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We introduce two classes of real analytic functions W U on an interval. Starting with rational functions to construct functions in W we allow the application of three types of operations: addition, integration and multiplication by a polynomial with rational coe cients. In a similar way to construct functions in U we allow integration, addition and multiplication of functions already constructed in U and multiplication by rational numbers. Thus, U is a subring of the ring of Pfa an functions Kh].

Two lower bounds on L 1 -norm are proved on a function f from W (or from U, respectively) in terms of the complexity of constructing f.

Introduction

The well-known Liouvillean theorem states that if p(a) = 0; a 6 = 0; p = P 0 i m p i X i ; p i 2 Z then one can bound from below the absolute value jaj of the algebraic number a in terms of the complexity of the determining polynomial p.

The question arises whether this phenomenon could be extended to solutions v of (ordinary) di erential equations Q(v) = 0? It is known B] that in general one can't bound v for non-linear second-order (or higher) equations IRMAR, Universit e de Rennes, Campus de Beaulieu, 35042 Rennes, cedex France Q(v) = 0. Thus, one ought consider solutions of either linear or rst-order equations.

In the present paper we introduce two classes of real analytic functions W U on a nite interval I. In both cases we start with rational functions with rational coe cients. To construct functions in W we allow the application of three types of operations: addition, integration and multiplication by a polynomial from Q X]. Thereby, W is a di erential Q X]-module. While for constructing functions in U we allow the application of integration and substitution of already constructed functions from U into a (multivariate) polynomial with rational coe cients. Thereby, U is a di erential Q X]algebra. Clearly, U is a subring of the ring of Pfa an functions Kh]. Thus, each function f from W (or from U, respectively) is constructed by means of a chain of operations (which involve arithmetic and integration) and one can de ne the \complexity" of f as the complexity of a corresponding chain.

In section 1 below we prove (theorem 1) a lower bound on the \separator" min x2I 0 jf(x)j for f 2 W and a suitable subinterval I 0 I in terms of I and of the complexity of the corresponding chain for f (in particular, this provides a lower bound on L 1 -norm max x2I jf(x)j). Moreover, we provide an upper bound on the number of roots of f (lemma 1) which is better than the bound from Kh] established for the wider class of Pfa an functions.

It is worthwhile also to mention that in Y] one can nd a comprehensive survey on the bounds on the number of zeroes of solutions of diverse classes of di erential equations.

In section 2 we prove (theorem 2) a lower bound on min x2I 0 jf(x)j for f 2 U and a suitable subinterval I 0 I again in terms of I and of the complexity of the chain for f under the assumption that in the chain each application of integration introduces a function that is transcendental with respect to the previously constructed functions in the chain. This assumption of purely transcendental chains allows one to avoid introducing in a chain arbitrarily small constants (otherwise, no lower bound would be possible).

Thus, in constructing U (and W) we allow integration. It seems that if we allowed the introduction of the solutions of more general types of rst-order di erential equations (as e.g., in case of Pfa an functions Kh]) then results of a similar sort to ones in the present paper would fail, again because solving such equations would allow the introduction of arbitrarily small constants in a chain.

In G01] similar results were established for solutions of linear di erential equations on an interval.

The picture becomes somewhat easier to study if instead of approximating on an interval, asymptotic approximations on the real line (at in nity) are considered since then introducing small constants is not a problem. In this setting a lower bound on approximations in terms of the complexity for a wider class (than the present class) of Pfa an functions was obtained in G93]. Besides, a lower bound for a wider class than in G01] of compositions of solutions of linear di erential equations was established in G92].

One could also view the results of the paper as a trade-o between approximations and complexity. It would be interesting to understand more about this trade-o . We mention that in this direction a lower bound was proved in CG] on the complexity of approximating algebraic computation trees.

