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Existence of global strong solution for Korteweg system in one dimension for strongly degenerate viscosity coefficients

. In our proof we make use of additional regularizing effects on the effective velocities which ensure the uniqueness of the solution using a Lagrangian approach.

Introduction

We are concerned with compressible fluids endowed with internal capillarity which can be described by the Korteweg-type model (see [START_REF] Van Der Waals | Thermodynamische Theorie der Kapillarität unter Voraussetzung stetiger Dichteänderung[END_REF][START_REF] Korteweg | Sur la forme que prennent les équations du mouvement des fluides si l'on tient compte des forces capillaires par des variations de densité[END_REF][START_REF] Dunn | On the thermomechanics of interstitial working[END_REF][START_REF] Truedell | The nonlinear field theories of mechanics[END_REF][START_REF] Anderson | Diffuse-interface methods in fluid mech[END_REF][START_REF] Cahn | Free energy of a nonuniform system, I. Interfacial free energy[END_REF][START_REF] Gurtin | Two-phases binary fluids and immiscible fluids described by an order parameter[END_REF] for its derivation, we refer also to the pioneering work by J.-E. Dunn and J. Serrin in [START_REF] Dunn | On the thermomechanics of interstitial working[END_REF] ). The conservation of mass and of momentum write:

           ∂ ∂t ρ + ∂ x (ρu) = 0, ∂ ∂t (ρu) + ∂ x (ρu 2 ) -∂ x (µ(ρ)∂ x u) + ∂ x P (ρ) = ∂ x K (ρ, u)(0, •) = (ρ 0 , u 0 ). (1.1) 
Here u = u(t, x) ∈ R stands for the velocity, ρ = ρ(t, x) ∈ R + is the density, µ(ρ) > 0 is the viscosity coefficient and P (ρ) is the pressure term with P a γ law such that P (ρ) = ρ γ with γ > 1. The Korteweg tensor reads as:

K = ρκ(ρ)∂ xx ρ + 1 2 (ρκ (ρ) -κ(ρ))(∂ x ρ) 2 (1.2)
We supplement the problem with initial condition (ρ 0 , u 0 ). We will focus now on the following particular case where κ(ρ) and µ(ρ) are related by the following algebraic relation:

κ(ρ) = c µ(ρ) 2 ρ 3 (1.3)
with c > 0. We would like to point out that this specific choice (1.3) on the viscosity and capillary coefficients allows in particular to deal with the so called compressible quantum Navier Stokes system where µ(ρ) = µρ and κ(ρ) = κ ρ with µ, κ > 0. This model belongs to the class of quantum fluid models. Such models are used in particular to describe superfluids [START_REF] Loffredo | On the creation of quantum vortex lines in rotating He II[END_REF], quantum semiconductors [START_REF] Ferry | Form of the quantum potential for use in hydrodynamic equations for semiconductor device modeling[END_REF], weakly interacting Bose gases [START_REF] Grant | Pressure and stress tensor expressions in the fluid mechanical formulation of the Bose condensate equations[END_REF] and quantum trajectories of Bohmian mechanics [START_REF] Wyatt | Quantum Dynamics with Trajectories[END_REF]. The quantum correction ∂xx √ ρ √ ρ can be seen as a quantum potential, the so called Bohm potential. This Bohm potential arises from the fluid dynamical formulation of the single-state Schrödinger equation. Finally we mention that when c = 0 we recover the classical compressible Navier-Stokes equations and when µ(ρ) = 0 and κ(ρ) = 0 we have the so called Euler-Korteweg system (we refer to [START_REF] Audiard | Global well-posedness of the Euler-Korteweg system for small irrotational data[END_REF][START_REF] Audiard | From Gross-Pitaevskii equation to Euler Korteweg system, existence of global strong solutions with small irrotational initial data[END_REF] for the existence of global strong solution with small initial data in dimension N ≥ 3). As in [START_REF] Burtea | New effective pressure and existence of global strong solution for compressible Navier-Stokes equations with general viscosity coefficient in one dimension[END_REF][START_REF] Haspot | Existence of global strong solution for the compressible Navier-Stokes equations with degenerate viscosity coefficients in 1D[END_REF][START_REF] Haspot | New formulation of the compressible Navier-Stokes equations and parabolicity of the density[END_REF], setting ϕ (ρ) = µ(ρ) ρ 2 we can observe that under the condition (1.3) we have:

∂ x K = c∂ x (µ(ρ)∂ xx ϕ(ρ)). (1.4) 
Setting now v = u + α∂ x ϕ(ρ) as in [START_REF] Antonelli | Global existence of finite energy weak solutions of quantum Navier-Stokes equations[END_REF][START_REF] Germain | Finite energy method for compressible fluids: the Navier-Stokes-Korteweg model[END_REF], we have from the mass equation of (1.1):

∂ t ρ + ∂ x (ρu) = 0 ρ∂ t v + ρu∂ x v + (α -1)∂ x (µ(ρ)∂ x u) + ∂ x P (ρ) = ∂ x K. (1.5) 
Now according to (1.4), we obtain:

ρ∂ t v + ρu∂ x v + (α -1)∂ x (µ(ρ)∂ x u) + ∂ x P (ρ) -c∂ x (µ(ρ)∂ xx ϕ(ρ)) = 0. (1.6)
If we rewrite the previous equation in terms of v, we get:

ρ∂ t v + ρu∂ x v + (α -1)∂ x (µ(ρ)∂ x v) + ∂ x P (ρ) -(α 2 -α + c)∂ x (µ(ρ)∂ xx ϕ(ρ)) = 0. (1.7) 
We wish now to choose α such that:

α 2 -α + c = 0. (1.8)
We will restrict in the sequel our attention to the case 0 < c ≤ 1 4 (we will explain later why we only consider this case) which ensures the existence of two real α i with i ∈ {1, 2} satisfying (1.8):

α 1 = 1 + √ 1 -4c 2 or α 2 = 1 - √ 1 -4c 2 .
(1.9)

At this level we have then the following equations:

ρ∂ t v i + ρu∂ x v i + (α i -1)∂ x (µ(ρ)∂ x v i ) + ∂ x P (ρ) = 0, (1.10) 
with v i = u + α i ∂ x ϕ(ρ) where i ∈ {1, 2} which will be referred as effective velocities. Let us discuss the dissipation of energy, multiplying the equation of momentum conservation in the system (1.1) by u and integrating by parts over R , we obtain the following natural energy:

R 1 2 ρu 2 + ρe (ρ) + 1 2 κ(ρ)(∂ x ρ) 2 (t, x)dx + t 0 R µ(ρ)(∂ x u) 2 (s, x)dsdx ≤ R 1 2 ρ 0 u 2 0 + ρ 0 e (ρ 0 ) + 1 2 κ(ρ 0 )(∂ x ρ 0 ) 2 (t, x)dx.
( 1.11) with e(ρ) defined as follows:

e (ρ) = ρ γ-1 -1 -γ (ρ -1) (γ -1) ρ = ρ γ-1 γ -1 + 1 ρ - γ γ -1
.

(1.12)

In the sequel we will deal with the following strongly degenerate viscosity coefficients and with the associated capillary coefficients issued of the formule (1.4):

µ(ρ) = ρ β and κ(ρ) = cρ 2β-3 , (1.13) 
with β ≥ 1. With this choice, we can rewrite the energy estimate (1.11) as follows:

R 1 2 ρu 2 + ρe (ρ) + c 2 β -1 2 2 ∂ x ρ β-1 2 2 + t 0 R ρ β (∂ x u) 2 ≤ E 0 (ρ 0 , u 0 ) + cE cap (∂ x ρ 0 ) , (1.14) where  
            E 0 (ρ 0 , u 0 ) = R 1 2 ρ 0 u 2 0 + ρ 0 e (ρ 0 ) , E cap (∂ x ρ 0 ) = 1 2 β -1 2 2 R ∂ x ρ β-1 2 0 2 , E 0 (ρ 0 , u 0 ) + cE cap (∂ x ρ 0 ) not.
= E 0,tot .

The so-called BD-entropy estimate which is satisfied for the compressible Navier-Stokes system (see [START_REF] Bresch | Existence of global weak solutions to the Navier-Stokes equations for viscous compressible and heat conducting fluids[END_REF]) is also verified for the Korteweg system (1.1) and is given by multiplying the equation (1.10) with v i where i ∈ {1, 2}:

R 1 2 ρv 2 i + ρe (ρ) (t, x)dx + (1 -α i ) t 0 R ρ β (∂ x v i ) 2 (s, x)dsdx (1.15) + α i γ t 0 R ρ γ+β-3 (∂ x ρ) 2 (s, x)dsdx ≤ R 1 2 ρv 2 i,0 + ρ 0 e (ρ 0 ) (x)dx (1.16) = R 1 2 ρ 0 u 2 0 + ρ 0 e (ρ 0 ) + α i β -1 2 √ ρ 0 u 0 ∂ x ρ α-1 2 0 + α 2 i E cap (∂ x ρ 0 ) ≤ 2E (ρ 0 , u 0 ) + 2α 2 i E cap (∂ x ρ 0 ) . (1.17)
It implies that in the context of the Navier-Stokes-Korteweg system (1.1) with the capillary coefficient satisfying the algebraic relation (1.3), there are two such entropies estimates, one degenerates in the basic energy estimate for compressible Navier-Stokes equations when the capillary coefficient c goes to 0, the other one to the BD-entropy estimate (see [START_REF] Bresch | Existence of global weak solutions to the Navier-Stokes equations for viscous compressible and heat conducting fluids[END_REF]). In this paper, we are interested by proving the existence of global strong solution for the Navier-Stokes Korteweg equation with degenerate viscosity coefficients and capillary coefficients verifying (1.13) (we note that when c = 0 we recover the compressible Navier-Stokes system). We briefly mention that the existence of global strong solutions for the system (1.1) with small initial data for N ≥ 2 is known since the works by Hattori and Li [START_REF] Hattori | The existence of global solutions to a fluid dynamic model for materials for Korteweg type[END_REF] in the case of constant capillary coefficient κ(ρ). Danchin and Desjardins in [START_REF] Danchin | Existence of solutions for compressible fluid models of Korteweg type[END_REF] improved this result by working with initial data (ρ 0 -1, ρ 0 u 0 ) belonging to the following Besov spaces which are critical for the scaling of the equations

