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Homomorphic public-key cryptosystems over groups and rings

We propose a new homomorphic public-key cryptosystem over arbitrary nonidentity finite group based on the difficulty of the membership problem for groups of integer matrices. Besides, a homomorphic cryptosystem is designed for the first time over finite commutative rings.

Introduction

1.1. The problem of constructing reliable cryptosystems for secret computations had been extensively studied last years (see [START_REF] Benaloh | Dense probabilistic encryption[END_REF][START_REF] Brickell | On privacy homomorphisms[END_REF][START_REF] Feigenbaum | Open questions, talk abstracts, and summary of discussions[END_REF][START_REF] Grigoriev | Homomorphic public-key cryptosystems and encrypting boolean circuits[END_REF][START_REF] Rivest | On data banks and privacy homomorphisms, Found. of Secure Computations[END_REF]). Generally, it consists in encryption of a circuit over an algebraic structure H (e.g. group, ring, etc.). One of possible approaches to it is to find a publically known algebraic structure G and a secret homomorphism f : G → H. If the inversion of f is efficiently computable and computing of f is a hard computational problem (i.e. f is a trapdoor function), one can design a homomorphic public-key cryptosystem in which an element h ∈ H is encrypted by an element of the form gg h where g is a random element of ker(f ) and f (g h ) = h. Using such a cryptosystem one can efficiently implement a secret computation given by any circuit over the structure H. Some other applications of homomorphic public-key cryptosystems can be found in [START_REF] Benaloh | Dense probabilistic encryption[END_REF][START_REF] Domingo-Ferrer | A provable secure addition and multiplication privacy homomorphism[END_REF][START_REF] Domingo-Ferrer | An implementable scheme for secure delegation of statistical data[END_REF][START_REF] Sander | Protecting mobile agents against malicios hosts[END_REF]. We mention also that the group theory is a source of constructions (apart from homomorphic cryptosystems) in the cryptography, see e.g. [START_REF] Grigoriev | Public-key cryptosystems and invariant theory[END_REF][START_REF] Koblitz | Algebraic aspects of cryptography[END_REF][START_REF] Maurer | Lower bounds on generic algorithms in groups[END_REF][START_REF] Naccache | A new public-key cryptosystem based on higher residues[END_REF][START_REF] Paeng | Improved public key cryptosystem using finite non-abelian groups[END_REF].

It is well known that any boolean circuit of logarithmic depth can be efficiently simulated by a circuit over an arbitrary finite nonsolvable group, see [START_REF] Barrington | Non-uniform automata over groups[END_REF] (another approach to encrypting boolean circuits was undertaken in [START_REF] Sander | Non-interactive cryptocomputing for NC 1[END_REF]). Thus one of the first natural problems concerning secret computations is to design a homomorphic public-key cryptosystem over a finite group. The known examples of such systems include the quadratic residue cryptosystem (see [START_REF] Goldwasser | Probabilistic encryption[END_REF][START_REF] Goldwasser | Lecture Notes on Cryptography[END_REF]) over the group of order 2 and the cryptosystems (see [START_REF] Okamoto | A New Public-Key Cryptosystem as Secure as Factoring[END_REF][START_REF] Paillier | Public-Key Cryptosystem Based on Composite Degree Residuosity Classes[END_REF][START_REF] Rappe | Algebraisch homomorphe kryptosysteme[END_REF]) over some cyclic and dihedral groups. However, in these and some other cryptosystems the involved groups are solvable and so can not be used for the above cited simulation of boolean circuits. The first homomorphic public-key cryptosystem over an arbitrary nonidentity finite group was designed in [START_REF] Grigoriev | Homomorphic public-key cryptosystems and encrypting boolean circuits[END_REF].

It should be mentioned that the secrecy of all these cryptosystems was based on the difficulty of some problems closely related with that of integer factoring. However, "as long as factoring remains intractable, we are in a good position, but we are overindependent on the computational complexity of one particular problem" [START_REF] Wagner | A public-key cryptosystem based on the word-problem[END_REF]. In addition, unlike factoring it is unknown whether there is a quantum machine which can decide the membership to a non-abelian matrix group, the problem on which relies the security of the cryptosystems in the present paper. In contrast to the cryptosystems based on the factoring problem the first main result of this paper is a new homomorphic public-key cryptosystem over arbitrary nonidentity finite group based on the difficulty of the membership problem for groups of integer matrices (for details see Section 2 and Theorem 2.1).

