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AN EXAMPLE OF RESONANCE INSTABILITY

JEAN-FRANÇOIS BONY, SETSURO FUJIIÉ, THIERRY RAMOND, AND MAHER ZERZERI

Abstract. We construct a semiclassical Schrödinger operator such that the imaginary part
of its resonances closest to the real axis changes by a term of size h when a real compactly
supported potential of size o(h) is added.

1. Introduction

In this note, we consider semiclassical Schrödinger operators P on L2(Rn), n ≥ 1,

(1.1) P = −h2∆+ V (x),

where V ∈ C∞
0 (Rn;R) is a real-valued smooth compactly supported potential. Depending on

the situation, one may also work with such operators outside a compact smooth obstacle with
Dirichlet boundary condition. Since P is a compactly supported perturbation of −h2∆, the
resonances of P near the real axis are well-defined through the analytic distortion method or
using the meromorphic extension of its truncated resolvent. We send back the reader to the
books of Sjöstrand [14] or Dyatlov and Zworski [6] for a general presentation of resonance
theory, and we denote Res(P ) the set of resonances of P .

The stability of the resonances is a rather touchy question. Indeed, we do not know
yet whether the concept of resonance persists under the perturbation by a non-analytic
non-exponentially decreasing potential. Therefore, we only consider here perturbations of
Schrödinger operators (1.1) by subprincipal real-valued smooth compactly supported poten-
tials of the form hτW (x) with τ > 0 and W ∈ C∞

0 (Rn;R). But even in this setting, the
stability of resonances is a subtle problem since stability results and instability results can be
obtained for the same operator.

On one hand, the resonances tend to be stable as other spectral objects like the eigenval-
ues. This is particularly clear when the resonances are defined by complex distortion, since
the usual perturbation theory of discrete spectrum can be directly applied to the distorted
operator. But, even if the resonances are defined as the poles of the meromorphic extension
of some weighted resolvent, Agmon [1, 2] has proved their stability. On the other hand, the
resonances can be unstable since they do not come from a self-adjoint problem. Thus, some
typical non self-adjoint effects may occur concerning the resonances even if P is self-adjoint.
For instance, the distorted operator may have a Jordan block or the truncated resolvent may
have a pole of algebraic order greater than 1 (see e.g. Sjöstrand [13, Section 4]).

Our instability result is the following.
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Figure 1. The spectral setting of Theorem 1.1.

Theorem 1.1 (Resonance instability). In dimension n = 2, one can construct an operator

P and a potential W as above satisfying the following property for all δ > 0 small enough.

There exist a set H ⊂]0, 1] with 0 ∈ H and constants D0, E0, α > 0 such that, for all C > 0
and −C ≤ A < B ≤ C,

i) On one hand, P has no resonance z with Re z ∈ E0 + [−Ch,Ch] and

(1.2) Im z ≥ −D0h− αh,

for h ∈ H small enough.

ii) On the other hand, the resonances z of P + h1+δW with Re z ∈ E0 + [Ah,Bh] closest
to the real axis satisfy

(1.3) Im z ∼ −D0h− δh,

for h ∈ H small enough.

The result is illustrated in Figure 1. Theorem 1.1 ii) provides at least one resonance z of
P + h1+δW satisfying Re z ∈ E0 + [Ah,Bh] and Im z ∼ −D0h− δh. But its proof shows that
the number of such resonances is at least of order | lnh|. In particular, the essential quantum

trapping in E0 + [Ah,Bh] defined by

(1.4) ess-qt(Q) = lim
n→+∞

lim sup
h→0
h∈H

inf
z1,...,zn∈Res(Q)

Re z•∈E0+[Ah,Bh]

sup
z∈Res(Q)\{z1,...,zn}
Re z∈E0+[Ah,Bh]

h

| Im z|
,

increases by at least (α − δ)(D0 + α)−1(D0 + δ)−1 when we add the perturbation h1+δW to
the operator P . Thus, the resonance instability described here is not an anomaly due to an
exceptional resonance or a Jordan block but a phenomenon mixing geometry and analysis.

In the statement of the previous result, we do not specify the subset of semiclassical param-
eters H . In fact, depending on the geometric situation, the resonance instability may occur
on the whole interval H =]0, 1] or only near a sequence H like {j−1; j ∈ N

∗}. Operators
corresponding to these different situations are given at the end of Section 2.

For 0 < κ ≪ 1 fixed, one can show that the resonances z of P + κhW with Re z ∈
E0 + [Ah,Bh] closest to the real axis satisfy Im z ∼ −D0h for h ∈ H small enough. The
proof of this point is similar to that of Theorem 1.1. On the contrary, for larger values of
κ, some cancellations may appear and P + κhW may have a resonance free region of size
D0h+ αh below the real axis as for P .
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Figure 2. The resonances generated by (A) a well in the island, (B) a non-
degenerate critical point and (C) a hyperbolic closed trajectory.