B N 2 2,1 × (B N 2 -1 2,1
) N (we refer to [START_REF] Haspot | Existence of solutions for compressible fluid models of Korteweg type[END_REF] for the case of the nonisothermal Korteweg system). This result has been extended in [START_REF] Haspot | Existence of global strong solution for Korteweg system with large infinite energy initial data[END_REF] and recently in [START_REF] Haspot | Strong solution for Korteweg system in bmo -1 (R N ) with initial density in L ∞[END_REF] where the second author proves the global existence of strong solution with small initial data in (B

N 2 2,∞ ∩ L ∞ ) × B N 2 -1 2,∞
generalizing to the Korteweg system the result of Cannone, Meyer, Planchon [START_REF] Cannone | Solutions auto-similaires des équations de Navier-Stokes. Séminaire sur les équations aux dérivées partielles[END_REF] for Navier-Stokes equation which enables to construct self similar solutions of the Navier-Stokes equations with small initial data. This implies in particular that we can extend to the Navier-Stokes Korteweg system the notion of Oseen solutions in dimension N = 2 provided that the vorticity is a Dirac mass αδ 0 with |α| sufficiently small. The problem of existence of global strong solution for system (1.1) with large initial data and with general viscosity and capillary coefficients remains again largely open even in the one dimensional case. We are going to focus our attention on the one dimensional case, and we wish to start with describing the state of art for the compressible Navier-Stokes equations when c = 0 (we will explain after the main difference that one encounters for obtaining similar results for the Navier-Stokes Korteweg system). It is important to explain that for getting such result of global strong solution, the main difficulty is related to the control of the L ∞ norm of 1 ρ . Indeed it is well known that the strong solution can blow-up in finite time as long as the L ∞ norm of 1 ρ does the same (see [START_REF] Constantin | Compressible fluids and active potentials[END_REF] for viscosity coefficients verifying (1.4) with β > 1 2 ). Kanel in [START_REF] Ya | On a model system of equations of one-dimensional gas motion[END_REF] has been the first to prove the existence of global strong solution for compressible Navier-Stokes equations with arbitrary large initial data in one dimension for constant viscosity coefficients. This result has been extend by Mellet and Vasseur in [START_REF] Mellet | Existence and Uniqueness of global strong solutions for one-dimensional compressible Navier-Stokes equations[END_REF] to the case of viscosity coefficients verifying (1.13) in the case 0 < β < 1 2 . The main argument of their proof consists in using the Bresch-Dejardins entropy (see [START_REF] Bresch | Existence of global weak solutions to the Navier-Stokes equations for viscous compressible and heat conducting fluids[END_REF]) for getting L ∞ estimate of 1 ρ that they combine with parabolic regularizing effects on the velocity issued of the momentum equation. We wish to point out that the Bresch-Dejardins entropy gives almost for free the control of 1 ρ L ∞ t,x when 0 ≤ β < 1 2 . In [START_REF] Haspot | Existence of global strong solution for the compressible Navier-Stokes equations with degenerate viscosity coefficients in 1D[END_REF], the second author has proved similar results for the case 1 2 < β ≤ 1 where he used the fact that the effective velocity v satisfies a damped transport equation. It allows to obtain L ∞ estimates on v which is sufficient to obtain L ∞ estimate on 1 ρ by using a maximum principle on the mass equation. More recently Constantin et al in [START_REF] Constantin | Compressible fluids and active potentials[END_REF] have generalized the previous results to the case β > 1 with γ belonging to [α, α + 1] provided that the initial data satisfy:

∂ x u 0 ≤ ρ γ-α 0 .
The main ingredient of the proof consists in proving that the sign of the so called effective pressure µ(ρ)∂ x u -P (ρ) does not change all along the time and to use a maximum principle on the mass equation in order to estimate the L ∞ norm of 1 ρ . In [START_REF] Burtea | New effective pressure and existence of global strong solution for compressible Navier-Stokes equations with general viscosity coefficient in one dimension[END_REF], we have extended the result of [START_REF] Constantin | Compressible fluids and active potentials[END_REF] when β > 1 inasmuch as we do not assume any condition of sign on the initial data (furthermore the initial data are less regular, roughly speaking the initial data are only of finite energy). To do this, we have introduced a new effective pressure on which we prove Oleinik type estimate which enables to control the L ∞ norm of 1 ρ via a maximum principle. In conclusion, the problem of the existence of global strong solution in one dimension for the compressible Navier Stokes equations with viscosity coefficient of the form (1.13) is now well understood, however fewer results have been obtained for the Navier-Stokes Korteweg equations which are significantly more complicated because the capillary term of third order derivative on the density.

Charve and the second author in [START_REF] Charve | Existence of global strong solution and vanishing capillarity-viscosity limit in one dimension for the Korteweg system[END_REF] proved the global existence of strong solution for the system (1.1) when µ(ρ) = ερ and κ(ρ) = ε 2 ρ , in addition they show that the global strong solutions converge when ε goes to 0 to a global entropy weak solution of the compressible Euler system with initial data of finite energy. Germain and LeFloch in [START_REF] Germain | Finite energy method for compressible fluids: the Navier-Stokes-Korteweg model[END_REF] showed recently the global existence of vacuum and non-vacuum weak solutions for the Korteweg system including the case of viscosity and capillary coefficients of the form µ(ρ) = ρ β , κ(ρ) = ρ β 1 which satisfy in particular a strong coercivity condition which corresponds in the present case to 2β -4 < β 1 < 2β -1 and with 0 ≤ β < 1 2 or with β 1 < -2. Furthermore they analyze the zero viscosity-capillarity limit associated with the solutions of the Navier-Stokes-Korteweg system generalizing the results of [START_REF] Charve | Existence of global strong solution and vanishing capillarity-viscosity limit in one dimension for the Korteweg system[END_REF] and recovering at the limit an entropy solution of the Euler system. It is important to point out that they need to impose a tame condition on the viscosity and capillary coefficients which takes the form:

κ(ρ) µ(ρ) 2 ρ 3 and δ(ε) ε 2 , (1.18) 
if we consider the vanishing viscosity capillary coefficients µ ε (ρ) = εµ(ρ) and κ ε (ρ) = δ(e)κ(ρ) when ε > 0 goes to 0. Roughly speaking the viscosity tensor involves some parabolic effects on the velocity whereas the capillary tensor generates some dispersive effects (see [START_REF] Audiard | Global well-posedness of the Euler-Korteweg system for small irrotational data[END_REF][START_REF] Audiard | From Gross-Pitaevskii equation to Euler Korteweg system, existence of global strong solutions with small irrotational initial data[END_REF]), the previous tame condition implies in some sense that the parabolic effects will dominates the dispersive effects issue of the capillary tensor. In particular when ε goes to 0 we can expect some strong convergence in suitable functional space whereas the dispersive effects tend to induce strong oscillations which prevent any strong limit but allows only weak limit (see for example the case of the Korteweg de Vries equation [START_REF] Lax | The small dispersion limit of Korteweg de Vries equation I[END_REF][START_REF] Lax | The small dispersion limit of Korteweg de Vries equation II[END_REF][START_REF] Lax | The small dispersion limit of Korteweg de Vries equation III[END_REF]). In particular the condition (1.18) implies that the authors in [START_REF] Germain | Finite energy method for compressible fluids: the Navier-Stokes-Korteweg model[END_REF] consider the same type of viscosity and capillary coefficients (see (1.13) when they study the zero viscosity-capillarity limit. Recently Chen et al. in [START_REF] Chen | Global classical solutions to the one-dimensional compressible fluid models of Korteweg type with large initial data[END_REF] and Chen in [START_REF] Chen | Large-time behavior of smooth solutions to the isothermal compressible fluid models of Korteweg type with large initial data[END_REF] have proved for the first time some results of existence of global strong solution for initial density far away from the vacuum in Lagrangian coordinates. More precisely they consider viscosity and capillary coefficients of the form µ(ρ) = ρ α 1 and κ(ρ) = cρ β 1 with (α 1 , β 1 ) ∈ R 2 , it is important to point out that in comparison with the present work there is no relation a priori between α 1 and β 1 (furthermore there is no restriction on c > 0). They manage essentially to show such result when β 1 < -2 which allows in a direct way to control the L ∞ norm of 1 ρ by using the energy estimate (indeed roughly speaking the energy estimate ensure that

∂ x ρ β 1 2 +1 is bounded in L ∞ T (L 2
) for any T > 0). They deal also with the case β 1 ≥ -2 but in this situation α 1 < 0, in particular the viscosity coefficient is not degenerate in this case. The main ideas of the proof is to obtain L 2 estimate on the effective velocity v = u + µ(ρ) ρ 2 ∂ x ρ by using energy method combine with Sobolev embedding in the spirit of Kanel (see [START_REF] Ya | On a model system of equations of one-dimensional gas motion[END_REF]). Furthermore the authors show also the existence of global strong solution when the initial data is a perturbation of a Riemann problem associated to a rarefaction wave for the compressible Euler problem.

