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Existence of global strong solution for Korteweg system in
one dimension for strongly degenerate viscosity coefficients

Cosmin Burtea * Boris Haspot T

Abstract

In this paper we prove the existence of global strong solution for the Navier-Stokes
Korteweg equations for strongly degenerate viscosity coefficients with initial density
far away from vacuum. More precisely, we assume that the viscosity coefficients
take the form u(p) = p® with @ > 1. The main difficulty of the proof consists
in estimating globally in time the L norm of 1. Our method of proof relies on
fine algebraic properties of the Navier-Stokes Korteweg system. First we introduce
two new effective pressures endowed with weight functions depending both on the
viscosity and the capillarity coefficients as some power laws of the density. For these
two quantities we show some Oleinik-type estimate which provide the control of the
L norm of % by applying a maximum principle. It is interesting to point out that
the two effective pressure introduced in the present paper depending on the capillary
coefficient generalize to the Navier-Stokes Korteweg equations those introduced in
[7, 15]. In our proof we make use of additional regularizing effects on the effective
velocities which ensure the uniqueness of the solution using a Lagrangian approach.

1 Introduction

We are concerned with compressible fluids endowed with internal capillarity which can be
described by the Korteweg-type model (see [43, 34, 19, 42, 1, 9, 23] for its derivation, we
refer also to the pioneering work by J.-E. Dunn and J. Serrin in [19] ). The conservation
of mass and of momentum write:

0

2 (o) + 02 p0) = D)D) + P (p) = DK (L.1)
(p,0)(0,) = (po, uo).

Here u = u(t, z) € R stands for the velocity, p = p(t,z) € R* is the density, u(p) > 0 is
the viscosity coefficient and P(p) is the pressure term with P a v law such that P(p) = p”
with v > 1. The Korteweg tensor reads as:

1 l 2
K = pr(p)0zap + 5 (pr'(p) — #(p))(0zp) (1.2)
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We supplement the problem with initial condition (pg,up). We will focus now on the
following particular case where x(p) and pu(p) are related by the following algebraic
relation:

(1.3)

with ¢ > 0. We would like to point out that this specific choice (1.3) on the viscosity and
capillary coefficients allows in particular to deal with the so called compressible quantum
Navier Stokes system where u(p) = pup and k(p) = % with u, x > 0. This model belongs
to the class of quantum fluid models. Such models are used in particular to describe

superfluids [39], quantum semiconductors [20], weakly interacting Bose gases [22] and

seen as a quantum potential, the so called Bohm potential. This Bohm potential arises
from the fluid dynamical formulation of the single-state Schrodinger equation.

Finally we mention that when ¢ = 0 we recover the classical compressible Navier-Stokes
equations and when p(p) = 0 and x(p) # 0 we have the so called Euler-Korteweg system
(we refer to [3, 4] for the existence of global strong solution with small initial data in

dimension N > 3). As in [7, 26, 28], setting ¢/(p) = % we can observe that under the

quantum trajectories of Bohmian mechanics [44]. The quantum correction can be

condition (1.3) we have:
Ou K = c0y(1(p)Ouap(p))- (1.4)

Setting now v = u + adzp(p) as in [2, 21], we have from the mass equation of (1.1):

{ Op + Ox(pu) =0

1.5
PO + pudyv + (o — 1)05(1u(p)Ozu) + 0x P(p) = 0. K. (1.5)

Now according to (1.4), we obtain:

pOv + pudav + (o — 1) (1(p) Ouw) + 92 P(p) — c02(1(p) 02z p(p)) = 0. (1.6)
If we rewrite the previous equation in terms of v, we get:
pOrv + pudzv + (a0 — 1)0x (1(p)02v) + 92 P(p)
(@ - at o) =0. D

We wish now to choose « such that:

o —a+c=0. (1.8)

We will restrict in the sequel our attention to the case 0 < ¢ < % (we will explain later
why we only consider this case) which ensures the existence of two real a; with i € {1, 2}

satisfying (1.8):
14++v1—-4ec 1—-+v1—-4c

Q= ——(0—— or ay= 5 (1.9)
At this level we have then the following equations:
pOw; + pudyvi + (o — 1)0x(p(p)0zvi) + 0z P(p) = 0, (1.10)

with v; = u + a;0,¢(p) where i € {1,2} which will be referred as effective velocities. Let
us discuss the dissipation of energy, multiplying the equation of momentum conservation



in the system (1.1) by u and integrating by parts over R , we obtain the following natural
energy:

[ G+ 000+ g0 ¢t + [ [ (o) @ a1

(1.11)
1 1
< /R (§p0“(2) + poe (po) + 5/‘?(00)(8100)2) (t,z)dx.
with e(p) defined as follows:
-l — -1 y—1 1
e(p) = (o =) P71 (1.12)

(v=1p y=1 p -1

In the sequel we will deal with the following strongly degenerate viscosity coefficients and
with the associated capillary coefficients issued of the formule (1.4):

pu(p) = p’ and k(p) = cp* 2, (1.13)

with 8 > 1. With this choice, we can rewrite the energy estimate (1.11) as follows:

1 c _1\?2 ¢
/R (2pu2+pe(p)+w(axpﬂ )+ /0 /R 0 (0:0)? < Eo (o, 10) + By (92p0)
T2
(1.14)
where

Eo (po, uo) = /§p0u8 + poe (po)
R

1 _1\?
Eecop (395[)0):2(@)_1)2/11g <8mp§ 2) )

2
.
Eo (po,10) + cEeap (0zp0) "= Eo tot-
The so-called BD-entropy estimate which is satisfied for the compressible Navier-Stokes
system (see [5]) is also verified for the Korteweg system (1.1) and is given by multiplying
the equation (1.10) with v; where i € {1,2}:

t
/ (%,ovi2 + pe (p) ) (¢, z)dz + (1 — o) / / P2 (8,v:)% (s, x)dsdx (1.15)
R 0 JR
t
1
+ow/0 /Rp“ﬁ_?’(é?xp)z(s,x)dsdw < /R (57020 + poe (po) ) (x)dx (1.16)
1 (67 a—12
= /R onug + poe (po) + ﬁ\/%uoaxpo + Q%Ecap (Ozp0)
2
< 2F (po, ug) + 202 Eeap (Ozpo) - (1.17)

It implies that in the context of the Navier-Stokes-Korteweg system (1.1) with the cap-
illary coefficient satisfying the algebraic relation (1.3), there are two such entropies es-
timates, one degenerates in the basic energy estimate for compressible Navier-Stokes
equations when the capillary coefficient ¢ goes to 0, the other one to the BD-entropy
estimate (see [5]). In this paper, we are interested by proving the existence of global



strong solution for the Navier-Stokes Korteweg equation with degenerate viscosity coef-
ficients and capillary coefficients verifying (1.13) (we note that when ¢ = 0 we recover
the compressible Navier-Stokes system). We briefly mention that the existence of global
strong solutions for the system (1.1) with small initial data for N > 2 is known since the
works by Hattori and Li [29] in the case of constant capillary coefficient x(p). Danchin
and Desjardins in [18] improved this result by working with initial data (pg — 1, poug)
be]lvonging to the following Besov spaces which are critical for the scaling of the equations

N N_
By x (B 1)N (we refer to [24] for the case of the nonisothermal Korteweg system).
This result has been extended in [25] and recently in [27] where the second author proves
N

N
the global existence of strong solution with small initial data in (B, N L>®) x By !
generalizing to the Korteweg system the result of Cannone, Meyer, Planchon [10] for
Navier-Stokes equation which enables to construct self similar solutions of the Navier-
Stokes equations with small initial data. This implies in particular that we can extend
to the Navier-Stokes Korteweg system the notion of Oseen solutions in dimension N = 2
provided that the vorticity is a Dirac mass ady with || sufficiently small.

The problem of existence of global strong solution for system (1.1) with large initial
data and with general viscosity and capillary coefficients remains again largely open even
in the one dimensional case. We are going to focus our attention on the one dimen-
sional case, and we wish to start with describing the state of art for the compressible
Navier-Stokes equations when ¢ = 0 (we will explain after the main difference that one
encounters for obtaining similar results for the Navier-Stokes Korteweg system). It is
important to explain that for getting such result of global strong solution, the main dif-
ficulty is related to the control of the L* norm of %. Indeed it is well known that the

strong solution can blow-up in finite time as long as the L* norm of % does the same (see

[15] for viscosity coefficients verifying (1.4) with 8 > 3). Kanel in [33] has been the first
to prove the existence of global strong solution for compressible Navier-Stokes equations
with arbitrary large initial data in one dimension for constant viscosity coefficients. This
result has been extend by Mellet and Vasseur in [40] to the case of viscosity coefficients
verifying (1.13) in the case 0 < 8 < % The main argument of their proof consists in using
the Bresch-Dejardins entropy (see [5]) for getting L estimate of 1 that they combine
with parabolic regularizing effects on the velocity issued of the momentum equation. We
wish to point out that the Bresch-Dejardins entropy gives almost for free the control of

||%H L when 0 < 3 < . In [26], the second author has proved similar results for the

case % < B < 1 where he used the fact that the effective velocity v satisfies a damped

transport equation. It allows to obtain L estimates on v which is sufficient to obtain
L estimate on % by using a maximum principle on the mass equation. More recently
Constantin et al in [15] have generalized the previous results to the case § > 1 with v
belonging to [a, a + 1] provided that the initial data satisfy: d,ug < pJ . The main
ingredient of the proof consists in proving that the sign of the so called effective pressure
w(p)0zu — P(p) does not change all along the time and to use a maximum principle on
the mass equation in order to estimate the L norm of 1. In [7], we have extended the
result of [15] when § > 1 inasmuch as we do not assume any condition of sign on the
initial data (furthermore the initial data are less regular, roughly speaking the initial
data are only of finite energy). To do this, we have introduced a new effective pressure
on which we prove Oleinik type estimate which enables to control the L* norm of % via a

4



maximum principle. In conclusion, the problem of the existence of global strong solution
in one dimension for the compressible Navier Stokes equations with viscosity coefficient
of the form (1.13) is now well understood, however fewer results have been obtained for
the Navier-Stokes Korteweg equations which are significantly more complicated because
the capillary term of third order derivative on the density.

Charve and the second author in [12] proved the global existence of strong solution for
the system (1.1) when u(p) = ep and k(p) = %, in addition they show that the global
strong solutions converge when ¢ goes to 0 to a global entropy weak solution of the
compressible Euler system with initial data of finite energy. Germain and LeFloch in
[21] showed recently the global existence of vacuum and non-vacuum weak solutions for
the Korteweg system including the case of viscosity and capillary coefficients of the form
w(p) = p?, k(p) = p? which satisfy in particular a strong coercivity condition which
corresponds in the present case to 28 —4 < 1 < 28 — 1 and with 0 < 8 < % or with
B1 < —2. Furthermore they analyze the zero viscosity-capillarity limit associated with
the solutions of the Navier-Stokes-Korteweg system generalizing the results of [12] and
recovering at the limit an entropy solution of the Euler system. It is important to point
out that they need to impose a tame condition on the viscosity and capillary coefficients
which takes the form:

k(p) < wo)’ and 6(e) < €2, (1.18)

if we consider the vanishing viscosity capillary coefficients u.(p) = eu(p) and rke(p) =
d(e)k(p) when € > 0 goes to 0. Roughly speaking the viscosity tensor involves some
parabolic effects on the velocity whereas the capillary tensor generates some dispersive
effects (see [3, 4]), the previous tame condition implies in some sense that the parabolic
effects will dominates the dispersive effects issue of the capillary tensor. In particular
when € goes to 0 we can expect some strong convergence in suitable functional space
whereas the dispersive effects tend to induce strong oscillations which prevent any strong
limit but allows only weak limit (see for example the case of the Korteweg de Vries
equation [35, 36, 37]). In particular the condition (1.18) implies that the authors in [21]
consider the same type of viscosity and capillary coefficients (see (1.13) when they study
the zero viscosity-capillarity limit.

Recently Chen et al. in [14] and Chen in [13] have proved for the first time some results
of existence of global strong solution for initial density far away from the vacuum in
Lagrangian coordinates. More precisely they consider viscosity and capillary coefficients
of the form p(p) = p™ and k(p) = cp® with (ay, 1) € R?, it is important to point out
that in comparison with the present work there is no relation a priori between a; and
B1 (furthermore there is no restriction on ¢ > 0). They manage essentially to show such
result when ;7 < —2 which allows in a direct way to control the L* norm of % by using

the energy estimate (indeed roughly speaking the energy estimate ensure that axp%l+1
is bounded in L(L?) for any T' > 0). They deal also with the case 31 > —2 but in this
situation oy < 0, in particular the viscosity coefficient is not degenerate in this case. The
main ideas of the proof is to obtain L? estimate on the effective velocity v = u + %8&0
by using energy method combine with Sobolev embedding in the spirit of Kanel (see
[33]). Furthermore the authors show also the existence of global strong solution when

the initial data is a perturbation of a Riemann problem associated to a rarefaction wave



for the compressible Euler problem.

