges and let VX denote the subcomplex of X consisting of the 3 vertical edges.

The universal cover H̃X of HX is the 4-regular infinite tree F4. Its edges inherit the orien-

tations from their images in HX : each vertex of H̃X has two incoming and two outgoing arcs.

Analogously, the universal cover ṼX of VX is the 6-regular infinite tree F6 where each vertex

has three incoming and three outgoing arcs. Let ṽ1 be any vertex of H̃X . Then the principal
filter of ṽ1 is the infinite binary tree T2 rooted at ṽ1: all its vertices except ṽ1 have one incoming
and two outgoing arcs, while ṽ1 has two outgoing arcs and no incoming arc. Analogously, the

principal filter of any vertex ṽ2 in the ordered set ṼX is the infinite ternary tree T3 rooted at
ṽ2.

Let X̃ be the universal cover of X and let ϕ : X̃→ X be a covering map. Let X̃ denote the

support of X̃. Since X is a CSC, by [51, Theorem 3.8], X̃ is the Cartesian product F4 × F6 of

the trees F4 and F6. The edges of X̃ are colored and oriented as their images in X, and are

also classified as horizontal or vertical edges. The squares of X̃ are oriented as their images in

X, thus two opposite edges of the same square of X̃ have the same direction. This implies that

all classes of parallel edges of X̃ are oriented in the same direction. Denote this orientation of

the edges of X̃ by õ. The 1-skeleton X̃(1) of X̃ together with õ is a directed median graph. Let

ṽ = (ṽ1, ṽ2) be any vertex of X̃, where ṽ1 and ṽ2 are the coordinates of ṽ in the trees F4 and

F6. Then the principal filter Fõ(ṽ, X̃(1)) of ṽ is the Cartesian product of the principal filters of
ṽ1 in F4 and of ṽ2 in F6, i.e., is isomorphic to T2 × T3.

By Lemma 4.1, the orientation of the edges of Fõ(ṽ, X̃(1)) corresponds to the canonical

basepoint orientation of Fõ(ṽ, X̃(1)) with ṽ as the basepoint. Moreover, by Proposition 4.3,

Fõ(ṽ, X̃(1)) is the domain of a regular event structure with one isomorphism type of principal
filters. We summarize this in the following result:

Lemma 6.1. For any vertex ṽ of X̃, Fõ(ṽ, X̃(1)) is the domain of a regular event structure with
one isomorphism class of futures.
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Figure 5. Part of the plane Π++
yc appearing in X̃

6.2. Aperiodicity of X̃. We recall here the main properties of X̃ established in [51, Section

5]. Let ṽ = (ṽ1, ṽ2) be an arbitrary vertex of X̃, where ṽ1 and ṽ2 are defined as before. From
the definition of the covering map, the loop of X colored y gives rise to a bi-infinite horizontal

path Py of X̃(1) passing via ṽ and whose all edges are colored y and are directed from left to

right. Analogously, there exists a bi-infinite vertical path Pc of X̃(1) passing via ṽ and whose
all edges are colored c and are directed from bottom to top.

The projection of Py on the horizontal factor F4 is a bi-infinite path P h of F4 passing via ṽ1.
Analogously, the projection of Pc on the vertical factor F6 is a bi-infinite path P v of F6 passing

via ṽ2. Consequently, the convex hull conv(Py ∪ Pc) of Py ∪ Pc in the graph X̃(1) is isomorphic

to the Cartesian product of P h × P v of the paths P h and P v. Therefore the subcomplex of X̃
spanned by conv(Py ∪ Pc) is a directed plane Πyc tiled into squares (recall that each square is
of one of 6 types and its sides are colored by the letters a, b, c, x, y), see Figure 5. Wise showed
that the plane Πyc is not tiled periodically by the preimages of the squares of X.

Theorem 6.2 ([51, Theorem 5.3]). The plane Πyc tiled into squares is not doubly periodic.

In our counterexample we will use the following result of [51] that was used to show that the
plane Πyc is not tiled periodically by the preimages of the squares of X. Denote by P+

y the (di-
rected) subpath of Py having ṽ as a source (this is a one-infinite horizontal path). Analogously,
let P+

c be the (directed) subpath of Pc having ṽ as a source. The convex hull of P+
y ∪ P+

c is a

quarter of the plane Πyc, which we denote by Π++
yc . Any shortest path in X̃(1) from ṽ to a vertex

ũ ∈ Π++
yc can be viewed as a word in the alphabet A = {a, b, c, x, y}. For an integer n ≥ 0,

denote by yn the horizontal subpath of P+
y beginning at ṽ and having length n. Analogously,

for an integer m ≥ 0, denote by cm the vertical subpath of P+
c beginning at ṽ and having length

m. Let Mn(m) denote the horizontal path of Π++
yc of length n beginning at the endpoint of the

vertical path cm. Mn(m) determines a word which is the label of the side opposite to yn in the
rectangle which is the convex hull of yn and cm (see Figure 5). Let Mn(m) also denote this
corresponding word.

Proposition 6.3 ([51, Proposition 5.9]). For each n, the words {Mn(m) : 0 ≤ m ≤ 2n− 1} are
all distinct, and thus, every positive word in x and y of length n is Mn(m) for some m.

