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Weak Bézout inequality for D-modules

Let {w i,j } 1≤i≤n,1≤j≤s ⊂ L m = F (X 1 , . . . , X m )[ ∂ ∂X1 , . . . , ∂ ∂Xm ] be linear partial differential operators of orders with respect to ∂ ∂X1 , . . . , ∂ ∂Xm at most d. We prove an upper bound

on the leading coefficient of the Hilbert-Kolchin polynomial of the left L m -module {w 1,j , . . . , w n,j } 1≤j≤s ⊂ L n m having the differential type t (also being equal to the degree of the Hilbert-Kolchin polynomial). The main technical tool is the complexity bound on solving systems of linear equations over algebras of fractions of the form L m (F [X 1 , . . . , X m , ∂ ∂X 1 , . . . , ∂ ∂X k ]) -1 .

Introduction

Denote the derivatives D i = ∂ ∂X i , 1 ≤ i ≤ m and by A m = F [X 1 , . . . , X m , D 1 , . . . , D m ] the Weyl algebra [START_REF] Björk | Rings of differential operators[END_REF] over an infinite field F . It is well-known that A m is defined by the following relations:

X i X j = X j X i , D i D j = D j D i , X i D i = D i X i -1, X i D j = D j X i , i = j (1) 
For a family {w i,j } 1≤i≤n,1≤j≤s ⊂ L m of elements of the algebra of linear partial differential operators one can consider a system 1≤i≤n w i,j u i = 0, 1 ≤ j ≤ s

of linear partial differential equations in the unknowns u 1 , . . . , u n . In particular, if the F -linear space of solutions of (2) has a finite dimension l then the quotient of the free L m -module L n m over the left L m -module L = {w 1,j , . . . , w n,j } 1≤j≤s ⊂ L n m has also the dimension l over the field F (X 1 , . . . , X m ) [START_REF] Kolchin | Differential algebra and algebraic groups[END_REF]. Denote by t the differential type of L [START_REF] Kolchin | Differential algebra and algebraic groups[END_REF], then 0 ≤ t ≤ m (observe that the case treated in the previous sentence, corresponds to t = 0).

We consider the filtration on the algebra L m defined on the monomials by ord(cD

i 1 1 • • • D im m ) = i 1 + • • • + i m
where a coefficient c ∈ F (X 1 , . . . , X m ). With respect to this filtration the dimension dim F (X 1 ,...,Xm) (L n m /L) z of z-component of the quotient L n m /L (for sufficiently big z ≥ z 0 ) equals to the Hilbert-Kolchin polynomial of L [START_REF] Kolchin | Differential algebra and algebraic groups[END_REF][START_REF] Kondratieva | Differential and difference dimension polynomials[END_REF]:

l t! z t + l t-1 z t-1 + • • • + l 0
of the degree t (which coincides with the differential type of L). The leading coefficient l is called the typical differential dimension [START_REF] Kolchin | Differential algebra and algebraic groups[END_REF]. In the treated above particular (holonomic) case t = 0 the dimension of F -linear space of solutions of (2) equals to l.

In case of a module (viewed as a filtered one) over the ring of polynomials the leading coefficient of its Hilbert polynomial equals the degree of the module, and the classical Bézout inequality [START_REF] Shafarevich | Basic algebraic geometry[END_REF] provides for the leading coefficient an upper bound being the product of the degrees of generators of the module.

In the present paper we prove (see Section 4) the following inequality which could be viewed as a weak analogue of the Bézout inequality for differential modules.