In this article we wish to deal with the case of degenerate viscosity coeflicient when
B > 1 (see (1.13)) and with f; = 28 —3 > —2 (the power of the capillary coefficient)
in order to extend the results of [13, 14] to these cases. As in [21] when the authors
consider the zero viscosity-capillary limit, we assume that the algebraic relation between
the viscosity and the capillary coefficient (1.4) is satisfied, furthermore we work also in
a regime where the viscosity effects dominates the capillary effects with 0 < ¢ < i (it
corresponds to the tame condition introduced in [21]). We would like to explain briefly
the main arguments of our proof and the main difficulties which are related to the proof
of existence of global strong solution with degenerate viscosity coefficients. First the
existence of global strong solution in finite time is well known (see [13, 14]); so in order
to show the existence of global strong solution, we start by proving a blow-up criterion
for the case g > % in (1.13) which is relied to estimating the LS, norm of %. It implies
that the main difficulty for getting the existence of global strong solution with degenerate
viscosity coefficient corresponds to control the L* norm of % all along the time. In the
case % < B <1, it is sufficient to estimate the Ly norm of each effective velocity v; with
i € {1,2} to obtain L{S, estimates on L yusing a maximum principle on the mass equation.
It is important to precise that we can apply such maximum principle on the equation
because the viscosity coeflicients are not so degenerate when 8 < % We refer to [8] for
the existence of global strong solution when g < 1.
In the case 8 > 1 the previous estimates are not sufficient and it becomes more involved
to estimate %. As in [7, 15] we are going to introduce suitable effective pressures w; for
which we can estimate the maximum. This will provide us the control of the L norm
of % using a maximum principle on the mass equation of (1.10). To do this, we are going
to exploit very fine algebraic properties of the Navier-Stokes Korteweg system by setting
for i € {1,2}:

w; = fi(p)Orvi + F1i(p). (1.19)

with

(B=1a;—B ¥ —o;(B+1)

2 — 2a,—1 d Fi; — 2a;—1 +7_

(1.20)

We would like to point out that these new effective pressures w; have weight f;(p) cor-
responding to some power of the density which depend in a crucial way on the viscosity
and capillary coefficients. We show in the Proposition 3.1 that w; satisfy the following
equation:

Ow; + (u ~+ g14)Opw; + wigh; + (o — 1)%(”2))%%) + gh; + gasw? = 0, (1.21)

which is a parabolic equation with damping term. We refer to the Proposition 3.1 for the
definition of the terms g1, g5;, g5; and ga;. It is remarkable to note that when oy = 1 and
ag = 0 which corresponds to the case ¢ = 0 of the compressible Navier-Stokes system,
then w; and ws corresponds respectively to the effective pressures y; = %¥ + Fs(p)
and ya = p(p)d,u — P(p) respectively introduced in [7] and [15]. In particular in this
case wy and wy satisfy the same equation as the effective pressure defined in [7, 15].



In this sense, we can say that the effective pressure w; generalize the one defined for
compressible Navier-Stokes equations and that in addition w; converge to the effective
pressure of Navier-Stokes equations when ¢ goes to 0. It turns out that we are able to
prove an Oleinik type estimate for the effective pressure wy:

wy(t,z) < C1(t) Y(t,z) € RT x R, (1.22)

with C a continuous increasing function provided that w;(0,-) < Cp with Cp € R. Un-
fortunately in comparison with the case ¢ = 0 where g4 1 = 0, for Navier-Stokes Korteweg
equations we observe that g4 ;1 < 0. In particular, if we consider the equation (1.21), it
seems that the sign of g4 1 does not allow to apply a maximum principle which provide
the global estimate (1.22) as it is the case when ¢ = 0. Indeed we have in some sense to
deal with a Ricatti equation which can blow up in finite time. However since g41 depends
on a; — 1 we show that we can prove the estimate (1.22) on a any time interval [0, 7]
with T" > 0 fixed provided that the capillary coefficient ¢ > 0 is sufficiently small. Using
maximum principle for the mass equation of (1.1) allows us to prove that L'is bounded
on the time interval [0,7]. In order to show the uniqueness of the solutions, we prove
regularizing effects on the velocity v; and vs by extending the Hoff’s estimates valid for
compressible Navier Stokes system with constant viscosity coefficients (see [30]) to the
case of Navier-Stokes Korteweg system with general viscosity coefficients. It enables us in
particular to prove that d,u belongs to L}, .(L®(R)). Passing in Lagrangian formulation
we show the uniqueness of the solutions. This result show the existence of almost global
strong solution provided that ¢ goes to zero.

In order to prove the existence of global strong solution, we impose a condition on the
sign of the initial data. More precisely we assume that wq(0,-) < 0 or we(0,-) < 0 which
allows to use a maximum principle on the equation (1.21)and to observe that w; or ws
conserve the same sign all along the time. We conclude again by using maximum princi-
ple for the mass equation which allows to show that the L norm of 1 can not blow up
in finite time what is sufficient to prove the existence of global strong solution.

2 Main results

We now wish to present our main results which concern the existence of global strong
solution for the Navier-Stokes Korteweg system with large initial data provided that we
impose a condition of sign on the initial data.

Theorem 2.1 Assume that 8> 1 and v € [3,8+1]. Let ug € H3(R), (po — 1) € H*(R)
and p% € L (R) with the additional following conditions of sign, for any x € R we have:

(B—1)ag—B —ag(B+1)

=2 Al 4y
22T 9 w0 + 7 22T < 9.23
& PO (B4 1) + 420z — 1)1 = (2.23)
or (B—-1) B (B+1)
Ww—l)ag—pF L+
po 2c1 —1 8331}1’0 + ’7 2cq1—1 v S 0 (224)

—a1(B+ 1) +7(2a1 = )"
Then there exists a unique global strong solution (p,u) for the Navier-Stokes system (1.1)
with the following properties. For any given T > 0, L > 0 there exist a positive constant



C, a positive constant C(T) depending respectively on T and on the initial data such that,
if o(t) = min(1;¢t), then for i € {1,2}:

C(T) ' <p(T,) <C ae (2.25)
sup ([lp(t,-) = g2 + [Jult, )| 22 + [|02p(t, ) 2 + ()2 [|Ozult, )|l 2
0<t<T

(2.26)
+o(®)(lalt, ) g2 + 10:((1 = i) pPBavi(t, -) — P(p) + P(1))]12) < C(T),

T
/O [10zu(t, 172 + 10202, )72 + o () |a(t, )72 + o* (@) dza(t, -)|[72]dt < C(T),

. (2.27)
| ot @l ar < o). (2.28)
sup o(t)||0zu(t, )| < C(T). (2.29)

0<t<T

Remark 1 We can prove in fact at least on the torus (see [38]) that we control % in
L>®(R*, L) and not only in L%’AR‘*‘, L) using the damping on Oyp provide by the BD
entropies (1.17). Indeed (1.17) implies that p%ﬁ_:ﬁ&gp is bounded in L*(RT, L2(R)), in
particular by adapting the same ideas as in [38] where Gagliardo-Niremberg estimate is
used in a suitable way we can show that for T > 0 large enough we have for any t > T,
|p(t, )= 1| < 3 which implies that H%(t, MNree <2 fort >T. Combining this estimate
with (2.25) show the result.

Remark 2 [t is important to note that our result requires to work with c included in the
interval 0,%]. The main reason is that if ¢ > L then the o; with i € {1,2} are complex.
We can again obtain the following equation with v; the effective velocities:

pOyv; + pudyv; + (a; — 1)0:(1(p)0zvi) + 0 P(p) = 0, (2.30)

however since oy is complex, we can not apply mazximum principle on v; or on the effec-
tives pressures even if the linearized equation associated to (2.30) is parabolic.

Remark 3 This result generalizes in particular the works of [15] to the case of the
Navier-Stokes Korteweg system. Indeed we have as in [15] a condition of sign on the
initial effective pressure wa o which generalizes the effective pressure of the compressible
Navier-Stokes system.We can also observe that the coefficient v > 1 s restricted to the
interval [B, 8 + 1] as in [15].

The second result show the existence of almost global strong solution when ¢ goes to zero
without any assumption of sign on the initial data.

Theorem 2.2 Assume that 3 > 1 and 8 > 7. Let ug € L*(R) N L>®(R), (pg — 1) €
HY(R),0.p0 € L™®(R) and p% € L*(R) and that there exists C € R such that for any
x >y we have:
v1,0(2) — vi,0(y)
r—Yy

< (). (2.31)



Then for any T > 0 there exists co > 0 sufficiently small (depending on the initial data,
T, and the physical coefficients) such that for any 0 < ¢ < ¢o there exists a unique strong
solution (p,u) for the Navier-Stokes system (1.1) on a time interval [0,T]. Furthermore
the solution (p,u) satisfies the same regularity assumption as in the Theorem 2.1 on the
time interval [0,T]. We have in addition for any given t € [0,T] and for any x > y:

vi(t,z) — vi(t,y) <o)

2.32
- , (2:32)

with C(T') > 0.

Remark 4 It is important to note that when ¢ goes to zero then the maximal time of
ezistence 1 for a strong solution goes to 4+oo. It enables us to recover the result of
the existence of global strong solution for the compressible Navier-Stokes system as it is
proved in [7].

Remark 5 In comparison with the Theorem 2.1, we can note that we have no restriction
on the size of vy since we assume only that v > §. Furthermore we work with initial data

which are less regular. In particular it is not mandatory to assume that (po — 1,ug) is in
H*R) x H3(R)) as in Theorem 2.1 or in [13, 14].

In the section 3 and 4 we prove the Theorems 2.1 and 2.2. An appendix is devoted to
proof of the Proposition 3.1 which defines new effective pressures, we also give a sketch
of the proof of the blow-up criterion of the Theorem 3.3 below.

3 Proof of the Theorem 2.1

In order to prove the existence of global strong solution for the Navier-Stokes Kortexeg
system, we start with recalling the following result of existence of strong solution in finite
time. In addition we give a blow-up criterion.

Theorem 3.3 Assume that § > 1, v > max(f — %, 1), s >3 and (po — 1,up) € H*H x

H*(R) with p% € L*°(R). Then there exists T* > 0 such that there exists a strong solution
(p,u) of the system (1.1) on (0,T*) with VT € (0,T*):

(p—1) € C0, T, HTY(R)) N L0, T, H"2(R)), u € C(0,T, H*(R)) N L?(0, T, H*T(R)),

and for all t € (0,T%):
1
H;(t, e < C(2),

where C(t) < +oo if t € (0,T*). In addition, if:

sup [I=(t, )l < € < +o0,

E
te(0,T*) P

then the solution can be continued beyond (0,T).



The above result claims that a strong solution in finite time might blow-up is if and only
if the L°°-norm of % blows-up in T*. We refer to [13, 14] for the proof of existence of a
strong solution in finite time. The blow-up criterion of the Theorem 3.3 is essentially an
adaptation to the Korteweg system of the blow-up criterion proved for the compressible
Navier-Stokes system in Constantin et al (see Theorem 1.1. from [15]) for the torus or in
[7] for the whole space. We refer the reader to the Appendix for a sketch of the proof.
Since the assumption on the initial data of the Theorem 2.1 corresponds to the one of
the Theorem 3.3, we know that there exists a strong solution (p,u) of the system (1.1)
on a finite time interval (0,77).

We are going to prove that T* = 400, by absurd we assume now that 0 < T < 4+o00. To
do this we wish to apply the blow-up criterion of Theorem 3.3, it suffices then to show
that the L™ norm of % can never blow-up in finite time. From (1.10), we recall that we
have for i € {1,2}:

Ot + 0;0zp + pOrv; — Ai0zep(p) =0 (3.33)
pO; + pudyv; + (o — 1)0,(u(p)0v;) + 0. P(p) = 0. ’
with ¢'(p) = %. Our main goal will be to apply a maximum principle on the mass

equation of (3.33) in order to estimate the L> norm of %. To do this, we are required to
obtain an estimate of the type:

0.vi(t,+) < C(t), (3.34)
for any ¢ € (0,7*) with C a continuous bounded function on (0,7%) and ¢ € {1,2}.
Since we wish to control 0,v; we are going to introduce new effectives pressures w; with
i € {1,2} which generalize the one obtained in the case of compressible Navier-Stokes
equations (see [7, 15]) and which are governed by a parabolic equation with a damping
term. We state now a crucial Proposition of this paper concerning the effectives pressures
wj (the proof of this Proposition is given in the Appendix).

Proposition 3.1 We set:

f( ) (B;U‘lz’l*ﬁ iF ( ) 0% 7§i(ﬁ+11)+7 3.35
i = ¥~ an ; = o= .
() 10 p l,Z 10 _az(ﬁ + 1) + 7(20[1 _ 1>p ( )

Furthermore we define w; as follows with i € {1,2}:

w; = fz(p)é?xvz + Fm(p)- (3.36)

Then w; satisfies the following equation:

Oyw; + (u + g14)0zw; + wigs; + (o — 1)8x(u(pp)8xwi) + g5 + g4iwi2 =0, (3.37)
with: 549
_ %
g1 = p7 2 Oup(ai = 1) e — 1Z (3.38)
_ — 1oy — +1
s = — (o — Daup? 3L ,) =0 B, (0rp)®
200; — 1 20; — 1 (3.39)
LB —3a;f — 3a; + 20,y — v+ 25+ 2 '
P9 —1 —a(Br D) 4420 - 1)

10



—a;(B+1) 2
ﬁ'FQ’Y_B Y

o= 1—
E Ca@ 1)+ 7Ca D T Y 10)
b (Bup)2p ST kA3 vai(y = B—1)(y - B)
e (—ai(B+ 1) +(2a; — 1))
and: B4+1 =(B-Daits
gai = (0 — 1)2% —p (3.41)

Remark 6 We can observe that when ap = 1 and as = 0 which corresponds to the
compressible Navier-Stokes equations since ¢ = 0 in this case, the effective pressure take
the following form:
1 1(p) gl —p1
wy = —0z(u+ —550p) + —————p"
p = pr " ) 8
Wy = pﬂaa:u —p!