The constructions in Theorem 1.1 can be realized in any dimension n ≥ 2, but our method
of proof does not work in dimension n = 1. Indeed, the Hamiltonian vector field must have
an anisotropic hyperbolic fixed point. Nevertheless, we do not know yet if the resonance
instability phenomenon described here occurs in dimension one.

Let Pθ denote the operator P in the proof of Theorem 1.1 after a complex distortion of
angle θ = h| lnh|. Its resolvent satisfies a polynomial estimate in Ω = E0 + [−Ch,Ch] +
i[−D0h− αh, h]. This means that, for some M > 0, we have

(1.5)
∥∥(Pθ − z)−1

∥∥ . h−M ,

uniformly for z ∈ Ω. By the usual perturbation argument, it implies that P + Q has no
resonance in Ω for any distortable perturbation Q of size o(hM ). The stability of resonances
under small enough perturbations has already been observed (see e.g. Agmon [1, 2]). Sum-
ming up, the resonances of P are stable for perturbations of size o(hM ) and unstable for some
perturbations of size h1+δ (showing that M ≥ 1 + δ).

The present result is obtained for a Schrödinger operator whose trapped set at energy E0

consists of a hyperbolic fixed point and homoclinic trajectories, following our recent paper
[4]. In fact, the instability phenomenon obtained here does not hold in the geometric settings
previously studied (see Figure 2). In the “well in the island” situation, the resonances are
known to be exponentially close to the real axis (see Helffer and Sjöstrand [10] for globally
analytic potentials and Lahmar-Benbernou, Martinez and the second author [7] for poten-
tials analytic at infinity). Adding a subprincipal real potential hW (x) does not change this
properties. When the trapped set at energy E0 consists of a non-degenerate critical point
(say at (x0, 0) ∈ T ∗

R
n), Sjöstrand [13] has proved that the resonances form, modulo o(h), a

quarter of a rectangular lattice which is translated by hW (x0) when a subprincipal potential
hW (x) is added. Finally, the asymptotic of the resonances generated by a hyperbolic closed
trajectory has been obtained by Gérard and Sjöstrand [9] (see also Ikawa [11] and Gérard [8]
for obstacles). Modulo o(h), they form half of a rectangular lattice which is translated by a
real quantity after perturbation by a real potential hW (x). Summing up, the imaginary part
of the resonances is very stable in the three previous examples: it moves only by o(h) when a
perturbation by a real potential of size h is applied. In other words, if the quantum trapping

(or maximum of the quantum lifetime) in E0 + [−Ch,Ch] of an operator Q is defined by

(1.6) qt(Q) = lim sup
h→0

sup
z∈Res(Q)

Re z∈E0+[−Ch,Ch]

h

| Im z|
,
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with the conventions that qt(Q) = +∞ if the limit diverges and qt(Q) = 0 if Q has no
resonance, we have qt(P ) = qt(P + hW ) in these examples. The situation is completely
opposite in Theorem 1.1 since a self-adjoint perturbation of size o(h) induces a change of
size 1 of the quantum trapping. By definition, we always have qt(Q) ∈ [0,+∞] and qt(Q) ≥
ess-qt(Q). Moreover, if the resonance expansion of the quantum propagator holds, we have

‖χe−itQ/hϕ(Q)χ‖ ≈ et/ qt(Q) for t≫ 1 and h in an appropriate sequence, justifying the name
of quantum trapping. Other results in scattering theory provide resonance free regions, that
is upper bounds on the quantum trapping, under geometric assumptions. In general, the
bounds obtained do not depend on the subprincipal symbol, assumed to be self-adjoint in an
appropriate class (see for instance Section 3.2 of Nonnenmacher and Zworski [12]). In the
present setting, Section 3.1 of [4] implies qt(P ) ≤ D−1

0 , but Theorem 1.1 i) shows that this
inequality is not sharp.

Theorem 1.1 may seem natural since the distorted resolvent is generally large in the un-
physical sheet and small perturbations may produce eigenvalues. More precisely, the norm of
the distorted resolvent is known to be larger than h−1, that is

∥∥(Pθ − z)−1
∥∥ ≫ h−1,

with Im z < 0, in many cases (see e.g. Burq and two of the authors [3] or Dyatlov and Waters
[5]). By the pseudospectral theory (see e.g. Section I.4 of Trefethen and Embree [15]), there
exists a bounded operator Qθ of size o(h) such that z is precisely an eigenvalue of Pθ + Qθ.
Nevertheless, it is not clear that Qθ is the distortion of some operator Q, that Q is a potential
and that Q is self-adjoint. In fact, as explained in the previous paragraph, this is not always
the case.

