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COMPLEXITY OF SEMI-ALGEBRAIC PROOFS

DIMA GRIGORIEV, EDWARD A. HIRSCH, AND DMITRII V. PASECHNIK

“Mathematical proof is a social phenomenon”
Yu. I. Manin

(from the lecture at Leningrad Branch of Steklov Mathematical Institute, 1977)

“< ...> proof system < ...> is a function”
S. A. Cook, A. R. Reckhow [CR79]

ABSTRACT. It is a known approach to translate propositional formulas into
systems of polynomial inequalities and to consider proof systems for the latter
ones. The well-studied proof systems of this kind are the Cutting Planes proof
system (CP) utilizing linear inequalities and the Lovasz-Schrijver calculi (LS)
utilizing quadratic inequalities. We introduce generalizations LS¢ of LS that
operate with polynomial inequalities of degree at most d.

It turns out that the obtained proof systems are very strong. We construct
polynomial-size bounded degree LS? proofs of the cliqgue-coloring tautologies
(which have no polynomial-size CP proofs), the symmetric knapsack prob-
lem (which has no bounded degree Positivstellensatz Calculus proofs), and
Tseitin’s tautologies (which are hard for many known proof systems). Extend-
ing our systems with a division rule yields a polynomial simulation of CP with
polynomually bounded coefficients, while other extra rules further reduce the
proof degrees for the aforementioned examples.

Finally, we prove lower bounds on Lovasz-Schrijver ranks and on the “Boolean

degree” of Positivstellensatz Calculus refutations. We use the latter bound to
obtain an exponential lower bound on the size of static LS? and tree-like LS¢
refutations.
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1. INTRODUCTION

An observation that a propositional formula can be written as a system of poly-
nomial equations has lead to considering, in particular, the Nullstellensatz (NS)
and the Polynomial Calculus (PC) proof systems, see Subsection 2.2 below (we
do not dwell much here on the history of this rich area, one could find several nice
historical overviews in, e.g., [BIKT96, BIKT 97, Raz98, TPS99, CEI96, BGIP01]).

For these proof systems several interesting complexity lower bounds on the de-
grees of the derived polynomials were obtained [Raz98, TPS99, BGIP01]. When
the degree is close enough to linear (in fact, greater than the square root), these
bounds imply exponential lower bounds on the proof complexity (more precisely,
on the number of monomials in the derived polynomials) [TPS99]. If polynomials
are given by formulas rather than by sums of monomials as in NS or in PC, then
the complexity could decrease significantly. Several gaps between these two kinds
of proof systems were demonstrated in [GHO1].

Systems of polynomial inequalities yield much more powerful proof systems than
these operating with equations only, such as NS or PC. The first proof system work-
ing with inequalities was Cutting Planes (CP) [Gom63, Chv73, CCT87, CCHS89),
see also Subsection 2.3. This system uses linear inequalities (with integer co-
efficients). Exponential lower bounds on proof size were established for CP with
polynomially bounded coefficients [BPR95] as well as for the general case [Pud97].

Another family of well-studied proof systems are so-called Lovasz-Schrijver cal-
culi (LS) [LS91, Lov94], see also [Pud99] and Subsection 2.3 below. In these
systems one is allowed to deal with quadratic inequalities. No non-trivial complex-
ity lower bounds are known for them so far. Moreover, generalizing LS to systems
LS? that use inequalities of degree at most d (rather than 2 as in LS=LS?) yields
a very powerful proof system. In particular, there exists a short LS* proof of the
clique-coloring tautologies (see Section 4). On the other hand, for these tautolo-
gies an exponential lower bound on the complexity of CP proofs was obtained in
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[Pud97], relying on the lower bound for the monotone complexity [Raz85]. Fur-
thermore, we construct a short proof for the clique-coloring tautologies in the proof
system LS + CP? (see Section 4) that manipulates just quadratic inequalities,
endowed with the rounding rule (it generalizes directly the rounding rule for lin-
ear inequalities in CP). These results mean, in particular, that neither LS* nor
LS 4+ CP? have monotone effective interpolation, while for a system LS + CP!
where the use of rounding rule is limited to linear inequalities, a (non-monotone)
effective interpolation is known [Pud99].

An analogue of (already mentioned) non-trivial lower bounds on the degree of
derived polynomials in PC would fail in LS? as we show in Section 3, namely,
every system of inequalities of degree at most d having no real solutions posseses
an LS?? refutation.

A proof system manipulating polynomial inequalities called the Positivstellensatz
Calculus was introduced in [GV01]. Lower bounds on the degree in this system were
established for the parity principle, for Tseitin’s tautologies [Gri01b] and for the
knapsack problem [Gri0la]. Lower bounds on the Positivstellensatz Calculus degree
are possible because its “dynamic” part is restricted to an ideal and an element of
a cone is obtained from an element of ideal by adding the sum of squares to it. On
the contrary, LS is a completely “dynamic” proof system. (The discussion on static
and dynamic proof systems can be found in [GV01]. Briefly, the difference is that in
LS a derivation constructs gradually an element of the cone generated by the input
system of inequalities, while in the Positivstellensatz Calculus the sum of squares is
given explicitly.) We consider a static version of Lovasz-Schrijver calculi and prove
an exponential lower bound on the size of refutation of the symmetric knapsack
problem (Section 9); this bound also translates into the bound for the tree-like
version of (dynamic) LS. The key ingredient of the proof is a linear lower bound on
the “Boolean degree” of Positivstellensatz Calculus refutations (Section 8). Note
that exponential lower bounds on the size of (static!) Positivstellensatz refutations
are still unknown.

Also the lower bound on the Positivstellensatz Calculus degree of the knap-
sack problem [Gri0Ola] entails (see Subsection 7.2) a lower bound on the so-
called LS-rank [LS91, Lov94]. Roughly speaking, the LS-rank counts the depth
of multiplications invoked in a derivation. A series of lower bounds for vari-
ous versions of the LS-rank were obtained in the context of optimization theory
[ST99, CDO1, Das01, GT01]. For a counterpart notion in CP, the so-called Chvétal
rank [Chv73], lower bounds were established in [CCT87, CCH89]. To the best
of our knowledge, the connection between the Chvétal rank and CP proof com-
plexity is not very well understood, despite a number of interesting recent results
[BEHS99, ES99]. As a rule, however, diverse versions of the rank grow at most
linear, while we are looking for non-linear (exponential as a dream) lower bounds
on the proof complexity. It turns out that for the latter purpose the rank is a too
weak invariant. In particular, there are short proofs for the pigeon-hole principle
(PHP) in CP [CCT87] and in LS [Pud97], while we exhibit in Subsection 7.3
a linear lower bound on the LS-rank of the PHP. Another example of this sort is
supplied by the symmetric knapsack problem for which in Section 5 we give a
short LS3-proof.

The above-mentioned LS3-proof of the symmetric knapsack follows from a gen-
eral fact that LS? systems allow to reason about integers. In Section 6 we extend
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this technique to Tseitin’s tautologies (which have no polynomial-size proofs in res-
olution [Urq87], Polynomial Calculus [BGIP01] and bounded-depth Frege systems
[BS02]). In Section 5 we also consider a certain extended version LS, piir of LS
that, apart from the issue with integers, allows one to perform case analysis with
respect to whether f >0, f <0, f = 0 for a linear function f (similar sorts of an
extension of CP were introduced by Chviétal [unpublished] [Pud99] and Krajicek
[Kra98]) and allows also to multiply inequalities. We show that LS, ¢t polyno-
mially simulates CP with small coefficients. The same effect can be achieved by
replacing the multiplication and the case analysis by the division rule that derives
g >0 from fg > 0and f > 0.
Finally, we formulate numerous open questions in Section 10.

2. DEFINITIONS

2.1. Proof systems. A proof system [CR79] for a language L is a polynomial-time
computable function mapping words (proof candidates) onto L (whose elements are
considered as theorems).

A propositional proof system 1s a proof system for any fixed co-NP-complete
language of Boolean tautologies (e.g., tautologies in DNF).

When we have two proof systems II; and Il for the same language L, we can
compare them. We say that I1; polynomially simulates 115, if there 1s a function g
mapping proof candidates of Iy to proof candidates of II; so that for every proof
candidate 7 for Iy, one has II; (g(7r)) = Ha(x) and g¢(7) is at most polynomially
longer than =.

Proof system Il is exponentially separated from Il, if there is an infinite se-
quence of words t1,%s,... € L such that the length of the shortest II;-proof of ¢;
is polynomial in the length of ¢;; and the length of the shortest Ils-proof of ¢; is
exponential.

Proof system Il is exponentially stronger than I, if I1; polynomially simulates
II; and is exponentially separated from it.

When we have two proof systems for different languages L; and Lo, we can also
compare them if we fix a reduction between these languages. However, it can be
the case that the result of the comparison is more due to the reduction than to the
systems themselves. Therefore, if we have propositional proof systems for languages
Ly and Ls, and the intersection L = L1 N Ly of these languages is co-NP-complete,
we will compare these systems as systems' for L.

2.2. Proof systems manipulating with polynomial equations. There is a
series of proof systems for languages consisting of unsolvable systems of polynomial
equations. To transform such a proof system into a propositional proof system, one
needs to translate Boolean tautologies into systems of polynomial equations.

To translate a formula F' in k-DNF, we take its negation = F in k-CNF and trans-
late each clause of =F into a polynomial equation. A clause containing variables
Uiy, .., v, (t < k) is translated into an equation

(2.1) (1=0) ... (1=1) =0,

LTf one can decide in polynomial time for € L1, whether € L, then any proof system for
Ly can be restricted to . C L; by mapping proofs of elements of L; \ L into any fixed element
of L. For example, this is the case for L1 consisting of all tautologies in DNF and L consisting of
all tautologies in k-DNF'.
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where {; = v, if variable v;, occurs positively in the clause, and l; = (1 — v;,) if it
occurs negatively. For each variable v;, we also add the equation v —v; = 0 to this
system.