It is worthwhile also to mention that in K] a version of a di erential analog of the Liouville's theorem was proposed in terms of bounds on valuations, while we study approximations in the L 1 -norm. and for a function g on I denote the L 1 -norm jjgjj I = max x2I jg(x)j and the \separator" sep I (g) = min x2I jg(x)j = jjg 1 jj 1 . Let q 0 ; : : : ; q t be real analytic functions on I, moreover q 0 2 R(X).We say that q 0 ; : : : ; q t constitute a (t; d)-chain of linear-iterated integration if for each 0 i t 1 for appropriate polynomials p 0;i ; : : :; p i;i 2 R X] of degrees deg(p 0;i ); : : :; deg(p i;i ) d, we have for the derivative q 0 i+1 = p 0;i q 0 + + p i;i q i

(2)

In such a case we sometimes simply say that q t is a (t; d)-chain. Clearly, a (t; d)-chain is a particular case of a Pfa an chain Kh] and thereby, q t is a Pfa an function.

First we prove an upper bound on the number #(g) of the roots of g in I (in fact, this would give the same bound on the number of the roots on the whole real line, provided that the functions fq i g 0 i t ; g were analytic on the whole real line as well). We note that this bound is stronger (being polynomial rather than exponential) than the bound Kh] which is valid for the wider class of Pfa an functions.

Lemma 1 Let g = X 0 j t v j;1 q j;1 + + X 0 j t v j;N q j;N

(3) where for every 1 l N the functions q 0;l ; : : : ; q t;l form a (t; d)-chain, here the polynomials v j;l 2 R X]; deg(v j;l ) d. Then #(g) O(Nt 2 d 2 ), provided that g 6 0.

Proof. We express the rational function q 0;l = d q 0;l =q 0;l where the numera- tor and the denominator d q 0;l ; q 0;l have the degrees deg(d q 0;l ); deg(q 0;l ) d. By induction on s = 1; : : :; t denoting S = (d+1)+(2d+1)+ +(sd+1) one can represent the derivative g (S) = X 1 j t s v j;1;s q j;1 + q 0;1;s + + X 1 j t s v j;N;s q j;N + q 0;N;s for suitable v j;l;s 2 R X]; q 0;l;s = g q l;s =(q 0;l ) S where deg(v j;l;s ) minfSd; (t j + 1)dg; deg(g q l;s ) O((sd) 2 ); see (2). Finally, putting s = t; T = (d + 1) + (2d + 1) + + (td + 1) we get that g (T ) 2 R(X) and taking into account the Rolle's theorem #(g) #(g (T ) )+T when g (T ) 6 0 or otherwise we have #(g) T 1, we conclude with the lemma. 2

From now on we assume that the functions q 0 2 Q(X); p 0;i ; : : : ; p i;i 2 Q X] determining a chain, have rational coe cients. When q 0 = b q 0 =q 0 where b q 0 ; q 0 2 Z X] one says that the height h(q 0 ) h if the absolute values of all the integer coe cients of b q 0 ; q 0 do not exceed h. Thus, we say that a (t; d)-chain q 0 ; : : :; q t is (t; d; h)-chain (we suppose that h 2) if h(q 0 ); h(p j;i ) h; 0 i t 1; 0 j i (4) Denote by W t the Q X]-module generated by functions satisfying (t; d; h)- chains for all possible d; h 0. Evidently, W 0 = Q(X).

Using (2), ( 4) one can by induction on s estimate h(v j;l;s ); h(q 0;l;s ) (hsd) O((s 2 +t)d 2 ) Therefore, at the end of induction one gets

g (T ) 2 Q(X); h(g (T ) ) (htd) O(t 2 d 2 N) .
Let us suppose that g (T ) 6 0. Due to lemma 1 there exists a subinterval

I 0 I; jI 0 j = jIj O(Nt 2 d 2 ) (5)
which contains no roots of the derivatives g; g (1) ; : : :; g (T +1) (in case when g (T +1) 0 we require instead that g; g (1) ; : : : ; g (T ) have no roots in I 0 ).

The following lemma is similar to lemma 2 from G01] (cf. also lemma 4 in section 2 below) with the di erence that instead of L 1 -norm we estimate here the \separator".

Lemma 2 Assume that the derivatives g; g (1) ; : : : ; g (T +1) have no roots in I 0 (in case when g (T +1) 0 we require that g; g (1) ; : : :; g (T ) have no roots in I 0 ).