Theorem 1.1 For a nonidentity finite group H given by generators and relations one can choose a group G ≤ GL 2 (Z) and a homomorphism f : G → H to obtain a homomorphic public-key cryptosystem over H.

We may think of H to be a finite small group. On the other hand, the infiniteness of G is not an obstacle for performing algorithms of encrypting and decrypting (for the latter using the trapdoor information) since they involve just calculations with integer 2 × 2 matrices. In this connection we mention a public-key cryptosystem from [START_REF] Van | Public key cryptosystems based on word problems[END_REF] in which f was the natural epimorphism from a free group G onto the group H given by generators and relations. In this case for any element of H one can produce its preimages (encryptions) by inserting in a word (being already a produced preimage of f ) from G any relation defining H. In other terms, decrypting of f reduces to the word problem in H. In our approach the epimorphism f is given on specially chosen generators of an appropriate subgroup G of a free group F ⊂ GL 2 (Z), and the trapdoor consists in a polynomial-time algorithm (see Subsection 2.4) which allows one to represent an element of G (being an integer matrix) as a product of free generators of F . Publically in the cryptosystem from Theorem 1.1 a certain set of generators of G is exhibited, and the security of the cryptosystem relies on the difficulty (without knowledge of the trapdoor) of finding a representation of an element of G as a product of these generators, while in [START_REF] Van | Public key cryptosystems based on word problems[END_REF] an element of the free group G is given just by means of a product of its generators. (In fact, we keep a secret "good" basis of F which enables us to compute matrices of G easily; at the same time the public key is given by a "bad" basis of G for which the representation problem is supposedly hard.)

We mention also that two public-key cryptosystems (being not homomorphic) based on the group SL 2 (Z) were suggested in [START_REF] Yamamura | Public-key cryptosystems using the modular groups[END_REF][START_REF] Yamamura | A functional cryptosystem using a group action[END_REF] which were subsequently broken in [START_REF] Steinwandt | Loopholes in two public-key crytptosystems using the modular groups[END_REF][START_REF] Blackburn | Cryptanalysis of two cryptosystems based of group actions[END_REF]. These cryptosystems were hiding the generators of a subgroup of SL 2 (Z) by means of conjugating them with a secret matrix.

In [START_REF] Wagner | A public-key cryptosystem based on the word-problem[END_REF][START_REF] Garzon | The complexity of Grigorchuk groups with application to cryptography[END_REF] two constructions of cryptosystems (being not homomorphic) were proposed with the difficulty of breaking relied on the word problem (in finitely generated groups). The common feature of both papers is that a public key is given by two words m 0 , m 1 and a family R of words. Then encrypting of a bit i ∈ {0, 1} is carried out by means of starting with m i and subsequent random inserting polynomial number of times of the words from R. Denote by G the group given by the relations R. Then basically the trapdoor needs a solution of the word problem in G. To this end the epimorphisms of the form f : G → H, provided that f (m 0 ) = f (m 1 ) were suggested such that the word problem in the group H is easy, thereby this epimorphism plays a role of a trapdoor. In [START_REF] Wagner | A public-key cryptosystem based on the word-problem[END_REF] the epimorphism f consists actually in adding some relations of commutativity of the generators. In [START_REF] Garzon | The complexity of Grigorchuk groups with application to cryptography[END_REF] as a group H is taken the Grigorchuk group with 4 generators (and being not finitely presentable) corresponding to a certain fast computable infinite word χ. It is shown in [START_REF] Garzon | The complexity of Grigorchuk groups with application to cryptography[END_REF] that the word problem in this group is easy, thus χ plays a role of a trapdoor. So, the principal difference of the cryptosystems proposed in [START_REF] Van | Public key cryptosystems based on word problems[END_REF][START_REF] Wagner | A public-key cryptosystem based on the word-problem[END_REF][START_REF] Garzon | The complexity of Grigorchuk groups with application to cryptography[END_REF] from our cryptosystem is that they perform calculations with words, whereas our cryptosystem deals with integer 2 × 2 matrices.