This proposition is called in [51] “period doubling”. It immediately establishes Theorem 6.2
because it shows that the period of the infinite vertical strip of Π++

yc of width n and bounded

on the left by the path P+
c has period 2n. Alternatively, every positive word in x and y appears

in Π++
yc , and thus Πyc cannot be periodic.
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Figure 6. A square of X and the corresponding subcomplexes in (βX, o′) and (W, o∗)

6.3. The square complex W and its universal cover W̃ . Let βX denote the first barycen-
tric subdivision of X: each square C of X is subdivided into four squares C1, C2, C3, C4 by
adding a middle vertex to each edge of C and connecting it to the center of C by an edge.
This way each edge e of C is subdivided into two edges e1, e2, which inherit the orientation
and the color of e. The four edges connecting the middle vertices of the edges of C to the
center of C are oriented from left to right and from bottom to top (see the middle figure of
Figure 6). Denote the resulting orientation by o′. This way, (βX, o′) is a directed and colored

square complex. Again, denote by βX the support of βX. The universal cover β̃X of βX is
the Cartesian product βF4 × βF6 of the trees βF4 and βF6, where βF4 is the first barycentric

subdivision of F4 and βF6 is the first barycentric subdivision of F6. Additionally, (β̃X, õ′) is a

directed CAT(0) square complex. We assign a type to each vertex of β̃X: the preimage of the
unique vertex of X is of type 0 and is called a 0-vertex, the preimages of the middles of edges
of X are of type 1 and are called 1-vertices, and the preimages of centers of squares of X are of
type 2 and are called 2-vertices.

To encode the colors of the edges of X, we introduce our central object, the square complex
W (whose edges are no longer colored). Let A = {a, b, c, x, y} and let r : A → {1, 2, 3, 4, 5} be
a bijective map. The complex W is obtained from βX by adding to each 1-vertex z of βX a
path Rz of length r(α) if z is the middle of an edge colored α ∈ A in X. The path Rz has one
end at z (called the root of Rz) and z is the unique common vertex of Rz and βX (we call such
added paths Rz tips).

The square complex W has 27 vertices: the unique vertex of X, the 6 vertices which are the
barycenters of the original squares, 5 vertices which are the barycenters of the original edges
of X, and 15 vertices which are new vertices lying on tips. The complex W has 49 edges: 10
corresponding to the 5 original edges that have been subdivided, 24 connecting the barycenters
of the original squares to the barycenters of the original edges and 15 forming the tips. The
complex W has 24 squares: 4 for each original square.

Denote by o∗ the orientation of the edges of W defined as follows: the edges of βX are oriented
as in (βX, o′) and the edges of tips are oriented away from their roots (see the rightmost figure
of Figure 6 for the encoding of the last square of Figure 4). As a result, we obtain a finite
directed NPC square complex (W, o∗).

Consider the universal cover W̃ of W . It can be viewed as the complex β̃X with a path

of length r(α) added to each 1-vertex which encodes an edge of X̃ of color α ∈ A. We say

that the vertices of W̃ lying only on tips are of type 3 and they are called 3-vertices. Let õ∗

denote the orientation of the edges of W̃ induced by the orientation o∗ of W . Then (W̃ , õ∗) is
a directed CAT(0) square complex. Since W is finite, by Proposition 4.3, the directed median

graph (W̃ (1), õ∗) has a finite number of isomorphisms types of principal filters Fõ∗(z̃, W̃ (1)).

Let ṽ be any 0-vertex of W̃ . Denote by W̃ṽ the principal filter Fõ∗(ṽ, W̃ (1)) of ṽ in (W̃ (1),≺õ∗).
By Proposition 4.3, W̃ṽ together with the partial order ≺õ∗ is the domain of a regular event

structure, which we call Wise’s event domain. Since vertices of different types of W̃ are incident

to a different number of outgoing squares, any isomorphism between two filters of (W̃ṽ,≺õ∗)
preserves the types of vertices. We summarize all this in the following:
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Proposition 6.4. (W̃ṽ,≺õ∗) is the domain of a regular event structure. Any isomorphism

between any two filters of (W̃ṽ,≺õ∗) preserves the types of vertices.

6.4. (W̃ṽ,≺õ∗) does not have a regular nice labeling. In this subsection we prove that the
event structure associated with Wise’s regular event domain is a counterexample to Thiagara-
jan’s conjecture.

Theorem 6.5. (W̃ṽ,≺õ∗) does not admit a regular nice labeling. Consequently, Conjectures 1.1
and 2.2 are false.

Proof. Since W̃ṽ is the principal filter of a 0-vertex ṽ, W̃ṽ contains all vertices of X̃ located in

the quarter of plane Π++
yc of X̃, in particular it contains the vertices of the paths P+

c and P+
y .

Notice also that W̃ṽ contains the barycenters and the tips corresponding to the edges of Π++
yc .