In this article we wish to deal with the case of degenerate viscosity coefficient when β > 1 (see (1.13)) and with β 1 = 2β -3 > -2 (the power of the capillary coefficient) in order to extend the results of [START_REF] Chen | Large-time behavior of smooth solutions to the isothermal compressible fluid models of Korteweg type with large initial data[END_REF][START_REF] Chen | Global classical solutions to the one-dimensional compressible fluid models of Korteweg type with large initial data[END_REF] to these cases. As in [START_REF] Germain | Finite energy method for compressible fluids: the Navier-Stokes-Korteweg model[END_REF] when the authors consider the zero viscosity-capillary limit, we assume that the algebraic relation between the viscosity and the capillary coefficient (1.4) is satisfied, furthermore we work also in a regime where the viscosity effects dominates the capillary effects with 0 < c ≤ 1 4 (it corresponds to the tame condition introduced in [START_REF] Germain | Finite energy method for compressible fluids: the Navier-Stokes-Korteweg model[END_REF]). We would like to explain briefly the main arguments of our proof and the main difficulties which are related to the proof of existence of global strong solution with degenerate viscosity coefficients. First the existence of global strong solution in finite time is well known (see [START_REF] Chen | Large-time behavior of smooth solutions to the isothermal compressible fluid models of Korteweg type with large initial data[END_REF][START_REF] Chen | Global classical solutions to the one-dimensional compressible fluid models of Korteweg type with large initial data[END_REF]); so in order to show the existence of global strong solution, we start by proving a blow-up criterion for the case β > 1 2 in (1.13) which is relied to estimating the L ∞ t,x norm of 1 ρ . It implies that the main difficulty for getting the existence of global strong solution with degenerate viscosity coefficient corresponds to control the L ∞ norm of 1 ρ all along the time. In the case 1 2 < β ≤ 1, it is sufficient to estimate the L ∞ t,x norm of each effective velocity v i with i ∈ {1, 2} to obtain L ∞ t,x estimates on 1 ρ using a maximum principle on the mass equation. It is important to precise that we can apply such maximum principle on the equation because the viscosity coefficients are not so degenerate when β ≤ 1 2 . We refer to [START_REF] Burtea | Existence of global strong solution for the compressible Navier-Stokes equations in one dimension for initial density admitting shocks via a zero capillarity limit process[END_REF] for the existence of global strong solution when β ≤ 1. In the case β > 1 the previous estimates are not sufficient and it becomes more involved to estimate 1 ρ . As in [START_REF] Burtea | New effective pressure and existence of global strong solution for compressible Navier-Stokes equations with general viscosity coefficient in one dimension[END_REF][START_REF] Constantin | Compressible fluids and active potentials[END_REF] we are going to introduce suitable effective pressures w i for which we can estimate the maximum. This will provide us the control of the L ∞ t,x norm of 1 ρ using a maximum principle on the mass equation of (1.10). To do this, we are going to exploit very fine algebraic properties of the Navier-Stokes Korteweg system by setting for i ∈ {1, 2}:

w i = f i (ρ)∂ x v i + F 1,i (ρ). (1.19) with f i (ρ) = ρ (β-1)α i -β 2α i -1 and F 1,i (ρ) = γ -α i (β + 1) + γ(2α i -1) ρ -α i (β+1) 2α i -1 +γ . (1.20)
We would like to point out that these new effective pressures w i have weight f i (ρ) corresponding to some power of the density which depend in a crucial way on the viscosity and capillary coefficients. We show in the Proposition 3.1 that w i satisfy the following equation:

∂ t w i + (u + g 1i )∂ x w i + w i g 2i + (α i -1)∂ x ( µ(ρ) ρ ∂ x w i ) + g 3i + g 4i w 2 i = 0, (1.21)
which is a parabolic equation with damping term. We refer to the Proposition 3.1 for the definition of the terms g 1i , g 2i , g 3i and g 4i . It is remarkable to note that when α 1 = 1 and α 2 = 0 which corresponds to the case c = 0 of the compressible Navier-Stokes system, then w 1 and w 2 corresponds respectively to the effective pressures y 1 = ∂xv ρ + F 2 (ρ) and y 2 = µ(ρ)∂ x u -P (ρ) respectively introduced in [START_REF] Burtea | New effective pressure and existence of global strong solution for compressible Navier-Stokes equations with general viscosity coefficient in one dimension[END_REF] and [START_REF] Constantin | Compressible fluids and active potentials[END_REF]. In particular in this case w 1 and w 2 satisfy the same equation as the effective pressure defined in [START_REF] Burtea | New effective pressure and existence of global strong solution for compressible Navier-Stokes equations with general viscosity coefficient in one dimension[END_REF][START_REF] Constantin | Compressible fluids and active potentials[END_REF].

In this sense, we can say that the effective pressure w i generalize the one defined for compressible Navier-Stokes equations and that in addition w i converge to the effective pressure of Navier-Stokes equations when c goes to 0. It turns out that we are able to prove an Oleinik type estimate for the effective pressure w 1 :

w 1 (t, x) ≤ C 1 (t) ∀(t, x) ∈ R + × R, (1.22) 
with C 1 a continuous increasing function provided that w 1 (0, •) ≤ C 0 with C 0 ∈ R. Unfortunately in comparison with the case c = 0 where g 4,1 = 0, for Navier-Stokes Korteweg equations we observe that g 4,1 ≤ 0. In particular, if we consider the equation (1.21), it seems that the sign of g 4,1 does not allow to apply a maximum principle which provide the global estimate (1.22) as it is the case when c = 0. Indeed we have in some sense to deal with a Ricatti equation which can blow up in finite time. However since g 4,1 depends on α 1 -1 we show that we can prove the estimate (1.22) on a any time interval [0, T ] with T > 0 fixed provided that the capillary coefficient c > 0 is sufficiently small. Using maximum principle for the mass equation of (1.1) allows us to prove that 1 ρ is bounded on the time interval [0, T ]. In order to show the uniqueness of the solutions, we prove regularizing effects on the velocity v 1 and v 2 by extending the Hoff's estimates valid for compressible Navier Stokes system with constant viscosity coefficients (see [START_REF] Hoff | Global solutions of the equations of one-dimensional, compressible flow with large data and forces, and with differing end states[END_REF]) to the case of Navier-Stokes Korteweg system with general viscosity coefficients. It enables us in particular to prove that ∂ x u belongs to L 1 loc (L ∞ (R)). Passing in Lagrangian formulation we show the uniqueness of the solutions. This result show the existence of almost global strong solution provided that c goes to zero. In order to prove the existence of global strong solution, we impose a condition on the sign of the initial data. More precisely we assume that w 1 (0, •) ≤ 0 or w 2 (0, •) ≤ 0 which allows to use a maximum principle on the equation (1.21)and to observe that w 1 or w 2 conserve the same sign all along the time. We conclude again by using maximum principle for the mass equation which allows to show that the L ∞ norm of 1 ρ can not blow up in finite time what is sufficient to prove the existence of global strong solution.

Main results

We now wish to present our main results which concern the existence of global strong solution for the Navier-Stokes Korteweg system with large initial data provided that we impose a condition of sign on the initial data.

Theorem 2.1 Assume that β > 1 and γ ∈ [β, β + 1]. Let u 0 ∈ H 3 (R), (ρ 0 -1) ∈ H 4 (R) and 1 ρ 0 ∈ L ∞ (R)
with the additional following conditions of sign, for any x ∈ R we have:

ρ (β-1)α 2 -β 2α 2 -1 0 ∂ x v 2,0 + γ -α 2 (β + 1) + γ(2α 2 -1) ρ -α 2 (β+1) 2α 2 -1 +γ 0 ≤ 0 (2.23)
or:

ρ (β-1)α 1 -β 2α 1 -1 0 ∂ x v 1,0 + γ -α 1 (β + 1) + γ(2α 1 -1) ρ -α 1 (β+1) 2α 1 -1 +γ 0 ≤ 0 (2.24)
Then there exists a unique global strong solution (ρ, u) for the Navier-Stokes system (1.1) with the following properties. For any given T > 0, L > 0 there exist a positive constant C, a positive constant C(T ) depending respectively on T and on the initial data such that, if σ(t) = min(1; t), then for i ∈ {1, 2}:

C(T ) -1 ≤ ρ(T, •) ≤ C a.e, (2.25) 
sup 0<t≤T ρ(t, •) -1 L 2 + u(t, •) L 2 + ∂ x ρ(t, •) L 2 + σ(t) 1 2 ∂ x u(t, •) L 2 + σ(t)( u(t, •) L 2 + ∂ x ((1 -α i )ρ β ∂ x v i (t, •) -P (ρ) + P (1)) L 2 ≤ C(T ), (2.26) 
T 0 [ ∂ x u(t, •) 2 L 2 + ∂ x ρ(t, •) 2 L 2 + σ(t) u(t, •) 2 L 2 + σ 2 (t) ∂ x u(t, •) 2 L 2 ]dt ≤ C(T ), (2.27) 
T 0 σ 1 2 (τ ) ∂ x u (τ ) 2 L ∞ dτ ≤ C (T ) , (2.28) 
sup 0<t≤T σ(t) ∂ x u(t, •) L ∞ ≤ C (T ) . (2.29)
Remark 1 We can prove in fact at least on the torus (see [START_REF] Li | Vanishing of vacuum states and blow-up phenomena of the compressible Navier-Stokes equations[END_REF]) that we control 1 ρ in L ∞ (R + , L ∞ ) and not only in L ∞ loc (R + , L ∞ ) using the damping on ∂ x ρ provide by the BD entropies (1.17). Indeed (1.17) implies that ρ γ+β-3 2

∂ x ρ is bounded in L 2 (R + , L 2 (R))
, in particular by adapting the same ideas as in [START_REF] Li | Vanishing of vacuum states and blow-up phenomena of the compressible Navier-Stokes equations[END_REF] where Gagliardo-Niremberg estimate is used in a suitable way we can show that for T > 0 large enough we have for any t > T ,

ρ(t, •)-1 L ∞ ≤ 1 2 which implies that 1 ρ (t, •) L ∞ ≤ 2 for t > T .
Combining this estimate with (2.25) show the result.