Corollary 0.1 Let ord(w i,j ) ≤ d, 1 ≤ i ≤ n, 1 ≤ j ≤ s. Then the leading coefficient of the Hilbert-Kolchin polynomial l ≤ n(4m 2 d min{n, s}) 4 m-t-1 (2(m-t))
Actually, one could slightly improve this estimate while making it more tedious. We note that the latter estimate becomes better with a smaller value of m -t. In fact, for small values m -t ≤ 2 much stronger estimates are known. In the case m -t = 0 the bound l ≤ n is evident. In the case m -t = 1 the bound l ≤ max 1≤i≤s {ord(w i,1 } + • • • + max 1≤i≤s {ord(w i,n } was proved [START_REF] Kolchin | Differential algebra and algebraic groups[END_REF] (moreover, the latter bound holds in the more general situation of non-linear partial differential equations, whereas in the situation under consideration in the present paper of linear partial differential equations a stronger Jacobi conjecture was established , see e.g. [START_REF] Kondratieva | Differential and difference dimension polynomials[END_REF]). In the case m -t = 2, n = 1 the bound l ≤ ord(w 1 )ord(w 2 ) was proved for the left ideal w 1 , w 2 , . . . ⊂ L m where ord(w 1 ) ≥ ord(w 2 ) ≥ . . . [START_REF] Kondratieva | Differential and difference dimension polynomials[END_REF] which could be viewed as a direct analogue of the Bézout inequality. In the case m = 3, t = 0, n = 1 a counter-example of a left ideal w 1 , w 2 , w 3 ⊂ L 3 is also produced in [START_REF] Kondratieva | Differential and difference dimension polynomials[END_REF] which shows that the expected upper bound ord(w 1 )ord(w 2 )ord(w 3 ) on l appears to be wrong. It would be interesting to clarify how sharp is the estimate in Corollary 0.1 for large values of m -t.

We mention also that on p.154 [START_REF] Saito | Gröbner deformations of hypergeometric differential equations[END_REF] a (better than in Corollary 0.1) exponential bound on l (when t = 0) was established in case of a homogeneous toric ideal of the Weyl algebra.

The main technical tool in the proof of Corollary 0.1 is the complexity bound on solving linear systems over algebras of fractions of L m . Let K ⊂ {1, . . . , m} be a certain subset. Denote by

A (K) m = F [X 1 , . . . , X m , {D k } k∈K ] ⊂ A m the corresponding subalgebra of A m .
We consider the algebra of fractions Q

(K) m = A m (A (K) m ) -1 . For an element a ∈ A m we denote the Bernstein filtration [2] deg(a) defining it on monomials X j 1 1 • • • X jm m D i 1 1 • • • D im m by j 1 + • • • + j m + i 1 + • • • + i m . Then for an element ab -1 ∈ Q (K) m , a ∈ A m , b ∈ A (K)
m we write that the degree deg(ab -1 ) ≤ max{deg(a), deg(b)}.

In Section 1 below we study the properties of

Q (K)
m and the complexity bounds on manipulating in Q (K) m . In Section 2 we establish complexity bounds on quasi-inverse matrices over the algebra Q (K) m . Finally, in Section 3 we consider the problem of solving a system of linear equations over the algebra

Q (K) m : 1≤i≤p a j,i V i = a j , 1 ≤ j ≤ q (3)
where the coefficients a j,i , a j ∈ A m , deg(a j,i ), deg(a j ) ≤ d. We prove the following theorem.

Theorem 0.2 If (3) is solvable over Q (K)
m then (3) has a solution with

deg(v i ) ≤ (16m 4 d 2 (min{p, q}) 2 ) 4 m-|K|
Assume now that the ground field F is represented in an effective way, say as a finitely generated extension either of Q or of a finite field (see e.g. [START_REF] Grigoriev | Computational complexity in polynomial algebra[END_REF]). Then one can define the bit-size M of the coefficients in F of the input {a j,i , a j }.

Corollary 0.3 One can test the solvability of (3) and if it is solvable then yield some its solution in time polynomial in M, q, p m , (md min{p, q}) 4 m-|K| m Theorem 0.2 and Corollary 0.3 generalize the results from [START_REF] Grigoriev | Complexity of solving systems of linear equations over the rings of differential operators[END_REF] established for the algebra

Q (∅) m = L m of linear differential operators to the algebras of fractions Q (K) m .
In [START_REF] Grigoriev | Complexity of solving systems of linear equations over the rings of differential operators[END_REF] it is noticed that due to the example of [START_REF] Mayr | The complexity of the word problems for commutative semigroups and polynomial ideals[END_REF] the bounds in Theorem 0.2 and Corollary 0.3 are close to sharp.