Suppose by way of contradiction that W̃ṽ has a regular nice labeling λ. Since W̃ṽ has only
a finite number of isomorphism types of labeled filters, the vertical path P+

c contains two 0-
vertices, z̃′ and z̃′′, which have isomorphic labeled principal filters. Let z̃′ be the end of the
vertical subpath ck of P+

c and z̃′′ be the end of the vertical subpath cm of P+
c , and suppose

without loss of generality that k < m. Let n > 0 be a positive integer such that m ≤ 2n − 1.
Consider the horizontal convex paths Mn(k) and Mn(m) of Π++

yc of length n beginning at the
vertices z̃′ and z̃′′, respectively. For any 0 ≤ i ≤ n, denote by z̃k,i the ith vertex of Mn(k)
(in particular, z̃k,0 = z̃′). Analogously, denote by z̃m,i the ith vertex of Mn(m) (in particular,

z̃m,0 = z̃′′). In W̃ṽ, the paths Mn(k) and Mn(m) give rise to two convex horizontal paths M∗n(k)
and M∗n(m) obtained from Mn(k) and Mn(m) by subdividing their edges. Denote by ũk,i the

unique common neighbor of z̃k,i and z̃k,i+1, 0 ≤ i < n, in M∗n(k) (and in W̃ (1)). Analogously,
denote by ũm,i the unique common neighbor of z̃m,i and z̃m,i+1, 0 ≤ i < n (see Figure 7).

The paths M∗n(k) and M∗n(m) belong to the principal filters Fõ∗(z̃′, W̃ (1)) and Fõ∗(z̃′′, W̃ (1)),
respectively.

By Proposition 6.3, the words Mn(k) and Mn(m) are different. Let f be an isomorphism

between the filters Fõ∗(z̃k,0, W̃ (1)) and Fõ∗(z̃m,0, W̃ (1)). Since the words Mn(k) and Mn(m) are

different, from the choice of the lengths of tips in the complexes W and W̃ it follows that f
cannot map the path M∗n(k) to the path M∗n(m) by a vertical translation, i.e., there exists an
index 0 ≤ j < n such that f(z̃k,j+1) 6= z̃m,j+1; let i be the smallest such index. Set z̃ := f(z̃k,i+1)
and ũ := f(ũk,i). Since f preserves the types of vertices, z̃ is a 0-vertex and ũ is a 1-vertex.
Since f maps a convex path M∗n(k) to a convex path, ũ is the unique common neighbor of z̃m,i
and z̃. Since each 1-vertex is the barycenter of a unique edge of X̃ and z̃ 6= z̃m,i+1, we deduce
that ũ 6= ũm,i. The edge z̃k,iũk,i is directed from z̃k,i to ũk,i. Analogously the edges z̃m,iũm,i and
z̃m,iũ are directed from z̃m,i to ũm,i and ũ, respectively. Since z̃k,iũk,i and z̃m,iũm,i are parallel
edges, they define the same event and therefore λ(z̃k,iũk,i) = λ(z̃m,iũm,i). On the other hand,
since f maps the edge z̃k,iũk,i to the edge z̃m,iũ and since the map f preserves the labels, we
have λ(z̃k,iũk,i) = λ(z̃m,iũ). As a result, z̃m,i has two outgoing edges, z̃m,iũm,i and z̃m,iũ, having
the same label, contrary to the assumption that λ is a nice labeling. This contradiction shows

that (W̃ṽ,≺õ∗) does not admit a regular nice labeling. By Proposition 4.3, (W̃ṽ,≺õ∗) is the
domain of a regular event structure, establishing that Conjectures 1.1 and 2.2 are false. This
concludes the proof of the theorem. �

6.5. (W̃ṽ,≺õ∗) has bounded \-cliques. In this section, we show that our counterexample
to Thiagarajan’s conjecture also provides a counterexample to Conjecture 2.3 (and thus to
Conjecture 1.2) of Badouel et al [5]. In [5], the conjecture was stated for conflict event domains
that are more general than the domain of event structures we consider in this paper. However,
we show in the next proposition that their conjecture does not hold even for the domains of
event structures.

Proposition 6.6. Wise’s event domain (W̃ṽ,≺õ∗) has bounded \-cliques. Consequently,

(W̃ṽ,≺õ∗) is a counterexample to Conjectures 1.2 and 2.3.
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ũm,0 z̃m,1 ũm,iz̃m,i z̃m,nz̃m,i+1
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Figure 7. To the proof of Theorem 6.5

Proof. By Proposition 4.3, (W̃ṽ,≺õ∗) is the domain of a regular event structure. Recall that

each event corresponds to a class of parallel edges of W̃
(1)
ṽ . We refer to the events of (W̃ṽ,≺∗õ∗)

as vertical, horizontal, and tip-events depending of the type of edges from their parallelism class.

Claim. If e1\e2 and e1 and e2 are either both vertical or both horizontal, then e1#µe2.

Proof. Without loss of generality, assume that both events e1 and e2 are vertical, and note that
e1 and e2 cannot be concurrent. Suppose by way of contradiction that e1\(3)e2. Then there
exists an event e3 such that e1‖e3, e2#µe3 and e3 is co-initial with e1 and e2 at two different
configurations. Since e1‖e3 and e1 is vertical, the event e3 cannot be vertical or a tip-event.

Hence e3 is horizontal. From the definition of W̃ṽ it follows that the horizontal and vertical edges
come from the Cartesian product of two trees. Therefore any pair of horizontal and vertical

events defines a square of W̃ṽ, thus they are concurrent. This contradicts the fact that e3#µe2
and establishes the claim. �

Let Q be a \-clique of W̃ṽ. We asserts that the size of Q is at most 11. Suppose that |Q| ≥ 12.