It seems to be an interesting open question whether for a non-abelian group H there exists a homomorphic cryptosystem with a finite group G? 1.2. The second topic of this paper is devoted to homomorphic public-key cryptosystems over finite rings. This problem was first posed in [START_REF] Rivest | On data banks and privacy homomorphisms, Found. of Secure Computations[END_REF] (see also [START_REF] Feigenbaum | Open questions, talk abstracts, and summary of discussions[END_REF]) and in [START_REF] Brickell | On privacy homomorphisms[END_REF] it was demonstrated that a direct approach to it fails. At present there are only a few results in this direction. In particular, we mention the cryptosystem from [START_REF] Domingo-Ferrer | A new privacy homomorphism and applications[END_REF] based on a homomorphism from the direct sum of rings isomorphic Z. A finite version of this system [START_REF] Domingo-Ferrer | A provable secure addition and multiplication privacy homomorphism[END_REF] was recently broken in [START_REF] Bao | Cryptanalysis of a provable secure additive and multiplicative privacy homomorphism[END_REF]. As the second main result of this paper we present a homomorphic public-key cryptosystem over a finite commutative ring (for details see Section 3). Before formulating it we recall that any finite commutative ring with identity is isomorphic to a direct sum of local rings (see [START_REF] Macdonald | Finite Rings with Identity[END_REF]).

Theorem 1.2 Let R be a finite commutative ring with identity different from a direct sum of several copies of rings isomorphic to Z 2 . Then there exists a homomorphic publickey cryptosystem over R with respect to a homomorphism f : A → R for an appropriate finite commutative ring A.

In the cryptosystem of Theorem 1.2 the ring A is a group ring of a finite Abelian group G and f is the epimorphism induced by a suitable secret epimorphism from G to the multiplicative group of R. The only commutative rings for which any homomorphism of such kind is trivial, have trivial multiplicative groups, and so are the direct sums of copies of the ring Z 2 . Thus the natural open question is to find a homomorphic publickey cryptosystem over the ring Z 2 . The way we construct the ring A gives a bound on the cardinality of A being double exponential in the cardinality of R. This condition is essential in the following sense. As we will see in Section 3 any finite ring of exponential cardinality is a subring of the ring Mat(n, Z m ) of n × n matrices over Z m with n and log m bounded by polynomials. The latter construction of embedding a ring into a matrix ring is not efficient a priori, in fact, its efficiency depends on the way in which the ring is given. On the other hand, Theorem 3.2 states that the homomorphisms of the rings given as subrings of Mat(n, Z m ) can not be secret.

It should be remarked that secret homomorphisms from Theorem 1.2 can not be used for encrypting circuits over rings due to its size. The problem of finding cryptosystems suitable for such encrypting as well as constructing secret homomorphisms over noncommutative finite rings are still open. Theorem 3.2 shows that if there exists a homomorphic public-key cryptosystem over a finite ring R with the cardinality of the ring A being exponential in the cardinality of R , it should avoid explicit representing of A as a subring of some matrix ring Mat(n, Z m ).

A homomorphic cryptosystem over a finite group

Throughout the section for a finite set X we denote by W X the set of all the words in the alphabet X ± = X ∪ X -1 . A word from W X with no subword xx -1 , x ∈ X ± , is called irreducible. For an integer a ∈ Z we denote by l(a) the bit size of it; for S ⊂ Z we set l(S) = a∈S l(a).

2.1. Representation problem. Let Γ be a group and X be a finite subset of Γ. We are interested in the problem of finding an X-representation of an element g ∈ G where G = X is a subgroup of Γ generated by X. By an X-representation of g we mean an irreducible word w g ∈ W X such that π(w g ) = g where π is the epimorphism of the free group on X onto the group G with π| X = id. Obviously, if Γ is a free group on X, then G = Γ and each element of Γ has the unique X-representation. If w g = x a 1 1 • • • x am m where x i ∈ X and a i ∈ Z for all i, then the number l(w g ) = i l(a i ) is called the bit size of the X-representation w g of g. We observe that the size of g as an element of the group Γ depending essentially on the nature of Γ can substantially differ from the bit size of an X-representation of it as well as the bit sizes of two different X-representations of g. In what follows we look for the algorithms finding X-representations of g efficiently, i.e. in polynomial time in size of g in Γ and in minimal bit size of its X-representation.