This instability phenomenon is due to the non self-adjoint nature of the resonances (even
for self-adjoint operators). Such a property never holds for the usual spectrum in the self-
adjoint framework. Indeed, for any self-adjoint operator P and any bounded perturbation
W , the spectrum of P +W satisfies

σ(P +W ) ⊂ σ(P ) +B(0, ‖W‖).

Thus, a perturbation of size h1+δ of a self-adjoint operator can not lead to a perturbation of
size h of its spectrum.

The operator P and the potential W are constructed in Section 2. The instability phe-
nomenon stated in Theorem 1.1 is proved in Section 3.

2. Construction of the operators

To construct a Schrödinger operator P = −h2∆+V (x) as in (1.1) with unstable resonances,
we follow Example 4.23 and Example 4.24 (B) of [4]. We send back the reader to this paper
for a slightly different presentation, some close geometric situations and general results about
resonances generated by homoclinic trajectories. As usual, p(x, ξ) = ξ2 + V (x) denotes the
symbol of P , its associated Hamiltonian vector field is

Hp = ∂ξp · ∂x − ∂xp · ∂ξ = 2ξ · ∂x −∇V (x) · ∂ξ,

and the trapped set at energy E for P is

K(E) =
{
(x, ξ) ∈ p−1(E); t 7→ exp(tHp)(x, ξ) is bounded

}
.

Recall that K(E) is compact and stable by the Hamiltonian flow for E > 0.
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Figure 3. The potentials V = Vtop + Vref and W .

In dimension n = 2, we consider the potential

(2.1) V (x) = Vtop(x) + Vref(x),

as in Figure 3 and described below. On one hand, the potential Vtop is of the form Vtop(x) =
V1(x1)V2(x2) where the functions V• ∈ C∞

0 (R) are single barriers (see Figure 4) with

V1(x1) = E0 −
λ21
4
x21 +O(x31) and V2(x2) = 1−

λ22
4E0

x22 +O(x32),

near 0 and 0 < λ1 < λ2. In particular, Vtop is an anisotropic bump,

Vtop(x) = E0 −
λ21
4
x21 −

λ22
4
x22 +O(x3),

near 0 and (0, 0) is a hyperbolic fixed point for Hp. The stable/unstable manifold theorem
ensures the existence of the incoming/outgoing Lagrangian manifolds Λ± characterized by

Λ± =
{
(x, ξ) ∈ T ∗

R
2; exp(tHp)(x, ξ) → (0, 0) as t→ ∓∞

}
.

They are stable by the Hamiltonian flow and included in p−1(E0). Eventually, there exist two
smooth functions ϕ±, defined in a vicinity of 0, satisfying

(2.2) ϕ±(x) = ±
2∑

j=1

λj
4
x2j +O(x3),

and such that Λ± = {(x, ξ); ξ = ∇ϕ±(x)} near (0, 0).

00

V1(x1)

x1 ∈ R x2 ∈ R

1

V2(x2)

E0

Figure 4. The potentials V1 and V2.
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Figure 5. A realization with a potential Vtop and an obstacle O.

On the other hand, the reflecting potential Vref is non-trapping and localized near (a, 0) ∈
R
2 with a large enough. A dynamical result (Lemma B.1 of [4]) ensures that no Hamiltonian

trajectory of energy E0 can start from the support of Vref , touch the support of Vtop and then
come back to the support of Vref . Thus, a trapped trajectory of energy E0 is either {(0, 0)}
or a Hamiltonian trajectory starting asymptotically from the origin, touching the support of
Vref and coming back to the origin; these latter trajectories are called homoclinic. In other
words, K(E0) satisfies

K(E0) = Λ− ∩ Λ+,

and H = Λ− ∩ Λ+ \ {(0, 0)} denotes the set of homoclinic trajectories.

Giving to Vref the form of a “croissant” barrier, we can make sure that H consists of a
finite number of trajectories {γ1, . . . , γK} on which Λ− and Λ+ intersect transversally. In the
sequel, we will need at least two homoclinic trajectories, that is K ≥ 2. Such a geometric
configuration can also be realized replacing the potential barrier Vref by an obstacle O having
essentially the form of {Vref(x) > E0}, the operator being P = −h2∆R2\O + Vtop(x) with
Dirichlet boundary condition (see Figure 5). In that case, one can easily realize a situation
where K = 3 whereas it seems complicated to have K = 2 (see Example 4.14 of [4]).