From the definition of (W̃ , õ∗) it follows that (W̃ṽ,≺õ∗) has degree 5: the out-degree of any 0-
vertex is 5, the out-degree of any 1-vertex is either 4 or 5, the out-degree of any 2-vertex is 2,
and the out-degree of any 3-vertex is either 0 or 1. This implies that the maximum number
of events of Q that are pairwise concurrent or in minimal conflict is 5. From the definition

of (W̃ṽ,≺õ∗) it also follows that two tip-events cannot be concurrent or in minimal conflict.
Also from condition (3) in the definition of \ it immediately follows that Q cannot contain two
tip-events e1 and e2 such that e1\(3)e2. Indeed, if this happen, then there exists an event e3
such that e1‖e3, thus e1 and e3 cannot be tip-events. Consequently, the \-clique Q contains at
most one tip-event. Since |Q| ≥ 12, Q contains at least 6 vertical or horizontal events, say Q
contains a subset Q′ of 6 vertical events. Since all events of Q′ are vertical, they are not pairwise
concurrent. Since Q′ is a \-clique and at most 5 events of Q′ can be pairwise in minimal conflict,
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this implies that Q′ must contain two events e1, e2 such that e1\(3)e2. But this is impossible by

the claim. Therefore (W̃ṽ,≺õ∗) is a regular conflict event domain with bounded \-cliques and

bounded degree. Since by Theorem 6.5 (W̃ṽ,≺õ∗) does not admit a regular nice labeling, this
shows that Conjecture 2.3 is false. �

Remark 6.7. In the proof of Proposition 6.6, we use the fact that any pair of horizontal
and vertical events are concurrent. This property holds because X is a CSC (complete square
complex). Note that the fact that X is a CSC is not an essential property of X in the proof of
Theorem 6.5.

Consequently, if we want to adapt the proof of Theorem 6.5 to other square complexes to find
other counterexamples to Thiagarajan’s Conjecture 1.1, it may be sufficient to consider V H-
complexes (see Section 7), but in order to use the arguments in the proof of Proposition 6.6
to find other counterexamples to Badouel et al.’s Conjecture 1.2, we need to consider complete
square complexes.

7. Aperiodic tilings and regular event structures

Our counterexample (W̃ṽ,≺õ∗) of a regular 2-dimensional event domain without a regular

labeling heavily uses the fact that the universal cover X̃ of Wise’s complex X [51] contains a
particular aperiodic tiled plane (that is called antitorus by Wise). In this section, we show
that the relationship between the existence of aperiodic planes and nonexistence of regular
labelings is more general. Namely, we explain how to obtain other counterexamples from 4-way
deterministic aperiodic tile sets.

Tiles (or Wang-tiles) are unit squares with colored edges. The edges of a Wang tile are
called top (or North), right (or East), bottom (or South) and left (or West) edges in a natural
way. A tile set T is a finite collection of Wang-tiles, placed with their edges horizontal and
vertical. A tiling is a mapping f : Z2 → T that assigns a tile to each integer lattice point of the
plane. A tiling f is valid if every two adjacent tiles have the same color on their common edge.
Note that a tile may not be rotated or flipped, i.e., each tile has a bottom-top and left-right
orientation. A tiling f is periodic with period (a, b) ∈ Z2 \ {(0, 0)} if for every (x, y) ∈ Z2,
f(x, y) = f(x+ a, y + b). If there exists a valid periodic tiling with tiles of T , then there exists
a valid doubly periodic tiling with tiles of T [37], i.e., a valid tiling f and two integers a, b > 0
such that f(x, y) = f(x+a, y) = f(x, y+b) for every (x, y) ∈ Z2. A tile set T is called aperiodic
if there exists a valid tiling with tiles of T , and there does not exist any periodic valid tiling
with tiles of T .

Let T = {t1, . . . , tn} be a tile set. We consider each tile ti as a unit square whose edges are
directed and colored. Suppose that each square ti has two vertical and two horizontal edges and
suppose that the horizontal and the vertical edges of all squares are colored differently, i.e., the
set of colors can be partitioned into horizontal colors and vertical colors. The horizontal edges
are directed from left to right and the vertical edges are directed from bottom to top.

A Wang tile set is said to be NW-deterministic [29], if within the tile set there does not
exist two different tiles that have the same colors on their top and left edges. NE-deterministic,
SW-deterministic, and SE-deterministic tile sets are defined analogously. A Wang tile set is
4-way deterministic [29] if it is NW-, NE-, SW-, and SE-deterministic. Kari and Papasoglu [29]
presented a 4-way deterministic aperiodic tile set TKP .