(3.42)

We recover in particular the effective pressure which have been defined in [7, 15] for the
compressible Navier-Stokes system. In addition in this case wy satisfies the following
equation :

2
Opun + udgn + wryp" ™ - W—VTUP%’_% o (0ep)?" (v - 8) =0, (3.43)

We note that wy verifies exactly the same equation on the effective pressure as in [7] for
the compressible Navier-Stokes system. Concerning we we have:

Outwy+(u+ B ) Dywytwa(2B+2—)p7 —&(‘ﬁp)axwg)w”-ﬂ (B+1=7)+(B+1)p~ w3 = 0,

(3.44)
It corresponds exactly to the equation (6.4) of [15] for the second effective pressure.

It is important now to determinate the sign of g4, and g4, if we wish to apply a maximum
principle.

Proposition 3.2 We have:

Fi2<0 and F11 <0 if y<p+1 (3.45)
g11 <0 and gs2 > 0. (3.46)

Furthermore we have:
931,950 > 0 ify € [B, B+ 1] (3.47)

Proof of the Proposition 3.2: Fj;(p) is given by:

v “ 4
—;(B+1) +v(20; — 1)p (3.48)

Fii(p) =

11



We deduce that Fia < 0 because —as(5 + 1) +y(2a2 — 1) < 0. Now when v < 8+ 1 we
have y(2a1 — 1) —a1(f+ 1) < v(2a1 — 1) —ary = y(a1 — 1) < 0. it implies then that
Fi<0ify<p+1.

We recall now that: B4+1 —(6-ass
— 1PW~ (3.49)
7

From the definition of «; in (1.9) and since a; — 1 < 0 for ¢ € {1,2} and 2a; — 1 > 0,
2a0 — 1 < 0 it implies that:

gai = (a; — 1)

gu1 <0 and gs2 > 0. (3.50)

Let us consider now g4, and we recall using (3.51) that:

—a(B+1) 2
I s t2v-B Y
= i +1—
i =0 Cail 1) +7@a, P T

—ai(B+1) _ i(v— B8 — 1)(7 — ﬁ)
B, p)2p B30y = B
+ @ee)e (—oa(B+ 1) + (20 — 1))

First we observe that the first term on the right hand side of (3.51) is always positive if
v < f+1 and negative if v > 84 1. Let us deal with the second term on right hand side
of (3.51) that we denote:

(3.51)

ooy s 20 =5~ Do =)
932 = (Ozp)”p (—ai(B+1) +7(20; — 1))

(3.52)

We deduce that:

® ghoo > 0if B <y < B+1 because —an(f+1)+7(2a —1) <0andy—3—-1<0,
322
inversely ghyy <0if y < S orvy >+ 1.

o gém20if5§’y§ﬁ+1orif7>ﬁ+landoz1>ﬁ. Indeedif 8 <y < fB+1
then we have v(2a; — 1) — a1 (B + 1) < v(2a1 — 1) —azy = y(a1 — 1) < 0. We
deduce then that:

b =B-V(r-8
(men(B+ 1)+ —1)) =

Now if v > 4+ 1, we have y — f —1 > 0 and (—a1(8 + 1) + v(2a1 — 1)) > 0 if
a1 > 5~ . It is important to observe that: 3 < 7571 <L

O

3.1 Uniform estimates for %

We are going now to consider the unknown we which satisfies the parabolic equation
(3.37), and since we wish to prove some estimate of the form (3.34) it is natural to apply
a maximum principle on we. Owing to the fact that the solution (p,u) is regular we get
that wg is continuous on [0,77*) x R and in view of xEI:Itloo wa(t,x) = Fi2(1), we deduce

that for all ¢t € [0,7*) we have:

supwg(t,a:) Z FLg(l). (353)
zeR
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The function

t — sup wa(t, x)
zeR

is continuous on [0,7™), so we deduce that the set

D := {t € (0,77) : supwa(t,x) > Flyg(l)}
T€R
is open in [0,7*) (with the topology induced from R) we conclude that
{t € [0,T") : supwa(t,z) > Fl’g(l)} =1IyU U I,

z€R JEN*

where (I;);5, with I; = (a;,b;) are open disjoint intervals and Iy = 0 if supwq(0,2) =

z€R
F12(1) and Iy = [0, bg) for some by € (0,T) if sup wa (0, z) > F} 2(1). From the definition
z€R
of I; we have that sup wa(aj,z) = F12(1) and for all ¢t € I; since wa(t,-) is continuous,

z€R
it reaches its maximum on R. It implies that for any j € N and any t € I; there exists a

least one point z; € R such that:

sup wa(t, z) aef- wpr(t) = wa(t, xy).

zeR
For any ¢t € (lo U Upenil;)¢, we know that sup,cp wa(t,z) = Fi2(1). Thus, in order
to provide an estimate of wy on [0,7™) we have to show that we can control wys on
In U Upen«; an so, we are going to study the behavior of wys on all intervals I;. To fix
the ideas let us fix jo € N and let us analyse what happens on I;,.
First of all wys is Lipschitz continuous on any interval I; and then absolutely continuous,
it will be important when we will apply Gronwall Lemma. Indeed from the triangular
inequality for the norm || f|| = sup,cg | f(x)| with f a continuous bounded function on R
we have for (t1,t2) € I;:

lwan (t1) — wam(t2)]| < sup [wa(t1, @) — walte, )| < [|OwallLoo ({2 1),L00) [T — tal-
e

According to Rademacher’s theorem, wjs is differentiable almost everywhere on Iy U
U I;,. We are going to verify now that for ¢t € I, (with jo > 0) we have (war)'(t) =
JjEN*

Oyws(t, x). Indeed we have:

wpr(t+ h) —wp(t) wa(t + hy, xpyn) — walt, ze)

") = i = 1
(war) (1) = Tim, h A, h
t+h — t
> lim w2( * 7xt) wz( 7xt) = 8tw2(t,1't).
h—0+ h

Similarly, we have:

wpr(t) —wpr(t — h) wa(t,xy) — wo(t — h,xi_p)

"ty = 1 = i
(war) (1) = Tim, h i, h
t — t—nh
< tim wa(t, z¢) 202( Tt) Opwn(t, z2).

13



We deduce from (3.37) using the fact that d,wo(t,2¢) = 0 and Oywe(t, z¢) < 0 since
ws(t,-) reaches its maximum in z; that for almost everywhere ¢ € I;, we have:

Orwar (t) + war (8)gha (t, xe) + gt we) + gaz(t, 2e) (war (¢))* < 0. (3.54)

Using the Proposition 3.2 we know that gaa (¢, z¢) > 0 and g4, (¢, 2¢) > 0 for 8 € [y,v+1],
it yields that:

Dywpr(t) < —war (t)gaa(t, 1) (3.55)
Since we know from the proposition 3.2 that was(aj,) = Fia(1) < 0 if jo > 1 when

v < B+1or wy(0) = sup,er w2(0, ) < 0 from the condition (2.23) in the Theorem 2.1,
we deduce from (3.55) that for any t € I}, we have:

wp(t) < 0. (3.56)

It implies finally using the fact that F; 2(1) < 0 when v € [3, f+1] that for any ¢ € (0,T*)
we have:
wyr(t) <O0. (3.57)

In a similar way, if we assume that the condition (2.24) is satisfied then we can check
that for any ¢ € (0,7%) we have:
w1 (t) < 0. (3.58)
with:
def

supwi (t,z) = wan (t).
zeR

Next we recall that we have from the mass equation in (1.1):
1 1

1
A=) + udu(=) — =0pu = 0.
i) =3

We can rewrite the equation as follows with ¢ € {1,2}:

1 1.1 wip) . 1 1 1
Oi(=) + 10z (=) — —0zv; — 0;——=0pzx(—) — ;=0 Oz(=) =0.
t(p) (p) P ) (p) P 1(p) (p)

From the definition of w; in (3.36), we have for i € {1,2}:

1 Lol Rl — Py Byt E.

Again, the value of % is fixed at £oo for al ¢ > 0 and is equal to 1. We now consider the
open set

{t €0, 7%): supl(tja:) > 1)} =QoU U Qj;,

z€R P JEN*

where for j > 1, @); are open disjoint intervals. Following the same arguments as previ-
ously, we set now:

1
z(t) = sup — (¢, z),
z€R P

14



with ¢ € (0,7*). We know that in any interval Q;, there is a point, still denoted z;

such that z(t) = —-~—. We have then for any t € Q;, and i € {1,2} using (3.59) and
p(tx) J0

the fact that 8,5(%)(15, x) =0, 8m(%)(t,xt) < 0 (indeed z; is a point where % reaches its
maximum):

1
Oz(t) < m(wl — F1i(p))(t, x¢). (3.60)

Let us assume now that (2.23) is satisfied, we have then seen from (3.56) that for any
t € (0,7%*) we have wa(t,z¢) < 0. We deduce then from (3.60) and (3.35) that:

—Fi2(p)

8,52 t S —_— t,.It
) pfa(p) (t22)
v *D¢2(5+1)+771 B—(B—1)ag
< p 2021 p 2ozl (t,l’t)
a2(6 + 1) - 7(2042 - 1) (3.61)
8 ~1-8
< i t,x
S @B -qa-n’ O

B 1
S @A) A —n

Since v € [B, 8 + 1], we deduce that § + 1 —~ € [0,1] and applying Gronwall Lemma,
we obtain the existence of a continuous function Cy on R* such that for any ¢ € Q;, we
have:

z(t) < Ca(t).
This implies that for any ¢ € (0,7%) we get:

1
H;(t, e < Cs(2). (3.62)
with C3 a continuous function on [0, 7*]. Combining the blow-up criterion in Theorem
3.3 and (3.62), it yields that T* < 400 is absurd and then 7™ = +oc. For for any ¢ > 0
we have:

I )l < Ct). (3.63)
with C3 a continuous function on R*. Applying the same type of technics we obtain
a similar result when we assume that (2.24) is satisfied. We have then proved that the
strong solution in finite time of the Theorem 3.3 are in fact global.

We would like to show the estimate (2.26)(2.27), (2.28) and (2.29) of the Theorem 2.1. We
simply recall for the moment that our strong solution (p,u) satisfy the energy estimates
(1.14) and (1.17). Using (1.14), (1.17) and Sobolev embedding we get that for C' > 0
large enough we have (see [13, 14] for details):

o1l oo e+, 10y < C. (3.64)

It proves in particular the inequality (5.160) if we combine (4.98) and (3.63).
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3.2 Estimates a la Hoff

Introducing the convective derivative
0; = Opv; + u0,v;,
with ¢ € {1,2}, we rewrite the momentum equation (1.10) as
poi = (1= )0y (p°0u0i) + 0up? =

Let us observe that:

—/ Oy (Pﬁ&zvz’) Opv; = / PP 0y viOprv; = 1/0[3&5 ((9zv:)?)
R R 2 Jr

_1d 2 1 B(5 )2
=5 [ 7 0w jléam<awg. (3.65)

Next, we see that:

_/ O (,0’86301}1') U0y v; = _/ uaxpﬁ(amvi)Q - / pﬂuaxmviaxvi
R R R
_ 8 2, 1 8 2
= — [ wdp®(Opvi)? + - E%@p)@wﬁ
R 2 Jr
= —/u@mpﬁ(amvi)Q—i—l/pﬁamu(amvi)Q—i-l/u@zpﬁ(&;vi)z
R 2 Jr 2 Jr
:_1/u@w@mf+{/w@m@m?
2 Jr 2 Jr

Thus, we gather that:
1d 1 1 1
_ B oy )05 — — — B N2 o B N2 8 N2 4 B 2
/Raz (P 8xvz> V5 th/RP (0v4) Q/Ratp (0zvi) Q/RU&CP (Ozvi)” + 2/RP Oz u(0zv;)

1d 143
th/Rp (0v5)* + 5 /Rp Opu(pv;)°.

Moreover, we see that:

/ 0zp7 (Opv; + udyv;) = / P Opv; + / w0z P Oy v;
R

= jt P 1 0pvi + /atp Opv; + /Uaxp’yamvi

d

— YO s
T ,0 7005 — /p Oz 0Oz 1.