The problem in question generalizes the one of solving linear systems over the algebra of polynomials which was studied in [START_REF] Seidenberg | Constructions in algebra[END_REF] where the similar complexity bounds were proved. Unfortunately, one cannot extend directly the method from [START_REF] Seidenberg | Constructions in algebra[END_REF] (which arises to G.Hermann) to the (non-commutative) algebra

Q (K)
m because the method involves the determinants. Nevertheless, we exploit the general approach of [START_REF] Seidenberg | Constructions in algebra[END_REF].

We mention also that certain algorithmical problems in the algebra of linear partial differential operators were posed in [START_REF] Briançon | Idéaux de germes d'opérateurs différentiels à une variable[END_REF][START_REF] Castro | Théorème de division pour les opérateurs différentiels et calcul des multiplicités[END_REF][START_REF] Galligo | Some algorithmical questions on ideals of differential operators[END_REF].

Algebra of fractions of differential operators

Let a matrix B = (b i,j ), 1 ≤ i ≤ p-1, 1 ≤ j ≤ p have its entries b i,j ∈ A (K) m and deg(b i,j ) ≤ d.
The following lemma was proved in [START_REF] Grigoriev | Complexity of solving systems of linear equations over the rings of differential operators[END_REF].

Lemma 1.1 There exists a vector 0 = c = (c 1 , . . . , c p ) ∈ (A (K) m ) p such that Bc = 0 and moreover, deg(c) ≤ 2(m + |K|)(p -1)d = N . Proof. Consider an F -linear space U ⊂ (A (K) m ) p consisting of all the vectors c = (c 1 , . . . , c p ) such that deg(c) ≤ N . Then dim U = p N +m+|K| m+|K| . For any vector c ∈ U we have deg(Bc) ≤ N +d, i.e. Bc ∈ W where the F -linear space W consists of all the vectors w = (w 1 , . . . , w p-1 ) ∈ (A (K) m ) p-1 for which deg(w) ≤ N + d, thereby dim(W ) = (p -1) N +d+m+|K| m+|K| .
Let us verify an inequality p N +m+|K| m+|K| > (p -1) N +d+m+|K| m+|K| whence lemma would follow immediately. Indeed,

N + d + m + |K| m + |K| / N + m + |K| m + |K| = N + d + m + |K| N + m + |K| • • • N + d + 1 N + 1 ≤ N + d + 1 N + 1 m+|K| .
It suffices to check the inequality ( N +d+1 N +1 ) m+|K| < p p-1 . The latter follows in its turn from the inequality

(1 + 1 p -1 ) 1/(m+|K|) > 1 + 1 m + |K| 1 p -1 + 1 2 1 m + |K| 1 m + |K| -1 1 (p -1) 2 > 1 + 1 2 1 m + |K| 1 p -1 > 1 + d N + 1 Notice that Lemma 1.1 implies that A (K)
m is an Ore domain [START_REF] Björk | Rings of differential operators[END_REF], i.e. the expressions of the form b

1 b -1 2 where b 1 , b 2 ∈ A (K)
m constitute an algebra. Below we use the following notations: letters a, α (respectively, b, β) with subscripts denote the elements from A m (respectively, from A (K) m ). Our nearest purpose is to show that the expressions of the form ab -1 also constitute an algebra 

Q (K) m = A m (A (K) m ) -1 (
m such that b = b 1 c 1 = b 2 c 2 according to Corollary 1.2, then a 1 b -1 1 + a 2 b -1 2 = a 1 c 1 b -1 + a 2 c 2 b -1 = (a 1 c 1 + a 2 c 2 )b -1 .
For an element a ∈ A m we denote by ord (K) (a) the filtration degree of a with respect to the symbols { ∂ ∂X j } for j ∈ K and by deg (K) (a) the filtration degree of a with respect to the symbols X 1 , . . . , X m , { ∂ ∂X k } for k ∈ K. Next we verify that (A

(K) m ) -1 A m = A m (A (K)
m ) -1 relying on the following lemma. 