As explained in the next section (see also Example 4.24 of [4]), the resonance instability is
governed by the function

(2.3) µ(τ, h) = Γ
(λ1 + λ2

2λ1
− i

τ

λ1

)
e
− πτ

2λ1

K∑

k=1

eiAk/hBke
iTkτ ,

for τ ∈ C, where Ak, Bk, Tk are dynamical quantities related to the curve γk = (xk, ξk). We
recall quickly how these quantities are defined and send back the reader to [4] for the proof
of convergence of the various objects. First,

Ak =

∫

γk

ξ · dx,

is the action along γk. Let νk denote the Maslov index of Λ+ along γk. The function xk(t)
has the following asymptotics

xk(t) = gk±e
±λ1t + o

(
e±λ1t

)
,



AN EXAMPLE OF RESONANCE INSTABILITY 7

as t → ∓∞ for some vector gk± ∈ R
2. As a matter of fact, gk± is collinear to the first vector

of the canonical basis (1, 0) and do not vanish. Eventually, if γk(t, y) = (xk(t, y), ξk(t, y)) :
R×R −→ T ∗

R
2 is a smooth parametrization of Λ+ by Hamiltonian curves such that γk(t, 0) =

γk(t), the limits

M+
k = lim

s→−∞

√∣∣∣ det ∂xk(t, y)
∂(t, y)

|t=s, y=0

∣∣∣e−s
λ1+λ2

2 ,

M−
k = lim

s→+∞

√∣∣∣ det ∂xk(t, y)
∂(t, y)

|t=s, y=0

∣∣∣e−s
λ2−λ1

2 ,

exist and belong to ]0,+∞[. With these notations,

(2.4)

Bk =

√
λ1
2π

M+
k

M−
k

e−
π
2
(νk+

1
2
)i
∣∣gk−

∣∣(iλ1|gk+||gk−|
)−λ1+λ2

2λ1 ,

Tk =
ln(λ1|g

k
+||g

k
−|)

λ1
.

Note that Bk ∈ C \ {0} and Tk ∈ R.

The idea is to find a geometric situation and a set H ⊂]0, 1] with 0 ∈ H such that

(2.5) µ(τ, h) = 0,

for all τ ∈ C and h ∈ H . For simplicity, we take in the sequel K = 3 as in Figure 3 or 5 and
assume that the trajectories γ1 and γ3 are symmetric. In particular, A1 = A3, B1 = B3 and
T1 = T3. We consider two situations:

Case (I): A1 6= A2 (say A2 > A1), 2B1 = B2e
iν , ν ∈ R, and T1 = T2. Using (2.3) and the

symmetry of γ1 and γ3, these relations imply that (2.5) holds true with

H =
{ A2 −A1

(2j + 1)π + ν
; j ∈ N

}
.

The required relations can be realized since T2 is only given by the potential V on the line
R × {0} if ∂x2

V (x1, 0) = 0 for all x1 ∈ R, whereas B2 is given by ∂2x2
V on R × {0}. If Vref

is replaced by an obstacle O, one may need an additional potential Vadd in order to satisfy
these relations (see Figure 5).

Case (II): A1 = A2, 2B1 = −B2 and T1 = T2. In this setting, (2.5) holds true with

H =]0, 1]. These relations can been obtained as before. More precisely, one can adjust Vref
on R× {0} with ∂x2

V = 0 on R× {0} in order to have A1 = A2 and T1 = T2. Then, playing
on the Maslov index and on ∂2x2

Vref on R× {0}, one can obtain 2B1 = −B2.

Adding an absorbing potential −ih| lnh|Vabs, with Vabs ≥ 0, it is possible to artificially
remove a homoclinic trajectory and thus to work with only K = 2 trajectories (see Remark
2.1 ii) and Example 4.14 of [4]). The resulting operator will be non self-adjoint (dissipative)
but the conclusions of Theorem 1.1 will still hold.

For the perturbation W , we take any non-negative C∞
0 (R2;R) function supported away

from the support of V and non-zero on the base space projection of only one homoclinic
trajectory. In the sequel, we will assume that this trajectory is γ1 as in Figures 3 and 5.
We assume that W = 0 near the support of V only to simplify the discussion. The same
way, W ≥ 0 and W non-zero on πx(γ1) can be weakened to

∫
R
W (x1(t)) dt 6= 0. Finally,
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W = c1W1 + c2W2 + c3W3, with Wj non-zero only on γj , may be suitable for Theorem 1.1
generically with respect to cj ∈ R.

3. Proof of the spectral instability

We consider the operators constructed in the previous section. In particular, we work in
dimension n = 2, the trapped set of energy E0 > 0 has K = 3 homoclinic trajectories and
(2.5) holds true for h ∈ H . Following Chapter 4 of [4], the resonances of P closest to the
real axis are given by the 3× 3 matrix Q whose entries are

(3.1) Qk,ℓ(z, h) = eiAk/hΓ
(
S(z, h)/λ1

)
√
λ1
2π

M+
k

M−
k

e−
π
2
(νk+

1
2
)i
∣∣gℓ−

∣∣(iλ1|gk+||gℓ−|
)−S(z,h)/λ1 ,

with rescaled spectral parameter

(3.2) S(z, h) =
λ1 + λ2

2
− i

z − E0

h
.