Representation Problem P(Γ, X). Let Γ be a group and X ⊂ Γ be a finite set. Given g ∈ X presented as an element of Γ find an X-representation of g efficiently.

It should be mentioned that the representation problem consists in finding a certificate for the membership problem when the group in question is given by generators. If Γ is a symmetric group of degree n, then both of these problems can be solved in time n O (1) by the sift algorithm (see e.g. [START_REF] Luks | Permutation groups and polynomial-time computation[END_REF]). However, if Γ = GL n (Z m ) then both of these problem are closely related with the discrete logarithm problem (when n = 1, m is a prime and X consists of a generator of the multiplicative group of the ring Z m ). The representation problem is NP-hard in average in general even if Γ is a free group of a finite rank [START_REF] Wang | Average-Case Completeness of a Word Problem for Groups[END_REF].

To adapt the representation problem to constructing public-key cryptosystems we have to describe a trapdoor information providing a polynomial-time solution of this problem. A general idea can be explained as follows. Let G < F < Γ be groups and F = X ′ , G = X for some finite sets X, X ′ ⊂ Γ. Suppose that both of the problems P(Γ, X ′ ) and P(F, X) can be solved efficiently. Then the problem P(Γ, X) can also be solved within the same time whenever using the corresponding algorithms one can find an X ′ -representation and an X-representation of an element from X the bit sizes of which are approximately the same. In this case one could use the set X ′ as a trapdoor for the problem P(Γ, X).

In the next subsection we realize this idea for Γ = GL 2 (Z) and apply it for constructing a homomorphic public-key cryptosystem over any nonidentity group given by generators and relations.

The main construction.

Let us define a family of free subgroups of the group GL 2 (Z). First we recall that given an integer n ≥ 2 the matrices

A n = 1 n 0 1 , B n = 1 0 n 1 (1)
form a basis of a free subgroup of the group GL 2 (Z) (see [18, p.232]). Next, from the proof of [18, Proposition 3.1] it follows that given a nonempty set S ⊂ Z the set

X(n, S) = {A -s n B n A s n : s ∈ S}
is also a basis of a free group G(n, S) ⊂ GL 2 (Z). The following statement proved in Subsection 2.4 enables us to define a homomorphic public-key cryptosystem with these groups.

Theorem 2.1 Given an integer n ≥ 2 and a finite set S ⊂ Z one can find the X(n, s)representation w g of an arbitrary matrix g ∈ G(n, S) in polynomial time in l(n) + l(S) + l(w g ).

Let H = X ; R be a nontrivial group given by the set X of at least two1 generators and the set R of relations. Choose randomly n ≥ 2, sets

S ⊂ Z, R ⊂ W R such that |S| = |R| = |X |, and bijections h → x h , h → r h from X to X(n, S) and to R respectively. Set X = X(n, S, R) = {x h r h : h ∈ X }, G = X .
Since F = X(n, S) is a free group on X(n, S), there exists a uniquely determined epimomorphism ϕ :

F → H coinciding with f -1 X on W X(n,S) where f X : W X → W X(n.S) is a bijection taking h 1 • • • h k to x h 1 • • • x h k . After identifying W R with the subset of W X we have F = ϕ -1 (H) ⊃ f X (X ∪ R) ⊃ X = G. Thus G < F < GL 2 (Z) and the mapping f : G → H, g → ϕ(g) (2) 
is a homomorphism such that f

(x h r h ) = ϕ(x h )ϕ(r h ) = h • 1 = h for all h ∈ X . Now
we can define a homomorphic public-key cryptosystem S(H, n, S) over the group H with respect to the homomorphism (2) as follows:

Public Key: the subset X = X(n, S, R) of GL 2 (Z) where R is a random subset of W R , and a bijection X → X, h → x h r h .