Lemma 1.3 Let a ∈ A m , b ∈ A (K) m be such that deg (K) (a), deg (K) (b) ≤ d, ord (K) (a) = e. Then there exist suitable elements α ∈ A m , β ∈ A (K) m such that bα = aβ (or in other terms αβ -1 = b -1 a) and moreover, ord (K) (α) ≤ ord (K) (a), deg (K) (α), deg (K) (β) ≤ 2(m + |K|) e+m-|K| e d.
3 : indeed, let b -1 1 a 2 = a 4 b -1 4 for appropriate a 4 ∈ A m , b 4 ∈ A (K) m , then a 1 b -1 1 a 2 b -1 2 = a 1 a 4 (b 2 b 4 ) -1
. Finally, to complete the description of the algebra Q (K) m we need to verify that the relation

αβ -1 = b -1 a ∈ Q (K)
m being defined as bα = aβ, induces an equivalence relation on

Q (K) m .
To this end it suffices to show that the equalities α

1 β -1 1 = b -1 1 a 1 , b -1 1 a 1 = α 2 β -1 2 , α 2 β -1 2 = b -1 2 a 2 imply the equality α 1 β -1 1 = b -1 2 a 2 . Due to Corollary 1.2 there exist a 3 , a 4 ∈ A m such that a 3 a 1 = a 4 a 2 , hence a 4 b 2 α 2 = a 4 a 2 β 2 = a 3 a 1 β 2 = a 3 b 1 α 2 , therefore a 4 b 2 = a 3 b 1 . Because of that a 4 b 2 α 1 = a 3 b 1 α 1 = a 3 a 1 β 1 = a 4 a 2 β 1 , thus b 2 α 1 = a 2 β 1 that
was to be shown.

The following corollary summarizes the established above properties of the algebra

Q (K) m .
Corollary 1.4 In the algebra of fractions Q

(K) m = A m (A (K) m ) -1 = (A (K) m ) -1 A m two ele- ments a 1 b -1 1 , a 2 b -1 2 ∈ A m (A (K)
m ) -1 are equal if and only if there exists an element

β -1 α ∈ (A (K) m ) -1 A m such that βa 1 = αb 1 , βa 2 = αb 2 .

Quasi-inverse matrices over algebras of differential operators

Let us call an p × p matrix C = (c i,j ) a right (respectively, left) quasi-inverse to an p × p matrix B = (b i,j ) where the entries c i,j , b i,j ∈ A (K) m if the matrix BC (respectively, CB) has the diagonal form with non-zero diagonal entries. The following lemma was proved in [START_REF] Grigoriev | Complexity of solving systems of linear equations over the rings of differential operators[END_REF]. Proof. First observe that there does not exist a vector 0 = b ∈ (A

(K) m ) p for which bB = 0 since A (K)
m is a domain (see [START_REF] Björk | Rings of differential operators[END_REF] and also Section 1). Consider the p × (p -1) matrix B (i) obtained from B by deleting its i-th column, 1 ≤ i ≤ p. Due to Lemma 1.1 there exists a vector 0 = c (i) ∈ (A (K) m ) p such that c (i) B (i) = 0 and deg(c (i) ) ≤ 2(m + |K|)(p -1)d. Then the p × p matrix with the rows c (i) , 1 ≤ i ≤ p is a left quasi-inverse of B.

We note that a matrix G over A m (or over

Q (K)
m ) has a quasi-inverse if and only if G is non-singular, i.e. has an inverse over the skew-field Q ({1,...,m}) m = A m (A m ) -1 . The latter is equivalent to that G has a non-zero determinant of Dieudonné [START_REF] Artin | Geometric algebra[END_REF]. The rank r = rk(G) is defined as the maximal size of non-singular submatrices of G. The following lemma was proved in [START_REF] Grigoriev | Complexity of solving systems of linear equations over the rings of differential operators[END_REF].

Lemma 2.2 Let G = (g i,j ) be a p 1 × p 2 matrix over A (K) m
with the rank rk(G) = r and assume that the r × r submatrix G 1 of G in its left-upper corner is non-singular. Let an r × r matrix C 1 over A (K) m be a left quasi-inverse to G 1 . Then one can find an (p 1 -r) × r matrix C 2 over the algebra

Q (K) m such that C 1 0 C 2 E G =      g 1 0 . . . * 0 g r 0 0     
where E denotes the unit matrix.