The same way, the entries of the corresponding matrix for P̃ = P + h1+δW are

(3.3) Q̃k,ℓ(z, h) =

{
e−iwhδ

Qk,ℓ(z, h) if k = 1,

Qk,ℓ(z, h) if k 6= 1,

with the notation w =
∫
R
W (x1(t)) dt 6= 0.

Lemma 3.1. The matrices Q and Q̃ are of rank one with non-zero entries. Moreover,

Q2(z, h) = 0 for all z ∈ C and h ∈ H .

Proof. Since M±
• 6= 0 and g•± 6= 0, the entries of Q and Q̃ are always non-zero. From (3.1), the

entries of Q can be written Qk,ℓ = αkβℓ for some αk, βk ∈ C \ {0}. In particular, Q = α(β, ·)

with α, β ∈ C
3 \ {0} and Q is of rank one (the same thing for Q̃). Thus, 0 is an eigenvalue of

Q of multiplicity at least 2 and the last eigenvalue is given by its trace, that is

tr(Q) = Γ
(
S(z, h)/λ1

) 3∑

k=1

eiAk/h

√
λ1
2π

M+
k

M−
k

e−
π
2
(νk+

1
2
)i
∣∣gk−

∣∣(iλ1|gk+||gk−|
)−λ1+λ2

2λ1
+i

z−E0
λ1h

= µ
(z − E0

h
, h

)
.

For h ∈ H , all the eigenvalues of Q are zero from (2.5) and Q is nilpotent. Since Qj =
α(β, α)j−1(β, ·), Q is nilpotent iff (β, α) = 0 iff Q2 = 0. �

Let W be the 3× 3 diagonal matrix W = diag(−iw, 0, 0). The eigenvalues of WQ(z, h) are

(3.4) −iwQ1,1(z, h), 0, 0.

In the present setting, the quantization rule for P̃ takes the following form: we say that z is

a pseudo-resonance of P̃ when

(3.5) 1 ∈ sp
(
hS(z,h)/λ1−1/2+δWQ(z, h)

)
.

The set of pseudo-resonances is denoted by Res0(P̃ ). Since (3.5) is similar to Definition 4.2 of
[4], we can adapt Proposition 4.3 and Lemma 11.3 of [4] in our case and obtain the following
asymptotic of the pseudo-resonances.
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Lemma 3.2. Let 0 < δ < 1/2, C, β > 0 and ε(h) be a function which goes to 0 as h → 0.

Then, uniformly for τ ∈ [−C,C], the pseudo-resonances z of P̃ in

(3.6) E0 + [−Ch,Ch] + i
[
−
(λ2
2

+ δλ1

)
h− C

h

| lnh|
, h

]
,

with Re z ∈ E0 + τh+ hε(h)[−1, 1] satisfy z = zq(τ) + o(h| lnh|−1) with

(3.7) zq(τ) = E0 −
A1λ1
| lnh|

+ 2qπλ1
h

| lnh|
− ih

(λ2
2

+ δλ1

)
+ i ln(µ̃(τ))λ1

h

| lnh|
,

and

µ̃(τ) = wΓ
(1
2
− δ − i

τ

λ1

)√λ1
2π

M+
1

M−
1

e−
π
2
(ν1+

3
2
)i
∣∣g1−

∣∣(iλ1|g1+||g1−|
)− 1

2
+δ+i τ

λ1 ,

for some q ∈ Z. On the other hand, for each τ ∈ [−C,C] and q ∈ Z such that zq(τ) belongs
to (3.6) with a real part lying in E0 + τh + hε(h)[−1, 1], there exists a pseudo-resonance

z satisfying z = zq(τ) + o(h| lnh|−1) uniformly with respect to q, τ . Moreover, there exists

M > 0 such that, for all z ∈ (3.6), we have

(3.8) dist
(
z,Res0(P̃ )

)
> β

h

| lnh|
=⇒

∥∥(1− hS/λ1−1/2+δWQ
)−1∥∥ ≤M.

In the lemma, we have used that the eigenvalues of WQ are explicitly given by (3.4) and
that two of them are zero. On the contrary, note that µ̃(τ) is a smooth function which
does not vanish and that there are a lot of pseudo-resonances in (3.6). The assumption
0 < δ < 1/2 allows to avoid the poles of the Γ function. This result implies the following
resolvent estimates at the classical level.