Remark 2.1. Everywhere in this paper a polynomial is represented by deglex (or
otherwise) ordered list of all its non-zero monomials. Observe that it does not
make sense to consider our translation for formulas in general DNF (rather than
k-DNF for constant k), because an exponential lower bound for any system using
such encoding would be trivial (note that (I — v1)(1 — v2)...(1 — v,) denotes a
polynomial with exponentially many monomials).

Note that F' is a tautology if and only if the obtained system S of polynomial
equations f1 =0, fo =0, ..., f;n = 0 has no solutions. Therefore, to prove F it
suffices to derive a contradiction from S.

Nullstellensatz (NS) [BIKT96]: A proof in this system is a collection of poly-

nomials ¢1, ..., ¢ such that
> figi=1.

Polynomial Calculus (PC) [CEI96]: This system has two derivation rules:

p1=0p2=0 p=0
_ and _

prt+p2=0 p-qg=0
Le., one can take a sum? of two already derived equations p; = 0 and ps = 0,
or multiply an already derived equation p = 0 by an arbitrary polynomial q.
The proof in this system is a derivation of 1 = 0 from S using these rules.
Positivstellensatz [GV01]: A proof in this system consists of polynomials g1, . . .
and hq,...,h; such that

(2.3) S higi=1+4) b
i J

Positivstellensatz Calculus [GV01]: A proof in this system consists of poly-
nomials hy,...,h; and a derivation of 1 + Zj h? = 0 from S using the
rules (2.2).

(2.2)

2.3. Proof systems manipulating with inequalities. To define a propositional
proof system manipulating with inequalities, we again translate each formula —F
in CNF into a system S of linear inequalities, such that F' is a tautology if and only
if S has no 0-1 solutions. Given a Boolean formula in CNF, we translate each its
clause containing variables v;,, ..., v;, into the inequality

(2.4) L+ -+ >1,

where [; = v;, if the variable v;, occurs positively in the clause, and [; = 1 — vj, if
vj, occurs negatively. We also add to S the inequalities

(2.5) x > 0,
(2.6) r <1

for every variable z.

2Usually, an arbitrary linear combination is allowed, but clearly it can be replaced by two
multiplications and one addition.
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Cutting Planes (CP) [Gom63, Chv73, CCT87, CCHR9], cf. also [Pud99]: In
this proof system, the system S defined above must be refuted (i.e., the con-
tradiction 0 > 1 must be obtained) using the following two derivation rules:

>0; ... >
(2.7) h ito’ 3 j’i J;t 0_ 0 (where A; > 0),
i=1 MiJi Z
;AT 2 . .
(2.8) 2 %% 2 (where a; € Z, and w; is a variable).

2 aii > [c]

We restrict the intermediate inequalities in a CP derivation to the ones having
integer coefficients (except the constant term).
Lovész-Schrijver calculus (LS) [LS91, Lov94], cf. also [Pud99]: In the weak-
est of Lovész-Schrijver proof systems, the contradiction must be obtained
using the rule (2.7) applied to linear or quadratic f;’s and the rules

f>20 f=>0

fr>0’ fl—2)>0
Also, the system S is extended by the axioms

(2.10) ?—r>0, z—z2>0

(2.9)

(where f is linear,  is a variable).

for every variable z.
LS, [LS91, Lov94, Pud99]: This system has the same axioms and derivation
rules as LS, and also has the axiom

(2.11) >0

for every linear [.
LS, [LS91, Lov94, Pud99]: This system has the same axioms and derivation
rules as LS, and also the derivation rule

f>20,920
fg 20

LS, .: This system unites LSy and LS,.
LS + CP' [Pud99]: It has the same axioms and derivation rules as LS and also

the rounding rule (2.8) of CP which can be applied only to linear inequalities.

(2.12) (f, g are linear).

Note that all Lovasz-Schrijver systems described in this subsection deal either
with linear or quadratic inequalities.

2.4. New dynamic systems. In this paper we consider several extensions of
Lovéasz and Schrijver proof systems. First, we define system LS 4+ CP? which is
slightly stronger than Pudldk’s LS + CP!.

LS + CP?%: It has the same axioms and rules as LS and also the extension of
rounding rule (2.8) of CP to quadratic inequalities:

Do Wi+ Y > c
2 Wijixy + ) awi > [c]

We then consider extensions of Lovasz-Schrijver proof systems allowing mono-
mials of degree up to d.

(2.13)

(where a;,a;; € Z, and «; is a variable).

LS? This system is an extension of LS. The difference is that rule (2.9) is now
restricted to f of degree at most d — 1 rather than to linear inequalities. Rule
(2.7) can be applied to any collection of inequalities of degree at most d.
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Remark 2.2. The degree d can be either oo or a natural number greater than 1
(in the former case, the degree is unrestricted).

Remark 2.3. Note that LS=LS?.

Similarly, we consider LSfIl_, LS? and LSfIl_V*, transformingin (2.11) (resp., (2.12)),
the condition “/ is linear” (resp., “f,g are linear”) into “deg(l*) < d” (resp.,

“deg(fg) S d”).

LSgplit: This system allows not only inequalities of the form f > 0, but also of
the form f > 0. The derivation rules (2.7) and (2.9) are extended in an obvious
way to handle both types of inequalities, and f > 0 can be always relaxed to
f>0. The axiom 1 > 0 is added. Also we allow to make assumptions of the
form f > 0 and conclude f < 0 if we can derive in LSgpht a contradication
from the assumption we made.

We now give a more formal definition similar to Krajicek’s R(CP) [Kra98].
We consider the propositional fragment of (DAG-like) cut-free Gentzen style
calculus with inequalities instead of Boolean formulas. We use one-sided
sequents — T' (where righthandside is treated for simplicity as multiset; in
the following T' and A denote arbitrary multisets) and derive contradiction
(the empty sequent —) from the initial inequalities — f; > 0 taken from
(2.4)—(2.6), (2.10). In addition to a usual rule for working with sequents

— T
— I, A

(but not with Boolean connectives!), our derivation rules are:

2.14
( ) — >0, -f>0
— A f>0 — A, f>0
— A, fx>0’ — A f(1-2)>0’
— A, -1>0 — A, [i>0 (for 1 <i<¥)
) ()\z>0)
— A — A SN fi >0

Remark 2.4. Observe the difference of splitting in LS;lplit and in Krajféek’s R(CP)
[Kra98] or Chvétal’s “CP with subsumptions” (see, e.g., [Pud99]): We use a weaker
“real” splitting (2.14) instead of a stronger “integer” splitting — f > 1, —f > 0.

LS? split? is defined similarly. Note that the version of (2.12) for strict inequal-
ities is
— A, f>0; — A, g>0
— A fg>0
Also we need one more rule
— A, 0>0
— A
Remark 2.5. Observe that the analogue of (2.10) (with the condition “deg(l?) <
d” instead of “l is linear”) can be easily derived in LSgpht, le., LSflI—,split:LSgplit and

d _1Qd
LS+,*,split_LS*,split .
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d

%spiiv. Where the splitting is made for

LSf,O/l-split: is a restricted version of LS
the assumptions # = 0, « = 1 only (x is a variable), i.e., the rule (2.14) is

replaced by
(2.15)

(z is a variable)
—z>1, —x2 >0

(note that one can easily simulate this rule using (2.14) applied to f = z and

to f=1-—21).

LS?: is an extension of LS¢ with strict inequalities (the latter system can be

d

spht) by another useful rule:

defined in a natural way similarly to LS

Jg>0; f>0
g>0

LSqpiits LSy split, ete.: are shorthands for the corresponding systems restricted
tod=2.

2.5. New static systems. Nullstellensatz is a “static” version of Polynomial Cal-

culus; Positivstellensatz is a “static” version of Positivstellensatz Calculus. Simi-

larly, we define “static” versions of the new proof systems defined in the previous
subsection.

Static LS™: A proof in this system is a a refutation of a system of inequalities

S = {s; > 0}i_,, where each s; > 0 is either an inequality given by the

translation (2.4), an inequality of the form z; > 0 or 1 — z; > 0, or an

inequality of the form x? —x; > 0. The refutation consists of positive real

coefficients w; ; and multisets U{"l and U;; defining the polynomials

Uj ] = Wil H L H (1— k)

keU7, keU,

such that
t
(2.16) > sy uig=-—1
i=1 l
Static LSY: The difference from the previous system is that S is extended by
inequalities s;41 > 0,...,sp > 0, where each polynomial s; (j € [t + 1..¢]) is
a square of another polynomial 5}. The requirement (2.16) transforms into

tl
(2.17) > sy uig=-1
i=1 l
Static LSy: The same as static LSS, but the polynomials s} can be only linear.
Remark 2.6. Note that static LS} includes static LS.

Remark 2.7. Note that these static systems are not propositional proof systems
in the sense of Cook and Reckhow [CR79], but are something more general, since
there is no clear way to verify (2.16) in deterministic polynomial time (cf. [Pit97]).
However, they can be easily augmented to match the definition of Cook and Reck-
how, e.g., by including a proof of the equality (2.16) or (2.17) using axioms of a ring
(cf. F-NS of [GHO1]). Clearly, if we prove a lower bound for the original system,
the lower bound will be valid for any augmented system as well.
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Remark 2.8. The size of a refutation in these systems is the length of a reasonable
bit representation of all polynomials w; ¢, s; (for 7 € [1..]) and s’ (for j € [t +1..t'])
and is thus at least the number of u;;’s.

Example 2.1. We now present a very simple static LS proof of the propositional
pigeonhole principle. (It is easy to see that the same proof can be also conducted in
(dynamic) LS+:LS?|_; there is even a polynomial-size (dynamic) LS proof [Pud99],
but it is slightly longer.) The negation of this tautology is given by the following
system of inequalities (later denoted by PHP):

m—1
(2.18) d o> 1 1<k <m;
=1

(2.19) T+ Tpe < 1 1<k<k <m 1<f<m-—1.