Multiplying the momentum equation with v; yields:

d
/pvl 7 {1(1 — ;) /Rpﬁ (8xvi)2 - /vaaxvi} =—(1- ai)# /Rpﬁ((‘?xvi)zaxu

—i—’y/p”@xuamvi
R
(3.66)
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Let us multiply the previous estimate by o (t) = min(1,¢) and integrate in time on [0, ¢]
with £ > 0, we have then:

U(t)(;_ai)/ (t) (0 vz / /apvz
o) [ (57 =1+ /mm{”}/[ (1 - a)p? (0s01)? <fﬂ—1>axvz}
~-apti? /0 [ o oo /0 Rz

Let us denote by:

A (o) (0= TG [ 2 ) 0.0 //apvz

with ¢ € {1,2}. Let us observe that using (1.14), (3.64) and (3.63) we have:
70) [ (07 = )2 < /oD ([0 O@urn)

2
p’—1

1

N}

p”—l

PQ L L2

1
1—04,‘

IN

C@t)|—=
p2

G+ =0 [ o007 (000 ),

+ %(1 ) /R o (t) o7 (t) (850:)* (1)

L L2

1-— (673

(3.67)
with C' and C} positive continuous functions on R*. Next, we see that owing to the
estimate (1.14), (1.17), (3.64) and (3.63), we have that:

min{1,t} 1 t 1
(1= ay)p? (9,0) — (7 — 1 8xvi]+ / /a 7 0,v;0;u < (1+ Cy (1),
L7 L300 @t -0 - now e [ [ o ( W;)m

with C5 a continuous positive function on Rt . Combining (3.66), (3.67) and (3.68) , we
thus get for all ¢ > 0:

1

— o

Ai () (1) S C(0) (1 + =) + i(l—a»/a() (1) 0:0)° (1)

—(1- 1+ﬁ//0pﬁ8u8v,

<Cs(t)( 1 _1%) + §Ai (pyu) (t) — (1 — ) ! —g b /0 Aapﬂﬁmu(axvi)Q

with C3 a continuous positive fonction on RT. Consequently it yields:

! j t op(9pv;)?Opu
—o)--a)+) [ [ aromp,

su i Vi) \T 1 — — Oy t g p V; 2 u .
s A(pe) () SO (0= (-a)149) [ [ op’Guuo 369

Ai (p,vi) () < C (1) (1 +

which also implies that:
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with C 1

1—ay

e > 0 we have using Gagliardo-Nirenberg inequality (1.14), (1.17) and (3.64):

[ o0 -0yl

<2 (o0 (0= e - 7 - 0) [+ (3.70

<2C /Ot 0% (1) || (1 = @t — (o7 = 1) ()|, [|0w (1 = a0 = 57) (1)

<o [ |(a-aom - -0) @, +< [ o)
)

<o [ |(a-aram - -0) @), +e [ ool +21

an increasing positive continuous function on R*. Let us observe that for all

+ 2t

x ((1 - ai)pﬁaxvi — p’y) (7-)’ ; 492t

< O (t,€) +ellpll oo (0,11, z00)Ai (p5 v3) (1) (3.71)
< C(t,e) +eCod; (p,v;) (t), (3.72)
with C(-,€) a continuous positive function on R* and C,C.,Cy > 0 large enough. We

are going now to estimate the last term of (3.69) and using (1.14), (1.17), (3.64), (3.63),

3.72) with e = Y221 (with M > 0 sufficiently large that we will determinate later) and
(MCo) )

the fact that v =

\/_70((1 — ag)vz — (1 — a1)vr) we obtain that for C' > 0 large enough:
t t
\/ /Upﬁ(axvi)2amu‘ _ ﬁ'/ /o(@mvi)zpﬁ((l — 02)0502 — (1 — a1)By01)|
< C/ ( i (JI(1 = a2)p BOvg — p¥|| L + [|(1 — 1) pPdpvy — p||L=)o i/(axvi)Q(T,a:) dm) dr
R
1 2
<o [ e ](a-e0rn=r) o+ (s -0 ) )

-
+2/0 Loy ([ vi>2<7>dx)2

N?\O«

B 3
<O+ 37 (41 (p.00) (1) + A (p02) (1)) ot () ([ 0?7 do?
<O+ 3141 (o) O+ A2 () (1) + G () [ 0 () ([ P @) () da)Par
M 0 R
<C W)+ 37 (41 (o) O+ 42 (002) 0) + 3 [ 400 () [ (00002 ()

1—047; 0 R

(3.73)

with C' and Cj continuous increasing positive functions. Finally, putting together (3.69)
and (3.73) we get that for ¢ € {1,2}

s (-e)+)

sup A; (p,v;) (1) < C_1 i ( sup A1 (p,v1)(7)+ sup Az (p,v1)(7))
T€[0,t] 1=ayg T€[0,t] T€[0,t]
t
+Ct) [ A(p) () [ (pP0r)? () ar (3.74)
0 R
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with C5 an increasing continuous function. Using Gronwall’s lemma, (1.17) and taking
M large enough leads to:

sup A; (p,vi) (1) < C 4
T7€[0,¢] t=ag

(1), (3.75)

1 The control over

with C'_1  an increasing continuous function depending on

T—ag l1-ag”
A; (p,v;) and (3.72) yields
t 1 2
/ b () H ((1 — ;) pP0yv; — ;ﬂ) (T)HL dr<C_ (1),
0 < ot
with C'_1  an increasing continuous function depending on ﬁ and consequently we

11—«

1
get using in addition (3.64) for i € {1, 2}:

1

t 1
/0 o3 (7) 00 (D) dr < C (1) (3.76)

The last inequality also provides an estimate in L} (L*) of d,v; for any ¢ > 0 with
i € {1,2} using Cauchy-Schwarz inequality:

/Ot [02vi ()| oo dT < </Ot o2 (1) d7>% </Ota% GIEXT (T)Ilioof SCa ().

In particular it implies that d,u belongs to L} (L°°(R)). Next, we aim at obtaining
estimate for the L?-norm of 9,v;, to do this we apply the operator 9; + ud, to the
momentum equations (1.10):

(O + u0y) (pv;) — (1 — ;) (0 + udy) Oy (pﬁax’ui) + (010:P(p) + udpz P(p)) = 0. (3.77)

and we test the previous equation with v; for i € {1,2}. Next we observe that:

1 dv;2  1d 1
. s -2 - v = 22 = .‘2.
/R(pvz)tv’ /Rptv’ "3 /]Rp de  2dt /vaz "3 Aptvz

We have in addition:

R R R 2 Jr

Summing the above two relations gives:

/(at+uaz) (pvi)v; = 1d/p1}i2—/azupv'i2. (3.78)

Next, we focus on the second term of (3.77):

- / (O + udy) By (pﬁaxv,) b; = / 8105 D3s + / P8, 0,0;050; + / B (9P D01) D (i)
R R R R
(3.79)
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Let us deal with the last term appearing in the above inequality :

/3 P Ao 2V ) O (u;)
—/8 P B 0,0, 0,uv; + /u@zpﬁazviawi—l—/pﬁangiazuv’i—i—/pﬁuangiaxv'i

R R R R
:/8xp58wvi('9xu1}¢—|—/u@xpﬁﬁxviaxﬁi—/8xvi8xu8x(p51}i)—/wa@mupﬁvi

R R R R
+/p58x(u8xv¢)8xvi—/Gxuaxvipﬁf)xvi

R R

(3.80)

Combining the two identities (3.79) and (3.80) we obtain:

- / (9 + u0,) 0y (p*Opu) vy = / OpP 0, 0;0,0; + / 0y p° 03 0;0,0;
R R

/ P 0, 0500505 + / P 0, (udyv;) Oy s + /a PP 000y uv; — /a 0;0,udy (PP ;)

/8% mup V; — /8u8vzpav,

= —B/ B 0,0, 0;040; + / (6 vz /8 P B 0,v;0puni; — /8 ;010 (,0 U;)

/81}1 mup v; — /8u8v1p8vl

= —B/p 3xu8xvi8xvi+/p (&cz}i) —/8xviamupﬂvi—Q/Bxuaxvipﬁﬁxqji
R R R R
(3.81)

Let us observe that:

R R R

= / Uaxp’yaa:'v.i"i")// p’yaa:uaccv'i‘i‘/uax:cp'yv'i = _/ amuaa:p%‘}i +'7/ p’yaxuaazvi
R R R R R

= / Dpupt;® — (1-— ai)/ O, u0, (pﬁarvi) v; + 'y/ P70 u0;,
R R R

= / Dpupt® + (1 — ai)/ PP 0,00, (V;0pu) + 7/ P Opudy vy,
R R R

= / Dpupti® + (1 —ay) / pﬂaxuﬁxvic?xvi +(1- ozi)/ v'z-pﬂaxviagmu + 7/ P 0 u0yV;,
R R R R

(3.82)
where we have used the equation of the momentum to replace d,p” by:

—0pp” = pv — (1 — O‘i)ax(pﬁaxvi)-
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Adding the equalities (3.78), (3.81) and (3.82) we get:

2dt / pU;2 /3 upt;? (1—ay 5/ B0, ud,0;0,0; + (1-— ozl)/ (896152-)2
—(1- ai)/ 030 Opeup’v; — 2(1 - ai)/ Dy udyv;pP 8, v; + / Dypupt;?
R R R

+(1- ai)/ pﬂﬁxu&rvi@xvi +(1—ay) /
R

vl-pﬁ&cvi@mu + ’7/ p”’amuaaﬂ}i =0.
R

R
We have then obtained:

1d

53 [ood =) [ F@mp=a-a)a+s [

pﬁc%cuf)xvi(‘)xvi - V/ 07 0pud ;.
R R

Multiplying with o2 (¢) and integrating in time on [0,¢] with ¢ > 0 yields:

1 .
B; (p,vi) (t) 2/ 2(t) pui® (1) + (1 — o) // B (0,0;)?
min(1,t) t
/ /0,01)Z (1—a;)(B+1) / / 5amua$v,-axvz- — ’y/ /a2p78zu8x1)i.
o Jr

(3.83)
From (3.75) we deduce that,

min(1,t
[ [or<apumm=e, (3.8
0 R
for all ¢ > 0. Next using (3.64) we get:

]7//0p73uavl|<7Hp me(//ap au> <//Jp avz>

<O+ 1)+ 5B owi) (), (3.:85)

with C' a continuous increasing function. Finally, using again (3.75), (1.14), (1.17), (3.64)
and (3.63), we get:

B+1)] /0 t /R 02 0P Dyudyvidat] < / t / o2 (0,62 + (5 + 1)° / t /]R 028 (D,0) (0,02
" L rmasron
1

< B 0+ [ 0 Hpﬂaxu\)m R,

| C (1)
< mBi (p,vi) () + 1

1
§m3i(,oavi)() (5+1

2

sup o2 (r) | (0"0u) ()

— Q4 rclo,4] Lee

(3.86)
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Let us observe that for all ¢ > 0 we have using Gagliardo-Nirenberg inequality with C' > 0

large enough, (4.98), (3.63) and the fact that u 1= —=L—=((1 — ag)vy — (1 — a1)v1)
(@) [P0 =+ _14002 0 [ = 02002 (57 = 1) = (1 — )P Drvn + (7~ 1) 1)
< S 0wt ) 0] o (0 7)o
+]|((1 = anporu — (07 - 1) <t>HL2 s (1= a0 = (7 =) 0 ,)
< ?ajitc) (= o@)pﬂazvg\ LA o= 1l152) v
S ([ —anpoun]|, + €0 1o~ 112) ol
<cai() (of |- a2>pﬂamv2HL2 + a3 (B)C (1)) ot ] p%@( . (3.87)

+ Ot @) (a3) |1 - o], +oFOC M) ot)|

1.
al,
1 1 1
(po0) (04 C1 (0)) B3 (p.12) 6+ C1 (8 (4F (p00) (04 C1 ) B (p.00) ().
(3.89)
with C,C; continuous functions on R*. Thus, we get from (3.86), (3.88), (3.75) and
Young inequality:
t
(1—ay)(B+1)] / / 0 pP 8, udv; 0,04
0o JR

< B o)t +C@ (A

1

<ci (45

(o) (1) + C <t>) B (p.v2) (1)

o

< Cu(0) + 3B (py0) () + 35 (0,0) ().

with j # ¢ and j € {1,2} and with C} a continuous function on R*. Gathering (3.84),
(3.85) and (3.89) yields the fact that B; is also bounded:

Bi(p,vi) () < C (1), (3.90)

with C a continuous increasing function. The control over H % HLoo’ A;i (p,u) and B; (p,u)

gives us, via the estimate (3.88) the following
o () [0zu(t)| = < C (1), (3.91)
for any t > 0. It concludes the proof of the Theorem 2.1.

4 Proof of the Theorem 2.2

Since we deal with initial data which are less regular as in the Theorem 2.1, we can
not directly used the Theorem 3.3 for getting strong solution in finite time. In order to

22



overcome this difficulty we start by regularizing the initial data as follows:

/78 = Jn * Po,

U6L1 = ]n * V10,

uy = vip — 10z (pg)
UGy = ug + a20z9(pp).-

(4.92)

with j, a regularizing kernel, j,(y) = nj(ny) with 0 < j <1, [ j(y)dy =1, j € C*(R)
and suppj C [—2,2]. Here vig = up + a10:¢(po) and vag = ug + a2d,p(pp). In particular
since ug, 0z po, p and p% are in L, we deduce easily that there exists C' > 0 independent
on n such that for any n € N we have:

[vg1 [l zoe + [[vga]l e < C. (4.93)
We deduce that (py —1,vg,) belong to all Sobolev spaces H*(R) with s > 0 and that:

1

ol = p0 < llpolle < oo (4.94)

0<|
LO()

By composition theorem for Sobolev spaces we can prove that ¢(pj) — ¢(1) belongs to
H¥(R) for any k > 0 and consequently we obtain that uf} € H*(R) for k > 3. Finally we
have for z > y and using (2.31):

vg () — vgy (y) _ vor(x — 2) —vo1(y — 2), .
W) [ el 2 iz <

and in particular we deduce that for any = € R, we have:
Ovp1 () < Cp. (4.95)

where Cy is the constant appearing in (2.31). From (4.94) and (4.95) we deduce also
that:
wpy () < Cy (4.96)

withC7 > 0 large enough and from Proposition 3.1 we have set w§; = fi(pg)0zv5; +
Fi1(p").