Then there exists a subinterval I T I 0 of the length jI T j = jI 0 j T+1 such that sep I 0 (g (T ) ) sep I T (g (T j) ) T + 1 jI 0 j ! j ; 0 j T Proof. Suppose that one has already produced (by recursion on j) closed subintervals I 0 I 1 I j with the lengths jI l j = jI 0 j T+1 l T+1 such that sep I 0 (g (T ) ) sep I l (g (T l) ) T + 1 jI 0 j ! l ; 0 l j < T Denote by a 1 = jg (T j 1) (x 1 )j; a 2 = jg (T j 1) (x 2 )j the values of the function jg (T j 1) j at the endpoints of the interval I j = x 1 ; x 2 ]. If a 1 < a 2 then put x 0 = x 1 + jI 0 j T+1 and the subinterval I j+1 = x 0 ; x 2 ]. Otherwise, if a 1 > a 2 then put x 0 = x 2 jI 0 j T+1 and the subinterval I j+1 = x 1 ; x 0 ]. We have sep I j+1 (g (T j 1) ) = jg (T j 1) (x 0 )j since g (T j 1) is monotone and has no roots in the interval I j+1 I 0 (whence jg (T j 1) j is monotone in the same interval as well). Observe that a 1 6 = a 2 , indeed, otherwise g (T j) would vanish identically on the interval I j . Hence jg (T j 1) (x 0 )j sep I j (g (T j) )(jI j j jI j+1 j)

because g (T j 1) is monotone and has no roots in the interval I j I j+1 I 0 .

Thus, sep I j+1 (g (T j 1) ) sep I j (g (T j) ) jI 0 j

T + 1 which completes the proof of the recursive hypothesis for j + 1. Setting l = j = T we get lemma 2. 2

We represent g (T ) = f 1 =f 2 for f 1 ; f 2 2 Z X] such that h(f 1 ); h(f 2 ) h(g (T ) ). Denote an integer a 2 = d2jI 0 j 1 e maxf1; O(Nt 2 d 2 ) jIj g (cf.

(5) and lemma 2). In case when a 2 2 there exists a pair of rational points a = a 1 a 2 ; a 0 = a 1 +1 a 2 2 I 0 ; a 1 2 Z, consider a subinterval I 0 0 = a; a 0 ]. In case when a 2 = 1 we take integers a < a 0 to be such that the interval I 0 0 = a; a 0 ] is the maximal subinterval of I 0 with integer endpoints. In both cases we have jI 0 0 j jI 0 j=4. Then jf 2 (a)j; jf 2 (a 0 )j jjf 2 jj I T (htdb) O(Nt 2 d 2 )

(see ( 1), ( 2), ( 3), ( 4)) and jf 1 (a)j; jf 1 (a 0 )j a O(Nt 2 d 2 ) 2 (see ( 2), ( 3)). We apply lemma 2 to the interval I 0 0 = a; a 0 ] I 0 and conclude that for a certain subinterval We note that without any condition on the derivatives of g the lower bound in theorem 1 would fail since e.g., when t = 1; g = g 1 and an equation g 0 1 = 0 as a chain, one could take as g an arbitrarily small constant.

Obviously, the same bound as in theorem 1 holds a fortiori, for the L 1norm jjgjj I sep I 0 (g) (the similar remark concerns also theorem 2 in section 2).

Functions of iterated integration

Now we consider an extension of the class of functions W t from the previous section. We de ne a sequence of analytic on I real functions fg i g 1 i t ; g of iterated integration by recursion on i. Namely, g 0 i = p i (X; g 1 ; : : :; g i 1 ); g = p t+1 (X; g 1 ; : : :; g t ) (6) where the rational functions p i 2 Q(X) Y 1 ; : : :; Y i 1 ]; 1 i t + 1. In other words, one is allowed, in particular, to integrate at a current step the product of functions produced at previous steps. Clearly, the produced ring U t of all functions of the form g contains W t , and on the other hand being a subring of the ring of Pfa an function Kh].

Any rational function p 2 Q(X) Y 1 ; : : :; Y t ] we write in a form p=p where the polynomials p 2 Z X; Y 1 ; : : : ; Y t ]; p 2 Z X] are relatively prime. We assume that deg(p i ) = maxfdeg( pi ); deg(p i )g d; h(p i ) = maxfh(p i ); h(p i )g h; (7) h 2; 1 i t + 1. Also we suppose that jjg i jj I M; 1 i t; M 1 (8) and that each complex root of the denominator p i lies at a distance at least 1 from the interval I; 1 i t + 1, hence jp i j is greater or equal to 1 everywhere on I (9) We observe that the latter conditions provide upper bounds on the functions involved in computations with the sequence, and one could interpret the theorem in this section as a lower bound on functions of iterated integration by means of their upper bounds.