(That says that the k-th pigeon must get into a hole, while two pigeons k and &'
cannot share the same hole ¢.)
Here is the static LS4 proof:

m m—1
Z Tpe — 1) +

(]

k=1 =1

m—1 m 2

Z (Z Tre — 1) +

=1 k=1

m—1 m m

Z Z Z (1 — 2pe — xpre)epe +
=1 k=1k#k'=1

3
I

[~]
NE

(20 — ) (m — 1)

o~
s
| =
=
ol

O

Known simulations and separations between semi-algebraic and other systems
are given in Fig. 1 and 2.

3. ENCODINGS OF FORMULAS IN LSd AND UPPER BOUNDS ON THE REFUTATION
DEGREE

In LS4, Boolean formulas are encoded as linear inequalities. However, this is not
the only possible way to encode them, since in LS? we can operate with polynomials
of degree up to d. In particular, for formulas in k-CNF, one can use the same
encoding as in Polynomial Calculus (2.1).

Consider system LS? that has the same derivation rules as LS?, but uses the
encoding (2.1) instead of (2.4) (hence, this is a proof system for formulas in &-DNF
for a constant k). It is clear that for d = co, LS® polynomially simulates Polynomial
Calculus. Does LS™ polynomially simulate LS* (and Polynomial Calculus)? To
give the positive answer, it suffices to show that there is a polynomial-size derivation
of the encoding by polynomial equations from the encoding by linear inequalities.

Lemma 3.1. There is a polynomial-size LS" derivation of (2.1) from (2.4), (2.5)—
(2.10).
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sLSY LSE
T TN
sLSy PC, LS> LS+CP*
T TN
sLS* NS, PC LS  CP LS. LS

s “Ns ke oo,

FicURE 1. Known simulations between semi-algebraic and other
proof systems for formulas in A-DNF. R denotes resolution, CP,
denotes CP with polynomially bounded coefficients, NS denotes
Positivstellensatz, PC, denotes Positivstellensatz Calculus, sLS
... denotes static LS ... . The simulations between static LS ...
and other proof systems are not shown because static LS ... are not
well-defined proof systems (see Remark 2.7). Some of the trivial
simulations (e.g., the simulation of LS? by LS? ) are not shown
for readability. The simulation of CP is shown in Theorem 5.2.
The simulation of PC (resp., PC4) in LS* (resp., LSY) is shown
in Corollary 3.1 (resp., 3.2).

LS LS+CP2>& /LS“ Lde
1% Cp PC/ e

F1GURE 2. Known separations between semi-algebraic and other
proof systems for formulas in DNF (except for PC which is consid-
ered for formulas in k-DNF only, i.e., PHP is not a valid counterex-
ample for it): 74 -5 mp means that there is a formula that has
polynomial-size w4 proofs and has no polynomial-size wg proofs.
F¢ denotes constant-depth Frege systems. See Fig. 1 for other no-
tation. Only the strongest separations relevant to semi-algebraic
systems are shown. The leftmost separation is due to PHP (the
positive part is proved in [Pud99], the negative part is proved in
[Hak85]). The counterexample for CP (which provides the two sep-
arations in the middle) is given by the clique-coloring tautologies
(resp., Theorem 4.1 and [Pud97]). The two rightmost separations
are due to Tseitin’s formulas (resp., Theorem 6.1 and [BS02]). Note
that the knapsack problem is not a valid counterexample because
it 1s not a translation of a formula in DNF.

., (1 =l—1), eliminating

terms [;(1—1;) using (2.10) and (2.7) as soon as they appear. In this way, we obtain

(1—1)...(1—1) <o.

The opposite inequality of (2.1) is trivial.

O

Corollary 3.1. For any d € {2,3,...,00}, LS? polynomially simulates Ls¢ (and,
hence, LS* polynomially simulates Polynomial Calculus).
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Corollary 3.2. LS$ polynomially simulates Positivstellensatz Calculus.

Remark 3.1. Note that there is a linear lower bound [Gri0la] on the degree of
Positivstellensatz Calculus refutation of the symmetric knapsack problem m — z; —
22 —...— 2y, =0 (where m ¢ 7, m > [n/4] — 2). However, by the completeness of
LS [LS91, Theorem 1.4] there is an LS (i.e., degree two) refutation of this problem.

It turns out that the converse of Lemma 3.1 is also true. In particular, that

means that there is an LS* refutation of every unsatisfiable formula in k-CNF.
Below, we also show (Theorem 3.1) that there is an LS?* refutation of any system
of polynomial inequalities of degree at most k.

Lemma 3.2. There is a polynomial-size LS’ derivation of (2.4) from (2.1) and
(2.5)-(2.10).

Proof. We derive
(3.1) G+ +L-D1=liy1)...(1=1) >0

inductively. The base (i = 1) is trivial. Suppose that the inequality holds for i = m.
Note that it can be rewritten as

G+l = 1=l — o =g ) (L= lpg2) ... (1 = &) > 0.
We then add {;l41(1 —lnt2). . .(1 =) > 0 (which easily follows from axioms) for
Jj=1,...,m obtaining (3.1) for i = m + 1. O

Corollary 3.3. For any d € {2,3,... 0}, LS? polynomially simulates LS?.

Corollary 3.4. There is an LS* refutation of every formula in k-CNF.

Theorem 3.1. There is an LS?* refutation of any unsolvable system of polynomial
inequalities of degree at most k.

Proof. Consider an unsolvable system S of polynomial inequalities of degree at
most k. We linearize it in the following way. Consider a monomial m = uvm’ of
degree at least two, where v and v are variables (it is possible that this is the same
variable). Replace uv by a new variable z,, and add the following three inequalities
to the system:

Tyy < U
Tyy <0
Tyy > u4v-—1.

Note that every 0-1 solution to the new system corresponds to a 0-1 solution to
the old system, and vice versa. Therefore, the new system is unsolvable. Continue
modifying the system in this way until it becomes a system S’ of linear inequalities.
Note that each new variable corresponds to a monomial in the old variables of degree
at most k. We denote a variable corresponding to a monomial m by z,, (note that
Zm may be not uniquely defined, but it is not important for our argument).

By [LS91, Theorem 1.4], there is an LS (i.e., degree two) refutation of S’. For
every added variable z,,, replace x,, by m in this refutation. We thus obtain a
“proof” of S using only old variables.

We now must transform this “proof” into a valid LS?* proof. The added in-
equalities become easily derivable from the axioms. The steps (2.7) remain valid
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steps. In (2.9), instead of multiplying by a new variable 2y, 4, . «,, we now multiply
by the (old) variables uy, usg, .. ., us.

We also have to replace steps (2.9) that use multiplying f > 0 by (1 — 2y, us.. v, )-
Instead, we multiply f > 0 by (1 — uy), besides multiply f > 0 by u; and by
(1 — uz), besides multiply f > 0 by u1, us and (1 — ug), etc. Summing all the
obtained inequalities, we get f(1 — %y us. u.) > 0.

Since each added variable corresponds to a monomial of degree at most &, and
the LS refutation of S’ contains only monomials of degree at most two, we thus
obtain a valid LS?* refutation of the system S. O

4. SHORT LS + CP? anD LS* PROOFS OF THE CLIQUE-COLORING TAUTOLOGIES

Theorem 4.1. There is a set of inequalities that has polynomial-size refutations
in LS* and LS + CP?, but has only exponential-size refutations in CP.

The set of inequalities we use is close to the one used by Pudlék for proving an

exponential lower bound for CP [Pud97]. Pudldk’s bound remains valid for this
system. Therefore, to achieve the result, we show that this set of inequalities has
polynomial-size refutations in LS* and LS 4+ CP?.
Clique-coloring tautologies. Given a graph (G with n vertices, we try to color it
with m — 1 colors, while assuming the existense of a clique of size m in G. Each
edge (7,j) is represented by a (0-1) variable p;;. Variables g; encode a (possibly
multivalued) function from the integers {1...m} denoting the vertices of a m-clique
to the set {1...n} of the vertices of G. Namely, qx; represents the i-th vertex of G
being the k-th vertex of the clique. Variables r;, encode a (possibly multivalued)
coloring of vertices by m — 1 colors. The assignment of the color ¢ to the node i is
represented by a variable r;,.

The following inequalities [Pud97] state that G has an m-clique and is (m — 1)-
colorable. The correctness of coloring is expressed by

(4.1) pij + rie + 150 < 2,

where ¢, j and {satisfy 1 <i<j<n,{=1...m-—1
To make sure that each node gets colored, write

m—1

(42) SRS

=1
foreachi=1...n.
Then, every label of a clique is mapped to at least one vertex of G

(4.3) ZQM >1
i=1

foreach k=1...m.
Also, the mapping encoded by gg; is injective:

(4.4) > g <1
k=1

foreachi=1...n.
Finally, to encode that indeed one has a clique, write

(4.5) Qri + ey <pij +1
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for all i, j, k, k" satisfying k # k" and 1 <i< j < n.

Weak clique-coloring tautologies. The inequalities (4.1)—(4.5) are the original in-
equalities of [Pud97]. We now add one more family of inequalities to this system
without affecting applicability of [Pud97, Corollary 7], that is, any CP refutation

of the new system will still require at least 90((n/logn)*/?) steps. Namely, we add

(4.6) ZQM <1
i=1

for all £ = 1...m. This inequality means that the k-th vertex of the clique does
not get mapped to more than one vertex of GG.

PHP interpretation of weak clique-coloring tautologies. The fact that the i-th vertex
of (G is the k-th vertex of the clique and is colored with the color £ i1s encoded as
qi;7ie > 1. Then the fact that the k-th vertex of the clique has color £ is encoded

as
n
Z QriTie > 1.
=1

Let us denote this sum by xy,. Note that zp,’s define an injective (possibly mul-
tivalued) mapping from {1,...,m} to {1,...,m — 1}. Below, we show that the
PHP inequalities (2.18), (2.19) hold for xx,’s, furthermore, there are short LS* as
well as LS + CP? derivations of these inequalities.