Next, Theorem 3.3 gives the existence of strong solutions (py,u,) of the system ((1.1)
on a finite time interval (0, 7},) with 7,, > 0. Our main goal now is to prove that for any
n, we have T,, = +oo. To do this, we are going again to use the blow-up criterion of
Theorem 3.3. More precisely we wish to show that it exists a continuous fonction on R™
such that for any n € N we have for any ¢ € (0, min(7;,, 7)) with 7" > 0 independent
on n and depending in a suitable way of the initial data (pg, up) and of as:

lenos, Y= < C), (4.97)

with C' a continuous function on RT. We now simply recall that the strong solution
(pn, un) satisfy the energy estimates (1.14) and (1.17) for any ¢ € (0,7,,). Using (1.14),
(1.17) and Sobolev embedding we get that for C' > 0 large enough we have for any
t € (0,Ty) (see [32, 7, 13, 14] for details):

[n(t, )L < C. (4.98)
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4.1 Estimate of the L norm of (pl)neN

We are going now to proceed as in the section 3 by considering the effective pressure wy

which satisfies the parabolic equation (3.37). Since lirin win(t,x) = F11(1), we deduce
T—>T 00

that for all ¢t € [0,T;,) we have:

sup wi pn(t, ) > F11(1). (4.99)
z€R

We set:

Dy {te 0.1 ssupuinttn) > P}
z€R

which is open in [0,7},) and we have:

D,=Iyu |J 17,
JjeEN*
where (If) o with [T = (a;”, b?) are open disjoint intervals and Iy = 0 if sup wq (0, z) =
j

2 Tz€R
Fi1(1) and I = [0,bF) for some b € (0,T},) if supwi ,,(0,2) > Fy1(1). From the def-
Tz€R
inition of I; we have that supwin(aj,z) = F1,1(1) and for all ¢ € I since wi,(t,-) is
Tz€R
continuous, it reaches its maximum on R. It implies that for any j € N and any ¢ € I;

there exists a point z}' € R such that:

def.
sup wi p(t, ) ef wiy(t) = w1 p(t, x}).
z€eR

As previously we are going simply evaluate w1, on an interval I7, it is important to
note for the sequel that we have from (4.96):

wy, (z) < Cy (4.100)

Proceeding as in the previous section, we recall that wy, is differentiable almost every-
where on D, and for any ¢t € I, we deduce from (3.37) that:

Apwiiy () + wir (8)(g51)" (1) + (g51)" () + (941)" (£) (wii) (£)> <0, (4.101)
with:

(B-Na1—B B+1 .
20(1 —1 20(1 _ 1(a$pn)(t, xt)

v 3o —3a1 + 201y —y+26+2
2a1 —1 —041(,6 + 1) +"}/(2041 — 1)

(gh1)"™(t) = — (@1 — Daipn(t, z}) 2
(4.102)

+ pn(t, )P
—a (8+1) 2

L)M(E) = pu(t,ap) 2t P i +1-
(931) ( ) pn( t) (_al(ﬁ + 1) +’)/(2061 _ 1))2 (6 ’7)

2 n n 7ggi67+11)+’7+/3*3 7a1(7 _ B _ 1)(7 — 5)
+ (a:vpn) (tv Ly )pn(t? Ty ) (—061(6 + 1) + ’)/(2041 - 1)>

(4.103)
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and:
5 +1 —(B—1Da1+8

Gin(t) = (01 = Dge—pultial) =t (4.104)

First case, v € [3,5 + 1]

First we are going to study the case v € [, + 1], we know from the proposition 3.2
that (g5;)™(t) > 0 then from (4.101) we deduce that w}, satisfies the following equation
on I with j > 0:

Awiiy (t) + wiy(8)(g51)" (1) + (ga1)™ (1) (wiiy) (1)* < 0, (4.105)

It implies that w}, is a subsolution of a Bernoulli equation. Now we can consider the

behavior of wj,(t) on I} = (a},b]) when j > 1 and where we know that wj,(a}) =
F11(1) < 0 from Proposition 3.2. From (4.105) using the fact that w)! is absolutely

continuous and that (g5;,)", (g41)" are in L'(0,T},) we have for any ¢ € I with j > 1

I ((g50)™ ()4 (ga)" ()wiy; (s) ) ds

O (wiy(t)e™ <0,
i 1 , - (4.106)
()l (B i@y
It implies in particular that for any ¢ in I3* we have for j > 1:
wh(t) <0. (4.107)

We are in a similar situation if we consider I’ and that we assume wf,(0) < 0. We are
then reduced to study the behavior of w}, on I§ when wf,;(0) > 0. Now as previously

since wM is continuous we deduce that:

n ]' n
po{teRT, wM(t) > 5} = UiKj,

with K¢ = [0, cf[ and K} =|c},d}[ for j > 1 with wj,(c}) = 3 for j > 1. We are then
reduced to study the behavior of wj, on each K7 with j > 0. Now we can observe that

for any ¢ € (0,7},) we have:

(B-1a; -8 B+1
20&1 -1 20&1 -1
-3 -3 2 — 2 2
pn(t; ‘T?)'y—ﬁ Y alﬁ (&3] + a1y Y + 6 + 2 0.
20(1 -1 —Oél(ﬂ + 1) +’y(2041 — 1)

— (o1 — Dapalt, )3 (Do) (t,27)? <0

(4.108)

The second inequality is true if aq is sufficiently close from 1 (it depends in particular
of v and (), in other words if ¢ > 0 the capillary coefficient is sufficiently small. It is
exactly the case that we consider in the Theorem 2.2. From (4.105) we deduce then that
for any ¢ € K"

Bpwiiy (t) < wiir(t)(g511)" (£) — (9a1)" () (wip) (). (4.109)
with:

)573(5—1)041—5 f+1

o) (£, )2 4.11
S0 1 zal_l(aﬂ)( i) (4.110)

(9o11)" (t) = (a1 — Darpn(t, a7
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From (4.104) we have always gj; (t) < 0 and for any ¢ € KJ' we get using (4.98):

g+1 =(B=Day+5 B4+1 —(B-Day+s
n _ a1 _ 2011 4.111
iy ()] < (1= 1) g llpnll e (67, L) < (1 =) g O = (4.111)

From (4.102), we have for any ¢t € K" and using (4.98), there exists C' > 0 large enough
and independent on n such that:

(951" ()] < C(A = an)lpu(t, )7 Bz (pn) (¢, )70 - (4.112)

We recall now that 0,p(pn) = Tl_l(vlm — v2.5,), it implies then that there exists C' > 0
large enough such that for ¢t € K7":

[(911)" (1) < C(1 = a1) | (V1,0 — v2m) (8, ) [ Zoe IIpn(lt’ 3 [ (4.113)

We must now estimate the L° norm of vy, and vy ,, we recall that vi, and v, sat-
isfy the equations (1.10) that we can rewrite as follows using the fact that d.p;) =

sl on T (010 — vam):
pnatvl,n + pnunaacvl,n - (1 - al)ax(ﬂ(pn)awvl,n) + Wﬁy_lpn_'—l 5(’01,” - UZ,”) =0
PnOtv2 n + PrtnOzv2n — (1 — a2)0y(11(pn)Ozv2.0) + T’llp%—kl B(vl’n —v3,) =0

(4.114)
Applying again a maximum principle, we get using (4.93) for any ¢t € (0,7},) and for
C > 0 large enough:

t
[01,0(t; )l Lo + [[va,n(t; )l < C+C/0 o (s, MITE ™ Norn(s, Mo + fozns, ze)ds

(4.115)
From (4.98) and using Gronwall inequality, there exists C' > 0 large enough such that for
any t € (0,7},) we have:

o1, (t, )l zoe + Vo (t, )L < Ce. (4.116)

Combining now (4.116) , (4.98)and (4.113), it yields that for any ¢t € K" and C' > 0 large
enough:

[(g511)"(8)] < C(1 - al)GCthn(lt’ 3 (=g (4.117)

Combining (4.117), (4.111) and (4.119), we have for C > 0 large enough and ¢ € K7 with
J =0

Jwiy(t) < C(1—ag)e

why (t) 4+ (1 — o) C(why) ()2 (4.118)

p()

In particular on K]" since wf; is strictly positive and w% is Lipschitz on Kj” then ab-

solutely continuous. It will be possible in particular to apply Gronwall Lemma. More
precisely dividing (4.119) by (w?,)? we have:

) < O —ane|

(= +(1-a)C. (4.119)

( )
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It implies in particular that for ¢ € K7 we have:

\6 Lds

t C(1—ay)eCs
R e LEL TR

)< (1—a1)Ce 3

1 eﬁ? C1—a1)e® ||t 1 ds
wh(t)
We can now integrate since we work with absolutely continuous function, and we have:
1 o OO-ane®lzislizadds, 1 b L 0Q—an)e® | st 1T ds
- Pn( ) + — < (1—&1)0 e’ pn (s, ) 'L du.
wM(t) wi(c})

O(—

(4.121)
It gives in particular using the fact that w%(c?) = % for j > 1 that for any ¢ € K7' with
j=>1

ot —a)eCs || L B-1 t Y (1 )eCs || L [B=1
nl(t) Z e fc;L C(l—a1)e ||pn(s“) HLoo d5(2 . (1 . Oél)C/ 6fcz} C(l—a1)e Hpn(S,A) ”Loo dsdu).
Wiy
(4.122)
We deduce now that for any ¢t € KJ' with j > 1 we have:
Wl (1) < o COmee e lE=d ! —_—
C(l a1)ecs|| ||LOo ds
2—(1—m Cfn du
(4.123)
provided that we have:
u 1 Ca B— 1d
2—(1-ay) / Ji Cmane®lmimlieds ) o, (4.124)
We have similarly for ¢t € K:
wiy(t) < efct? O1—an)e® |l gy e ds ! 1 .
1 t Ji Cll—an)eliz i ds
W — (1 — Oél)C fc; e du
(4.125)
provided that:
1 t Uh C(1— Cs 1 Bgold
S (1—a1)0/ ooy Qe laslineds (4.126)

Now we are interested in estimating the L* norm of ( 3 for t € (0,T),). Proceeding as

in the section 3.1, setting z,(t) = sup,cg pn(t m Wlth.

te|0,T,,),sup
{ [ ﬂ) mEan( ,LU)

>1}=Qy U szlQ;-l,

with Q7 open intervals. From (3.60), (3.35) we have for any ¢ € Q7 with j > 0:

1
Ozn(t) < ———(wn — Fi1(pn))(t, zY)
"0 = R T e o)
(1_2(10‘11)(—[31+1) n n g y—B8—1 n
S Pn (t> :Et )wn(ta xt ) + ,On (ta xt )




Now using (4.98), (4.127) and the fact that v € [, 8+ 1[ we deduce that for C' > 0 large
enough we have:
Opzn(t) < Cwy(t,xf) + C(1 4 2z,(1)). (4.128)

Now we are going to fix T > 0 and we are going to prove that for any n € N we have
T, > T provided that ¢ > 0 the capillary coefficient is sufficiently small. To do this we
set:

. 1 1
T = sup{t € [0, min(T, T,,)[,Vs € (0,t) ||——]lz0o < M(||— |z + CT)e“T}
pn(s, ) Po,n
with C defined in (4.128) and M > 2 sufficiently large that we will fix later. We wish
now to prove that for any n € N, we have

T, = min(7,T),) (4.129)

provided that ¢ > 0 is sufficiently small. If we prove this claim, we deduce then that for
any n € N, we have

1 1
— ||~ sy < M(||——||pee + CT)eT < +00
ooyl om i) € M=l +CT)
Using the blow-up criterion of Theorem 3.3, we deduce that necessarily we have for any
n € N, T,, > T and in addition for any n € N we have:

=l < M(| =z + CT)eT (4130)

— oo o) > — || Loe e .

pali, ) 20 =

Let us prove now that (4.129) is satisfied provided that ¢ > 0 is small enough. First
by contin uity of the fonction z,(t) = Hﬁ” 1~ we deduce that 77, > 0 and that

E, = {t € [0,min(T,T,)],Vs € (0,t) Hﬁum < 2(”%\@% + CT)eT}y = [0, T1 0]
We are now going to assume by absurd that T3, < min(7,T},).

From (4.123) we deduce that for any ¢ € Kin [0, T}, [ with j > 1 we have:

w” (t) < ef%t C(lfm)eCS(M(HﬁHLooJrCT)eCT)g_lds
M > )
" : (4.131)
% C(1— Cs(M (|| ——|[;.00 +CT)eCT)B—14 )
2-(1-a)C fct” efcj (1=en)e( (”Po,n 1§ )ecT) Sd'LL
J

It is now clear that choosing ¢ > 0 sufficiently small, then 1 — ¢ is sufficiently small such
that (4.124) is satisfied for any t € K7' N[0, T1,,[ with j > 1 and we have in addition:

Wl (8) < 1. (4.132)

We have a similar result for t € K N [0,T} [ taking ¢ > 0 sufficiently small which can
written as follows:
wiy(t) < 2wi(0). (4.133)

From (4.132),( 4.133) and from the definition of K" with j > 0, we deduce that for any
t € [0,T1,,[ we have:
wiy(t) < max(1, 2w}, (0)). (4.134)
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From (4.128), (4.134) and for any t € [0,T} ,[NQ7} with j > 0 we have:
Opzn(t) < Cmax(1, 2w}, (0)) + C(1 + 2z,(t)). (4.135)

In particular using Gronwall Lemma, it implies that for any ¢ € [0, len[ﬂQ? with j > 1
and using the fact that if Q7 =le}/, f7'[ we have z,(e}) = 1:

zn(t) < (1 + C(1 + max(1, 2w, (0))T)eT (4.136)

For t € [0, T1,,[NQ} we have:

Z(t) < (||p1HL°° + C(1 + max(1, 2w, (0))T)eCT (4.137)

)

And finally when ¢ € [0,T ,[\(QF U U;j>1Q7}), we know that
Z(t) =1 (4.138)

From (4.139), (4.137) and (4.138) we deduce that for any ¢ € [0, 7} ,[ we have:

1
Za(t) < (=2 + C(1 + max(1, 2w, (0))T)eCT (4.139)
Po,n
Now taking M = 2(1 + max(1, 2w},(0))) we have proved that for any ¢t € [0,T} ,[ we
have:

1 M
l|Loe <

ol =2
It contradicts the definition of T}, and it implies that 77, < min(7,7},) is absurd. In
conclusion we have proved that for any n € N we have T,, > T" and from (4.130):

1 1
||m“L°°([O,T],L°°) < M(H%HL“’ +CT)e” (4.141)

Second case, v > S +1

1
(HpT”LOO +CT)eCT} (4.140)

The only point we change when we consider the case v > 41 is that the term (g4;)"(t)
is not necessary positive when v > 8 + 1. In particular we recall that:

2

/I \n _ n _Z‘éiﬂ_ﬁ”%w—ﬁ i o
(652)"() = pu(t. ) T E e FCAR )

o ny oD 4y g3 yai(y — B8 —1)(y — B)
+ (Ozpn)” (¢, 21 pu(t, zf) (—a1(B+1) +7(2a1 — 1))

(4.142)
—a1(B+1)

We can observe that the term (9,p,)%(t, 27)pp (t, x) 2211 TrHh-3 (—LT((BVJ:{?J:}/)%IE)U) is
always positive provided that ¢ > 0 is sufficiently small. Indeed when v = 5 + 1 this
term is null and when v > 3 + 1 it requires that oy > ﬁ.ln opposite the term

n —gé(litl)+2,y_/3 72 _ . .
pn(t,x}t) 2 Coar (B Ga =) (B+1—7) is always negative, we deduce then

from (4.101) that for any t € D,, we have:

Dewy (8) + wiiy (1) (951)" (1) + (ga1)" () (w}ip) (1) + g5 () < 0, (4.143)
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with:

—o1(B+) o 3 72
) = t,x 3oy 1 T2
0 = i) Cor(B+ 1)+ a1 ~ D)’

(B+1—7). (4.144)

It is now easy to observe that for ¢ > 0 the capillary coefficient we have M%—Qv 8>

0 and then we can bound the term g¢f' using the L> estimate on p,, (4. 98) We can then
proceed as in the previous section and show that for any 7" > 0 it exists ¢y > 0 sufficiently
small such that for any ¢ < ¢g we have T;, > T for any n € N and for any ¢t < T we have
for any n € N:

1
H;HLOO([O,T]x]R) <C(T) < +o0 (4.145)

with C(T) sufficiently large. In addition we have seen that for v > 8 we have always for
any n € N, t € [0,7] and = € R:

win(t, ) < C(T), (4.146)

with C(T) > 0 large enough. From (4.146), (4.98), (4.141) and (4.145) we get for any
neN,t€[0,7] and z € R:
Opv1p(t,x) < C(T), (4.147)

4.2 Compactness

Let us fix now 7' > 0 and we wish now to prove that the approximate solution (py,, un)nen
converge up to a subsequence to a unique solution (p,u) of the system (1.1) on [0, 7]
provided that 0 < ¢ < ¢g with ¢g sufficiently small. We recall the previous estimates that
we have obtained with C(T") > 0 depending on the initial data of the Theorem 2.2, ¢ > 0
and of T', we have for any n € N, i € {1,2} and 0 < ¢t < T"

C(T)™ < pult,-) < C(T), (4.148)

sup ([[palt;) = g2 + [vin(t e + 10epn(t, )12 + 0 (8)2 [0vin(t, ) 12
0<t<T (4.149)

+ (&) ([vin(t )2 + 11 = @) da(pndsvin(t, ) = Plpn) + P(1))]12) < C(T),

T
/[H@ Vi (t, )Hm"‘”ampn( )HL2+U( Mvin(t, )HL?""U()H6 vin(t, )HL2]dt<C()

i (4.150)
/0 o} (7) |0stin (7) 2 dr < C (T). (4.151)
sup ot ) |0ztn(t,)||ree < C(T). (4.152)

0<t<T
We mention that (4.149) and (4.150) are also true if we replace v;, by u, since u, =
\/ﬁ((l — ag)vay — (1 — ag)vi,). Using classical arguments (see [32, 40]), we prove
that up to a subsequence, (py,un)nen converges in the sense of distributions to (p,u)

a weak solution of (1.1) on [0,7]. Furthermore the limit functions p, u ihave all the
bounds (4.148), (4.149), (4.150), (4.151) and (4.152) via Fatou type-lemmas for the weak
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topology.

We wish now to prove (2.32). Using classical arguments of thpe Aubin-Lions Lemma,
we can prove that up to a subsequence (vl,n)neN converges almost everywhere to v1 in
[0,7] x R. Using now (4.147) and the fact that v, converges almost everywhere to vy
on [0,7] x R implies (2.32) since for all z > y and ¢ € [0,T] we have:

vin(t,x) — vt y)
T —Y

1 X
= / Dyv1n(t,z)dz < C(T).
Ty J,
It concludes the proof of (2.32).

4.3 Uniqueness

The uniqueness is a consequence of the fact that on [0, T'], d,u belongs to L' ([0, T3], L>).
We refer to [7] for the details of the proof where we use a Lagrangian formulation.

5 Appendix

5.1 Proof of the Proposition 3.1

In this Appendix, we start by giving a proof of the Proposition 3.1. We work in fact
in a more general case as u(p) = p? since we deal with general viscosity coefficient
w(p) > 0, pressure term P(p) and a capillary coefficient x(p) satisfying (1.3). It enables
us in particular to extend the notion of effective pressures for compressible Navier-Stokes
equations (see [7, 15]) to a general framework for the Navier-Stokes Korteweg system.

Proposition 5.3 Setting w; = f;(p)0yvi + F1,i(p) with i € {1,2} and f;, F1; such that:

a;—1

20,1 1
i) = VD B ) = 5

p2ai71

(pra(p)) ™ TP (p). (5.153)

If (p,u) is a classical solution of the system (1.1) then w; with i € {1,2} satisfy the
following parabolic equation:

dyw; + (u+ g1,:) 00w + wigy ; + (i — 1)aa:(ﬂ(pp)axwz‘) + g5+ gaqiw® =0,  (5.154)

with setting F'(p) = Pp).

p
e o) 1 ulp)
gl,z— 2( 7 1)axf(p) p fz(ﬂ)+( 1 1) P )
o—=1 p pp), .
94,i ) (M(P) fz(p) fz(p)),
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—1) L 2ulp) — i
g2 =2(cvi — )0y fi(p ) ulo) J (p>)2 p+ (0 o )M (P)PQW
(0up)* (1" (p) #'(p)) 1 9uulp) fi(p) F'(p) p*

2 ~lai=1) p filp )&EWr o p(p)

Hio)— il ip) , 10

2

(vi —u)

+(Oéi— 1)

= (0 — 1))
(i =)=

- p 1!
),U( )7 fi(p) (( ) (fz(P) P2 p ))

N ;pfz-’(p)(%“(pi(py

(5.155)

and:
r ] /
93 = 932,i T 933,i

gé3,¢ = ¢33, + & _ ! 'p (N (5) filp) — f{(p))FLi(p)Q,

9330 = —F1i(p)( [,) 7_(ai_1)F1,,i(p)a‘p )

932; = —0uF1(p) (= 2(ci — 1) fi(p) (pp) ‘1 +(ai_1>8xu(p))
(

_ Fl,i(ﬂ)( (Oéz — l)azfz<p)ulop);:z/((pp))2 @np + (az‘a; 1)M,(P)92W(vi _ u)2

@ep)" (W (P)o = 1P)) (1) Otl0) Ji0)

? l filp) "

o — , / — " . 2

N : fl(p)l) ((axP)Q(fi (P)M (,O)pp2 4le) + ,u(pp) i (P)) + Oigpfi (p)(2p,u(pi(p)[; o (p))(vZ — u)2))
3 _ I

(= (00, Fus(p) + P )00 + () 5 2O

+(Oél'—1)

" i(p)F 2u(p) — pp’
+ () F" (0)(0ap)? + 112 )a?( p)p° u(pL(p;u () (s — ).

(5.156)

Proof of the Proposition 5.3: In the sequel for simplicity in the notation, we forget

the subscript ¢ € {1,2}. Derivating (1.10) we have with F’(p) = %:

8,050 + udp Oy + Oyudyv + (v — 1)0:,6(Maxaxv) +(a—1)0y( Oupt(p) )
Bu() P p (5.157)
+(a—1) ”; P) 9,050 + 05uF(p) = 0
We recall now that:
2
p
Ozp = (v—u)
O"”;(’;) ) — o) , (5.158)
p3 2p(p) — pi (p 2, P
Opap = — v—u) + 0,0 — Opu
P w(p)? ( ) au(p)( )
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We have now:
Oui(p) _ 1 (P)zp | 1 (p)(ap)® 1 (p)(Oup)?
ax( ) - + - 2
p p p p

Using again (5.158), we obtain:

Plugging this equality in (5.157), we get:

_ !
900 + udadyv + Oyudyy — S o D (o — 1)895(“;”)896896@

a  ulp)
(@=1) 0 22u0) = (p)p o= 1ple) )
+ a2 'U’( ) H(P)g ( ) a + o 0 P) (am ) (5.159)
20,1 /
+la— 1)(3xp) (p (pr)p—M(p))amH(a_ 1)8xl;(p)3z6zv+8mF(p) _0

Next we multiply the previous equation by a regular function f(p) in order to eliminate
the terms in d,ud,v (we will fix later the function f(p)), we have then:

O (f(p)drv) + uﬁx(f(p)amv) = (0:f(p) + udz f(p))Ozv

—1pp'(p) B 1P 5 5 0
10,0, = L 4 (0, 0,0,0
(a=1) , | 22u(p) — 1 (p)p
+ o2 N(p)pQ Er 11(p)> r (U_U)Qf(p)axv (5.160)

a—1pp(p) 2 (0zp)* (1" (p)p — 1/ (p))
o ulp) f(p)(Opv)” + (= 1) 02 f(p)oxv

+(a-1) a”;(p ) f(p)020zv + f(p)OxaF'(p) = 0

Next we have:
f(p)020zv = 0 (f(p)0zv) — Ou f(p)Orv. (5.161)

and:

f(P)ax(lu(pp)axamv) = am(,u(p)pf(p) 020zv) — 8mf(p)ui)p)8x8xv

= 0.0, (510,00 - 2.2, (p)01) - 0,59 L 0,040
= 0.0, (100,00 - 0.(" Do, ()00 - Maxﬂp)amaxv - 0,00 0,0,0
= .20, (p10,0)) - 0L ()00 — 20, (0) 20,00

g g (5.162)
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Next from (5.161) we have:

f'(p)
o Oy pOyv (5.163)

OpzV = ——

and from (5.158):

a&(’“‘? 9. 1(p)) = amdﬁp))amf(p) n M;p)(f’(p)amp T 1"(0)(@up)?)

= )OO gy 4 1O gy g,y 4 OO 2 200) - ()

P p o pu(p)?
2
+ (Opv — Opu))

2

(v —u)

ap(p)
/ . 2
— 0o (F ()" (p)pp2 1(p) n ui)p) () + O;pf,(p)(2pu(pl(p)/; 1 (p))(v u)?
+ 20l () (@u — )
(5.164)

We obtain then combining (5.162), (5.163) and (5.164):

7S H 7 DN SNV /5 W

— 0,0(@ep)* (F(p) NI(P)sz— 1(p) N M;ﬂ) 700) + O;pf,(p)(zpu(pl— p (p))(v )

+ épf'(p)(@xv — Oyu)).

(5.165)
Now combining (5.165), (5.163) and (5.160), we have:

O£ (0)0s0) + s (£(0)Ds0) — (Buf (p) + ude £ (9))Ou + F(p)Dguyr(l — p“/(m)

a  ulp)
+ 0= 10,10, - 2e - 100u5 () (0u1(p10.0) ~ £, pov0)
(0= 000 (00 () P ) o) Ly L)
+ 20l (0) (00— 0s)
+ OS2 2 )0
a ; 1 p//jééf)))f(p)(axv)z e ) (8mp)2(u”(52)p — i (p)) F(p)0uo
+ 0= )2 1) 0u1(0.0) - £ 0p0,0) + (5101 () =0

(5.166)
We recall now that using the mass equation, we have:

—(0cf (p) +uds f(p)0xv = f'(p)pOrudyv.
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From (5.166) we have then:

O (9)050) + 00, (9)0r0) + duudso (11— L2 2= 1y pipyp)
+ @ =00 0,(1()0.0) + 101 F ()
B N R 911
+ 0a(1(P)2e0) (= 2e = DS ()= = 55 + (0= D=2
o wp) f'(p) (@—1) ;o\ 220lp) =1 (pp, 2
- 0u0((2a = 0. () T 5, L0 L)) 20RO g
20,1 !
+(a_1)(8xp) (1 (pp2)p u(p))f(p) —(a—l)Wf’(p)axp
_ (a . 1)((a$p)2(f/(p) M,(p)pp; ,u(p) + Mfop) f//(p))
Ly 2e0) = PP )y Y e i) L 02—
+aao PP I ) ) S (BB f(p) — () 00 = .

(5.167)
We note now that using (5.158) we have:

F(P)0eaF (p) = f(p)(F'(p)Ozap + F"(p)(0:p)?)
2

3 _ !
= Ho)F (o) (L 2O P) (e P (5 ) 4 (o) F () (0a)?

o p(p)? apu(p)

_ f(p)z’z(p)p‘”’ 2u(pl(;);u’(p) (0 — ) + f(p)olj’(p)ufg;(amv  Og) + () F" () (Bap)?
Plugging (5.168) in (5.166) it yields: (5165
O (9)0:0) + w0 S (910, + 0su0io( £(p)(1 — L) 1 2= 1y )

+ (o= 00" 0,(1()0.0)
£ 0, (0)0u0) (200 = D2 (L (0 - 222D
+0s0(2a = 10, (AT 0, 2D ) PO DR )
a1 (8zp)2(u”(pp2)p — u’(p))f(p) (o 1)8””’;(’))f’(p)axp N f(p)olj'(p) u[z;)

(@ = (a7 L) 1O i) 4 Ly P
N oz; 1p(/;’((5))f(p) ) (@) + f(p)z;(p)p?’ 2u(pL(—p)/;u’(p) (0 — u)?