We make an assumption that the sequence fg i g 1 i t (see ( 6)) is purely transcendental, i.e. g i+1 is algebraically independent over the eld F i = R(X; g 1 ; : : : ; g i ) for all 0 i < t. We note that F i is a di erential eld. The condition of fg i g 1 i t being purely transcendental is similar to the condition in the algorithm due to Risch R] and allows one to avoid introducing in a sequence (6) functions being arbitrarily small constants which would prevent lower bounds on the functions of iterated integration on I.

The following lemma enables us to eliminate a transcendental integral.

Lemma 3 Let F be a di erential eld. Assume that u is algebraically independent over F, besides that its derivative u 0 2 F, and that F(u) has the same sub eld of constants as F has. Consider g = p(u) 2 F u]; deg u (p) = n and denote the polynomials p i (u) 2 F u] to be such that the derivative g (i) = p i (u) for i 0. Then gcd(p; p 1 ; : : : ; p n ) 2 F.

Proof. We argue by induction on n. The base of induction is evident. For the inductive step consider the leading term of p = wu n + where w 2 F. First, f w 0 g wg 0 6 = 0 since otherwise g = cw for a certain constant c and thereby, u is algebraic over F. Denote the derivatives f (i) = r i (u) 2 F u]; i 0. Obviously, deg u (r 0 ) < deg(p 0 ) = n and deg(r i ) deg(r 0 ); i 0. On the other hand, f (i) = X 0 j i i j ! (w (i+1) g (i j) w (i j) g (j+1) ); i 0; therefore gcd(p 0 ; : : : ; p n ) divides gcd(r 0 ; : : : ; r n 1 ) in the polynomial ring F u].

This implies the inductive step since gcd(r 0 ; : : : ; r n 1 ) 2 F by the inductive hypothesis. 2

Observe that the condition of conserving the sub eld of constants will be ful lled in our situation because we consider the functions on the interval I and the sub eld coincides just with R.

In course of the procedure described below a certain family U t of functions is constructed. Later on we bound from above the total number N 0 of the roots of the functions from and now we x a subinterval J I of length jJj = jIj=(N 0 + 1) which does not contain any such root.

At the rst step we represent the function g = q(g t ) where the coefcients of the (univariate) polynomial q belong to the (di erential) ring K t 1 = Q(X) g 1 ; : : :; g t 1 ] F t 1 . Then g (i) = q i (g t ) for suitable polynomials q i (g t ) 2 K t = K t 1 g t ]; 0 i d. Consider G = gcd(q; q 1 ; : : :; q d ) in the ring Q(X; g 1 ; : : :; g t 1 ) g t ] being de ned up to a factor from Q t 1 = Q(X; g 1 ; : : :; g t 1 ). Then G belongs to F t 1 = R(Q t 1 ) according to lemma 3, in other words, deg gt (G) = 0, therefore, G 2 Q t 1 since gcd does not change when the eld of the coe cients is extended Q t 1 F t 1 .

The subresultant theorem (see e.g., L]) states that one can choose G in such a way that G = A 0 q + A 1 q 1 + : :

: + A d q d 2 K t 1 (10)
where the coe cients of the (univariate) polynomials A 0 ; : : :

; A d 2 K t 1 g t ]
are appropriate subminors of the Sylvester matrix A of the family of the (univariate) polynomials q; q 1 ; : : :; q d . More precisely, the usual Sylvester matrix is associated to a pair of polynomials, but one can directly extend it to a family of polynomials (see G90]).

The size of the matrix A is bounded by O(deg(q) + deg(q 1 ) + : : : + deg(q d )) O(d 2 ) (see L], G90]). Each entry of A written as a certain function r(X; g 1 ; : : : ; g t 1 ) 2 K t 1 can be bounded as follows: deg(r) O(d 2 ); h(r) (hd) O(d) (see ( 7)). Therefore, O(d 4 ) (the latter inequality invokes (8), ( 9

deg(A i ) O(d 4 ); h(A i ) d O(d 4 +t) h O(d 3 ) ; jjA i jj I d O(d 4 +t) h O(d 3 ) M
)). Hence deg(G) O(d 4 ); h(G) d O(d 4 +t) h O(d 3 ) .
The following lemma was proved as lemma 2 G01] (we use the notations introduced in lemma 2 from section 1).