Secret Key: the pair (n, S).

Encryption: given a plaintext h ∈ H encrypt as follows:

Step 1.

If h = h 1 • • • h k with h i ∈ X for all i, set M h = (x h 1 r h 1 ) • • • (x h k r h k ).
Step 2. Find an X -representation

w r = h ′ 1 • • • h ′ m of a random r ∈ W R . Set M r = x h ′ 1 • • • x h ′ m .
Step 3. Output the matrix M r M h ∈ GL 2 (Z) as the ciphertext of h.

Decryption: given a cyphertext g ∈ G decrypt as follows.

Step 1. Find the X(n, S)-representation w g = g 1 • • • g k of the element g (Theorem 2.1).

Step

2. Output f -1 X (g 1 ) • • • f -1 X (g k ) as the plaintext of g.
The correctness of the encryption and decryption algorithms immediately follows from the definitions. Moreover, by Theorem 2.1 the decryption of the cryptosystem S(H, n, S) can be done within time (l(n) + l(S) + l(w g ))) O(1) .

Remarks on security of the cryptosystem S(H, n, S)

. First, we observe that the decryption problem, i.e. the problem of computing f (g) for an element g ∈ G, is polynomial-time reducible to the representation problem P(GL 2 (Z), X). Thus the difficulty of the direct way to break S(H, n, S) is based on that of the special case of this representation problem with the promise X ⊂ G(n, S): Problem 2.2 Given a matrix belonging to a group G ≤ G(n, S) find a short Xrepresentation of it under the assumption that such a representation does exist.

One can make this problem even harder using for instance the Nielsen transformations [START_REF] Lyndon | Combinatorial group theory[END_REF] to replace X(n, S) by other set of generators not necessarily being a basis of the group G(n, S) (these transformations consist in succesive replacing elements of generating set for their inverses or products). A less direct way to break the cryptosystem S(H, n, S) could consist in finding the number n and the set X, in other words, the secret key. This seems to be difficult.

Finally, it should be remarked that the cryptosystem S(H, n, S) can be transformed to the homomorphic public-key cryptosystem in the sense of [START_REF] Grigoriev | Homomorphic public-key cryptosystems and encrypting boolean circuits[END_REF]. To do this it suffices to find a set A and a trapdoor function P : A → G such that im(P ) = ker(f ), i.e. to get the exact sequence

A P -→ G f -→ H -→ {1}.
However, this can be done by choosing A to be the set W K where K = {hh ′ (hh ′ ) -1 : h, h ′ ∈ H}, and P = f X (we make use the fact that in this setting the group H has to be small). We do not dwell on details since we do not stick here with the definition of [START_REF] Grigoriev | Homomorphic public-key cryptosystems and encrypting boolean circuits[END_REF].

2.4. Proof of Theorem 2.1. The proof of the theorem is based on lemmas 2.3 and 2.4. In the first of them the free group F on X is considered as the subset of the set W X : any element of F is an irreducible word of W X and the identity of F is the empty word 1 X ∈ W X . The length of the X -representation of an element g ∈ F is denoted by |g|. For an arbitrary word w ∈ W X we denote by w the element of F corresponding to w. Below we will use an observation from the proof of [18, Proposition 3.1] that if X = {A, B} and S ⊂ Z is a nonempty finite set, then the elements A -s BA s , s ∈ S, form a basis of a free subgroup of the group F . Lemma 2.3 Let F be a free group of rank 2 on X = {A, B} and G be a subgroup of F generated by the set X = {A -s BA s : s ∈ S} where S ⊂ Z is a nonempty finite set. Then given an element g ∈ F one can test whether g ∈ G or not in time (l(g) + l(S)) O (1) where l(g) is the bit size of the X -representation of g; moreover, if g ∈ G, then the X-representation w g can be found within the same time and l(g) ≤ 3l(w g )l(S).

Proof. To prove the lemma let us consider the following algorithm which for a given element g ∈ F by recursion on the length |g| of its X -representation produces a certain pair (i g , w g ) ∈ {0, 1} × W X such that g ∈ G if and only if i g = 1 and w g is the Xrepresentation of g.