OB s 5051 F ) 0.0 =0

(5.169)
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Now we are going to chose the function f(p) such that:

ro =22 - D=0 (5.170)

It implies that there exists C' > 0 such that:

f(p) = WP (5.171)

In the sequel we will take C' = 1. We can now rewrite the previous system (5.169) as
follows with w = f(p)0,v + Fi(p) and with F; that we will define later, it gives using
(5.169):

Bpw + udyw + F(p)pdyu + (o — 1)893(“([)”8%10) —(a— 1)ax(“([)ﬁ’)axpl(p))

(= 20— 1), ()L (1) 2o

p f(p) P

po) 1 Ganlp)
= %:F1(p)( = 200 — D2 (p) == 55 + (= =)

- 0u0((20e = 10,7 M L, D) p OO g

o o) p(p)?
20, / / 2
(Oup)” (1 (f;)p— p (p))f(p) (a- 1)0xu(p) F(p)0up+ f(p)F'(p)

p
p p a  p(p)

,u/(p) )(U _ u)2)>

+(a—1)

2

/ ' - 1 1, 2 —
(o — 1) ((0ep)?(f (- (p)pp2 w(p) N u(pp)f (o) + 2t ) p/ut(pi(p),o2

W) ooy o2+ LOF(0)0° 2u(p) = pr'(p) v
o) F(p) = F'(0)(90)” + == ) (v —u)

L ,u+ f(p)F"(p)(9ep)? = 0

(5.172)
Now basic computation gives using (5.158):

3 _ /
0.2, 5i(p)) = 0.0, 51(p) + L B gy 0up)? + L B () 20D

+ MF{ (p) P (aa:v - axu)

(5.173)
Plugging (5.173) in (5.172), we get:

o g s o — 3t o f PO L o gy 2e80)
atw+uamw+(a 1)833( P Oy )+8a: ( 2( 1)aacf(p) P f(p)+< 1) P )

= 0,F1(p)(— 2a— 10, F(p) 2 L (o - 1) 2D

p f(p) P
) W) o), a=1) o a2ulp) -~ W op,
+axv<2<a )0, F(p) L L 0,4 LDt 2O 0 — w1 ()
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(02p)? (1" (p)p — 1/ (p)) Oz p(p)

+(a—1) 7 f(p) = (a—1) F(P)0op + == )
~(a- 1)PFi(P) o= (@) (F ) u’(p)pp; o) u(pp) 7))
_ 52,/ a — /
+ P P I ) )L (U 1) — (o) 0u?
N F(p)F'(p)p* 2u(p) — pi' (p) (0 — u)?
o? 1(p)?
" / s 2 B !
(@ = DO 0,r () + P () 0up)? + ) 52O B )
/ 2 /
+ ou(Fi(p)p — f(p)j (©) ﬁ + (o - 1)pF;(p)) + f(0)F" (p)(8zp)? = 0
(5.174)
We choose now Fj(p) such that:
/ 2
(2 é)F{(p)p - f(p)j (p) ﬁ - (5.175)
With this choice, it yields:

o H0) 1) NS NN 11
0w + ud,w + (a — 1)0( ) dpw) 4+ Opw( — 2(a — 1) f (p) ) f(p)+( 1) 5 )
B P nlp) 1 Iupui(p)

0:F1(p) (= 20 = D)0 (0) = = 55 + (@ = =)
—i—f(p)amU( (a—l)@ f( ) (p) ( )a (Oé—l) / ) 22M(P)—M/(P)P(U_u)2

)2 op e
(820)* (1" (p)p — 1/ (p))

Aupp) f'(p

+la—1) P2 ~le—1) f(p) T )

- (= DR frs - " Y (@(70) “;’” a0

- or (o 2P )+“ ()00

/! 3 2
+ 1) (o) @e)? + T ’az( 2o 2e) - prle) u>2
" / s 2 B !
- (@= (@0, 1) + "D F () 0,07 + L () L2, . 1;;26)) ~0
Using (5.171), we note that (5.175) is satisfied if: |
Fi(p) = (p(p)) > 1 P (p). (5.177)

20— 1
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We can now rewrite (5.176) as follows:

By + udyw + (o — 1>az<‘ﬁ”)axw> T F(0)F" () (0up)?

+ 8,0~ 20— 10 ()0 Ly (- 1) %10

(
- 2.Fi(p)(~ 2o~ 10f() "
)

3 u1(p) f'(p) (a—=1) , + 92u(p) — ' (p)p
+ w <2(Ol 1) f(p) P f(p)2 P+ o2 (p) ,U(P)3 (

(ep)* (1" (P)p = 1'(P) . 1,9=1(p) F'(p) F'(p) p*
Y p? (a=1) p ﬂma”

+ (a—

F()F'(p)p* 2u(p) — pit'(p)
a? 1(p)?

3 _ !/
- @ = D@0, m ) + R () 0 + MO Ey () LD )
(5.178)

(v —u)

It means that w satisfies the following equation:

Ow + ud,w 4 dpwgr + wygs + (o — 1)aw(’“‘;p)axw) +93=0 (5.179)

with:
g =2~ 000" a1
o= 20— 00,1 () LU o, 1 (00 ) 22O

( 1(p)?
(22p)* (1" ()0 — 1 (p)) (p) f'(p) F'(p) p*
2

P e
(o= DR L = oD (. (119 L o 10 o

2p1(p) = P’ (P) (2
11(p)? o =u))

(5.180)

~—
AS

Ot

+(a—1)

+ ol ()



and:

g3 = —0:F1(p) ( — 2( — )0, f(p) "

p
R <2<a - 1>axf<p>“(pp) (o)

(02p)? (1" (p)p — 1/ (p)) d:1(p) f'(p) F'(p) p?
=) p? ~le-)=0 7o) "

’ / 3 _ /
ot (p)f(p) () (@) + f(p)F'(p)p 2#(%(/))9;& (p) (v — u)?

3 o /
~ (0= )@y, Fr(p) + P E ) 0u? + My ) 2L

a?  p(p)
+ f(p)F"(p)(02p)*
(5.182)

Furthermore we can rewrite g3 as follows:

g3 = 931 + g32 + 933,

with:

(5.183)

dep(p) f'(p) 5

> ST R

B , B 2,

(-1 (00 (' (0)" (p)p = plp)  1lp) (o) + O;pf,(p)(%ﬂ(f)) P (p))(v —u)Q))
)

f(p) P> p 1(p)?
3 _ /
~ (0= )@y, Fr(p) + P F ) 0up + L i) 2B

o  p(p)?
F(p)F'(p)p? 21(p) — pit'(p)
a? u(p)?

+ f(p)F"(p)(0=p)* + 2

(v —u)

(5.184)
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We note that gss has terms only in (9,p)? and (v —u)?. We are now going to rewrite g3;
as follows:

a—1
g31 = P( -
(6

(5.185)

a  fAp

a—1 p W), \ . w
0 ( ) f(p) = f'(p)) Filp)

We finally rewrite the equation (5.186) as follows:

-2

Ohw + (u+ g1)0,w + wgh + (o — 1)8$(M(pp)8mw) + gh + gaw? = 0, (5.186)
with:

_a-=1 p W(p) o
g1 =— fQ(p)(M(p)f(p) f'(p)),

93 = 932 + g33, (5.187)

/ a—1 ' /
=2 -2 2 () - P ) Flo)

and:

-1 p W(p) ot 2

It concludes the proof of the Proposition 5.3. U

, Q
933 = g33 +

We recall now that we are interested in dealing with the following viscosity and cap-
illary coefficients (with 8 > 0):

p(p) = p’, K(p) = cp*=* and P(p) =p". (5.189)
From (5.171) and (5.177) we obtain:

(B—Da-p v ety

flp)=p 2= and Fi(p) = g—p 21 p'" (5.190)
and: y —a(B+1)
F = a1 T
1(p) G a1’ (5.191)

We are now interested in computing g1, g5, g5 and g4 with the choice (5.189) of viscosity
and capillary coefficients.

Value of g;

We have then using (5.180) and (5.190):

o o) 1 Benlp)
9= 20 = 1)) s+ 0= )
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PN () i (B4 ()

= op(=2a—1) p f(p)+( D P :

= dupta 120 ATy gy (5:192)
= " 20up( 1)2;_2?

Value of g4

We are now interested in looking at the value of g4. First we have from (5.187) and
(5.190):

==L P (B0 i)

a  f(p)** ulp)
a—1 (B—Da—p, —(-ats _
= (- (5.193)
Value of g}
We recall from (5.188) that:
-1 /
dhs = g+ L (S 1) - ) (5.194)
with: I )
i == () (T (o~ D)) (5.195)

From (5.190), (5.194) and (5.195) we obtain then:

;o Plpp 1 P y,a-1 »p ) o\ 2

_ e 7 PRINY ES e 1

—r e B+ @a—D2a—1 @ Yy 7r - B(—Oz(ﬂ—l—l)—i-’y(Za—l))Q
_ T 6 7 _

= a7

(5.196)
Value of ¢
We start by estimating gs2. From (5.184) we recall that:
- ) N BN 1)
! a—1) , 2 —
- Fifp) (2 - 1>axf<p>“(p") L h0up S ()P0



(02p)? (1" (p)p — 1/ (p)) d:(p) f'(p)
2 ~(a—1) f(p) Ocp

T ()" 2060) = 21 (P) (2 & 1) () (00

M u(p)?
3 _ /
- @ =0)(@. 20, () + LD B ) 0,07 + L () LD o,

432 = —(0up)?(— 2cr — DEL(p) f <p>"(”> T (o~ DF(p)

+ Fi(p)(a = 1)/ (p)p?

)Fl ()W (p)p = (p) 1)u’(p)F1(p) f'(p)
P> p flp)

(Fi(p) (F(p) u’(p)pp; 1(p) n u;p) ()

— (9p)? (2<a CDE () f (o)

+(a—1

2. 2
+ Fi(p)p f,(p>(2pu(p) P (p))u(p) )>

1(p)? pt
_ / 2
+ ) (o) 2L 0,02 - f15) 7 (5) 0r?
! B ! Y/ / 2 — / 2
—(a- 1)(axp)2(WF1(p) N H(pp)Fl (o) + Mg))Fl(p)p?’ u(pl)i(p)/;u () L(L:p/jfgg)'

We have then obtained:

= @ (20 - )F (p)f’(p)“if)f(lm—(a—1>F{(p)

— Fi(p)(e = 1)K (p
1 (p)Fi(p) f'(p)

)2u(p) — ' (p)p

—2(a = 1)Fi(p) f'(p)——= u(p)p?

2
Fi(p)(1" (p)p — 1 (p))

~le=1) p? == R )
/ o 2.
L (e - )1)(F1( )(f (p)u(p)pp2 wo) | Mi)p)f,,(p)) +F1(p)f,(p)(2pu(p) pgp u(p)))
#p) = pi'lp) oy HLP)p = 1(p) L
+ f(p)F'(p )—M(p)p ( 1)(—p2 Fi(p)
(P) 1" (p) / Qﬂ(p) _p//(p) 1"
——F(p) + P Fi(p) o )+ f(p)F (p))

(5.199)

42



We have now:

932 = k1 + ko + k3 + ka, (5.200)
with:
/ / / 2 " / /
ky = (a$p)2(a _ 1)F1(p)( _ 2(?((5)))2”&)/0) o Mp(zp) + (Z((pp)); K p(p) + N;p) .};((p))

N f'(p) uég) n f"(p) u(p))

f(p) flo) p
s =~(@up)(a — )" 7y

b = a0 () 2L ) ).

We start by computing kg4, using (5.190) we have:

Ho)F (o 20 _ ot o g

F(O)F"(p) = y(y — 2)p 2o #7453
and: —a(B+1)
ky=~(y—B)p 201 +”/+ﬁ—3(a$p)2' (5.201)

Similarly we get:

b = (@up)e ~ DF{(p) (22 A 12— 100 1)

— (0up)(a 1)2047_1[)‘;’&*11)%%—3(2(5;();1):“1_‘* —B-1) (5.202)
B ~y —aBth) g g —da — g+1
= (6x,0)2(04 - 1)2a 1" A Sﬁ-

We have now:

b = (0up)2(a — 1) Fy(p)( — 2L y200) _ 10) (') _ u"(p) , o) f'(p)

W o T T aee s f)
o
= 00— )y 1)pgéﬁ+ll>ﬂ+ﬁ_3< B Q(W)2
g+ (PP gy DDA BEDanh ),
= O -V p (20 — 1)’)_%“11%%3( - Q(W)Q
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(B-Da—-p

o B & ;al)—al_ i ;al)—al_ = D) (5.203)
_(a )2(a_1) i (ﬁ_l)a_ﬁ %-{-’H—ﬁ—i&a(ﬁ‘kl) .
- \P o+ ) +72a—1) 2a-1 " 2 — 1
And:
ks = —(@ap)(a - DAL ()
p e o (5.204)
= —(0up)* (@ = 1)p"! 2047_ TR A P

Finally combining (5.200), (5.202), (5.203), (5.204) and (5.201), we have:

—a(f+1) _
gs2 =7(y = B)p 2T e 3(3xp)2 +(02p)*(a = 1)

—otD g3 —da — f+1
20 — 17 20 — 1
“ a8 e s sa(B+1)
8 2 - 1 ’Y (IB 2a—1 +’Y+6 P
O - ) Ga =) a1 * 2a — 1
_ — +1) —a(B+l)
(0.0 (o — 1) a(p ) 2act 12
(Ozp) (@ = 1) o (5 =+ = 1)p p
—a(841)

T R Y S _py ) ez frl
= (0zp)®p 271 <7<’Y At a1

gl (B—1a—-BaB+1) —a(B+1) gl
+(a_1)—oz(ﬁ+1)+’y(2a—1) 2a0—1 2a0—1 —la—1) 200 — 1 +7_1)2a—1>
(5.205)
We have now:
v —da—p+1 aB+1) v  (a—=1)y
Rk vy S vy R Py sy Sl s P s A AR
(5.206)
v —da—-08+1 —a(Bf+1) vy
(@D T a1 @D Fr U5 (5.207)
— - s+ a6 -2y - 1)
Next we have:
v —da—-B+1 gt (B—1la—-Ba(B+1)
@D T 9a1 TV GBI @) 2a-1 201
- 1
— (= 1) g((f—i ) +7_1)2a7—1

Ya—1)(v-h)
(20 —1)2(—a(B +1) +7(20 — 1)) (day =y —dya?).