Lemma 3.3. For all 0 < δ < 1/2, ν = λ1/4 + λ2/2 and C, β > 0, the following properties

are satisfied for h ∈ H small enough.

i) For all z ∈ E0 + [−Ch,Ch] + i[−νh, h], we have

(3.9)
∥∥(1− hS/λ1−1/2Q

)−1∥∥ . max
(
1, h

λ2
2λ1

+ Im z
λ1h

)
.

ii) For all z ∈ (3.6) with dist(z,Res0(P̃ )) > βh| lnh|−1, we have

(3.10)
∥∥(1− hS/λ1−1/2Q̃

)−1∥∥ . h−δ.

The particular value of ν in Lemma 3.3 has no particular meaning. We only need ν >
D0 = λ2/2 for Theorem 1.1 and ν < λ1/2 + λ2/2 to avoid the poles of Γ.

Proof. Since Q2 = 0 by Lemma 3.1, we get

(3.11)
(
1− hS/λ1−1/2Q

)−1
= 1 + hS/λ1−1/2Q.

Using that |hS/λ1−1/2| = h
λ2
2λ1

+ Im z
λ1h and that Q(z, h) is uniformly bounded for z ∈ E0 +

[−Ch,Ch] + i[−νh, h], this identity yields (3.9).
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On the other hand, (3.3), e−iwhδ
= 1− iwhδ +O(h2δ) and Q2 = 0 give

1− hS/λ1−1/2Q̃ = 1− hS/λ1−1/2Q− hS/λ1−1/2+δWQ+O(h
λ2
2λ1

+ Im z
λ1h

+2δ
)Q

=
(
1− hS/λ1−1/2+δWQ+O(h

λ2
2λ1

+ Im z
λ1h

+2δ
)Q

)(
1− hS/λ1−1/2Q

)

=
(
1 +O(h

λ2
2λ1

+ Im z
λ1h

+2δ
)
(
1− hS/λ1−1/2+δWQ

)−1
)

(
1− hS/λ1−1/2+δWQ

)(
1− hS/λ1−1/2Q

)
.(3.12)

We have |hS/λ1−1/2| = h
λ2
2λ1

+ Im z
λ1h ≤ h−δ for z ∈ (3.6). Combining these estimates with (3.8),

(3.9) and (3.11), (3.12) implies
(
1− hS/λ1−1/2Q̃

)−1
=

(
1− hS/λ1−1/2Q

)−1(
1− hS/λ1−1/2+δWQ

)−1(
1 +O(hδ)

)−1

=
(
1 + hS/λ1−1/2Q

)(
1− hS/λ1−1/2+δWQ

)−1
+O(1),(3.13)

if dist(z,Res0(P̃ )) > βh| lnh|−1. Then (3.10) follows. �

The next result provides a resonance free region for P and the asymptotic of the resonances

closest to the real axis for P̃ = P + h1+δW . Combined with Lemma 3.2, it implies directly
Theorem 1.1 with D0 = λ2/2 if we choose λ1 = 1.

Lemma 3.4. There exists α > 0 such that, for all δ > 0 small enough and C > 0, the

following properties hold for h ∈ H small enough.

i) P has no resonance in

E0 + [−Ch,Ch] + i
[
−
(λ2
2

+ α
)
h, h

]
.

ii) In the domain (3.6), we have

dist
(
Res(P̃ ),Res0(P̃ )

)
= o

( h

| lnh|

)
.

As in Definition 4.4 of [4], the notation dist(A,B) ≤ ε in C means that

∀a ∈ A ∩ C, ∃b ∈ B, |a− b| ≤ ε,

and ∀b ∈ B ∩ C, ∃a ∈ A, |a− b| ≤ ε.

The proof of Lemma 3.4 gives a polynomial estimate of the resolvents in the corresponding

domains (at distance larger than h| lnh|−1 from the pseudo-resonances of P̃ ).

Proof. The first point of the lemma has already been obtained in Lemma 12.1 of [4]. In order
to show the second point, we follow the strategy of Chapters 11 and 12 of [4] and summarized

in the introduction of [4]. Then, we first prove that P̃ has no resonance and we show a
polynomial estimate of its resolvent away from the pseudo-resonances.

Lemma 3.5. For δ > 0 small enough, C, β > 0 and h ∈ H small enough, P̃ has no resonance

in the domain

(3.14) E0 + [−Ch,Ch] + i
[
−
(λ2
2

+ δλ1

)
h− C

h

| lnh|
, h

]
\
(
Res0(P̃ ) +B

(
0, β

h

| lnh|

))
,
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ρk+

0

γk

suppW
ρk
−

Figure 6. The geometric setting in the proof of Lemma 3.5.

and there exists M > 0 such that the distorted operator P̃θ of angle θ = h| lnh| satisfies
∥∥(P̃θ − z)−1

∥∥ . h−M ,

uniformly for h ∈ H small enough and z ∈ (3.14).