Step 1.

If g = 1 X , then output (1, X ). Otherwise, let u = A a B b A c • • • for suitable a, b, c, . . . ∈ Z.
Step 2. If either -a ∈ S or (-a, b) ∈ S × {0}, then output (0, 1 X ). Otherwise set u = A a+c . . ..

Step 3. Recursively find (i h , w h ) where h = u. If i h = 0, then output (i h , w h ).

Step 4. Output (1, w g ) where

w g = vw h with v = A a B b A -a .
We observe that each recursive call at Step 3 is applied to the element h ∈ F with |h| < |g|, so the number of recursive calls is at most |g| and each step can be implemented in time O(l(g) + l(S)). Thus the running time of the algorithm is (l(g) + l(S)) O (1) . Next, due to the obvious inequality l(c) ≤ l(a + c) + l(a) we have

l(g) = l(A a B b A c • • •) ≤ 2l(a) + l(b) + l(A a+c . . .) = 2l(a) + l(b) + l(h). (3) 
Since w g = vw h and v = (A a BA -a ) b we get that l(w g ) = l(b) + l(w h ). On the other hand, l(h) ≤ 3l(w h )l(S) by the recursive hypothesis. Thus from (3) it follows that

l(g) ≤ 2l(a) + l(b) + 3l(w h )l(S) = 2l(a) + l(b) + 3(l(w g ) -l(b))l(S) ≤ 3l(w g )l(S)
(we use that l(b) = 0 and max{l(a), l(b)} ≤ l(S)). This proves the required inequality l(g) ≤ 3l(w g )l(S).

To verify the correctness of the algorithm we need to show first that g ∈ G if and only if i g = 1, and second that if i g = 1, then w g is the X-representation of g. Using induction on |g| suppose that g ∈ G \ {1 X }. We observe that the first term of an arbitrary irreducible word w ∈ W X such that w = w ′ for some w ′ ∈ W X , is of the form A a where -a ∈ S. So the output of Step 2 is correct. Moreover, from the definition of v at Step 4 it follows that v ∈ X and so g ∈ G iff h ∈ G. Besides, if the algorithm terminates at

Step 3 or 4, then i g = i h and by the induction hypothesis w h is the X-representation of h iff i h = 1. Thus the output at Step 3 is correct and w g ∈ W X . Since obviously

g = vu = vu = vw h = vw h = w g ,
we conclude that w g at Step 4 is the X-representation of g and the output of this step is correct.

In the next lemma we deal with the subgroup of GL 2 (Z) generated by the set X n = {A n , B n } (see [START_REF] Bao | Cryptanalysis of a provable secure additive and multiplicative privacy homomorphism[END_REF]). Since this group is a free group on X n , any element M of it has the uniquely determined X n -representation coinciding with the irreducible word belonging to W Xn . Lemma 2.4 Let G = X n for some n ≥ 2. Then given matrix M ∈ GL 2 (Z) belonging to G, the X n -representation of M can be found in time (l(n) + l) O (1) where l is the bit size this representation.

Proof. The algorithm below is similar to the one in [START_REF] Serre | A course in arithmetic[END_REF] which yields a representation of a matrix with respect to a different (more standard in the theory of modular groups) family of generator, also in [START_REF] Serre | A course in arithmetic[END_REF] one can find the basic facts on the group SL 2 (Z) used in the proof below. We will employ the classical action of the group GL where M = (M ij ) is a matrix of GL 2 (Z) (the kernel of this action is of order 2 and equal the subgroup of all diagonal matrices of GL 2 (Z); the quotient group with respect to this subgroup is the projective group PGL 2 (Z)). We make use of the following key observation: if n ≥ 2, then any power A k of the matrix A = A n with nonzero k ∈ Z maps the unit open disk D ⊂ C centered at 0 strictly inside D c = C * -D, and reciprocately any power B k of the matrix B = B n maps D c strictly inside D. 2 A straightforward computation shows that given z ∈ D ∪ D c there could exist at most one integer k = k(z) such that

(z ∈ D c ∧ A k z ∈ D) ∨ (z ∈ D ∧ B k z ∈ D c ). Below we set C(z) = A k if z ∈ D c , and C(z) = B k if z ∈ D,
provided that k does exist. In the following algorithm we suppose that I is the identity matrix, and z ∈ D and z ′ ∈ D c are arbitrary fixed complex numbers of small sizes, say z = 1/2 and z ′ = 2.