Proof. The matrix C 2 is determined uniquely by the requirement that in the product of matrices in the right-hand side the left-lower corner is zero. Then the right-lower corner is zero as well by the definition of the rank.

We proceed to solving system (3). Denote r = rk(a j,i ). After renumerating the rows and columns one can suppose the r × r submatrix in the left-upper corner of (a j,i ) to be non-singular. Applying Lemma 2.1 to r × r submatrix (a j,i ), 1 ≤ i, j ≤ r one gets a matrix C 1 , subsequently applying Lemma 2.2 one gets a matrix C 2 . If the vector (C 2 E)(a 1 , . . . , a q ) does not vanish then system (3) has no solutions. Otherwise, if (C 2 E)(a 1 , . . . , a q ) = 0 then system (3) is equivalent to a linear system over Q (K) m of the following form (see Lemma 2.2):

g j V j + r+1≤i≤p g j,i V i = f j , 1 ≤ j ≤ r (4) 
where g j , g j,i , f j ∈ A m . Lemma 2.1 implies that deg(g j ), deg(g j,i ), deg(f j ) ≤ (4m(r -1) + 1)d. Fix for the time being a certain i, r + 1 ≤ i ≤ p. Applying Lemma 1.1 to the r × (r + 1) submatrix which consists of the first r columns and of the i-th column of the matrix in the left-hand side of (4), we obtain h

(i) 1 , . . . , h (i) r , h (i) ∈ A m such that g j h (i) j + g j,i h (i) = 0, 1 ≤ j ≤ r (5) 
Moreover, deg(h

(i) j ), deg(h (i) ) ≤ 4mr(4m(r -1) + 1)d ≤ (16m 2 r 2 -1)d.
3 Complexity of solving a linear system over an algebra of fractions of differential operators

In the present section we design an algorithm to solve a linear system (4) over

Q (K)
m . Fix for the time being a certain γ / ∈ K. An arbitrary element h ∈ A m can be written as

h = 0≤s≤t D s γ h s = S={s δ } δ / ∈K ( δ / ∈K D s δ δ )h S (6) 
where

h s ∈ A ({1,...,m}\γ) m , h S ∈ A (K)
m . Denote the leading coefficient lc γ (h) = h t = 0. We say that h is normalized with respect to D γ when lc γ (h) ∈ A (K) m . The following lemma plays the role of the normalization for the algebra Q (K) m (cf. Lemma 2.3 [START_REF] Yu | Typical differential dimension of the intersection of linear differential algebraic groups[END_REF] or Lemma 4 [START_REF] Grigoriev | Complexity of solving systems of linear equations over the rings of differential operators[END_REF]). Lemma 3.1 For any finite family H = {h} ⊂ A m there exists a non-singular F -linear transformation of the 2(m-|K|)-dimensional F -linear subspace of A m with the basis {X δ , ∂ ∂X δ } δ / ∈K under which the vector { ∂ ∂X δ } δ / ∈K is transformed as follows:

{ ∂ ∂X δ } δ / ∈K → Ω{ ∂ ∂X δ } δ / ∈K
where the (m -|K|) × (m -|K|) matrix Ω = (ω δ 1 ,δ ), ω δ 1 ,δ ∈ F , and the vector

{X δ } δ / ∈K → (Ω T ) -1 {X δ } δ / ∈K such that any transformed (under the transformation continued to A m ) element h ∈ A m for h ∈ H is normalized with respect to D γ . Moreover, deg Dγ (h) = ord (K) (h).
Proof. One can verify that this linear transformation keeps the relations (1), therefore, one can consider A m as a Weyl algebra with respect to the variables

{X k } k∈K ∪ (Ω T ) -1 {X δ } δ / ∈K and the corresponding differential operators { ∂ ∂X k } ∪ Ω{ ∂ ∂X δ } δ /
∈K (cf. also [START_REF] Grigoriev | Complexity of solving systems of linear equations over the rings of differential operators[END_REF]). We rewrite [START_REF] Grigoriev | Computational complexity in polynomial algebra[END_REF] as

h = S 0 ={s δ } δ / ∈K ( δ / ∈K D s δ δ )h S 0 + Σ 1
where in the first sum all the terms from ( 6) with the maximal value of the sum s δ ∈S 0 s δ = ord (K) (h) are gathered. Then the leading coefficient

lc γ (h) = S 0 ( δ / ∈K ω s δ γ,δ )h S 0 ∈ A (K) m .
Since the latter sum does not vanish if and only if the result of its linear transformation