Remark 2 It is important to note that our result requires to work with c included in the interval ]0, 1 4 ]. The main reason is that if c > 1 4 then the α i with i ∈ {1, 2} are complex. We can again obtain the following equation with v i the effective velocities:

ρ∂ t v i + ρu∂ x v i + (α i -1)∂ x (µ(ρ)∂ x v i ) + ∂ x P (ρ) = 0, (2.30)
however since α i is complex, we can not apply maximum principle on v i or on the effectives pressures even if the linearized equation associated to (2.30) is parabolic.

Remark 3 This result generalizes in particular the works of [START_REF] Constantin | Compressible fluids and active potentials[END_REF] to the case of the Navier-Stokes Korteweg system. Indeed we have as in [START_REF] Constantin | Compressible fluids and active potentials[END_REF] a condition of sign on the initial effective pressure w 2,0 which generalizes the effective pressure of the compressible Navier-Stokes system.We can also observe that the coefficient γ > 1 is restricted to the interval [β, β + 1] as in [START_REF] Constantin | Compressible fluids and active potentials[END_REF].

The second result show the existence of almost global strong solution when c goes to zero without any assumption of sign on the initial data.

Theorem 2.2 Assume that β > 1 and β ≥ γ. Let u 0 ∈ L 2 (R) ∩ L ∞ (R), (ρ 0 -1) ∈ H 1 (R), ∂ x ρ 0 ∈ L ∞ (R) and 1 ρ 0 ∈ L ∞ (R)
and that there exists C ∈ R such that for any x > y we have:

v 1,0 (x) -v 1,0 (y) x -y ≤ C 0 . (2.31)
Then for any T > 0 there exists c 0 > 0 sufficiently small (depending on the initial data, T , and the physical coefficients) such that for any 0 < c < c 0 there exists a unique strong solution (ρ, u) for the Navier-Stokes system (1.1) on a time interval [0, T ]. Furthermore the solution (ρ, u) satisfies the same regularity assumption as in the Theorem 2.1 on the time interval [0, T ]. We have in addition for any given t ∈ [0, T ] and for any x > y:

v 1 (t, x) -v 1 (t, y) x -y ≤ C(T ), (2.32) 
with C(T ) > 0.

Remark 4 It is important to note that when c goes to zero then the maximal time of existence T for a strong solution goes to +∞. It enables us to recover the result of the existence of global strong solution for the compressible Navier-Stokes system as it is proved in [START_REF] Burtea | New effective pressure and existence of global strong solution for compressible Navier-Stokes equations with general viscosity coefficient in one dimension[END_REF].

Remark 5 In comparison with the Theorem 2.1, we can note that we have no restriction on the size of γ since we assume only that γ ≥ β. Furthermore we work with initial data which are less regular. In particular it is not mandatory to assume that

(ρ 0 -1, u 0 ) is in H 4 (R) × H 3 (R))
as in Theorem 2.1 or in [START_REF] Chen | Large-time behavior of smooth solutions to the isothermal compressible fluid models of Korteweg type with large initial data[END_REF][START_REF] Chen | Global classical solutions to the one-dimensional compressible fluid models of Korteweg type with large initial data[END_REF].

In the section 3 and 4 we prove the Theorems 2.1 and 2.2. An appendix is devoted to proof of the Proposition 3.1 which defines new effective pressures, we also give a sketch of the proof of the blow-up criterion of the Theorem 3.3 below.

3 Proof of the Theorem 2.1

In order to prove the existence of global strong solution for the Navier-Stokes Kortexeg system, we start with recalling the following result of existence of strong solution in finite time. In addition we give a blow-up criterion.

Theorem 3.3 Assume that β > 1, γ ≥ max(β -1 2 , 1), s ≥ 3 and (ρ 0 -1, u 0 ) ∈ H s+1 × H s (R) with 1 ρ 0 ∈ L ∞ (R).
Then there exists T * > 0 such that there exists a strong solution (ρ, u) of the system (1.1) on (0, T * ) with ∀T ∈ (0, T * ):

(ρ -1) ∈ C(0, T, H s+1 (R)) ∩ L 2 (0, T, H s+2 (R)), u ∈ C(0, T, H s (R)) ∩ L 2 (0, T, H s+1 (R)),
and for all t ∈ (0, T * ):

1 ρ (t, •) L ∞ ≤ C(t),
where C(t) < +∞ if t ∈ (0, T * ). In addition, if:

sup t∈(0,T * ) 1 ρ (t, •) L ∞ ≤ C < +∞,
then the solution can be continued beyond (0, T * ).

The above result claims that a strong solution in finite time might blow-up is if and only if the L ∞ -norm of 1 ρ blows-up in T * . We refer to [START_REF] Chen | Large-time behavior of smooth solutions to the isothermal compressible fluid models of Korteweg type with large initial data[END_REF][START_REF] Chen | Global classical solutions to the one-dimensional compressible fluid models of Korteweg type with large initial data[END_REF] for the proof of existence of a strong solution in finite time. The blow-up criterion of the Theorem 3.3 is essentially an adaptation to the Korteweg system of the blow-up criterion proved for the compressible Navier-Stokes system in Constantin et al (see Theorem 1.1. from [START_REF] Constantin | Compressible fluids and active potentials[END_REF]) for the torus or in [START_REF] Burtea | New effective pressure and existence of global strong solution for compressible Navier-Stokes equations with general viscosity coefficient in one dimension[END_REF] for the whole space. We refer the reader to the Appendix for a sketch of the proof. Since the assumption on the initial data of the Theorem 2.1 corresponds to the one of the Theorem 3.3, we know that there exists a strong solution (ρ, u) of the system (1.1) on a finite time interval (0, T * ). We are going to prove that T * = +∞, by absurd we assume now that 0 < T * < +∞. To do this we wish to apply the blow-up criterion of Theorem 3.3, it suffices then to show that the L ∞ norm of 1 ρ can never blow-up in finite time. From (1.10), we recall that we have for i ∈ {1, 2}:

∂ t ρ + v i ∂ x ρ + ρ∂ x v i -α i ∂ xx ϕ(ρ) = 0 ρ∂ t v i + ρu∂ x v i + (α i -1)∂ x (µ(ρ)∂ x v i ) + ∂ x P (ρ) = 0. (3.33)
with ϕ (ρ) = µ(ρ) ρ 2 . Our main goal will be to apply a maximum principle on the mass equation of (3.33) in order to estimate the L ∞ norm of 1 ρ . To do this, we are required to obtain an estimate of the type:

∂ x v i (t, •) ≤ C(t), (3.34) 
for any t ∈ (0, T * ) with C a continuous bounded function on (0, T * ) and i ∈ {1, 2}.

Since we wish to control ∂ x v i we are going to introduce new effectives pressures w i with i ∈ {1, 2} which generalize the one obtained in the case of compressible Navier-Stokes equations (see [START_REF] Burtea | New effective pressure and existence of global strong solution for compressible Navier-Stokes equations with general viscosity coefficient in one dimension[END_REF][START_REF] Constantin | Compressible fluids and active potentials[END_REF]) and which are governed by a parabolic equation with a damping term. We state now a crucial Proposition of this paper concerning the effectives pressures w i (the proof of this Proposition is given in the Appendix).

Proposition 3.1 We set:

f i (ρ) = ρ (β-1)α i -β 2α i -1 and F 1,i (ρ) = γ -α i (β + 1) + γ(2α i -1) ρ -α i (β+1) 2α i -1 +γ (3.35)
Furthermore we define w i as follows with i ∈ {1, 2}:

w i = f i (ρ)∂ x v i + F 1,i (ρ). (3.36)
Then w i satisfies the following equation:

∂ t w i + (u + g 1i )∂ x w i + w i g 2i + (α i -1)∂ x ( µ(ρ) ρ ∂ x w i ) + g 3i + g 4i w 2 i = 0, (3.37) 
with:

g 1i = ρ β-2 ∂ x ρ(α i -1) β + 2α i 2α i -1 (3.38) g 2i = -(α i -1)α i ρ β-3 (β -1)α i -β 2α i -1 β + 1 2α i -1 (∂ x ρ) 2 + ρ γ-β γ 2α i -1 -3α i β -3α i + 2α i γ -γ + 2β + 2 -α i (β + 1) + γ(2α i -1
) .