There is a polynomial-size CP refutation for PHP [CCT87]. In our notation (note
that 5 denotes a quadratic polynomial) such refutation translates into an LS+CP?
refutation. Alternatively, Pudldk [Pud99] shows that PHP also has polynomial-size
refutation in LS. In our notation, this translates into an LS* refutation. Note that
both of these refutations make use of the following technical statement.

Lemma 4.1. Given a sum of variables S = Zi\;l ar and inequalities a; + a; <1
for all 1 < ¢ < j < N, there are short proofs of S <1 in LS and in CP.

Proof. For CP, this is established in the proof of Proposition 7 in [CCT87]. (It
proceeds by induction: froma;+3) ;. p <landaz+) ;. p < 1for FC{l... N}~
{1, 2} one derives by summming these two inequalities and a; + as < 1 that a3 +
az+) ;ep < 3/2. The rounding down of the righthand side of the latter completes
the proof of the induction step.)

For LS, this is Lemma 1 of [Pud99], where the case N = 3 is dealt with, and an
argument in the proof of Proposition 1 of [Pud99]. O

In what follows we show that there is a polynomial-size derivation of (2.18)—-(2.19)
from (4.1)-(4.6) in LS* as well as in LS + CP%.
Deriving PHP from weak clique-coloring tautologies. Let us derive (2.18). For each
i, multiply both sides of (4.2) by ¢z; and sum the resulting inequalities over i. One
obtains

n m-—1

n
qriTie > Z Qi

i=1 (=1 i=1
Adding (4.3) to this inequality, one gets (2.18).

Deriving (2.19) is less straighforward. First, we prove an easy lemma.

Lemma 4.2. In LS, there is a short proof of (a — b)? > 0 for any variables a and
b.
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Proof. Multiplying both sides of a < 1 by b, one obtains 6% — ab > 0. Similarly, one
derives a?—ab > 0. Summing the obtained two inequalities, one gets a®+b% —2ab >
0, as required. O

Next, note that one can eliminate p;; from (4.1) and (4.5) and obtain

(4.7)
Qri + qrrj + i + 10 <3, 1<i<j<n, 1<€<m—1, 1<k#£kK <m.

Using ¢7; < qx; and similar inequalities for g j, rie and 7j,, the inequality (4.7)
can be rewritten as

(qri — 7ie)” + 2qrivie + (qrrj — 7je)” + 2qm 750 < 3.
Using Lemma 4.2, the latter is simplified to
2quimie + 2qk 5750 < 3.
Applying the rounding rule, one obtains
(4.8)  quiric + g jrie <1 1<i<j<n, 1<f<m—1,1<k#£k <m.
Alternatively, we can derive (4.8) in LS* using the following lemma:
Lemma 4.3. In LS, there is a short proof that a +b < 3/2 implies a + b < 1.

Proof. Note that multiplying a < 1 by 1 — b gives a + b < 1 + ab. It remains to
show that ab < 0.

Indeed, multiplying @ + & < 3/2 by a (respectively, by 1 — b) and using a = a
and b = b? one obtains ab — a/2 < 0 (respectively, a — ab < 3/2 — 3/2b). Adding
these two inequalities, one obtains a/2 4+ 3b/2 < 3/2. Multiplying the latter by b
and using 5% = b, one obtains ab < 0. O

2

Using qxirie < ggi and (4.6), one obtains
(49) (l‘kzz)zqkﬂ“izgl 1§€§m—1,1§k§m
i=1

Now take (4.4) and add it to 0 < ggu; for each k" different from k and k'. We
get qgs + qrrs < 1. After multiplying the latter inequality by r; and adding r;; <1
to 1t, one obtains

(4.10) sl + qrosra < 1.

Now (4.8)—(4.10) imply that any length 2 subsum of monomials in the sum

S = Z(kaz + qriirie)  (for 1 <k #k < m)
i=1

is bounded by 1 from above.

From these inequalities, one can easily derive S < 1 either in LS? or in LS+ CP?
by using Lemma4.1. As S = xps+ x5, (2.19) holds, and we are done for LS+CP2.

For LS* it remains to show that all the z,’s are boolean, as follows. Multiplying
both sides of (4.9) by k¢, one obtains x7, < xpe. On the other hand, 7, =
Tre + Zi# QriTieqr;Tje > Tre holds, as one can derive in LS? for each ¢ and j that
QriTieqrsTie > 0.
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5. REASONING ABOUT INTEGERS

In this section we explain how versions of Lovasz-Schrijver calculi can be used
for reasoning about integers. In the following lemma the basic primitive for the
latter, the family of quadratic inequalities fq(Y) > 0, is introduced. The lemma
shows that there are short proofs of the fact that an integer linear combination of
variables is either at most d — 1 or at least d for any integer d. It follows then
that there are short LS? (as well as LS. 0/1-split) proofs of the symmetric knapsack
problem, and that CP with polynomially bounded coefficients can be simulated in
LS:/)’ (as well as in LS. spiit).

Lemma 5.1. Let

Y =S 4
JaV) = (Y = (d=1))(Y —d),

a; are integers,

x; are variables.
Then the inequality fq(Y) > 0 has a derivation of size polynomial in d, n and
max; |a;| in the following systems:

1. LS3.

2. LS. o/1-split-

Proof. W.l.o.g. rewrite Y as 22:1 sixy,, where s; € {—1,1} and it is possible that
li = ;. We derive the inequalities f.(Y;) > 0 inductively for Y; = >>7_, s;2;, and
foreach c € [d—t+j..d+t—j]. The base (j = 1) is trivial. Suppose that such
inequalities are already derived for j < k. We now derive (Yy41—(c—1))(Yiy1—¢) >
0foreveryceld—t+k+1..d+t—k—1].

1. If sgy1 = 1, multiply fe—1(Yx) > 0 by g1, multiply fo(Yi) > 0 by (1—2x41),
and sum the obtained inequalities. We thus get in the left-hand side

foo1 (Vo) zpgr + fo (Vi) (1 — 2p41) =
(Fe(Ye) +2(Yk — (¢ = D)))wpgr + fe(Va) (1 — wpqa) =
Je(Yi) +2(Ye — (e = 1))apgr =
V= (2c = D)Yi +e(c — 1) 4+ 2YViapy1 — 2(c — Dy
Using xz_l_l — 241 = 0, we transform this into f.(Yx41) which is (Y + zg41)? —
(2¢ = 1)(Yi + xpy1) + e(c—1).
Else if sgy1 = —1, multiply fe41(Ys) > 0 by @441, multiply f.(Yx) > 0 by
(1 — zk41), and sum the obtained inequalities. We thus get in the left-hand side
Jerr(Vi)engr + fe (Vi) (1 — 2pq1) =
(fe(Ye) = 2(Ye — ¢))opt1 + fe(Vi) (1 — 2p41) =
Je(Yi) = 2(Yi — ¢)xpqr =
Y2 —(2¢ = )Yy +e(c— 1) — 2Yiap g1 + 2c2541.
Using xz_l_l — 2541 = 0, we transform this into f.(Ys41) which is in this case
(Ve — zp1)* — (2¢ — 1) (Y — @p41) + clc — 1).
2. The proof in LS, o/1-sp1it follows the proofin LS? given above. However, before
multiplying by #r4+1 and 1 — z541, we make an assumption x5y = » for r = 0,1

(and thus multiply by constants, without increasing the degree). Tt is clear from
the arguments above (just substitute the value for zy11), that both assumptions
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lead to fo(Yi41) > 0 (which looks as f.(Y%) > 0 under assumption z541 = 0, as
fet1(Ys) > 0 under assumption 2541 = sp4+1 and as fo_1(¥%) > 0 under assumption
Tri1 = —Sgp41). O

Let us also note a general fact unrelated to integers: it is possible to substitute
equalities into inequalities.

Lemma 5.2. Let f be a polynomial in variables vy,...,v,, and X and Y be poly-
nomialsin variables va, ... v,. Let g(va, ..., vn) = f(X,va,...,v,) and h(ve, ... v,) =
F(Y,va,...,v,). Suppose that the degree of ¢ and h is at most d. Then there is a
polynomial-size LS? derivation of A > 0 from ¢ > 0 and X — Y = 0.

Proof. We rewrite g > 0 as

(5.1) > i —n) X e >0,
i>1
where p; and n; are polynomials of vy, ... | v, consisting only of positive monomials,

and ¢ does not depend on X. Then we multiply Y —X = 0 by p; (i.e., multiply it by
its monomials and sum with the same coefficients as in p;) and multiply X =Y =0
by n;. The sum of the obtained two equalities is (Y — X)(p; — n;) = 0. We
then multiply it by X?~!, again representing it as a difference of two polynomials
containing only positive monomials. Summing (5.1) with the obtained equalities
for every i, we get

Z((Pi — ) Y)XT 4 (pr = ng)Y e > 0.
i>2
We now represent (p; — n;)Y as a difference pi — n} of two polynomials containing

only positive monomials and repeat this procedure. Repeating it d times proves
the claim. O

It follows that there are short LS® (as well as LS. 0/1-split) refutations of the
symmetric knapsack problem.

Theorem 5.1. There is a polynomial-size LS3 (as well as LS, g/1_spiit) refutation

of

(5.2) m—ax) — o —...—xy =0,

where m ¢ Z.

Proof. Using Lemma 5.2 substitute (5.2) into f|,, (>i, ;) > 0 given by Lemma5.1.

O

To show that LS. spiic and LS:/)’ polynomially simulate CP, we first (equivalently)
redefine CP so that it will manipulate linear inequalities of the form A > a, where

A= arz1 + ...+ aprp, 21,...,2, are (integer) variables, and a1,...,a,,a are
integers. The rounding rule (2.8) transforms into

x>
(5.3) 2 0l 2 (where d € N; dlay, ..., an).

2 dvi 2 (7]
We define CP with polynomially bounded coefficients (cf. [BPR95]) if the abso-

lute values of a; are bounded by a polynomial in the length of a CP refutation.