Given a 4-way deterministic set of tiles T , let X(T ) = (X(T ), o, ν) be the finite square
complex obtained by identifying all the vertices and gluing together the squares of T along
the sides which have the same color respecting their orientation. Then X(T ) is a V H-complex

that has a unique vertex. Consequently, the universal cover X̃(T ) of X(T ) is a CAT(0) V H-
complex. Denote by W (T ) the finite directed NPC complex derived from X(T ) in the same
way as the complex W was derived from Wise’s complex X in Subsection 6.3 (taking the first
barycentric subdivision and adding tips of different lengths to encode the different colors). Let

(W̃ (T )ṽ,≺õ∗) denote the 2-dimensional event domain derived from X̃(T ) in the same way as

(W̃ṽ,≺õ∗) was derived from X̃. Since (W̃ (T )ṽ,≺õ∗) comes from the universal cover of the finite
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directed NPC complex W (T ), (W̃ (T )ṽ,≺õ∗) is a strongly regular event structure. The following
lemma establishes a connection between the existence of valid tilings for 4-way deterministic tile
sets and the existence of directed planes in the universal covers of the derived V H-complexes.

Lemma 7.1. For a 4-way deterministic tile set T , the following conditions are equivalent:

(i) there exists a valid tiling with the tiles of T ;

(ii) the universal cover X̃(T ) of the square complex X(T ) contains directed planes;

(iii) the strongly regular domain (W̃ (T )ṽ,≺õ∗) is not hyperbolic.

Proof. The implication (i) ⇒ (ii) is trivial and the implication (ii) ⇒ (iii) follows from

Lemma 5.3. Suppose now that (W̃ (T )ṽ,≺õ∗)) is not hyperbolic. Then by Lemma 5.3, for

any integer k, the V H-complex W̃ (T )ṽ contains a square grid of size 2k × 2k. The following
claim implies that in such a grid, we can find a k × k directed square grid in the directed

V H-complex (W̃ (T )ṽ, õ
∗)).

Claim. For any vertical (respectively, horizontal) edge ẽ going from ũ to w̃ and for any two

squares Q1, Q2 in (W̃ (T )ṽ, õ
∗)) intersecting on ẽ, ũ cannot be the sink of both horizontal (re-

spectively, vertical) edges of Q1 and Q2 incident to ũ.

Proof. By way of contradiction, assume that u is the sink of the horizontal edges ẽ1 = ũ1ũ of
Q1 and ẽ2 = ũ2ũ of Q2. By Lemma 4.1, ũ1, ũ2 ∈ I(ṽ, ũ) and the median m̃ of ũ1, ũ2, and ṽ is

adjacent to ũ1, ũ2 and at distance 2 from ũ. Consequently, ũũ1m̃ũ2 is a square of W̃ (T )ṽ and

thus of W̃ (T ) but since ũũ1 and ũũ2 are horizontal edges, this contradicts the fact that X̃(T )
is a V H-complex. �

Consequently, we can tile arbitrary large squares of the plane with the tiles of T . By a folklore
compactness result from tiling theory, this implies that we can find a valid tiling of the plane
with the tiles of T , concluding the proof of (iii)⇒ (i). �

Note that if T is a 4-way deterministic aperiodic tile set, all the directed planes of X̃(T ) are
tiled in an aperiodic way. In the case of the tile set of Wise [51] from Figure 4, the CAT(0)

square complex X̃ contains aperiodic directed planes but it also contains some periodic directed
planes.

Remark 7.2. As explained in [29, Section 4], the universal cover X̃(T ) of the complex X(T )
derived from a tile set T can contain periodic planes that are not directed. This may happen
even if T does not tile the plane or if T is an aperiodic tile set.

For these reasons, if T does not tile the plane, the directed CAT(0) complexes X̃(T ) and W̃ (T )

are not necessarily hyperbolic, even if all principal filters (W̃ṽ,≺õ∗) are hyperbolic domains.

We now explain how to derive a counterexample to Thiagarajan’s conjectures from any 4-way
deterministic aperiodic tile set.

Theorem 7.3. For any 4-way deterministic aperiodic tile set T , the NPC square complex

W (T ) is not virtually special and the 2-dimensional event domain (W̃ (T )ṽ,≺õ∗) does not admit
a regular nice labeling.

Proof. Consider a 4-way deterministic aperiodic tile set T and the associated NPC square

complexes X(T ) and W (T ). Since T tiles the plane, every vertex ṽ ∈ X̃(T ) is contained in a

directed colored plane Π of X̃(T ). Note that the support Π of Π is the product of a directed
path containing only horizontal edges and of a directed path containing only vertical edges.

Consequently, in the directed CAT(0) complex (W̃ (T ), õ∗), every 0-vertex ṽ is contained in a
directed plane Π∗ where Π∗ is the first barycentric subdivision of Π. Consequently, the directed

CAT(0) complex (W̃ (T )ṽ, õ
∗) contains a quarter of the directed plane Π∗ that we denote by

Π∗++. Note that Π∗++ is the barycentric subdivision of a quarter of plane Π++ of the directed
plane Π. Let P ∗H be the horizontal path of Π∗++ containing ṽ.



26 J. CHALOPIN AND V. CHEPOI

Suppose that (W̃ (T )ṽ,≺õ∗) admits a regular nice labeling λ. This implies that there ex-
ist two 0-vertices ỹ, ỹ′ ∈ V (P ∗H) that have isomorphic labeled principal filters. Let P ∗V
and P ′∗V be the vertical paths of Π∗++ containing respectively ỹ and ỹ′. Let P ∗V = (ỹ =
ỹ0, ũ0, ỹ1, ũ1, . . . , ỹj , ũj , . . .) and P ′∗V = (ỹ′ = ỹ′0, ũ

′
0, ỹ
′
1, ũ
′
1, . . . , ỹ

′
j , ũ
′
j . . .). Note that for every j,

ỹj and ỹ′j are 0-vertices while ũj and ũ′j are 1-vertices. Note that PV = (ỹ = ỹ0, ỹ1, . . . , ỹj , . . .)

and P ′V = (ỹ′ = ỹ′0, ỹ
′
1, . . . , ỹ

′
j , . . .) are paths of Π++.