S 0 ( δ / ∈K ω s δ γ,δ )h S 0 ∈ A (K)
m with respect to Ω T does not vanish as well, the set of the entries {ω γ,δ } δ / ∈K for which lc γ (h) does not vanish, is open in the Zariski topology (and thereby, is non-empty taking into account that the ground field F is infinite). Hence for an open set of the entries {ω γ,δ } δ / ∈K the leading coefficients lc γ (h) do not vanish for all h ∈ H. Therefore, deg Dγ (h) = ord (K) (h) = ord (K) (h) and thereby, h is normalized with respect to D γ .

Applying Lemma 3.1 to the family {h (i) } r+1≤i≤p constructed in (5), we can assume without loss of generality that 0 = lc Dγ (h [START_REF] Castro | Théorème de division pour les opérateurs différentiels et calcul des multiplicités[END_REF]. Fix some r + 1 ≤ i ≤ p for the time being. One can divide (from the right) v i by h (i) with the remainder in

(i) ) ∈ A (K) m , r + 1 ≤ i ≤ p. Consider a certain solution v i ∈ Q (K) m , 1 ≤ i ≤ p of system
Q (K) m with respect to D γ , i.e. v i = h (i) φ i + ψ i for suitable φ i , ψ i ∈ Q (K) m such that deg Dγ (ψ i ) < deg Dγ (h (i) ) = t. Let v i = 0≤s≤t 1 D s γ v i,s
where v i,s ∈ A ({1,...,m}\γ) m and v i,t 1 = lc Dγ (v i ). Taking into account that h (i) is normalized with respect to D γ , one can rewrite lc Dγ (h

(i) )D t 1 -t γ = D t 1 -t γ lc Dγ (h (i) ) + 0≤s≤t 1 -t-1 D s γ η s for appropriate η s ∈ A (K)
m . Thus, one can put the leading term of (the quotient) φ i to be φ

i,t 1 -t = D t 1 -t γ (lc Dγ (h (i) )) -1 lc Dγ (v i ) ∈ Q (K) m . Then deg Dγ (v i -h (i) φ i,t 1 -t )
< t 1 and one can continue the process of dividing with the remainder achieving finally φ i , ψ i .

For a fixed 1 ≤ j ≤ r we multiply each of the equalities (5) for r + 1 ≤ i ≤ p from the right by φ i and subtract it from the corresponding equality (4), as a result we get an equivalent to (4) linear system

g j ψ j + r+1≤i≤p g j,i ψ i = f j , 1 ≤ j ≤ r (7) 
for certain

ψ j ∈ Q (K) m . Since deg(f j ), deg(g j,i ) ≤ (4m(r-1)-1)d, deg Dγ (ψ i ) < deg Dγ (h (i) ) ≤ (16m 2 r 2 -1)d (see the end of Section 2) we conclude that deg Dγ (ψ j ) ≤ N 1 ≤ 16m 2 r 2 d, 1 ≤ j ≤ r. Represent ψ j = 0≤s≤N 1 D s γ ψ j,s , 1 ≤ j ≤ p for appropriate ψ j,s ∈ A ({1,...,m}\γ) m (A (K) m ) -1 . For each 0 ≤ s ≤ N 1 we have g j D s γ = 0≤l≤N 0 D l γ g (1) j,s,l , g j,i D s γ = 0≤l≤N 0 D l γ g (1) j,i,s,l (8) 
4 A bound on the leading coefficient of the Hilbert-Kolchin polynomial of a linear differential module

In the sequel we use the notations from the Introduction. If the degree 0 ≤ t ≤ m of the Hilbert-Kolchin polynomial of the left L m -module L equals to m then the leading coefficient l is at most n [START_REF] Kolchin | Differential algebra and algebraic groups[END_REF].