Theorem 5.2. The following systems polynomially simulate CP with polynomially
bounded coefficients:
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1. LS*,split .
2. LS:/)’.

Proof. We fix a CP refutation and simulate it rule by rule. Simulating the rule
(2.7) goes literally in LS, so we need to simulate just the rule (5.3). By Lemma 5.1
we can derive in LS, o/1.spiic (as well as in LS3) the inequality f.(A/d) > 0 for
c=[a/d].

1. In LS, spiis, we then have that A/d > ¢ since the assumption A/d — ¢ < 0
multiplied by A/d — (¢ — 1) > 0 contradicts f.(A/d) > 0.
2. In LS:/)’, we get A/d > ¢ by dividing f.(A/d) > 0 by A/d — (¢ —1) > 0. O
Remark 5.1. In the proof of Theorem 5.2 the hypotheses f > 0, —f > 0 used for
LS. spiiv derivations are just linear.

6. SHORT PROOF OF TSEITIN’S TAUTOLOGIES IN LS%

We recall the construction of Tseitin’s tautologies. Let G = (V, E) be a graph
with an odd number n of vertices. Attach to each edge e € E a Boolean variable
Te, 1.€. xz = z.. The negation T" = T of Tseitin’s tautologies with respect to GG
(see e.g., [BGIPO1, GHO1]) is a family of formulas meaning that for each vertex v
of G the sum Y __ . ranging over the edges incident to v is odd. Clearly, T is
contradictory.

In the applications to the proof theory [BGIP01, Urg87] the construction of G
is usually based on an expander. In particularly, G is d-regular, i.e., each vertex
has degree d, where d is a constant. The respective negation T' = T of Tseitin’s
tautologies is given by the following equalities (due to Lemmas 3.1 and 3.2 we give
them directly in PC translation):

(6.1) Il % JJ(1-2)=0

€S, egs)

e3v

(for each vertex v and each subset S! of even cardinality of the set S, of edges
incident to v). There are 297! equalities of degree d for each vertex of G.

Theorem 6.1. For every constant d > 1 and every d-regular graph G, there is a
polynomial-size refutation of (6.1) in LS%+2.

Proof. Denote Y; = yy, + ...+ yu,, Where vy, ... v; are pairwise distinct vertices
of G and y, = ) 5, Te. For every ¢ € [0 .. i(d — 1)/2], we will prove inductively
fe(Y3/2) > 0 for odd ¢ = n,n—2,n—4,... and f.((Y; — 1)/2) > 0 for even
i=n—1,n—3,.... Then fo((Yo —1)/2) > 0 gives a contradiction.

The induction base (i = n) follows from Lemma 5.1, since Yy, = 23" . p . and
therefore Y}, /2 is an integer linear combination of variables.

To proceed from step 7 4+ 1 to step ¢ of the refutation, denote ¥ = ¥;41 and
y = Zeav’“ ze. We assume for definiteness that ¢ is odd (the case of an even
i is treated in a similar way). We need to prove that f.((Y — y)/2) > 0 for all
cel0..i(d—-1)/2].

Fix some subset S C S,,,, of odd size. Let t = [S], ¢/ = c+ (t —1)/2 €
[c..c+(d—1)/2] C[0.. (i+1)(d—1)/2]. Denote P(S) =[] cq e [[egs(l— ze).
Since we have fo((Y —1)/2) > 0 by the induction hypothesis,

Jo((Y =1)/2) - P(5) 2 0
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follows by (2.9), and can be rewritten as
(6.2)  (V-1/2=¢)- (Y =y)/2=(c=1))P(S) + (y/2—1/2)P(5)) 2 0.
Also
(6.3) yP(S) =tP(9)
follows directly from (2.10) and (2.9). Substituting (6.3) into (6.2) by Lemma 5.2
we get
(Y =1)/2=¢) (Y =9)/2—(c=1)) - P(S) > 0

which can be rewritten as

(Y =9)/2 =) P(S) + (y/2 = 1/2) P(5)) - (Y —y)/2 = (c = 1)) = 0
Substituting (6.3) again we get
(6.4) fe((Y —9)/2) - P(5) 2 0.

We complete induction step by summing (6.4) for all S C S,
Lemma 5.2, it remains then to prove that

1= > P9
5CS,
|S] is odd

of odd size. By

i1

This last equality is the sum of the equalities (6.1) for fixed vertex v, because one
canrewrite l =2+ (1—2)=ay+ (1 —2)y+z(l—y)+ (1 —2)(1—y) = ... for
any collection of variables z,y,.... O

Remark 6.1. Sometimes Tseitin’s tautologies are formulated in a different way.
One takes G with arbitrary (not necessarily odd) number of vertices, attaches weight
wy € {0, 1} to each vertex v and writes Boolean formulas expressing @eav Te = Wy.
Then if @,y wy = 1, this set of formulas is contradictory. Note that our technique
works for this kind of Tseitin’s tautologies as well.

Remark 6.2 (A. Kojevnikov). The degree of proof of Tseitin’s tautologies can be
reduced by the use of the rounding rule (2.8) applied to higher degree inequalities.
For example, there is a short proof of degree 6 tautologies in ‘L% + CP?” proof
system. First, one notes that (y, —1)(y, —3)(yy—5) = 0 because it is an integer linear
combination of the equalities (6.1). Then, one sums all the obtained equalities,
getting 2¢)  cpxe = 2k + 1 for certain integers ¢ and k. Applying the rounding
rule to each of the inequalities constituting this equality and summing the results
gives a contradiction.

7. LOWER BOUNDS ON LOVASZ-SCHRIJVER RANK

In this section we prove two lower bounds on Lovész-Schrijver rank. There is a
series of lower bounds on Lovész-Schrijver rank in the literature (see e.g. [CDOI,
GTO01] and the references there). However, these bounds are not suitable for the
use in the propositional proof theory, because these are either bounds for solvable
systems of inequalities, or bounds for systems with exponentially many inequalities.

We first prove (Subsection 7.2) a linear lower bound on the LS;-rank (and a
logarithmic lower bound on the LSy .-rank) of symmetric knapsack problem by
reducing it to a lower bound on the degree of Positivstellensatz Calculus refutation
[Gri0la] (see also Theorem 8.1). However, this system of inequalities is not obtained
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as a translation of a propositional formula, and thus lower bounds for it cannot be
directly used in the propositional proof theory.

Then in Subsection 7.3 we prove an Q(?ﬁ) lower bound on the LS-rank of PHP.
Note (cf. Subsection 2.5) that the LS -rank of PHP is a constant.

7.1. More definitions. We now consider the standard geometric setting for the
Lovész-Schrijver procedures LS and LSy [LS91]. A comprehensive explanation of
its equivalence with propositional proof complexity setting can be found in [Das01].

Given a system Az < b of m linear inequalities in variables z1,... &,, we ho-
mogenize it by adding an extra variable zy and writing the system as

(7.1) xg >0, Az <uapb.

Then let K denote the set of feasible points of (7.1) and K; denote the cone
generated by all 0-1 vectors in K. Also, let @) denote the cone generated by the
0-1 vectors of length n + 1 with the first coordinate equal to 1. In what follows, ¢;
denotes j-th unit vector, and Diag(Y) is the vector of the main diagonal entries of
a square matrix Y. We write Y > 0 if YV is positive semidefinite.
The set M (K) (denoted usually M (K, @), but this generality is not needed here)

consists of (n 4+ 1) x (n 4 1) real matrices Y satisfying

(i) Y =Y7;

(i%) Yeq = Diag(Y);
(#ii) Ye; € K and Y(eg —¢;) € K forall 0 <i < n.

Also, define My (K) :={Y e M(K)|Y = 0}.
Next, define the projections of M(K) and M4 (K) onto R"*! as follows.

N(K) = {Diag(Y)|Y € M(K)}
Ni(K) = {Diag(Y)|Y € My (K)}.

Iterated operators N"(K) and N} (K) are defined naturally as N(O_I_)(K) := K and

NIy (K) = Ny (N[ ().

It is shown in [LS91] that

(7.2) Kr C N("_|_)(K) C N("_l__)l(K) c---C N{:_)(K) C--CNp(K)CK.

The LS-rank (respectively, LS -rank) of a system of linear inequalities Az < b is
the minimal k in (7.2) such that N*(K) = K (respectively, N_lk_(K) = Kj), where
K = K(A,b), as above.

Alternative definitions of Lovéasz-Schrijver ranks in proof systems terms are as
follows. A proof in Lovasz-Schrijver proof system is a directed acyclic graph whose
vertices correspond to the derived inequalities, and there is an edge between f > 0
and g > 0 iff g is derived from f (and maybe something else) in one step. We
now drop the edges corresponding to the rule (2.7). The rank of a refutation is
the length of the longest path from an axiom to the contradiction in this graph.
The LS-rank of a system is the smallest rank of an LS-refutation for it. The LS, -
rank is the smallest rank of an LS -refutation. Similarly, one can define LS.- and
LSy .-ranks. Note that this definition generalizes smoothly to LS?, LSfIl_, LS? and
Ls? ..
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7.2. LS4~ and LS, ,-ranks of symmetric knapsack. The system of inequali-
ties for the symmetric knapsack problem is given by (5.2) and usual axioms (2.5),
(2.6), (2.10). We restrict our attention to system K obtained by setting m =
5]+

Theorem 7.1.

1. LSy-rank of K is at least n/4.
2. LS4 .-rank of K is at least log, n — 1.

Proof. 1. Fix an LS -refutation of K. We now modify it into a Positivstellensatz
refutation (See Subsection 2.2).