Proof of Lemma 3.5. This result is just an adaptation of Proposition 11.4 of [4]. We only
give the changes which have to be made in the present setting, sending back the reader to
Section 11.2 of [4] for the technical details. From the general arguments of Chapter 8 of [4],
it is enough to show that any u = u(h) ∈ L2(R2) and z = z(h) ∈ (3.14) with

(3.15)

{
(P̃θ − z)u = O(h∞),

‖u‖L2(R2) = 1,

vanishes microlocally near each point of K(E0). For k = 1, 2, 3, let uk± be microlocal restric-

tions of u near ρk±, where ρ
k
− (resp. ρk+) is a point on γk just “before” (resp. “after”) (0, 0)

(see Figure 6). As in [4, (11.23)], they are Lagrangian distributions

uk− ∈ I(Λ1,k
+ , h−N ) and uk+ ∈ I(Λ0

+, h
−N ),

associated to the Lagrangian manifold Λ+ just after (0, 0) (denoted Λ0
+) and after a turn

along γk (denoted Λ1,k
+ ) for some N ∈ R.

After an appropriate renormalization (see [4, (11.25)]), the symbols ak−(x, h) ∈ S(h−N ) of

uk− satisfy the relation

(3.16) ak−(x, h) = hS(z,h)/λ1−1/2
3∑

ℓ=1

Pk,ℓ(x, h)a
ℓ
−(x

ℓ
−, h) + S(h−N+ζ−δ),

near xk− = πx(ρ
k
−). In this expression, the symbols Pk,ℓ ∈ S(1) (resp. the constant ζ > 0) are

independent of u (resp. δ, u) and Pk,ℓ(x
k
−, h) = Q̃k,ℓ(z, h). Compared with [4, (11.27)], Q is

replaced by Q̃ in Pk,ℓ(x
k
−, h). Indeed, no change has to be made for the propagation through

the fixed point (0, 0) since W is supported away from Vtop (see [4, (11.29)]), but the usual
transport equation near γk

2∇ϕ+ · ∇ak− + (∆ϕ+ − iσ)ak− = O(h−N+1),

with σ = (z − E0)/h is replaced by

2∇ϕ+ · ∇ak− + (∆ϕ+ − iσ + ihδW )ak− = O(h−N+1),
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giving on the curve γk

∂ta
k
−(xk(t)) + (∆ϕ+ − iσ + ihδW )ak−(xk(t)) = O(h−N+1),

and leading to the additional factor e−ihδ
∫
W (xk(t)) dt in the quantization matrix Q̃ (see [4,

(11.31)]). On the other hand, the remainder term O(h−N+ζ−δ) in (3.16) comes from the

fact that |hS/λ1−1/2| . h−δ uniformly for z ∈ (3.14) (see Chapter 12.2 of [4] for a similar
argument).

Applying (3.16) with x = xk−, we get
(
1− hS(z,h)/λ1−1/2Q̃(z, h)

)
a−(x−, h) = O(h−N+ζ−δ),

where a−(x−, h) is a shortcut for the 3-vector with coefficients ak−(x
k
−, h). From (3.10), it

yields

|a−(x−, h)| . h−N+ζ−2δ,

uniformly for z ∈ (3.14). Using again (3.16), we deduce ak− ∈ S(h−N+ζ−3δ) ⊂ S(h−N+ζ/2) for

δ > 0 small enough. Thus, starting from ak− ∈ S(h−N ), we have proved ak− ∈ S(h−N+ζ/2). By
a bootstrap argument (see the end of Chapter 9 of [4]), we obtain u = O(h∞) microlocally
near K(E0) and the lemma follows. �

To finish the proof of Lemma 3.4, it remains to show that P̃ has a resonance near each
pseudo-resonance. That is

Lemma 3.6. For δ > 0 small enough, C, β > 0 and h ∈ H small enough, the operator P̃
has at least one resonance in B(z, βh| lnh|−1) for any pseudo-resonance z ∈ (3.6).

Proof of Lemma 3.6. This result is equivalent to Proposition 11.6 of [4] in the present setting,
and we only explain how to adapt its proof. If Lemma 3.6 did not hold, there would exist a
sequence z = z(h) ∈ (3.6) of pseudo-resonances where h ∈ H goes to 0 such that

(3.17) P̃ has no resonance in D = B
(
z, β

h

| lnh|

)
.