From now on assume that t < m. For each 1 ≤ i 0 ≤ n and any family K = {k 0 , . . . , k t } ⊂ {1, . . . , n} of t + 1 integers there exists an element 0 = (0, . . . , 0, b (0) i 0 , 0, . . . , 0) ∈ L with a single non-zero coordinate at the i 0 -th place where b (0)

i 0 ∈ A (K) m (F [X 1 , . . . , X m ]) -1
, taking into account that the differential type of L equals to t (cf. Proposition 2.4 [START_REF] Yu | Typical differential dimension of the intersection of linear differential algebraic groups[END_REF]). Rewriting the latter condition as a system of linear equations

1≤j≤s C j w i,j = 0, i = i 0 , 1≤j≤s C j w i 0 ,j = 1 in the indeterminates C 1 , . . . , C s over the algebra Q (K)
m and making use of Theorem 0.2 one can find a solution of this system in the form c

1 = (b i 0 ) -1 a 1,i 0 , . . . , c s = (b i 0 ) -1 a s,i 0 ∈ Q (K) m for suit- able b i 0 ∈ A (K)
m , a 1,i 0 , . . . , a s,i 0 ∈ A m with the degrees deg(b i 0 ), deg(a 1,i 0 ), . . . , deg(a s,i 0 ) ≤ (16m 4 d 2 (min{n, s}) 2 ) 4 m-t-1 . Thus, 0 = (0, . . . , 0, b i 0 , 0, . . . , 0) ∈ L.

Applying Lemma 3.1 to the family {b i 0 } 1≤i 0 ≤n we conclude that after an appropriate Flinear transformation Ω of the subspace with the basis D k 0 , . . . , D kt and the corresponding transformation (Ω T ) -1 of the subspace with the basis X k 0 , . . . , X kt , one can suppose that b i 0 = α e D e k 0 + β e-1 D e-1 k 0 + • • • + β 0 is normalized with respect to D k 0 where 0 = α e ∈ F [X 1 , . . . , X m ] and β e-1 , . . . , β 0 ∈ A (K\{k 0 }) m . The Hilbert-Kolchin polynomial does not change under the Flinear transformation Ω. Taking into account that these transformations keep the relations (1) of the Weyl algebra (see the proof of Lemma 3.1), in the applications of these transformations below we may preserve the same notations for the basis of the resulting Weyl algebra after transformations.

First we apply the described above construction to the family K = {1, . . . , t+1} and obtain normalized elements (0, . . . , 0, b

i 0 , 0, . . . , 0) ∈ L, 1 ≤ i 0 ≤ n with respect to D 1 . Thereupon consecutively we take K = {2, . . . , t + 2}, . . . , K = {m -t, . . . , m} and obtain elements (0, . . . , 0, b

i 0 , 0, . . . , 0), . . . , (0, . . . , 0, b (m-t) i 0 , 0, . . . , 0) ∈ L, 1 ≤ i 0 ≤ n being normalized with respect to D 2 , . . . , D m-t , correspondingly.

Hence any element in the quotient F (X 1 , . . . , X m )-vector space L n m over the left L mmodule L can be reduced to the form ( I h 1,

I D i 1 1 • • • D im m , . . . , I h n,I D i 1 1 • • • D im m )
where the coefficients h j,I ∈ F (X 1 , . . . , X m ) and i 1 , . . . , i m-t ≤ (16m 4 d 2 (min{n, s}) 2 ) 4 m-t-1 . This completes the proof of Corollary 0.1.

  see above the Introduction) and to provide complexity bounds on performing arithmetic operations in Q (K) m . To verify that the sum a 1 b -1 1 + a 2 b -1 2 can be represented in the desired form a 3 b -1 3 we note first the following bound on a (left) common multiple of a family of elements from A (K) m being a consequence of Lemma 1.1. Corollary 1.2 For a family b 1 , . . . , b p ∈ A (K) m of the degrees deg(b 1 ), . . . , deg(b p ) ≤ d there exist c 1 , . . . , c p ∈ A (K) m such that b 1 c 1 = . . . = b p c p = 0 of the degrees deg(c 1 ), . . . , deg(c p ) ≤ 2(m + |K|)(p -1)d. Evidently, the same bound holds also for a right common multiple of b 1 , . . . , b p which equals to c 1 b 1 = . . . = c p b p . To complete the consideration of the sum one can find c 1 , c 2 ∈ A (K)

Proof.