For each polynomial f derived in LS with LS -rank at most k& we construct its
representation in the form

(7.3) f= Z(m — )i + (m— Z zi)uo + va

in such a way that all the degrees deg(z; — @7 )u;, deg(m — >, i)ug, deg v]z < 2k
(by recursion on k). Indeed, the recursive step is obvious for the rules (2.10),
(2.11). Furthermore, we replace the first rule of (2.9) by the multiplication by
x = (x — 2?) 4 z? providing the representation

for= (X to = o+ o= ) 00 + m = o wuor) + 3 (wse),

that gives the form of fu similar to (7.3). Similarly, we replace the second rule of
(2.9) by the multiplication by (1 — z) = (z — 2%) + (1 — 2)?.
At the end of the derivation in LS4 of LS;-rank k4 we get a representation of

the form
1= (e — 2w+ (m—Y w)up+ Y 7

where deg(z; — 22)%;, deg(m — 3~ ;)ug, deg v;2 < 2k by recursion. This provides
a Positivstellensatz Calculus refutation of the knapsack problem with the degree
less or equal to 2ky. Applying [Gri0la] (cf. also Theorem 8.1) we conclude that
2ky > n/2, thus LS -rank of K is at least n/4.

2. We fix an LS, .-refutation of K and observe in a similar way that if two
derived polynomials f and

9= (e —ad)u +(m = wi)ug + Y (v;)?
of LSy .-rank at most k are already in the form (7.3) where
deg(x; — x)u;, deg(m — Z zi)ug, deg vjz»,deg(xi - xf)u;,
deg(m — Y a:)up, deg(vy)? < 2%,

their product

f9= (Z(xz — ] )uig + Z(xz — 2})u; va + (m — Zl‘z’)uog-l-
(m= 32w 32 F) + P lws o)

can be written again in the desired form (7.3) with the degrees of the occurring
polynomials bounded by 2%t!. This allows one to replace the rule (2.12). By
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recursion at the end of the derivation in LS, . of the LS, ,-rank k. we get a

representation
1= (e — )@+ (m = w)uo + Y0

with the degrees deg(z; — #7)d;, deg(m — 3 #;)up, deg 0;° < 2%+, Again as above
applying [Gri0la] (or Theorem 8.1) we conclude that 2%+ > n/2 and thereby, LS .-
rank of K is at least log, n — 1. (]

Remark 7.1. Similarly to Theorem 7.1(2), a logarithmic lower bound on the
LS4 .-rank can be obtained for the parity principle and for Tseitin’s tautologies

relying on [Gri0O1b].

7.3. LS-rank of PHP. Let e; denote all-1 vector of length k.
Let @, C IR” denote the n-dimensional 0-1 hypercube and let F,,_; be the
feasible set of the system (2.18)-(2.19). This is the well-known “PHP polytope”.

Theorem 7.2. At least m — 2 iterations of the N-operator are needed to prove
that P,,_; does not contain integer points, that is, LS-rank of P,,_; 1s at least
m— 2.

It will follow from Lemma 7.2 below.

Write z € Nr(m — 1) iff (1,2) € N"(Ppn_1). We also identify No(m — 1) with
P, 1tself.

Let z € No(m— 1). Define w® = w®(z) € Qm(m+1), Where 1 < a < m + 1,
1 < b < m, as follows.

T fl<i<a, 1<j<b;

51 fl<i<a, b<j<m
ab ) Tio1 fa<i<m+1, 1<j<¥;
Wiy = T -1 fa<i<m+1, b<j<m

1 ifi=a, j=10b;

0 otherwise.

Lemma 7.1. Let = € Nr(m —1). Then w*(z) € Nr(m)

Proof. Tt 1s trivial to check the statement for » = 0. R

We make an induction assumption that for any z and any ¢t < r, x € N*(m — 1)
implies w®(z) € N*(m). Without loss in generality, assume a = b = 1.

We fix a particular basis (e1,. .., €mp(m—1)) in Rm(m=1).

(901,1 s fim—-1,%21.--Tm1,T22. .- L2m-1,L32- .., l‘m,m—1)~

(it just gives a particularly nice ordering of variables for the purpose.) In such a
basis, wil(z) = (1,0...0, z).

Assume * € N’“(m— 1). Thus there exists ¥ = (i §,T,) € M(N""Y(Pn_1)).
Define

1 1 (0...0)7 o7

- 1 1 (0...0)7 2T
T (0...0) (0...0)  Oam—12m-1  Om_1m(m-1) ]’

€T T Om(m—l),Zm—l y!

where 0 , denotes the all-0 matrix of size s x g. We show that Y € M(N"~(P,,)),
implying the statement of the lemma.



22 DIMA GRIGORIEV, EDWARD A. HIRSCH, AND DMITRII V. PASECHNIK

By construction, v = Y, Yo; =Y;; and 707]' = ij.
Note that if Yy j = 0 then Ye; =0, as P—1 C Qp(m—1)- Hence 707]' = 0 1mplies

Ye; = 0. Thus if Ye; # 0 then we can normalize %Vej. Hence, by induction
0,7

assumption applied to £ = Ye;, one has %?6]’ € N™=1(P,,) for all j such that
— — 0,7
Yo ; #0. Hence Ye; € N"~1(P,,) for all j.

Similarly, as any nonzero vector of the form Y (eq — ey ) satisfies Y (eg — ex)o =
1—Yy % > 0, normalizing a nonzero Y (eg —e;) with its 0-th coordinate, one obtains,

for j > 0, that either Y(eg —e;) = 0 or 1—%0,]'?(60 —¢;) € N"™"1(P,,). Hence

Y(eg —e;) € N"=L(Py,) for all j > 0. O

Lemma 7.2. ﬁem(m_l) € Nm_?’(m —1) for m > 3.

Proof. Trivial for m = 3. Denote x; = %ek(k+1)~
By induction, assume xj € N’“_Z(k') for all 1 < k < m — 1. Set the ma-
trix Y to have columns (1, 2p;,_1), —=(1,w' (@2m_2)), 5 (1, w3(zm_2)), ...

’ m—1 ’ m—1

L (1, w™™ Yz,_5)). Then YT =Y, Yo; =75,

m—1

bl

By induction assumption and Lemma 7.1, Ye; € N™=*(P,,_1) for each j > 0.
Next, observe that

m—1
(7.4) Yeo = Z Ye(gp) forany 1 < g <m
p=1

(here we use notation identifying (¢, p) = j). Hence Yeq € N™~4(Pp_1).
Finally, from (7.4) we have Y (eq — e(qp)) = ZT:_; siq Y €(g,s)-
Thus Y € M(N™~*(Pp_1)), and the statement follows. O

8. LINEAR LOWER BOUND ON THE “BOOLEAN DEGREE” OF
POSITIVSTELLENSATZ CALCULUS REFUTATIONS OF THE KNAPSACK

We use the following notation from [IPS99, Gri0la]. For a polynomial f, its
multilinearization f is a polynomial obtained by the reduction of f modulo (x—2?)
for every variable z, 1.e., f is the unique multilinear polynomial equivalent to f
modulo these (“Boolean”) polynomials. When f = f we say that f is reduced.

For a monomial ¢ one can define its Boolean degree Bdeg(t) as deg(?), in other
words, the number of occurring variables; then one extends the concept of Bdeg
to polynomials: Bdeg(f) = maxBdeg(?#;), where the maximum is taken over all
non-zero monomials ¢; occurring in f. Thereby, one can define Bdeg of a deriva-
tion in PC and subsequently in Positivstellensatz and Positivstellensatz Calculus
as maximum Bdeg of all polynomials in the derivation (in Positivstellensatz and
Positivstellensatz Calculus, this includes polynomials h?, cf. definition in Subsec-
tion 2.2).

The following lemma extends the argument in the proof of [TPS99, Theorem 5.1]
from deg to Bdeg.

Lemma 8.1. Let f(z1,...,2,) = 121+ +eptn—m, where eq, ..., ¢, € R\{0}.
Let ¢ be deducible in PC from the knapsack problem f = 0 with Bdeg < [(n—1)/2].
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Then one can represent
(8.1) ¢=> (vi—a})gi + 19,

where deg(fg) < Bdeg(q).

Proof. Similarly to the proof of [IPS99, Theorem 5.1], we conduct the induction
along a (fixed) deduction in PC. Assume (8.1) and consider a polynomial gz,
obtained from ¢ by multiplying it by a variable ;. W.l.o.g. one can suppose that
g is reduced. Then g#7 = fga1; denote h = gz7. Let d = deg(h) — 1. We need to
verify that d + 2 = deg(fh) < Bdeg(qz1). Taking into account that

d+1=deg(h) < deg(g) + 1 = deg(fg) < Bdeg(q) < Bdeg(qu1),

the mere case to be brought to a contradiction is when Bdeg(gz1) = Bdeg(q) =
deg(g) +1=d+1.

We write ¢ = p 4 x1p1 where all the terms of g not containing x; are gathered
in p. Clearly, deg(p) < deg(g) = d. Moreover, deg(p) = d because if deg(p) < d,
we would have d + 1 = deg(h) < Bdeg(gz1) < max(Bdeg(z1p), Bdeg(z%p;)) < d.

On the other hand, d = Bdeg(¢)—1 < [(n—1)/2]—1. Therefore, [TPS99, Lemma
5.2] applied to the instance caxy+ ...+ ¢, — 0 of symmetric knapsack states that

deg((cawa 4+ ...+ cpan)p) =deg(p) +1=d+ 1

(one should add to the formulation of [TPS99, Lemma 5.2] the condition that p is
reduced).

Hence there exists a monomial 7 = HjeJ x; occurring in p for a certain J C
{2,...,n}, |J] = d, and besides, there exists ¢ € [2..n] such that the monomial
z;x”7 | being of the degree d + 1, occurs in the polynomial (caxs + - -+ cpzp)p, in
particular ¢ ¢ J.

Because of that the monomial T' = z;27 21 with deg(T) = d+ 2 occurs in

p/ = (Czl‘z +--+ Cnxn)p$1~

Furthermore, T" occurs in

fgrr = ((caza + -+ cnin) + (cr1 — m)) (p + z1p1) 21

since after opening the parenthesis in the right-hand side of the latter expression
we obtain only p’ and two subexpressions

(crxr —m)(p+xip1)ey = (cr —m)gzr  and  (cawa + - -+ cpy) P12y

of Boolean degree at most d + 1 (thereby, any monomial from these subexpres-
sions cannot be equal to the reduced monomial T). Finally, due to the equality
G717 = fgx1, we conclude that Bdeg(gz1) > deg(g@y) = deg(fgx1) > d + 2; the
achieved contradiction proves the induction hypothesis for the case of the rule of
the multiplication by a variable (note that the second rule in (2.2) can be replaced
by the multiplication by a variable with a multiplicative constant).