Note that for any j, ỹj ũj and ỹ′j ũ
′
j are parallel edges as well as ũj ỹj+1 and ũ′j ỹ

′
j+1. Conse-

quently, λ(ỹj ũi) = λ(ỹ′j ũ
′
i) and λ(ũj ỹj+1) = λ(ũ′j ỹ

′
j+1). Since λ is a nice labeling (and thus is

deterministic), and since ỹ and ỹ′ have isomorphic labeled principal filters, one can easily show
by induction on j that for any j, ỹj and ỹ′j (respectively, ũj and ũ′j) have isomorphic labeled

principal filters. Consequently, for any j, the tips attached to ũj and ũ′j have the same length,

i.e., the edges ỹj ỹj+1 and ỹ′j ỹ
′
j+1 have the same color ν(ỹj ỹj+1) = ν(ỹ′j ỹ

′
j+1) in X̃(T ).

Since λ is a regular nice labeling of (W̃ (T )ṽ,≺õ∗), there exists 0 ≤ k < m such that ỹk
and ỹm have isomorphic labeled principal filters. Let P ∗k and P ∗m be the horizontal paths of
Π∗++ going respectively from ỹk to ỹ′k and from ỹm to ỹ′m. Let ` be the distance from ỹk
to ỹ′k in X̃(T ) and let P ∗k = (ỹk = ỹk,0, ũk,0, ỹk,1, ũk,1, . . . , ũk,`−1, ỹk,` = ỹ′k) and P ∗m = (ỹm =
ỹm,0, ũm,0, ỹm,1, ũm,1, . . . , ũm,`−1, ỹm,` = ỹ′m). Note that Pk = (ỹk = ỹk,0, ỹk,1, . . . , ỹk,` = ỹ′k) and
Pm = (ỹm = ỹm,0, ỹm,1, . . . , ỹm,` = ỹ′m) are paths of the plane Π. Using the same arguments as
for P ∗V and P ′∗V , one can show that for any 0 ≤ i ≤ ` − 1, the edges ỹk,j ỹk,j+1 and ỹm,j ỹm,j+1

have the same color ν(ỹk,j ỹk,j+1) = ν(ỹ′k,j ỹ
′
k,j+1) in X̃(T ).

Consider the rectangle R of Π with corners ỹk, ỹm, ỹ′m, and ỹ′k. For any k ≤ j < m,

ν(ỹj ỹj+1) = ν(ỹ′j ỹ
′
j+1) in X̃(T ), i.e., the same sequence of colors appears on both vertical sides

of R. Similarly, the same sequence of colors appears on both horizontal sides of the rectangle
R. Since we can tile the plane by using copies of R, it is possible to find a periodic tiling of
the plane using tiles of T . But this is impossible, since T is an aperiodic tile set. Consequently,

the 2-dimensional event domain (W̃ (T )ṽ,≺õ∗) does not admit a regular nice labeling, and by
Theorem 5.2, W (T ) is not virtually special. �

Using the tile set TKP of [29], Lukkarila [30] proved that for 4-way deterministic tile sets the
tiling problem is undecidable. An immediate consequence of this result and of Theorem 7.3 is
that there exists an infinite number of counterexamples to Conjecture 1.1.

Remark 7.4. Note that the V H-complex W (T ) derived from a 4-way deterministic tile set
T is not necessarily a CSC complex. Consequently, we cannot directly generalize the proof

of Proposition 6.6 to show that if T is aperiodic, then (W̃ (T )ṽ,≺õ∗) is a counterexample to
Conjecture 1.2 (see Remark 6.7).

8. Conclusions and open questions

8.1. Conclusions. In this paper, we presented an example of a regular event domain (W̃ṽ,≺õ∗)
with bounded degree and bounded \-cliques which does not admit a regular nice labeling,
providing a counterexample to Conjecture 1.1 of Thiagarajan [43, 44] and Conjecture 1.2 of
Badouel, Darondeau, and Raoult [5]. Furthermore, we show that this counterexample is not
singular and that, in fact, there exists an infinite number of counterexamples to Conjecture 1.1
arising from the 4-way deterministic aperiodic tile sets constructed by Kari-Papasoglu [29] and
Lukkarilla [30].

The event domain (W̃ṽ,≺õ∗) is a principal filter of a directed 2-dimensional CAT(0) cube
complex which is the universal cover of a finite directed colored CSC. At first, one can think
that after trees, such cube complexes are the next simplest event domains on which Conjectures
1.1 or 1.2 must be true. Moreover, it was shown in [20] that any 2-dimensional CAT(0) cube

complex of bounded degree admits a finite nice labeling. A finite nice labeling of W̃ṽ can be

also directly derived from the fact that W̃ is a product of two trees with attached tips of various
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Figure 8. If we factorize the domain on the left over the equivalence classes of
futures, we obtain the square complex on the right that is not an NPC square
complex

lengths at 1-vertices. However, it turned out that finding a regular nice labeling is not always
possible even in the case of 2-dimensional event domains (even those arising from CSC).