Step 1. Set (L, L ′ ) := (M, M) and (u, u ′ ) := (1 Xn , 1 Xn ). is induced by the homomorphism ϕ. From the computational point of view the homomorphisms ϕ and f are closely related; more exactly the problem of finding ϕ(g) for g ∈ G is polynomial time equivalent to the problem of finding f (g) for g ∈ G (here we suppose the elements of the group ring R[G] are given by R-linear combinations of elements of G). This immediately implies the following statement. Lemma 3.1 Let R be a finite commutative ring with identity such that there exists a homomorphic public-key cryptosystem over the group R × with respect to an epimorphism ϕ : G → R × for some group G. Then one can design a homomorphic public-key cryptosystem over the ring R. Moreover, the problems of breaking these two systems are polynomial-time equivalent.

Proof of Theorem 1.2. We recall that the ring R being a commutative one is isomorphic to a direct sum of local rings (see [START_REF] Macdonald | Finite Rings with Identity[END_REF]). If among these local rings there is at least one not isomorphic to Z 2 then the multiplicative group of this ring is nontrivial and hence |R × | = 1. Thus by Lemma 3.1 it suffices to find a homomorphic public-key cryptosystem over the group R × . To do this we observe that due to the commutativity of the ring R, we have

R × = H 1 × • • • × H k where H i is a cyclic group, i ∈ [k]. So from [14,
Section 2] it follows that for each i there exists a homomorphic public-key cryptosystem S i over the group H i with respect to an appropriate epimorphism ϕ i :

G i → H i with G i being a finite Abelian group. Set G = G 1 × • • • × G k and ϕ to be the epimorphism G → H induced by the epimorphisms ϕ 1 , . . . , ϕ k . Now, using cryptosystems S i , i ∈ [k],
one can form a homomorphic public-key cryptosystem over the group R × with respect to the epimorphism ϕ : G → R × . Theorem is proved.

Let R and A are finite rings as in Theorem 1.2. Then from the proof of this theorem it follows that the size of A is double exponential in the size of the ring R. Indeed, A is the group ring of the group G over R, whence Section 2]). We will see below that under the natural assumption on the presentation of A it is difficult to reduce the size of A preserving the secrecy of the homomorphism f : A → R (this extends the observation from [START_REF] Brickell | On privacy homomorphisms[END_REF]).

|A| = |G| |R| , |G| = |G 1 | • • • |G k | and |G i | is exponential in |H i | (see construction in [14,
Let A be a finite ring of characteristic m (i.e. the minimal integer which vanishes in A) and P(m) be the set of the highest prime powers dividing m. Then it is easy to see

that A = q∈P(m) A q (6) 
where A q = q ′ A with q ′ = m/q, is an ideal of A considered as a finite ring of characteristic q with the identity q ′ 1. For each q the ring A q is a linear space of the dimension n q = log p |A q | over the finite field F p of the prime order p dividing q. This implies that A can be considered as a subring of the matrix ring Mat n (Z m ) where n = q n q . To find a basis of a linear space could be not easy a priori if a procedure of testing linear dependency is not known, that is why the efficiency of embedding of A into a matrix ring depends on the way how A is given. Now suppose that the size of A is at most exponential in |R|.

Then the dimension n q is polynomial in |R| and hence n, log m are less than |R| O (1) . In the following theorem we use a presentation of a ring homomorphism which is analogous to the presentation of a group homomorphism from [START_REF] Grigoriev | Homomorphic public-key cryptosystems and encrypting boolean circuits[END_REF].

Theorem 3.2 Let R be a finite ring presented by the list of elements together with the Cayley tables of its additive and multiplicative groups and A be a subring of the ring Mat n (Z m ) where max{n, log m} ≤ |R| O (1) . Suppose that f : A → R is a homomorphism given by generators of the ideal ker(f ), a transversal X of ker(f ) in A and the restriction of f to X. Then given a ∈ A the element f (a) can be found in polynomial time in |R|.