  Write down α = I D I β I where indeterminates β I ∈ A (K) m and the summation ranges over all the derivatives D I = j / ∈K D i j j with the orders j / ∈K i j ≤ e. In a similar manner a = I D I b I . Then the equality bα = aβ turns into a linear system in e+m-|K| e equations in e+m-|K| e + 1 indeterminates β, {β I } I . Applying to this system Lemma 1.1 we complete the proof. Lemma 1.3 entails that the product of two elements a 1 b -1 1 and a 2 b -1 2 from Q (K) m has again the similar form a 3 b -1

Lemma 2 . 1

 21 If an p × p matrix B over A (K) m has a right quasi-inverse (we assume that deg(B) ≤ d) then B has also a left quasi-inverse C over A (K) m such that deg(C) ≤ 2(m + |K|)(p -1)d.
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for appropriate g (1) j,s,l , g [START_REF] Artin | Geometric algebra[END_REF] j,i,s,l ∈ A ({1,...,m}\γ) m where N 0 , deg(g [START_REF] Artin | Geometric algebra[END_REF] j,s,l ), deg(g [START_REF] Artin | Geometric algebra[END_REF] j,i,s,l ) ≤ 16m 2 r 2 d. Substituting the expressions (8) in [START_REF] Grigoriev | Complexity of solving systems of linear equations over the rings of differential operators[END_REF] and subsequently equating the coefficients at the same powers of D γ , we obtain the following linear system over A ({1,...,m}\γ) m

being equivalent to system [START_REF] Grigoriev | Complexity of solving systems of linear equations over the rings of differential operators[END_REF] and thereby, to system (3), in other words, these systems are solvable simultaneously. Moreover, g

j,s,l , g

l ) ≤ 16m 2 r 2 d, the number of the equations in system (9) does not exceed 16m 2 r 2 d and the number of the indeterminates ψ j,s is less than 16pm 2 r 2 d.

We summarize the proved above in this section in the following lemma.

Lemma 3.2 A linear system (3) of q equations in p indeterminates with the degrees of the coefficients a j,i , a j at most d is solvable over the algebra Q m (K) if and only if the linear system ( 9) is solvable over the algebra A 9) in at most 16pm 2 r 2 d indeterminates and in at most 16m 2 r 2 d equations has the coefficients from the algebra A ({1,...,m}\γ) m of the degrees less than 16m 2 r 2 d where r ≤ min{p, q} is the rank of the system (3). Moreover, if system (9) has a solution with the degrees not exceeding a certain λ then system (3) has a solution with the degrees not exceeding λ + 16m 2 r 2 d.

Thus, we have eliminated the symbol D γ . Continuing by recursion applying Lemma 3.2 we eliminate consecutively D δ for all δ / ∈ K and finally yield a linear system

over the skew-field

s,l , g

where N 2 , deg(g

s,l ), deg(g

s ) ≤ N 4 = (2m) 4 m-|K| (dr) 3 m-|K| and the number of the indeterminates N 3 ≤ pN 4 . Notice that system (10) is solvable simultaneously with system (3).

As in Section 2 one can reduce (with the help of Lemma 2.2) system [START_REF] Mayr | The complexity of the word problems for commutative semigroups and polynomial ideals[END_REF] to the diagonaltrapezium form similar to (4) with the coefficients from the algebra A (K) m having the degrees less than 2(m+|K|)N 2 4 due to Lemma 2.1. Therefore, if system (10) has a solution in the skewfield Finally we observe that if system (3) has a solution it has also a solution of the form

The algorithm looks for a solution of system (3) just in this form with the indeterminate coefficients over the field F at the monomials in the symbols X 1 , . . . , X m , D 1 , . . . , D m and treats (3) or equivalently, 1≤i≤p a j,i c i = a j b, 1 ≤ j ≤ q as a linear system over F in the indeterminate coefficients searching for a non-zero solution of the latter linear system. This completes the proof of Corollary 0.3.