On the positive side, we proved that Thiagarajan’s conjecture is true for cover-special event
structures (recall that Nielsen and Thiagarajan established this conjecture for conflict-free event
structures and Badouel et al. proved it for context-free event structures). As a consequence of
deep results from geometric group theory by Agol and Haglund-Wise, we deduce that strongly
hyperbolic regular event structures are cover-special, showing that Thiagarajan’s conjecture
holds for a large and natural class of event domains.

We conclude the paper with a list of open problems, and we hope that some of these problems
will be solved positively.

8.2. Regular versus strongly regular event structures. In view of Proposition 4.3, any
strongly regular event structure is regular. One can ask if the converse holds (this was also
mentioned by a referee of a preliminary version of this paper [16]):

Question 8.1. Is any regular event structure strongly regular?

A natural way to derive a finite directed NPC complex from the domain D of a regular event
structure E is to factorize D over all equivalence classes of futures (i.e., to identify in a single
vertex all configurations having the same principal filter up to isomorphism). Unfortunately,
this construction does not preserve the non-positive curvature of D. For example, consider a
domain D as described on the left of Figure 8. In the figure, only a part of the domain is
described: one has to imagine that the dashed arrows lead to the remaining part of the domain
with the assumption that two nodes that have the same label have isomorphic principal filters.
When we factorize the domain D over the equivalence classes of futures, we obtain the square
complex on the left of Figure 8. Note that this square complex is not an NPC square complex
as it contains three squares that intersect in a vertex and that pairwise intersect on edges and
these three squares do not belong to a 3-cube.

This phenomenon does not arise if we consider V H-complexes and isomorphisms that preserve
vertical and horizontal edges. More formally, the domain D = D(E) of an event structure E is a
V H-domain if D is a V H-complex. In this case, E is called a V H-event structure and the events
of E are partitioned into vertical and horizontal events. A V H-event structure E is V H-regular
if E has finite degree and has a finite number of principal filters up to isomorphism preserving
vertical and horizontal events. In this case, the domain D(E) is called a regular V H-domain.

Even in this case, we do not know how to define formally a directed NPC square complex
according to the factorization mentioned above such that the original domain is a principal filter
of the universal cover of this complex.
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Question 8.2. Does any regular V H-domain occur as a principal filter of the universal cover
of some finite directed V H-complex?

8.3. Hyperbolic event domains. There are several natural reasons to investigate hyperbolic
event domains. Similarly to CAT(0) and NPC spaces, Gromov hyperbolicity is defined by a
metric condition. However, similarly to the CAT(0) property, the hyperbolicity of a CAT(0)
cube complex can be expressed in purely combinatorial way, by requiring that all isometric
square grids have bounded size. Theorem 5.5 establishes that Thiagarajan’s conjecture is true for
strongly hyperbolic regular event structures. We conjecture that this result can be generalized
in the following way:

Conjecture 8.3. Any strongly regular event structure with a hyperbolic domain admits a
regular nice labeling.

Conjecture 1.2 was positively solved by Badouel et al. [5] for context-free domains, which are
particular hyperbolic domains:

Lemma 8.4. Any context-free graph G = (V,E) is hyperbolic.

Proof. Let G = (V,E) be a graph of uniformly bounded degree and v be an arbitrary root
(basepoint) of G. Let Si = {x ∈ V : dG(v, x) = i} denote the sphere of radius i centered at
v. A connected component F of the subgraph of G induced by V \ Si(v) is called an end of
G. The vertices of F ∩ Si+1(v) are called frontier points and this set is denoted by ∆(F ) [33]
and called a cluster. Let Φ(G) denote the set of all ends of G, i.e., the connected subgraphs
of G(V \ Si(v)), when i ranges over the natural numbers. An end-isomorphism between two
ends F and F ′ of G is a mapping f between F and F ′ such that f is a graph isomorphism
and f maps ∆(F ) to ∆(F ′). Then G is called a context-free graph [33] if Φ(G) has only finitely
many isomorphism classes under end-isomorphisms. Since G has uniformly bounded degree,
each cluster ∆(F ) is finite. Moreover, from the definition of context-free graphs follows that a
context-free graph G has only finitely many isomorphism classes of clusters, thus there exists a
constant δ <∞ such that the diameter of any cluster of G is bounded by δ. By [19, Proposition
12] any graph G whose diameters of clusters is uniformly bounded by δ is δ-hyperbolic (in fact,
G is quasi-isometric to a tree). �

The following conjecture generalizes Theorem 5.5, the results of [5] in the case of event
structures considered in this paper, and Conjecture 8.3.

Conjecture 8.5. Conjectures 1.1 and 1.2 are true for hyperbolic event domains.