Proof. Using the decomposition (6) one can reduce the problem of computing f (a), a ∈ A, in polynomial time to |P(m)| problems of computing f q (a q ), q ∈ P(m), where a q = aq ′ ∈ A q and f q : A q → R q is the homomorphism induced by f . Thus without loss of generality we assume that the characteristic of A equals p d for a prime p and d ≥ 1. Since d ≤ log m ≤ |R| O (1) one can find an embedding A → Mat nd (Z p ) in time |R| O (1) . Then the ideal ker(f ) becomes a linear space over a finite field F p of dimension at most (nd) 2 . Using linear algebra over F p a linear basis of this space can be found within the same time. This enables us to solve efficiently whether or not an arbitrary element a ∈ A belongs to ker(f ). Let now a ∈ A. Then there exists the uniquely determined element x a ∈ X such that x a -a ∈ ker(f ). Moreover, from the previous paragraph it follows that this element can be found in time |R| O (1) (it suffices to test for each x ∈ X whether or not x -a ∈ ker(f )). Since f (a) = f (a + x a -a) = f (x a ) and the element f (x a ) is known as the part of presentation of f , the element f (a) can be found within the same time.

  2 (Z) on the projective line (the Riemannian sphere) C * = C ∪ {∞} by means of linear fractional transformations z → Mz = (M 11 z + M 12 )/(M 21 z + M 22 )

This is rather technical restriction because even H is a cycle group one can choose as X nonminimal set of generators.

This observation entails that G is the free group on {A, B} (see[START_REF] Lyndon | Combinatorial group theory[END_REF] Proposition 12.2]).

* Partially supported by RFFI, grants, 03-01-00349, NSH-2251.2003.1 and a grant of NATO. The author would like to thank the Mathematical Institute of the University of Rennes during the stay in which this paper was initiated.

Step 2. If L = I, then output u; if L ′ = I, then output u ′ .

Step 3. Set (u, u ′ ) := (C -1 u, (C ′ ) -1 u ′ ) (in W Xn × W Xn ), and (L, L ′ ) := (CL,

Let us prove that the above algorithm finds the X n -representation

of a matrix M ∈ G where m is a nonnegative integer and

, then the statement is obvious (see Step 1). Let us show that if b m = 0 (resp. b m = 0), then after m iterations of the loop at Steps 2 and 3 the matrix L (resp. L ′ ) becomes the identity matrix and the word u (resp. u ′ ) is the X n -representation of M. Indeed, let b m = 0 (the case b m = 0 is considered similarly). Then it is easy to see that Mz ∈ D iff a 1 = 0. So after the first iteration according to Step 3 we have

Since the number of factors in the X n -representation of the matrix L after Step 3 equals m -1, the required statement follows by induction on this number. Let us estimate the running time of the algorithm. We observe that from the previous paragraph it follows that the algorithm terminates after m iterations. So to complete the proof it suffices to note that the sizes of all the intermediate matrices L and L ′ do not exceed O(ml(n) + l).

Let us complete the proof of Theorem 2.1. For an element g ∈ G(n, S) by means of Lemma 2.4 one can find first its X n -representation within time (l(n)+l) O (1) where l = l(g) is the bit-size of this representation. Subsequently applying Lemma 2.3 one can find an X(n, S)-representation w g of g within time (l + l(S)) O(1) ≤ (l(w g ) + l(S)) O (1) .

Homomorphic cryptosystems over finite rings

Let R be a finite commutative ring with identity and G be a group. Then it is easy to see that any homomorphism ϕ : G → R × where R × is the multiplicative group of R, can be extended to the homomorphism ϕ ′ : R[G] → R[R × ] of the group rings taking g r g g to g r g ϕ(g). On the other hand, the natural injection R × → R can be extended to the ring homomorphism ϕ ′′ : R[R × ] → R. We will say that the homomorphism f = ϕ ′ • ϕ ′′ , f : R[G] → R, g r g g → g r g ϕ(g) [START_REF] Brickell | On privacy homomorphisms[END_REF]