(5.208)
And finally we get:

Aoy —
(Y = B) +(a— 1)20[7_ 1 ga _61+ :
g (B—1a—-pa(+1) a
+(a_1)—a(5+1)+7(2a—1) 2a-1 2a-1 @7 Ug T Pl
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_ (v = B) _a_ N _ WAy — B —
- (201—1)2(—01(54—1)—1—’7(20{—1)) (a(’y ﬂ 1)+4 2<ﬂ+1 7)+4 3('7 /3 1))
Yy =B —=1)(y - B)

(2o = 1)} (—a(B+1) +7(20c — 1))

(o — 4a? + 40®).

(5.200)
It implies from (5.209) and (5.205) that:

_ 9 %Jr +8—3 yaly — B —1)(y - B)
932 = (0up)°p ! (—a(B+1)+~(2a —1)) (5:210)

Combining (5.187), (5.196) and (5.210) we have obtained:

A, S "’ (B+1—7)

Fs=P (—a(B+1) +7(2a— 1)) 7
g =t g 3 Yoy —B—1)(y - B)

) B ) (20 — 1)

(5.211)

Value of ¢}

From (5.187) we have:

a—1 p

gy =g2—2 " () (“ (p)f(

1(p)

p) = f'(p)) Fi(p). (5.212)
with from (5.181):

g2 =2(a — 1)8mf(p)u(pp)j:;(p[;)2 Orp + (aa—Q 1)//(,0

(zp)*(1"(p)p — ' (p))

+ (a—1)

—(a=1)

2 o — / _
(p)Fl/(p) p | 1)((axp)2(f/(p)u(p)p 1(p) +u(p)f//(p))

.
+ @Pf ()

N

L () 2u(p) —2/)#’(/))
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and we get:

g =(a- 1><axp>2(
f'(p) ulp) 1" (p) u(p)>

f(p) flp) »p

2
o) p” (o 1yHe) g P PP
0w @m0 o T2 2 Cagey T~ S ) i)

Using (5.190), it yields:

o 10) (F(p)? L Wp) _ (W(0)® . 1"(p) _ J'(p) Wp) _ f'(p) lp) _ f"(p) o)

p f(p)? p? pu(p) p fo) o fl) »»  flp) »
= (2B g - 1 - 0+ 0P 2D
(B-—1a-B, (B-1a-8
S v s o _1)>
L s3(B-1la—-B B+1
P 2a—1 201
(5.216)
From (5.190), we have:
F' 2 , 2 a—1 / ,
i o VPR s 2 B 0 - )R
57 a—1 v a—1 (B—1)a—-p v
= ﬂ(a_ o' 20[—1_2 a (6 - 2a0—1 ) (B+1)+ (204—1))
| (a—-1)(B+1) g
= ﬁ(Qa—l R P —oz(ﬁ—i—l)—l—’y(Zoz—l))
43 7 3af-3a+2ay—y+28+2
P 2a—1 —aB+1)+q2a-1)
(5.217)
From (5.215), (5.216) and (5.217) we have finally:
g = —( — DagP-3L ;al)_al_ o fatll (Oup)?
v—p Y —3aBf—3a+2ay—7+26+2 (5.218)
T 1T a0 a1

Combining now (5.186), (5.187), (5.188), (5.192),(5.193), (5.211) and (5.218) we can show
the Proposition 3.1.
5.2 Proof of the blow-up criterion in the Theorem 3.3

We are now giving a sketch of the proof of the blow-up criterion in the Theorem 3.3. The
part concerning the existence of strong solution in finite time is classical (see [13, 14]). We
begin by observing that the Korteweg system (1.10) can be written under the following
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form using the fact that p®~20,p = \/1%740(01 — v9):

O + udzv1 — (1 — )0y (pﬁflﬁwvl) = —\/ﬁ_%pvfﬁ (v —v2) + (01 — v2)0,v1,
Ao + udpva — (1 — a2)dy (PP~ 10,00) = —\/ﬁwﬂ_ﬂ (v1 — v2) + 1 c; 22 (v — v2)0,v2
(5.219)

1 aq

i!

il

Let us recall now classical Kato-Ponce comutator estimates in Sobolev spaces.

Lemma 1 (Kato-Ponce) The following estimates holds true for s > 0 with FAsf(§) =
IEI°F £ (&) for f a temperated distribution and C > 0 large enough:

1As (Fllz < CUI 1l oo 1Asgll 2 + 119l oe [1AsFlI 22), (5.220)
[As (fO2g) = fAsOzgll 12 < C (10 fl oo [|Asgl L2 + (1A fll L2 10291 o) - (5.221)

In the sequel we wish to describe how to preserve all along the time the H® norm of vy,
vg and p — 1 for s > % We apply the operator As to the system (5.219):

QA sv1 + udpAgvr — (1 — 1)y (PP 10pAsv1) = Ag (%(vl - vg)awm) — A (\/ﬁw/ﬂ_ﬂ (vg — vg))
— [As,u] Ozv1 — (1 — )8, ([p° 71, As] Opvr)
O svz + uduhsvs = (1= a2)0, (P10, Ag02) = Ay (72 (01 = v2)Bava ) = Ay (g™ (01 — v2))
— [As,u] Opve — (1 — )0, ([pﬁ_l,As} 89602) ,

(5.222)
Multiply the first equation with Asv; and integrate over R, we get that:

1d

37 /\A v1? —i—(l—al)/pﬁl 8, Agv1|* = /8 u|Agvr)? —|—/ ( e (v 1—@2)8@,1}1) Agvy
t R 1

— /RAS <\/1’Y_746,07_ﬁ (v — v2)> Agvy; — /]R [As, u] OpviAsvr — (1 — o) [pﬁ_l,As} Ozvl> Agvy.

(5.223)
Multiplyng the second equation of (5.222) with Asv we obtain that:

/\A Ug\ + (1 — o / p-1 |8$Asvg\2 /8 u|As Ug\ —i—/ a2 (v1 — v2)0va | Asva
2dt —4
_ / A < 2 p'y—ﬁ (Ul — U2)> Agvg — / [AS, U] OpUaNgvy — (1 — 042) / Oy [pﬁ_l’AS:| 61’02> Avo.
R V1 —4e R R
(5.224)
If we add up (5.223) and (5.224), it yields that
_ _ 81 2
th/ |A Ul‘ + 1 041)/ |8 A Ul‘ +2dt/ ‘A U2| + 1 Ozg)/Rp \8J;Asv2|
/8 wl|As 111] +/ (m( v — 1}2)8$1)1> Agvq + 3 /R&CU\ASUQP
+/A <1_a2(v —v)@v)Av—/A <7p7_ﬁ(v —v)>Av
R S m 1 2 U2 sU2 R S m 1 2 sVl

_ (1 B—1 _ v Y=B (. _
/R[As,u] Orv1Asv1 — (1 — ay) /R@x ([p ,As} 3:0”1) Asvq /RAS ( T 4Cp (01 vg)> Asvg
— / [As, u] OpvaAsva — (1 — a2) / Oy ([,oﬁfl,As} 61»1)2) Agvo.

R R

]

o

T

]

N

(5.225)
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In the following lines, we analyse the different terms appearing in the left hand side of
(5.225). The first four terms are treated in the following manner using Lemma 1 and for
any € > 0 with C, C. > 0 sufficiently large we have using Young inequality:

/8 ul|As 7)1| +/ <m( vz)azm) Asvl—k;/RaxuMSng
l1—a
+ /RAS <\/ﬁ(vl — 1}2)83;’[)2) AS’UQ
< C(IIOmUIILoo (IAsvill72 + [1Asv2l72) + [Asvill 2 (102v1 | oo | As (01 — v2)]| 2

+ |0xAsvr || z2[|vr — w2l ) + [|Asv2| 2 ([|0zv2l| oo | As(v1 — v2) |12 + |0eAsvallp2]lvr — va Lo ||)>,

< Ca(Hf?xUHLoo (1AsorlIZ2 + | AsvzlZ2) + [As(or = v2)ll 2 (1 Asvall 21 8zvr | oo + [ Asval 2 10502 2o

+ Jlvr = vall7eellp! Pl oo |l Asve]|72 + o1 — UzH%oole_B\LooHAsmH%Z)
-1 -1
+ellp T OpAsva|2 +ellp T OuAsvr||ze.

(5.226)
We have now for C' > 0 large enough:

A i -8 A A g -B A
- S T i - S - S e i - S
/R <\/17 _4@p (Ul UQ)) vt /R (\/17 _46/) (Ul UQ)) 2

< C(|l7| .+ 1 Usvll e + IAsvall2) (1wl 2 + [Asv2]l2)

(7 =), (Ao + 1Avsll2)-
(5.227)

+ [[(v1 = v2)| oo

In a similar way using Lemma 1, we get for C' > 0 large enough:

—/ Ay, amAsul—/ Ay, 1] Dyvahsvs < Cl[Asvrl| (|| Asvrl] g2 | Bt oo
R R

+ [Asull 2|0z o) + CllAsva 2 (| Asvall L2 [0z ull oo + |Asull L2 [0z v Lo )-

(5.228)

The last term are treated as follows using the fact that p®=20,p = \/ﬁ(vl —vy) for any
€ > 0 and C;;C1 > 0 large enough we get:

—(1—aq) / Oy ([,05_1,1\3} 0;,;111) Agvg — (1 — aw) / Oy ([pﬂ_l,As} &ﬂ)g) Agvs.
R R
< O[] e |, 10uA vl 2 + [ [P A a0 vl 12)

< C1l|0sAsvi g2 (10207 pe [ Asvill g2 + A5 (07~ = 1) 2|00 || < )
+ C1l|0sAsva 22 (1000°~ [L [ Asval 22 + A5 (07~ = 1) 21|02 1<)

<o (o, 1Asvnlle +10enllpn s (07 = 1))+ €] Ouhaon|
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2 B—1 2
L2) —|-€Hp ’ OIASWHH

+ e[| Loo(

L IAswalle + 0wl A (5771 = 1))

)

(=) ) el oo
229)

2 B—1 2
) el T ot

< Ce|[p'” [o1 = vall poo IAsVL I L2 + (10201 ]| oo
LOO
2

+Ce |7 Loo(

[v1 = | poe [[Asv2| 2 + [|0zv2l| .

Let us observe that in the estimates (5.227) (5.229) we have to treat the H®-norm of
p7 % —1 and p#~! —1 . This is now our goal. For each # # 0, we may write that

Oup? + udypp® = —0p%0,u.
and consequently applying Ag to the previous equality we have:

B\ (;ﬁ - 1) F ud, A, (p9 - 1) — _0A, <p68$u> ~[Ag,u] B, (p9 . 1) .

We get then for any € > 0 and C, C; > 0 large enough:

T G [T I
AN PR AT
(i[5, + o] D) . (),

<C. (naxuuLﬁle-ﬁHL (|( - D)+ v+ ||vlv2um) s (- 1)

2

L2

L2

[j_
e | Agul?s + e H 07 0, Agu (5.230)

L2

Thus putting together the estimates (5.225), (5.226),(5.227),(5.228),(5.229) and (5.230)
for 0 = g —1, v— B we get choosing ¢ > 0 small enough and applying Gronwall Lemma,
there exists C' > 0 large enough such that:

/ 5 (Ao + [Agva? + (A (077 = D2+ [As(07 7 = 1))
1 _ t
041 / / Y10, A 01 |2 (s, 2)dsdx + (1 — a2)2/ / PP |0 Asva | (s, 2)dsdx
0o Jr

t 1 1)
< C (un, ) exp (c [G+](3)] ) (1+H(vl,w,awl,aw)\%w))
0 P/ Il
(5.231)

with § depending on 3 and . We mention also that C (ug, pg) depends on |lugl|gs,
llpo — Ulms=, llpollLe and HpioHLoo. Let us denote now by:

A (pvs) (1) = (1_20‘)/]R () (Da01)’ / /pvz . (5.232)

with ¢ € {1,2}. Using the same techniques as in the section on the Hoff estimates but
with o(t) = 1 now, we may show that for d2, C' > 0 sufficiently large

d2
) (5.233)
Lge(L>)

—~ 1
i (p,01) (1) < Coexp | Ct (1 ; H(’” L
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which ensures a control on ||81vi||L§(Loo) for i € {1,2} as in (3.76) provided that we

control ||(p, %)HL?(L(&) To summarize:

e The Bresch-Desjardins entropy provides control on ||p|| Loo(L2°) for any ¢ > 0,
e The Hoff-type estimates ensure that ||(0zv1, 0zv2) HLg(M) is controlled by H (p, %) H

e The energy estimates (1.17) yield using Sobolev embedding that ||(v1, v2)||L?(Loo) is

(p’%>HL;>°(Loo)‘

controlled by ’

Taking into account the estimate (5.231) we get that for any 7" > 0 and any s > % the

H*-Sobolev norm of (u,v1,ve,p — 1) is uniformly controlled by H%HLOO(L . It explains
t

)

why we get a blow-uo criterion depending on the quantity H%HL when T™ is the

T (L)

maximal time interval for a strong solution.
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