By Lemma 5.3, the 1-skeleton X(1) of a CAT(0) cube complex is hyperbolic if and only if all
isometrically embedded square grids are uniformly bounded. In the language of event structures,
an isometrically embedded n × n grid H corresponds to a conflict-free event structure defined
by 2n distinct events e1, . . . , en, f1, . . . , fn such that any two events ei, fj are concurrent and
any two events ei, ej or fi, fj are either causally dependent or concurrent. The isometricity
follows from the fact that the events e1, . . . , en, f1, . . . , fn are pairwise distinct. If this grid is
embedded in a hypercube, then any two events ei, ej or fi, fj are concurrent. On the other hand,
if e1l e2l · · ·l en and f1l f2l · · ·l fn, then this grid is isometrically embedded as a directed
flat square grid. A (directed) flat square grid of side n (respectively, a (directed) flat plane) of a
median graph G is a (directed) n× n-grid H (respectively, Z×Z-grid) isometrically embedded
in G such that any two squares of H sharing a common edge do not belong to a common 3-cube
of G. Note that if H is a flat square grid or a flat plane of a median graph G, then H is a
locally-convex subgraph of G, and by Lemma 3.2, H is a convex subgraph of G. This shows that
if G contains a flat square grid of size n, then the graph Γ‖ of the concurrent relation ‖ contains
an induced complete bipartite subgraph Kn,n. In a median graph not containing 3-cubes (i.e.,
1-skeletons of 2-dimensional CAT(0) cube complexes), each embedded grid or plane is flat. We
continue with a stronger version of Conjecture 8.5.

Conjecture 8.6. Conjectures 1.1 and 1.2 are true for event domains with uniformly bounded
sizes of directed flat square grids.
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A first step to solve this question could be to consider event structures such that the graph
Γ‖ does not admit induced complete bipartite subgraphs Kn,n with arbitrarily large n.

8.4. Confusion-free domains. As we noticed already, Conjecture 1.1 was positively solved
by Nielsen and Thiagarajan [36] for conflict-free event structures. A possible way to generalize
this result is to consider confusion-free domains.

Conflict-free event structures can be viewed as the event structures for which the minimal-
conflict graph Γ#µ is edgeless, i.e., each event of E is a connected component of Γ#µ . (Notice that
conflict-free domains are not hyperbolic because they may contain Zn for any n.) Therefore, one
way to extend the result of [36] is to consider more complex minimal-conflict graphs Γ#µ . One
possible such extension is to consider the event structures whose minimal-conflict graphs Γ#µ

are disjoint unions of cliques. Such event structures can be viewed as an extension of confusion-
free event structures. An event structure E is confusion-free [34] if the reflexive closure of
minimal conflict is transitive and e#µe

′ implies ↓ e \ {e} =↓ e′ \ {e′} (we use the definition
from [45, Proposition 2.4]). From the first condition it follows that for a confusion-free event
structure the graph Γ#µ is a disjoint union of cliques. Confusion-free event structures correspond
to deterministic concrete data structures [28] and to confusion-free occurrence nets [34].

Question 8.7. Do Conjectures 1.1 and 1.2 hold for confusion-free event structures? More
generally, do they hold for event structures whose minimal-conflict graph Γ#µ is a disjoint
unions of cliques?

8.5. Undecidability questions. We think that the relationship between the existence of ape-
riodic tile sets and the nonexistence of regular nice labelings of the associated event structures
may help to prove some undecidability results. We conjecture that one cannot decide if a regular
event structure satisfies Thiagarajan’s conjecture:

Conjecture 8.8. There does not exist an algorithm that, given a strongly regular event domain
D, can determine whether or not D admits a regular nice labeling.

The intuition behind is that one can use Lukkarilla’s construction [30] to prove this conjecture.
As in the proof of undecidability of the classical tiling problem [11,37], the undecidability proof
of Lukkarila is based on a reduction from the Turing machine halting problem. More precisely,
for any Turing machine M, Lukkarila constructs a 4-way deterministic tile set TM such that
either TM is an aperiodic tile set (this corresponds to the case when the Turing machine M
does not halt), or TM does not tile the plane (this corresponds to the case when the Turing

machine M halts). In the first case, by Theorem 7.3, the domain (W̃ (TM)ṽ,≺õ∗) does not

admit a regular nice labeling. In the second case, by Lemma 7.1, (W̃ (TM)ṽ,≺õ∗) is a strongly

regular domain that is hyperbolic. Consequently, if Conjecture 8.3 was true, (W̃ (TM)ṽ,≺õ∗)
would admit a regular nice labeling. This would prove Conjecture 8.8.

Another possible way to prove Conjecture 8.8 would be to anwser the following question in
a positive way and use Theorem 5.2.

Question 8.9. Given a 4-way deterministic tile set T such that there is no valid tiling with
the tiles of T , is it true that the V H-complex W (T ) is virtually special?

Note that if there was a positive answer to this question, this would answer a question of
Agol [2, Question 3] and confirm the following conjecture of Bridson and Wilton [13]:

Conjecture 8.10 ([13, Conjecture 1.2]). There does not exist an algorithm that, given a finite
NPC square complex Y , can determine whether or not Y is virtually special.

Indeed, in Lukkarila’s construction, if the Turing machine M does not halt, then by Theo-
rem 7.3 W (TM) is not virtually special. On the other hand, if the Turing machine M halts,
then if the answer to Question 8.9 was positive, W (TM) would be virtually special.
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