Now we proceed to the consideration of the rule of taking the sum of two poly-
nomials ¢ and r. By the induction hypothesis we have

r= Z(m — xf)uz + fu,
i=1
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where u_is reduced and deg(fu) < Bdeg(r). Then making use of (8.1) we get
r 4+ q = fv where v = ¢ + u. The inequality

deg(v) < max{deg(g), deg(u)} < max{Bdeg(q), Bdeg(r)}~1 < [(n—1)/2]~1 < [n/2] -1

enables us to apply [IPS99, Lemma 5.2] to v, this implies that deg(fv) = deg(v) +
1 = deg(fv). Therefore, Bdeg(r + ¢) > deg(r + ¢) = deg(fv) = deg(fv). O

The next corollary extends [IPS99, Theorem 5.1].
Corollary 8.1. Any PC deduction of the knapsack f has Bdeg greater than [(n—

1)/2].

Now we can formulate the following theorem extending the theorem of [Gri0la]
from deg to Bdeg. Denote by 4 a stairs-form function which equals to 2 out of the
interval (0,n) and which equals to 2k + 4 on the intervals (k, k+ 1) and (n — k —
1,n — k) for all integers 0 < k < n/2.

Theorem 8.1. Any Positivstellensatz Calculus refutation of the symmetric knap-
sack problem f =1 + - 4 2, — m has Bdeg greater or equal to min{d(m), [(n —

1)/2] + 1}
Proof. We follow the line of the proof of the theorem [Gri0la]. Suppose to the
contrary that there is a Positivstellensatz Calculus refutation with Bdeg < d :=
min{é(m), [(n — 1)/2] + 1}. First, we apply Lemma 8.1 to the deduction in PC
being an ingredient of the deduction in Positivstellensatz Calculus (see definitions
in 2.2). This provides a Positivstellensatz refutation of the form
(8.2) l—I—Zh?:Z(l‘i—l‘?)gH-fg,
7 i=1

where Bdeg(fg) < deg(h?) <d.

The rest of the proof follows the idea from [Gri01a] of applying the linear mapping
B to both sides of (8.2), where B is defined on the monomials z! as

(8.3) B:R[ry,...,2n] = R, where B(z!) = By, = @

(2)
and by linearity on the rest of R[zy, ..., z,].
It is worthwhile to mention that B is defined on the quotient algebra R[xy, ... #,]/(x1—
x?, ... x,—22), thereby, the proof in [Gri0la] actually estimates Bdeg rather than
Just deg.
We would like to sketch here a streamlined version of the latter proof, invoking

at some point technique from the theory of association schemes, cf. e.g. [BI&4].

for k = 1],

Lemma 8.2. (cf. [Gri0la, Lemma 1.3].) Let go € Rlzy,...,2,], and Bdeg(go) <
n. Then B(fgo) = 0.

Proof. Verify that B(fX!) = 0 on all the monomials X' of gy, as B satisfies the
recurrence (n— k)Bgy1 = (m — k) By. O

Introduce on (the coefficient space of) R[zy,...,z,]/(z1 — x%, ..., z, — 22) a
quadratic form @ by setting Q(z!,2”) = B(zY7) and denote by @, the restriction
of () onto the subspace of polynomials of degree at most ¢. In the sequel we allow
ourselves to denote by @ also the matrix of (Jy. It is interesting to mention that
@ is known as the moment matriz of B, see e.g. [Las0l, Lau01]. The “if” part of
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the following statement is [Gri0la, Lemma 1.4]. The “only if” part demonstrates
that at least along these lines the bound of Theorem 8.1 cannot be improved.

Lemma 8.3. (cf. [Gri0la, Lemma 1.4].) The form @, is positive semidefinite if
and only if f—1<m<n—/¢+1and ¢<[n/2].

A proof for this lemmais given below, and this is where the promised streamlining
happens. We now demonstrate how to deduce the proof of the theorem from this
lemma.

Apply B to the both sides of (8.2). The right-hand side vanishes, as B(fg) =0
due to Lemma 8.2, and as B((z; — 2%)g;) = B(zigi) — B(z2g;) = 0. The left-
hand side then evaluates to C'= 1+ Zj h]Tth, where h; stands for the vector of
coefficients of the polynomials h;. As the maximal degree of h? cannot be larger

than the maximal degree of the right-hand side of (8.2), h]TQh] = h]Tthj, where

£ falls into the range covered by Lemma 8.3. Hence h]TQh] > 0 and thus C' > 0,
the desired contradiction. O

Proof of Lemma 8.3. Let us order the subsets of {1,... n} with respect to the size
(i.e. degree), and in arbitrary (but fixed) way within each size, and fix the ordering
on the rows and columns of @, accordingly. Denote by Q¢ the principal submatrix
of Qg corresponding to the f-element subsets of {1,...,n} (so that Q¢ occupies the
south-east corner of Q).

We show now that @, has at least T'— (TZ) zero eigenvalues, where T' = Zﬁ:o (?)
To this end, let us exhibit a basis for a subspace of such a dimension of the nullspace
ker Q; of Q. The coefficient vectors of fz!, lie in ker Q¢ as long as |I| < ¢, as can be
seen by invoking Lemma 8.2 on B(fz!z”), where |J| < ¢. These fz! will form the
desired basis, as these vectors are linearly independent. This can be seen by building
a basis for the subspace they generate, adding first the vector of coefficients of fx!,
where [ is the greatest (w.r.t. the ordering specified above) subset of size |I| < ¢,
then the second greatest I, and so on. At each step a new, smaller, monomial of the
form Dz for D € R — {0} appears in fz!, implying that the dimension increases,
and we are done.

To this point we followed [Gri0la] quite closely. Now comes the first shortcut.
Namely, we claim that positive definiteness of Q¢ implies positive semidefiniteness
of Q¢. Indeed, let py > --- > () (resp. A1 > -+ > Ar) be the sequence

of the eigenvalues of Qu (resp., of Q). Tt is well-known (the result attributed
to Cauchy, and as such sometimes referred to as Cauchy interlacing, as well as the
inclusion principle for eigenvalues) that the first sequence interlaces the second, that
is, \j > p; for 1 < i < (}), cf. e.g. [HJ90, Theorem 4.3.15] or [Liit96, 5.3.1(11)].
Therefore the first (TZ) eigenvalues of (), are not smaller than the smallest eigenvalue
of (Qy¢, and thus positive, and we are done.

Already at this point we can prove that @, is positive semidefinite for m suffi-
ciently close to £, as for m = £ the matrix Q¢ 1s a positive scalar multiple of the
identity matrix, and as the eigenvalues of Qs depend continuously on m. (And
actually, even for m sufficiently close to £ — i, for 0 < ¢ < ¢, as y—; 1s a principal
submatrix of Q.)

To complete the proof for all the values of m under consideration, we show that
Q¢ 1s positive definite. Here we invoke the theory of association schemes, see e.g.
[BI84, God93], as follows. For the sake of completeness, we give few definitions first.
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We denote by M = M(?) (C) the algebra of the (Z) X (Z) matrices with entries in the

field C of complex numbers. The centralizer Cpr(S) of an S C M in M is defined
by Cp(S) = {¢ € M | ¢cs = sc for any s € S}. Note that Cy(S) is a subalgebra of
M.

Let p C M be the permutation representation of the symmetric group S, acting
on the subsets of size £. That is, one takes each 7 € S,, as a permutation 7’ in
S(’Z) by setting 7’ ({t1,...,%,}) = {m(t1),...,7(t;)} and then turning =’ into a 0-1
matrix p(m) by setting pr (r)(7) = 1 and prs(7) = 0 for the remaining pairs of
indices (I.J), J # «'(I). Then Qg € Car(p). The algebra Cpr(p) is known under
many different names, cf. [BI84], e.g. as the Bose-Mesner algebra of the Johnson
scheme J(n, ). What is important here is that Cys(p) is commutative of dimension
£+ 1, and the 0 — 1 matrices A; defined as (A;)r; = 1 iff [T — J| = ¢ form its basis,
0<e <t

As the C-linear representations of finite groups are completely reducible, see e.g.
[BI84, Theorem 1.2.4], there exists an orthogonal linear transformation that de-
composes p into a direct sum of £ + 1 irreducible representations. By the Schur’s
Lemma, see e.g. [BI84, Theorem 1.3.2], such a transformation simultaneously diag-
onalizes all the A;’s, and the restriction of any of the transformed A;’s onto the j-th
irreducible constituent is a scalar matrix p;(j)I. Thus each A; has at most £+ 1
distinct eigenvalues p;(j). This implies in particular that, as Qg = Zf:o By A;
(here B is as in (8.3)), the set of eigenvalues of Qs equals the set of eigenvalues of
(4 1) x (£+ 1) diagonal matrix Zf:o Byyidiag(pi(0), pi(1), ..., ps ().

To summarize, we state the following lemma, writing out the expressions for

pi(j) from [BI84, Corollary to Th. 3.2.9].