We now construct a “test function”. Let ṽ be a WKB solution near x1− of
{
(P̃ − z̃)ṽ = 0 near x1−,

ṽ(x) = eiϕ
1,1
+ (x)/h on |x| = |x1−| near x

1
−,

for z̃ ∈ ∂D, where ϕ1,1
+ is a generating function of Λ1,1

+ . Note that P̃ = P near x1− and
that ṽ can be chosen holomorphic with respect to z̃ near D. After multiplication by a renor-
malization factor as in [4, (11.44)], this function is denoted v̂. Consider cut-off functions
χ, ψ ∈ C∞

0 (T ∗
R
2) such that χ = 1 near ρ1− and ψ = 1 near the part of the curve supp(∇χ)∩γ1

before ρ1−. Then, we take as “test function”

v = Op(ψ)
[
P̃ ,Op(χ)

]
v̂.

Let u ∈ L2(R2) be the solution of

(3.18) (P̃θ − z̃)u = v,
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for z̃ ∈ ∂D. From Lemmas 3.2 and 3.5, u is well-defined and polynomially bounded. Let uk−
be a microlocal restriction of u near ρk− as before. Working as in Lemma 11.10 of [4], one can

show that uk− ∈ I(Λ1,k
+ , h−2δ) with renormalized symbol ak−. Moreover, as in (3.16), we get

(3.19) ak−(x, h) = hS(z,h)/λ1−1/2
3∑

ℓ=1

Pk,ℓ(x, h)a
ℓ
−(x

ℓ
−, h) + ãk(x, h) + S(hζ−3δ),

near xk−, where ãk denotes the symbol of ṽ near xk−. In particular, ãk(x, h) = 0 for k 6= 1 and
ã1(x

1
−, h) = 1. This relation is obtained using the proofs of (3.16) and Lemma 11.8 of [4].

To obtain a contradiction with (3.17), we consider

(3.20) I =
1

2iπ

∫

∂D
u(z̃) dz̃.

From the properties of uk− and |∂D| = 2πβh| lnh|−1, we have I ∈ I(Λ1,k
+ , h1−2δ| lnh|−1)

microlocally near ρk−, where its renormalized symbol bk(x, h) satisfies

(3.21) bk(x, h) =
1

2iπ

∫

∂D
ak−(x, h) dz̃.

Applying (3.19) with x = xk− leads to
(
1− hS(z,h)/λ1−1/2Q̃(z, h)

)
a−(x−, h) = ã(x−, h) +O(hζ−3δ),

where c(x−, h) is a generic shortcut for the 3-vector with coefficients ck(xk−, h). It implies

a−(x−, h) =
(
1− hS/λ1−1/2Q̃

)−1
ã(x−, h) +O(hζ−4δ)

=
(
1 + hS/λ1−1/2Q

)(
1− hS/λ1−1/2+δWQ

)−1
ã(x−, h) +O(1) +O(hζ−4δ).

from (3.10) and (3.13). We deduce

Wa−(x−, h) = W
(
1− hS/λ1−1/2+δWQ

)−1
ã(x−, h)− h−δã(x−, h)

+ h−δ
(
1− hS/λ1−1/2+δWQ

)−1
ã(x−, h) +O(1) +O(hζ−4δ).

Inserting this expression in (3.21) and using (3.8) yield

Wb(x−, h) =
h−δ

2iπ

∫

∂D

(
1− hS/λ1−1/2+δWQ

)−1
ã(x−, h) dz̃ +O

( h

| lnh|

)
+O

(h1+ζ−4δ

| lnh|

)
.

Note that ã(x−, h) = t(1, 0, 0) is an explicit eigenvector of WQ associated to its non-zero
eigenvalue −iwQ1,1(z, h) (see (3.4)). Thus, computing the integral as in [4, (11.67)], we get

Wb(x−, h) = iλ1
h1−δ

| lnh|
ã(x−, h) + o

( h1−δ

| lnh|

)
+O

( h

| lnh|

)
+O

(h1+ζ−4δ

| lnh|

)
.

Taking δ > 0 small enough and using that Wb ∈ S(h1−2δ| lnh|−1), the previous asymptotic

shows that Wb 6= 0 so that I 6= 0. On the other hand, since P̃ has no resonance in D
(see (3.17)), the function u defined by (3.18) is holomorphic in D and (3.20) gives I = 0.
Eventually, we get a contradiction and the lemma follows. �

The second point of Lemma 3.4 is a direct consequence of Lemmas 3.5 and 3.6. �
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(2018), no. 405, vii+314.
5. S. Dyatlov and A. Waters, Lower resolvent bounds and Lyapunov exponents, Appl. Math. Res. Express.

AMRX (2016), no. 1, 68–97.
6. S. Dyatlov and M. Zworski, Mathematical theory of scattering resonances, Graduate Studies in Mathemat-

ics, vol. 200, American Mathematical Society, 2019.
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