Lemma 4 Assume that the derivatives g; g (1) ; : : : ; g (T +1) have no roots in I 0 (in case when g (T +1) 0 we require that g; g (1) ; : : :; g (T ) have no roots in I 0 ).

Then there exists a subinterval I T I 0 of the length jI T j = jI 0 j T+1 such that jjg (j) jj I T jjgjj I 0 T + 1 jI 0 j ! j ; 0 j T Lemma 4 implies that there exists a subinterval J 1 J; jJ 1 j = jJj=(d+1) such that jjg (j) jj J 1 jjgjj J d + 1 jJj ! j ; 0 j d . We include the functions g; g (1) ; : : :; g (d) into the family and thereby, impose the condition that g; g (1) ; : : : ; g (d) have no roots in J (cf. the discussion on ; J above). Due to that and to (10) we get jjGjj J 1 jjgjj J maxf1; d + 1 jJj

! d gd O(d 4 +t) h O(d 3 ) M O(d 4 ) (11) 
Thus, we have carried out one step of the procedure, constructed G and thereby, eliminated g t .

After t such steps we achieve by recursion a rational function L 2 Q(X) and nested subintervals J J 1 : : : J t such that deg(L) d 4 t ; h(L) h d 5 t ; jJ t j jJj d 5 t ; jjLjj Jt jjgjj J (Mh) d 6 t maxf1; jJj d 5 t g (because of ( 11)).

The family consists of O(d 4 t ) functions each having at most d O(4 t ) roots (on I) due to Kh] since one can view (6) as a Pfa an chain, therefore, the total number N 0 of roots of the functions from does not exceed d O(4 t ) , hence jJj jIj d O(4 t ) ; nally jjLjj Jt jjgjj I (Mh) O(d 6 t ) maxf1; jIj d 5 t g (see ( 11)). Similar to the end of section 1 there exists a rational point a = a 1 =a 2 2 J t ; a 1 2 Z; 0 < a 2 = djJ t j 1 e: In a similar way we represent L = L 1 =L 2 ; L 1 ; L 2 2 Z X] and we get jL 1 (a)j a deg (L 1 ) 7)). As jL 1 (a)=L 2 (a)j jjLjj Jt we conclude that jjgjj I (Mh) d 6 t b d 4 t minf1; jIj d 5 t g = B taking into account (11).

Moreover, one can estimate an interval J 0 I such that jg(x)j B=2 for any x 2 J 0 . Indeed (see ( 6)), g 0 = @p t+1 @X + @p t+1 @g 1 p 1 (X) + + @p t+1 @g t p t (X; g 1 ; : : :; g t 1 )

Therefore, jjg 0 jj I h 2 d(Mt) O(d) due to ( 7), ( 8), ( 9). Now take a point x 0 2 I at which jg(x 0 )j = B 0 B. Then for any point x 2 I such that jx x 0 j B 0 2h 2 d(Mt) O(d) we have jg(x)j B 0 =2. Thus, the following theorem is proved.

Theorem 2 If g satis es a purely transcendental iterated integration sequence (6) and the bounds (1), ( 7), ( 8), ( 9), then there exists a subinterval J 0 I; jJ 0 j (Mhb) O(d 6 t ) 

1

  Functions of linear-iterated integrationDenote by I R a nite closed interval of the length jIj such that

  that g is a (t; d; h)-chain on an interval I b; b], the conditions (1), (2), (3), (4) and g (T ) 6 0. Then there exists a subinterval I 0 I with the length jI 0

  a)j h(L 2 ) deg(L 2 )b deg(L 2 ) h d 5 t b d 4 t (see (1), (

  minf1; jIj d 5 t g In conclusion let us formulate a conjecture that an upper bound on the number of roots of a function from the class U t should be better than the one from Kh].

	such that	
	sep J 0 (g) (Mhb) O(d 6 t	) minf1; jIj d 5 t g
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