Lemma 8.4. The set of eigenvalues of )y is given by

‘
55 = Z Beyipi(j), where
i=0

(8.4)
N [\ (n—L —1, —-j, —n—14j
pl(j)_<i)< i )3F2<—£, —n 40 1)
Here .F ( Cgl’ o Cgr ;y) =30 W%—T denotes the hypergeometric
1, - s > De...(ag) t!

series and (a); the ascending factorial (a); = a(a+1)...(a+t—1), (a)o = 1.
To complete the proof of Lemma 8.3, it suffices to show that s; > 0 for all ;.
Taking (8.3) and (8.4) into account, we see that it remains to show that

85 O (m—1{ —i, -4, —n—1+47j .
— = : <3<
Be E (z)( ; )3F2<_£’ gt ;1) >0 for 0<j5</
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Changing the order of summation, one obtains

(8.5)
5= S ()(") -
B )
) ;Ct(_t)t (f) (mt_g) %, for ¢ = ((_Z)Et)i(_fn—:_jg; ;)t

The equality in the second row is obtained by applying to the inner sum in the first
row the procedure described in [PWZ96, Chapter 3] that identifies hypergeometric
series. Note that the first non-vanishing term of this sum is the ¢-th one (i.e. i =1)
and 1t equals (—t), (f) (mt_z).

The equality in the third row is derived using the Gauss’s identity (see [PWZ96,
Sect. 3.5]).

Next, we again use the abovementioned procedure from [PWZ96, Chapter 3] to

identify the latter sum ;—2 = tho m as a hypergeometric series. Pulling

the constant term m outside, one notes that the already the 0-th term does
not vanish, and equals T'(1 + m). Thus we just have to compute the ratio of the

consecutive summands fi41 and f; to arrive at
Jror _ (=t —n+j-D(=t+m-OP(m—1) ({E—j-—n+j-1{t-—m+{)

o t—n+ 0O+ OI(m—t+1) T -t O+ Dt—m)
where the latter is obtained by using the identity T'(x + 1)/T'(x) = 2. This readily
identifies the series and one obtains the following.

iF(l—l—m—E)E'_ e ( -m4+Ll, —n+j—-1 —j .1) _(—n4m);(L—j+1);

B, T(l+m) 22\ -n+¢ —m ) Tt 0im—j+ 1),

Here the Saalschiitz’s identity (see [PWZ96, Sect. 3.5]) is applied to the second

expression for j > 0 to obtain the rightmost expression, that is also valid for j =0

by definition of the ascending factorial.
We should investigate the sign of R; =

(=ntm);
. . . ety :
tive term is positive. Note that the multiplicands of the denominator are always

negative. On the other hand, the numerator has all the multiplicands negative if
and only if m < n—j+ 1 for all j. (and in particular R; > 0.) This completes the
proof of the “if” part of the lemma.

Arguing along this line it follows that if m > n — £+ 1 then there exists j such
that one gets R; < 0. Finally, observe that if m < ¢ —1 then B, < 0. Thus if a
condition on m in the lemma is not satisfied then @y has a negative eigenvalue.
This implies that @, is not positive semidefinite, completing the proof of Lemma

8.3, and, thereby, of Theorem 8.1. O

as the remaining multiplica-

9. EXPONENTIAL LOWER BOUND ON THE SIZE OF STATIC LS_|_ AND
POSITIVSTELLENSATZ CALCULUS REFUTATIONS OF THE SYMMETRIC
KNAPSACK

In this section we apply the results of Section 8 to obtain an exponential lower
bound on the size of static LSy and Positivstellensatz Calculus refutations of the
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symmetric knapsack. We follow the notation introduced in Subsection 2.5 and
Section 8. The Boolean degree of a static LS (LS} ) refutation is the maximum
Boolean degree of the polynomials u;; in Subsection 2.5.

Let us fix for the time being a certain (threshold) d.

Lemma 9.1. Denote by M the number of monomials of Boolean degrees at least
d that occur in a Positivstellensatz Calculus refutation of system of inequalities
S. Then there is a variable z such that the result of substituting z = 0 in this
refutation is a valid Positivstellensatz Calculus refutation of the system S|y=¢ and
contains at most M (1 — d/n) (non-zero) monomials of Boolean degrees at least d.

Proof. Since the refutation contains at least M monomials of Boolean degrees at
least d, there is a variable @ occurring in at least Md/n of these monomials. There-
fore, at least Md/n monomials vanish after the substitution. O

Lemma 9.2. Denote by M the number of w;;’s occurring in (2.17) that have
Boolean degrees at least d. Then there is a variable  and a value a € {0,1}
such that the result of substituting in (2.17) £ = a contains at most M (1 —d/(2n))
non-zero polynomials u; ;|»=, of Boolean degrees at least d. (Note that by substi-
tuting in (2.17) a value a for # we obtain a valid static LS refutation of the system

Sle=a)-

Proof. Since there are at least Md occurrences of x; or 1 — #; in the polynomials
u; 1 of Boolean degrees at least d, there is a variable x such that either z or 1 — =
occurs in at least Md/(2n) of these polynomials. Therefore, after substituting the
appropriate value for z, at least M d/(2n) polynomials u; ; vanish from (2.17). O

For the symmetric knapsack problem (5.2), we can rewrite its static LSy refuta-
tion in the following way. Denote

fo = x4 Fr,—m,
fi = wmi—x} (1<i<n),
fi = () (n+1<i<n)

(m is not an integer). The refutation can be represented in the form

t n' n'
(9.1) SR gt Y. fiti+ > ti=-1,
=0 !

j=n+1 j=n'4+1

where

gl = Yii- H T - H (1— =),

keGf, keGy,
tj = Tj.ka.H(l_xk)
keT} keT;

for appropriate multisets G}, G;"l, 17 and Tj‘", positive real 7; and arbitrary real
Vil

Lemma 9.3. If n/4 < m < 3n/4, then the Boolean degree D of any static LSy
refutation of the symmetric knapsack problem is at least n/4.
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Proof. Replacing in ¢; each occurrence of z; by f; +z7 and each occurrence of 1—x;
by fi + (1 — ;)? and subsequently opening the parentheses in ¢;, one can gather
all the terms containing at least one of f; and separately the products of squares
of the form z?, (1 — x;)?. As a result one gets a representation of the form

Zfigi+zh? =-1
=0 j=1

for appropriate polynomials g;, h; of Boolean degrees Bdeg(gi),Bdeg(h?) < D,
thereby a Positivstellensatz (and Positivstellensatz Calculus) refutation of the sym-
metric knapsack of Boolean degree at most D + 2. Then Theorem 8.1 implies that
D>[(n=1)/2]1-12>n/4 O

Theorem 9.1. For m = (2n + 1)/4 the number of monomials in any Positivstel-
lensatz Calculus refutation of (5.2) is exp(£2(n)) (hence, the size of such refutation
is exponential).

Proof. Now we set d = [n/8] and apply Lemma 9.1 consecutively x = |n/4] times.
The result of all these substitutions contains n — « variables. We denote by f§ the
result of the substitutions applied to fy (where fo = 21 + -+ -+ 2, — m). Note that
J§ is again an instance of the knapsack problem. Therefore, we are able to apply
Theorem 8.1 to our refutation of fjj. Taking into account that the free term fi is
the same as in f and falls into the interval ((n — k)/4,3(n — k)/4), the degree of
this new refutation is at least (n — k)/4 > d.

Denote by My the number of monomials of the degrees at least d in the original
refutation. By Lemma 9.1 the new refutation contains at most My(1 — d/n)* <
Moy(1—1/8)"* non-zero monomials of degrees at least d. Since this new refutation
contains at least one monomial of such degree, we have Mo(1 — 1/8)*/* > 1, i.e.
My > (8/7)"/*, which proves the theorem. O

Theorem 9.2. For m = (2n+1)/4 the number of g; ;’s and ¢;’s in (9.1) is exp(2(n)).
Hence, any static LSy refutation of (5.2) for m = (2n 4+ 1)/4 must have size

exp(Q(n)).

Proof. Now we set d = [n/8] and apply Lemma 9.2 consecutively k£ = |n/4] times.
The result of all these substitutions in (9.1) we denote by (9.1’), it contains n — &
variables; denote by u}, the polynomial we thus get from u;;. We denote by f}
the result of substitutions applied to fy. Note that after all substitutions we obtain
again an instance of the knapsack problem. Taking into account that the free term
m' of fjj ranges in the interval [m — &, m] and since (n —K)/4 < m — Kk < m <
3(n — k)/4, we are able to apply Lemma 9.3 to (9.1'). Thus, the degree of (9.1') is
at least (n —k)/4 > d.

Denote by My the number of wu;;’s of the degrees at least d in (9.1). By
Lemma 9.2 the refutation (9.1') contains at most Mo (1—d/(2n))* < My(1—1/16)"/*
non-zero polynomials u;',l of degrees at least d. Since there is at least one polyno-
mial u} , of such degree, we have My(1— 1/16)** > 1, i.e. My > (16/15)™/# which
proves the theorem. O

Corollary 9.1. Any tree-like LS} (or LS®) refutation of (5.2) for m = (2n+1)/4
must have size exp(2(n)).
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Proof. The size of such tree-like refutation (even the numer of instances of axioms
fi used in the refutation) is at least the number of polynomials w; ;. O

Remark 9.1. The value m = (2n+1)/4 in Theorems 9.1 and 9.2 and Corollary 9.1
can be changed to any non-integer value between [n/4] and [3n/4] by tuning the
constants in the proofs (and in the Q(n) in the exponent).

10. OPEN QUESTIONS

. What is the proof complexity of the symmetric knapsack problem in (dag-

like dynamic) LS (cf. Sections 5, 7 and 9)7 We conjecture it (or the general
knapsack problem) as a candidate for a lower bound.

. Prove an exponential lower bound for a static semi-algebraic propositional

proof system. Note that we have only proved an exponential lower bound
for static LS, as a proof system for the co-NP-complete language of systems
of 0-1 linear inequalities, because the symmetric knapsack problem is not
obtained as a translation of a Boolean formula in DNF.

. Suggest a candidate for a lower bound in LS? for (arbitrarily large) constant

d.
How precise is the logarithmic lower bound on the LS,-rank for the knapsack
problem from Subsection 7.27

. Can one relax in Theorem 5.2 the condition on the polynomial growth of the

coefficients?

. Is it possible to simulate LS (or static LS*) by means of a suitable version

of CP (e.g. by the R(CP) introduced in [Kra98])? In other words, does there

exist an inverse to Theorem 5.27
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