(3.39)

g 3i = ρ -α i (β+1) 2α i -1 +2γ-β γ 2 (-α i (β + 1) + γ(2α i -1)) 2 (β + 1 -γ) + (∂ x ρ) 2 ρ -α i (β+1) 2α i -1 +γ+β-3 γα i (γ -β -1)(γ -β) (-α i (β + 1) + γ(2α i -1)) (3.40)
and:

g 4i = (α i -1) β + 1 2α i -1 ρ -(β-1)α i +β 2α i -1 . (3.41)
Remark 6 We can observe that when α 1 = 1 and α 2 = 0 which corresponds to the compressible Navier-Stokes equations since c = 0 in this case, the effective pressure take the following form:

w 1 = 1 ρ ∂ x (u + µ(ρ) ρ 2 ∂ x ρ) + γ γ -β -1 ρ γ-β-1 w 2 = ρ β ∂ x u -ρ γ (3.42)
We recover in particular the effective pressure which have been defined in [START_REF] Burtea | New effective pressure and existence of global strong solution for compressible Navier-Stokes equations with general viscosity coefficient in one dimension[END_REF][START_REF] Constantin | Compressible fluids and active potentials[END_REF] for the compressible Navier-Stokes system. In addition in this case w 1 satisfies the following equation :

∂ t w 1 + u∂ x w 1 + w 1 γρ γ-β - γ 2 (γ -β -1) ρ 2γ-2β-1 + (∂ x ρ) 2 ρ γ-4 γ(γ -β) = 0, (3.43) 
We note that w 1 verifies exactly the same equation on the effective pressure as in [START_REF] Burtea | New effective pressure and existence of global strong solution for compressible Navier-Stokes equations with general viscosity coefficient in one dimension[END_REF] for the compressible Navier-Stokes system. Concerning w 2 we have:

∂ t w 2 +(u+βρ β-2 )∂ x w 2 +w 2 (2β+2-γ)ρ γ-β -∂ x ( µ(ρ) ρ ∂ x w 2 )+ρ 2γ-β (β+1-γ)+(β+1)ρ -β w 2 2 = 0, (3.44)
It corresponds exactly to the equation (6.4) of [START_REF] Constantin | Compressible fluids and active potentials[END_REF] for the second effective pressure.

It is important now to determinate the sign of g 3i and g 4i if we wish to apply a maximum principle. Proposition 3.2 We have:

F 12 ≤ 0 and F 11 ≤ 0 if γ ≤ β + 1.
(3.45)

g 41 ≤ 0 and g 42 ≥ 0. (3.46)
Furthermore we have:

g 31 , g 32 ≥ 0 if γ ∈ [β, β + 1] (3.47)
Proof of the Proposition 3.2: F 1i (ρ) is given by:

F 1,i (ρ) = γ -α i (β + 1) + γ(2α i -1) ρ -α i (β+1) 2α-1 +γ (3.48)
We deduce that

F 12 ≤ 0 because -α 2 (β + 1) + γ(2α 2 -1) ≤ 0. Now when γ ≤ β + 1 we have γ(2α 1 -1) -α 1 (β + 1) ≤ γ(2α 1 -1) -α 1 γ = γ(α 1 -1) ≤ 0. it implies then that F 11 ≤ 0 if γ ≤ β + 1.
We recall now that:

g 4i = (α i -1) β + 1 2α i -1 ρ -(β-1)α i +β 2α i -1 . (3.49)
From the definition of α i in (1.9) and since α i -1 ≤ 0 for i ∈ {1, 2} and 2α 1 -1 ≥ 0, 2α 2 -1 ≤ 0 it implies that: g 41 ≤ 0 and g 42 ≥ 0.

(3.50)

Let us consider now g 3i and we recall using (3.51) that:

g 3i = ρ -α i (β+1) 2α i -1 +2γ-β γ 2 (-α i (β + 1) + γ(2α i -1)) 2 (β + 1 -γ) + (∂ x ρ) 2 ρ -α i (β+1) 2α i -1 +γ+β-3 γα i (γ -β -1)(γ -β) (-α i (β + 1) + γ(2α i -1)) (3.51)
First we observe that the first term on the right hand side of (3.51) is always positive if γ ≤ β + 1 and negative if γ > β + 1. Let us deal with the second term on right hand side of (3.51) that we denote:

g 32i = (∂ x ρ) 2 ρ -α i (β+1) 2α i -1 +γ+β-3 γα i (γ -β -1)(γ -β) (-α i (β + 1) + γ(2α i -1)) (3.52)
We deduce that:

• g 322 ≥ 0 if β ≤ γ ≤ β + 1 because -α 2 (β + 1) + γ(2α 2 -1) ≤ 0 and γ -β -1 ≤ 0, inversely g 322 ≤ 0 if γ ≤ β or γ ≥ β + 1. • g 321 ≥ 0 if β ≤ γ ≤ β + 1 or if γ > β + 1 and α 1 > γ 2γ-β-1 . Indeed if β ≤ γ ≤ β + 1 then we have γ(2α 1 -1) -α 1 (β + 1) ≤ γ(2α 1 -1) -α 1 γ = γ(α 1 -1) ≤ 0. We deduce then that: (γ -β -1)(γ -β) (-α 1 (β + 1) + γ(2α 1 -1)) ≥ 0. Now if γ > β + 1, we have γ -β -1 > 0 and (-α 1 (β + 1) + γ(2α 1 -1)) > 0 if α 1 > γ 2γ-β-1 . It is important to observe that: 1 2 < γ 2γ-β-1 < 1.

Uniform estimates for 1 ρ

We are going now to consider the unknown w 2 which satisfies the parabolic equation (3.37), and since we wish to prove some estimate of the form (3.34) it is natural to apply a maximum principle on w 2 . Owing to the fact that the solution (ρ, u) is regular we get that w 2 is continuous on [0, T * ) × R and in view of lim

x→±∞ w 2 (t, x) = F 1,2 (1) 
, we deduce that for all t ∈ [0, T * ) we have:

sup x∈R w 2 (t, x) ≥ F 1,2 (1). 
(3.53)

The function

t → sup x∈R w 2 (t, x)
is continuous on [0, T * ), so we deduce that the set

D := t ∈ (0, T * ) : sup x∈R w 2 (t, x) > F 1,2 (1) 
is open in [0, T * ) (with the topology induced from R) we conclude that

t ∈ [0, T * ) : sup x∈R w 2 (t, x) > F 1,2 (1) = I 0 ∪ j∈N I j ,
where (I j ) j≥1 with I j = (a j , b j ) are open disjoint intervals and ) and

I 0 = ∅ if sup x∈R w 2 (0, x) = F 1,2 (1 
I 0 = [0, b 0 ) for some b 0 ∈ (0, T * ) if sup x∈R w 2 (0, x) > F 1,2 (1) 
. From the definition of I j we have that sup

x∈R w 2 (a j , x) = F 1,2 (1) 
and for all t ∈ I j since w 2 (t, •) is continuous, it reaches its maximum on R. It implies that for any j ∈ N and any t ∈ I j there exists a least one point x t ∈ R such that:

sup x∈R w 2 (t, x) def. = w M (t) = w 2 (t, x t ). For any t ∈ (I 0 ∪ ∪ n∈N * I j ) c , we know that sup x∈R w 2 (t, x) = F 1,2 (1) 
. Thus, in order to provide an estimate of w 2 on [0, T * ) we have to show that we can control w M on I 0 ∪ ∪ n∈N * I j an so, we are going to study the behavior of w M on all intervals I j . To fix the ideas let us fix j 0 ∈ N and let us analyse what happens on I j 0 . First of all w M is Lipschitz continuous on any interval I j and then absolutely continuous, it will be important when we will apply Gronwall Lemma. Indeed from the triangular inequality for the norm f = sup x∈R |f (x)| with f a continuous bounded function on R we have for (t 1 , t 2 ) ∈ I j :

|w M (t 1 ) -w M (t 2 )| ≤ sup x∈R |w 2 (t 1 , x) -w 2 (t 2 , x)| ≤ ∂ t w 2 L ∞ ([t 1 ,t 2 ],L ∞ ) |t 1 -t 2 |.
According to Rademacher's theorem, w M is differentiable almost everywhere on I 0 ∪ j∈N I j ,. We are going to verify now that for t ∈ I j 0 (with j 0 ≥ 0) we have (w M ) (t) = ∂ t w 2 (t, x t ). Indeed we have:

(w M ) (t) = lim h→0 + w M (t + h) -w M (t) h = lim h→0 + w 2 (t + h, x t+h ) -w 2 (t, x t ) h ≥ lim h→0 + w 2 (t + h, x t ) -w 2 (t, x t ) h = ∂ t w 2 (t, x t ).
Similarly, we have:

(w M ) (t) = lim h→0 + w M (t) -w M (t -h) h = lim h→0 + w 2 (t, x t ) -w 2 (t -h, x t-h ) h ≤ lim h→0 + w 2 (t, x t ) -w 2 (t -h, x t ) h = ∂ t w 2 (t, x t ).
We deduce from (3.37) using the fact that ∂ x w 2 (t, x t ) = 0 and ∂ xx w 2 (t, x t ) ≤ 0 since w 2 (t, •) reaches its maximum in x t that for almost everywhere t ∈ I j 0 we have:

∂ t w M (t) + w M (t)g 22 (t, x t ) + g 32 (t, x t ) + g 42 (t, x t )(w M (t)) 2 ≤ 0. (3.54)
Using the Proposition 3.2 we know that g 42 (t, x t ) ≥ 0 and g 32 (t, x t ) ≥ 0 for β ∈ [γ, γ + 1], it yields that:

∂ t w M (t) ≤ -w M (t)g 22 (t, x t ). (3.55)
Since we know from the proposition 3.2 that w M (a j 0 ) = F 12 (1) ≤ 0 if j 0 ≥ 1 when γ ≤ β + 1 or w M (0) = sup x∈R w 2 (0, x) ≤ 0 from the condition (2.23) in the Theorem 2.1, we deduce from (3.55) that for any t ∈ I j 0 we have:

w M (t) ≤ 0. (3.56)
It implies finally using the fact that F 1,2 (1) ≤ 0 when γ ∈ [β, β +1] that for any t ∈ (0, T * ) we have:

w M (t) ≤ 0. (3.57)
In a similar way, if we assume that the condition (2.24) is satisfied then we can check that for any t ∈ (0, T * ) we have:

w M 1 (t) ≤ 0. (3.58) with: sup x∈R w 1 (t, x) def. = w M 1 (t).
Next we recall that we have from the mass equation in (1.1):

∂ t ( 1 ρ ) + u∂ x ( 1 ρ ) - 1 ρ ∂ x u = 0.
We can rewrite the equation as follows with i ∈ {1, 2}:

∂ t ( 1 ρ ) + u∂ x ( 1 ρ ) - 1 ρ ∂ x v i -α i µ(ρ) ρ ∂ xx ( 1 ρ ) -α i 1 ρ ∂ x µ(ρ)∂ x ( 1 ρ ) = 0.
From the definition of w i in (3.36), we have for i ∈ {1, 2}:

∂ t ( 1 ρ ) + u∂ x ( 1 ρ ) - 1 ρf i (ρ) (w i -F 1i (ρ)) -α i µ(ρ) ρ ∂ xx ( 1 ρ ) -α i 1 ρ ∂ x µ(ρ)∂ x ( 1 ρ ) = 0. (3.59)
Again, the value of 1 ρ is fixed at ±∞ for al t ≥ 0 and is equal to 1. We now consider the open set

t ∈ [0, T * ) : sup x∈R 1 ρ (t, x) > 1) = Q 0 ∪ j∈N Q j ,
where for j ≥ 1, Q j are open disjoint intervals. Following the same arguments as previously, we set now:

z(t) = sup x∈R 1 ρ (t, x),
with t ∈ (0, T * ). We know that in any interval Q j , there is a point, still denoted x t such that z(t) = 1 ρ(t,xt) . We have then for any t ∈ Q j 0 and i ∈ {1, 2} using (3.59) and the fact that

∂ x ( 1 ρ )(t, x t ) = 0, ∂ xx ( 1 ρ )(t,
x t ) ≤ 0 (indeed x t is a point where 1 ρ reaches its maximum):

∂ t z(t) ≤ 1 ρf i (ρ) (w i -F 1i (ρ))(t, x t ). (3.60)
Let us assume now that (2.23) is satisfied, we have then seen from (3.56) that for any t ∈ (0, T * ) we have w 2 (t, x t ) ≤ 0. We deduce then from (3.60) and (3.35) that:

∂ t z(t) ≤ -F 12 (ρ) ρf 2 (ρ) (t, x t ) ≤ γ α 2 (β + 1) -γ(2α 2 -1) ρ -α 2 (β+1) 2α 2 -1 +γ-1 ρ β-(β-1)α 2 2α 2 -1 (t, x t ) ≤ γ α 2 (β + 1) -γ(2α 2 -1) ρ γ-1-β (t, x t ) ≤ γ α 2 (β + 1) -γ(2α 2 -1) z(t) β+1-γ (3.61) Since γ ∈ [β, β + 1], we deduce that β + 1 -γ ∈ [0, 1]
and applying Gronwall Lemma, we obtain the existence of a continuous function C 2 on R + such that for any t ∈ Q j 0 we have:

z(t) ≤ C 2 (t).
This implies that for any t ∈ (0, T * ) we get: ) and Sobolev embedding we get that for C > 0 large enough we have (see [START_REF] Chen | Large-time behavior of smooth solutions to the isothermal compressible fluid models of Korteweg type with large initial data[END_REF][START_REF] Chen | Global classical solutions to the one-dimensional compressible fluid models of Korteweg type with large initial data[END_REF] for details):

1 ρ (t, •) L ∞ ≤ C 3 (t). ( 3 
ρ L ∞ (R + ,L ∞ ) ≤ C. (3.64)
It proves in particular the inequality (5.160) if we combine (4.98) and (3.63).

Estimates à la Hoff

Introducing the convective derivative vi = ∂ t v i + u∂ x v i , with i ∈ {1, 2}, we rewrite the momentum equation (1.10) as

ρ vi -(1 -α i )∂ x ρ β ∂ x v i + ∂ x ρ γ = 0.
Let us observe that:

- R ∂ x ρ β ∂ x v i ∂ t v i = R ρ β ∂ x v i ∂ xt v i = 1 2 R ρ β ∂ t (∂ x v i ) 2 = 1 2 d dt R ρ β (∂ x v i ) 2 - 1 2 R ∂ t ρ β (∂ x v i ) 2 . (3.65)
Next, we see that:

- R ∂ x ρ β ∂ x v i u∂ x v i = - R u∂ x ρ β (∂ x v i ) 2 - R ρ β u∂ xx v i ∂ x v i = - R u∂ x ρ β (∂ x v i ) 2 + 1 2 R ∂ x uρ β (∂ x v i ) 2 = - R u∂ x ρ β (∂ x v i ) 2 + 1 2 R ρ β ∂ x u(∂ x v i ) 2 + 1 2 R u∂ x ρ β (∂ x v i ) 2 = - 1 2 R u∂ x ρ β (∂ x v i ) 2 + 1 2 R ρ β ∂ x u(∂ x v i ) 2 .
Thus, we gather that:

- R ∂ x ρ β ∂ x v i vi = 1 2 d dt R ρ β (∂ x v i ) 2 - 1 2 R ∂ t ρ β (∂ x v i ) 2 - 1 2 R u∂ x ρ β (∂ x v i ) 2 + 1 2 R ρ β ∂ x u(∂ x v i ) 2 = 1 2 d dt R ρ β (∂ x v i ) 2 + 1 + β 2 R ρ β ∂ x u(∂ x v i ) 2 .
Moreover, we see that:

R ∂ x ρ γ (∂ t v i + u∂ x v i ) = - R ρ γ ∂ tx v i + R u∂ x ρ γ ∂ x v i = - d dt R ρ γ ∂ x v i + R ∂ t ρ γ ∂ x v i + R u∂ x ρ γ ∂ x v i = - d dt R ρ γ ∂ x v i -γ R ρ γ ∂ x v i ∂ x u.
Multiplying the momentum equation with vi yields:

R ρ vi 2 + d dt 1 2 (1 -α i ) R ρ β (∂ x v i ) 2 - R ρ γ ∂ x v i = -(1 -α i ) 1 + β 2 R ρ β (∂ x v i ) 2 ∂ x u + γ R ρ γ ∂ x u∂ x v i (3.66)
Let us multiply the previous estimate by σ (t) = min(1, t) and integrate in time on [0, t] with t > 0, we have then:

σ (t) (1 -α i ) 2 R ρ β (t) (∂ x v i ) 2 (t) + t 0 R σρ vi 2 = σ (t) R (ρ γ -1) ∂ x v i + min{1,t} 0 R 1 2 (1 -α i )ρ β (∂ x v i ) 2 -(ρ γ -1) ∂ x v i -(1 -α i ) 1 + β 2 t 0 R σρ β (∂ x v i ) 2 ∂ x u + γ t 0 R σρ γ ∂ x v i ∂ x u.
Let us denote by:

A i (ρ, v i ) (t) = σ (t) (1 -α i ) 2 R ρ β (t) (∂ x v i ) 2 (t) + t 0 R σρ vi 2 with i ∈ {1, 2}.
Let us observe that using (1.14), (3.64) and (3.63) we have:

σ (t) R (ρ γ -1) ∂ x v i ≤ σ(t) ρ γ -1 ρ β 2 L ∞ t L 2 R σ (t) ρ β (t) (∂ x v i ) 2 (t) 1 2 ≤ 1 1 -α i C (t) ρ γ -1 ρ β 2 2 L ∞ t L 2 + 1 4 (1 -α i ) R σ (t) ρ β (t) (∂ x v i ) 2 (t) ≤ 1 1 -α i C 1 (t) + 1 4 (1 -α i ) R σ (t) ρ β (t) (∂ x v i ) 2 (t) , (3.67 
) with C and C 1 positive continuous functions on R + . Next, we see that owing to the estimate (1.14), (1.17), (3.64) and (3.63), we have that:

min{1,t} 0 R 1 2 (1 -α i )ρ β (∂ x v i ) 2 -(ρ γ -1) ∂ x v i +γ t 0 R σρ γ ∂ x v i ∂ x u ≤ (1+ 1 √ 1 -α i )C 2 (t) ,
(3.68) with C 2 a continuous positive function on R + . Combining (3.66), (3.67) and (3.68) , we thus get for all t ≥ 0:

A i (ρ, v i ) (t) ≤ C (t) (1 + 1 1 -α i ) + 1 4 (1 -α i ) R σ (t) ρ β (t) (∂ x v i ) 2 (t) -(1 -α i ) 1 + β 2 t 0 R σρ β ∂ x u(∂ x v i ) 2 ≤ C 3 (t) (1 + 1 1 -α i ) + 1 2 A i (ρ, u) (t) -(1 -α i ) 1 + β 2 t 0 R σρ β ∂ x u(∂ x v i ) 2
with C 3 a continuous positive fonction on R + . Consequently it yields:

A i (ρ, v i ) (t) ≤ C (t) (1 + 1 1 -α i ) -(1 -α i )(1 + β) t 0 R σρ α (∂ x v i ) 2 ∂ x u
which also implies that:

sup τ ∈[0,t] A i (ρ, v i ) (τ ) ≤ C 1 1-α i (t) -(1 -α i )(1 + β) t 0 R σρ β (∂ x v i ) 2 ∂ x u (3.69) with C 1 1-α i
an increasing positive continuous function on R + . Let us observe that for all ε > 0 we have using Gagliardo-Nirenberg inequality (1.14), (1.17) and (3.64): (M C 0 ) (with M > 0 sufficiently large that we will determinate later) and the fact that

t 0 σ 1 2 (τ ) (1 -α i )ρ β ∂ x v i -ρ γ (τ ) 2 L ∞ ≤ 2 t 0 σ 1 2 (τ ) (1 -α i )ρ β ∂ x v i -(ρ γ -1) (τ ) 2 L ∞ + 2t (3.70) ≤ 2C t 0 σ 1 2 (τ ) (1 -α i )ρ β ∂ x v i -(ρ γ -1) (τ ) L 2 ∂ x (1 -α i )ρ β ∂ x v i -ρ γ (τ ) L 2 + 2t ≤ C ε t 0 (1 -α i )ρ β ∂ x v i -(ρ γ -1) (τ ) 2 L 2 + ε t 0 σ (τ ) ∂ x (1 -α i )ρ β ∂ x v i -ρ γ (τ ) 2 L 2 + 2t ≤ C ε t 0 (1 -α i )ρ β ∂ x v i -(ρ γ -1) (τ ) 2 L 2 + ε t 0 σ (τ ) ρ vi (τ ) 2 L 2 + 2t ≤ C (t, ε) + ε ρ L ∞ ([0,t],L ∞ ) A i (ρ, v i ) (t) (3.71) ≤ C (t, ε) + εC 0 A i (ρ, v i ) (t) , ( 3 
u = 1 √ 1-4c ((1 -α 2 )v 2 -(1 -α 1 )v 1 )
we obtain that for C > 0 large enough: 

| t 0 R σρ β (∂ x v i ) 2 ∂ x u| = 1 √ 1 -4c | t 0 R σ(∂ x v i ) 2 ρ β ((1 -α 2 )∂ x v 2 -(1 -α 1 )∂ x v 1 )| ≤ C t 0 σ 1 4 (1 -α 2 )ρ β ∂ x v 2 -ρ γ L ∞ + (1 -α 1 )ρ β ∂ x v 1 -ρ γ L ∞ σ 3 4 R (∂ x v i ) 2 (τ, x) dx dτ ≤ C t 0 σ 1 2 (τ ) (1 -α 2 )ρ β ∂ x v 2 -ρ γ (τ ) 2 L ∞ + (1 -α 1 )ρ β ∂ x v 1 -ρ γ (τ ) 2 L ∞ + 2 t 0 σ 3 2 (τ ) R (∂ x v i ) 2 (τ ) dx 2 ≤ C (t) + 1 M A 1 (ρ, v 1 ) (t) + A 2 (ρ, v 2 ) (t) + C t 0 1 ρ (τ ) 2β L ∞ σ 3 2 (τ ) ( R ρ β (∂ x v i ) 2 (τ ) dx) 2 ≤ C (t) + 1 M A 1 (ρ, v 1 ) (t) + A 2 (ρ, v 2 ) (t) + C 1 (t) t 0 σ (τ ) ( R ρ β (∂ x v i ) 2 (τ ) dx) 2 dτ ≤ C (t) + 1 M A 1 (ρ, v 1 ) (t) + A 2 (ρ, v 2 ) (t) + 2C 1 (t) 1 -α i t 0 A i (ρ, v i ) (τ ) R (ρ β ∂ x v i ) 2 (τ ) dτ, (3.73 
A i (ρ, v i ) (τ ) ≤ C 1 1-α i (t) + (1 -α i )(1 + β) M sup τ ∈[0,t] A 1 (ρ, v 1 ) (τ ) + sup τ ∈[0,t] A 2 (ρ, v 1 ) (τ ) + C 3 (t) t 0 A i (ρ, v i ) (τ ) R (ρ β ∂ x v i ) 2 (τ ) dτ, (3.74) 
with C 3 an increasing continuous function. Using Gronwall's lemma, (1.17) and taking M large enough leads to:

sup τ ∈[0,t] A i (ρ, v i ) (τ ) ≤ C 1 1-α 1 (t) , (3.75) with C 1 1-α 1
an increasing continuous function depending on 1 1-α 1 . The control over A i (ρ, v i ) and (3.72) yields

t 0 σ 1 2 (τ ) (1 -α i )ρ β ∂ x v i -ρ γ (τ ) 2 L ∞ dτ ≤ C 1 1-α 1 (t) , with C 1 1-α 1
an increasing continuous function depending on 1 1-α 1 and consequently we get using in addition (3.64) for i ∈ {1, 2}:

t 0 σ 1 2 (τ ) ∂ x v i (τ ) 2 L ∞ dτ ≤ C 1 1-α 1 (t) . (3.76)
The last inequality also provides an estimate in L 1 t (L ∞ ) of ∂ x v i for any t > 0 with i ∈ {1, 2} using Cauchy-Schwarz inequality:

t 0 ∂ x v i (τ ) L ∞ dτ ≤ t 0 σ -1 2 (τ ) dτ 1 2 t 0 σ 1 2 (τ ) ∂ x v i (τ ) 2 L ∞ 1 2 ≤ C 1 1-α 1 (t) .
In particular it implies that ∂ x u belongs to L 1 loc (L ∞ (R)). Next, we aim at obtaining estimate for the L 2 -norm of ∂ x vi , to do this we apply the operator ∂ t + u∂ x to the momentum equations (1.10):

(∂ t + u∂ x ) (ρ vi ) -(1 -α i )(∂ t + u∂ x )∂ x ρ β ∂ x v i + (∂ t ∂ x P (ρ) + u∂ xx P (ρ)) = 0. (3.77)
and we test the previous equation with vi for i ∈ {1, 2}. Next we observe that:

R (ρ vi ) t vi = R ρ t vi 2 + 1 2 R ρ d vi 2 dt = 1 2 d dt R ρ vi 2 + 1 2 R ρ t vi 2 .
We have in addition:

R u∂ x (ρ vi ) vi = - R ρ vi ∂ x (u vi ) = - R ∂ x uρ vi 2 + 1 2 R (ρu) x vi 2 .
Summing the above two relations gives:

R (∂ t + u∂ x ) (ρ vi ) vi = 1 2 d dt R ρ vi 2 - R ∂ x uρ vi 2 . (3.78)
Next, we focus on the second term of (3.77):

-

R (∂ t + u∂ x )∂ x ρ β ∂ x v i vi = R ∂ t ρ β ∂ x v i ∂ x vi + R ρ β ∂ x ∂ t v i ∂ x vi + R ∂ x (ρ β ∂ x v i )∂ x (u vi ) (3.79)
Let us deal with the last term appearing in the above inequality :

R ∂ x (ρ β ∂ x v i )∂ x (u vi ) = R ∂ x ρ β ∂ x v i ∂ x u vi + R u∂ x ρ β ∂ x v i ∂ x vi + R ρ β ∂ 2 xx v i ∂ x u vi + R ρ β u∂ 2 xx v i ∂ x vi = R ∂ x ρ β ∂ x v i ∂ x u vi + R u∂ x ρ β ∂ x v i ∂ x vi - R ∂ x v i ∂ x u∂ x (ρ β vi ) - R ∂ x v i ∂ xx uρ β vi + R ρ β ∂ x (u∂ x v i )∂ x vi - R ∂ x u∂ x v i ρ β ∂ x vi (3.80)
Combining the two identities (3.79) and (3.80) we obtain:

-

R (∂ t + u∂ x )∂ x (ρ α ∂ x u) vi = R ∂ t ρ β ∂ x v i ∂ x vi + R u∂ x ρ β ∂ x v i ∂ x vi + R ρ β ∂ x ∂ t v i ∂ x vi + R ρ β ∂ x (u∂ x v i )∂ x vi + R ∂ x ρ β ∂ x v i ∂ x u vi - R ∂ x v i ∂ x u∂ x (ρ β vi ) - R ∂ x v i ∂ xx uρ β vi - R ∂ x u∂ x v i ρ β ∂ x vi = -β R ρ β ∂ x u∂ x v i ∂ x vi + R ρ β (∂ x vi ) 2 + R ∂ x ρ β ∂ x v i ∂ x u vi - R ∂ x v i ∂ x u∂ x (ρ β vi ) - R ∂ x v i ∂ xx uρ β vi - R ∂ x u∂ x v i ρ β ∂ x vi = -β R ρ β ∂ x u∂ x v i ∂ x vi + R ρ β (∂ x vi ) 2 - R ∂ x v i ∂ xx uρ β vi -2 R ∂ x u∂ x v i ρ β ∂ x vi (3.81)
Let us observe that:

R (∂ x ρ γ t + u∂ xx ρ γ ) vi = - R ρ γ t ∂ x vi + R u∂ xx ρ γ vi = R u∂ x ρ γ ∂ x vi + γ R ρ γ ∂ x u∂ x vi + R u∂ xx ρ γ vi = - R ∂ x u∂ x ρ γ vi + γ R ρ γ ∂ x u∂ x vi = R ∂ x uρ vi 2 -(1 -α i ) R ∂ x u∂ x ρ β ∂ x v i vi + γ R ρ γ ∂ x u∂ x vi , = R ∂ x uρ vi 2 + (1 -α i ) R ρ β ∂ x v i ∂ x ( vi ∂ x u) + γ R ρ γ ∂ x u∂ x vi , = R ∂ x uρ vi 2 + (1 -α i ) R ρ β ∂ x u∂ x v i ∂ x vi + (1 -α i ) R vi ρ β ∂ x v i ∂ 2 xx u + γ R ρ γ ∂ x u∂ x vi , (3.82 
) where we have used the equation of the momentum to replace ∂ x ρ γ by:

-∂ x ρ γ = ρ vi -(1 -α i )∂ x (ρ β ∂ x v i ).
Adding the equalities (3.78), (3.81) and (3.82) we get:

1 2 d dt R ρ vi 2 - R ∂ x uρ vi 2 -(1 -α i )β R ρ β ∂ x u∂ x v i ∂ x vi + (1 -α i ) R ρ β (∂ x vi ) 2 -(1 -α i ) R ∂ x v i ∂ xx uρ β vi -2(1 -α i ) R ∂ x u∂ x v i ρ β ∂ x vi + R ∂ x uρ vi 2 + (1 -α i ) R ρ β ∂ x u∂ x v i ∂ x vi + (1 -α i ) R vi ρ β ∂ x v i ∂ xx u + γ R ρ γ ∂ x u∂ x vi = 0.
We have then obtained:

1 2 d dt R ρ vi 2 + (1 -α i ) R ρ β (∂ x vi ) 2 = (1 -α i )(1 + β) R ρ β ∂ x u∂ x v i ∂ x vi -γ R ρ γ ∂ x u∂ x vi .
Multiplying with σ 2 (t) and integrating in time on [0, t] with t > 0 yields:

B i (ρ, v i ) (t) = 1 2 R σ 2 (t) ρ vi 2 (t) + (1 -α i ) t 0 R σ 2 (t) ρ β (∂ x vi ) 2 = min(1,t) 0 R σρ vi 2 + (1 -α i ) (β + 1) t 0 R σ 2 ρ β ∂ x u∂ x v i ∂ x vi -γ t 0 R σ 2 ρ γ ∂ x u∂ x vi .
(3.83)

From (3.75) we deduce that,

min(1,t) 0 R σρ vi 2 ≤ A i (ρ, v i ) (1) ≤ C, (3.84) 
for all t > 0. Next using (3.64) we get:

|γ t 0 R σ 2 ρ γ ∂ x u∂ x vi | ≤ γ ρ γ-β L ∞ t L ∞ t 0 R σ 2 ρ β (∂ x u) 2 1 2 t 0 R σ 2 ρ β (∂ x vi ) 2 1 2 ≤ C (t) (1 + 1 1 -α i ) + 1 8 B i (ρ, v i ) (t) , (3.85) 
with C a continuous increasing function. Finally, using again (3.75), (1.14), (1.17), (3.64) and (3.63), we get:

(β + 1) | t 0 R σ 2 ρ β ∂ x u∂ x v i ∂ x vi | ≤ 1 4 t 0 R σ 2 ρ β (∂ x vi ) 2 + (β + 1) 2 t 0 R σ 2 ρ β (∂ x u) 2 (∂ x v i ) 2 ≤ 1 4(1 -α i ) B i (ρ, v i ) (t) + (β + 1) 2 1 ρ 2β L ∞ t (L ∞ ) t 0 R σ 2 ρ 3β (∂ x u) 2 (∂ x v i ) 2 ≤ 1 4(1 -α i ) B i (ρ, v i ) (t) + C (t) t 0 σ 2 ρ β ∂ x u 2 L ∞ R ρ β (∂ x v i ) 2 ≤ 1 4(1 -α i ) B i (ρ, v i ) (t) + C (t) 1 -α i sup τ ∈[0,t] σ 2 (τ ) (ρ β ∂ x u) (τ ) 2 L ∞ . (3.86)
Let us observe that for all t > 0 we have using Gagliardo-Nirenberg inequality with C > 0 large enough, (4.98), (3.63) and the fact that u :

= 1 √ 1-4c ((1 -α 2 )v 2 -(1 -α 1 )v 1 ) σ 2 (t) ρ β ∂ x u (t) 2 L ∞ = 1 1 -4c σ 2 (t) (1 -α 2 )ρ β ∂ x v 2 -(ρ γ -1) -(1 -α 1 )ρ β ∂ x v 1 + (ρ γ -1) (t) 2 L ∞ ≤ Cσ 2 (t) 1 -4c (1 -α 2 )ρ β ∂ x v 2 -(ρ γ -1) (t) L 2 ∂ x (1 -α 2 )ρ β ∂ x v 2 -(ρ γ -1) (t) L 2 + (1 -α 1 )ρ β ∂ x v 1 -(ρ γ -1) (t) L 2 ∂ x (1 -α 1 )ρ β ∂ x v 1 -(ρ γ -1) (t) L 2 ≤ Cσ 2 (t) 1 -4c (1 -α 2 )ρ β ∂ x v 2 L 2 + C (t) ρ -1 L 2 ρ v2 L 2 + Cσ 2 (t) 1 -4c (1 -α 1 )ρ β ∂ x v 1 L 2 + C (t) ρ -1 L 2 ρ v1 L 2 ≤ C (t) σ 1 2 (t) σ 1 2 (1 -α 2 )ρ β ∂ x v 2 L 2 + σ 1 2 (t)C (t) σ(t) ρ 1 2 v2 L 2 (3.87) + C (t) σ 1 2 (t) σ 1 2 (t) (1 -α 1 )ρ β ∂ x v 1 L 2 + σ 1 2 (t)C (t) σ(t) ρ 1 2 v1 L 2 ≤ C 1 (t) A 1 2 2 (ρ, v 2 ) (t) + C 1 (t) B 1 2 2 (ρ, v 2 ) (t) + C 1 (t) A 1 2 1 (ρ, v 1 ) (t) + C 1 (t) B 1 2 1 (ρ, v 1 ) (t) , (3.88) 
with C, C 1 continuous functions on R + . Thus, we get from (3.86), (3.88), (3.75) and Young inequality:

(1 -α i ) (β + 1) | t 0 R σρ β ∂ x u∂v i ∂ x vi | ≤ 1 4 B i (ρ, v i ) (t) + C (t) A 1 2 2 (ρ, v 2 ) (t) + C (t) B 1 2 2 (ρ, v 2 ) (t) + C (t) A 1 2 1 (ρ, v 1 ) (t) + C (t) B 1 2 1 (ρ, v 1 ) (t) ≤ C 1 (t) + 1 2 B i (ρ, v i ) (t) + 1 4 B j (ρ, v j ) (t) .
(3.89) with j = i and j ∈ {1, 2} and with C 1 a continuous function on R + . Gathering (3.84), (3.85) and (3.89) yields the fact that B i is also bounded:

B i (ρ, v i ) (t) ≤ C (t) , (3.90) 
with C a continuous increasing function. The control over 1 ρ L ∞ , A i (ρ, u) and B i (ρ, u) gives us, via the estimate (3.88) the following

σ (t) ∂ x u(t) L ∞ ≤ C (t) , (3.91) 
for any t ≥ 0. It concludes the proof of the Theorem 2.1.

4 Proof of the Theorem 2.2

Since we deal with initial data which are less regular as in the Theorem 2.1, we can not directly used the Theorem 3.3 for getting strong solution in finite time. In order to overcome this difficulty we start by regularizing the initial data as follows:

       ρ n 0 = j n * ρ 0 , v n 01 = j n * v 10 , u n 0 = v n 10 -α 1 ∂ x ϕ (ρ n 0 ) v n 02 = u n 0 + α 2 ∂ x ϕ(ρ n 0 ). (4.92)
with j n a regularizing kernel, j n (y) = nj(ny) with 0 ≤ j ≤ 1, R j(y)dy = 1, j ∈ C ∞ (R) and suppj ⊂ [-2, 2]. Here v 10 = u 0 + α 1 ∂ x ϕ(ρ 0 ) and v 20 = u 0 + α 2 ∂ x ϕ(ρ 0 ). In particular since u 0 , ∂ x ρ 0 , ρ and 1 ρ 0 are in L ∞ , we deduce easily that there exists C > 0 independent on n such that for any n ∈ N we have:

v n 01 L ∞ + v n 02 L ∞ ≤ C. (4.93)
We deduce that (ρ n 0 -1, v n 0,1 ) belong to all Sobolev spaces H s (R) with s ≥ 0 and that:

0 < 1 ρ 0 L ∞ ≤ ρ n 0 ≤ ρ 0 L ∞ < +∞. (4.94)
By composition theorem for Sobolev spaces we can prove that ϕ(ρ n 0 ) -ϕ(1) belongs to H k (R) for any k ≥ 0 and consequently we obtain that u n 0 ∈ H k (R) for k ≥ 3. Finally we have for x > y and using (2.31):

v n 01 (x) -v n 01 (y) x -y = R ( v 01 (x -z) -v 01 (y -z) x -y )j n (z)dz ≤ C 0
and in particular we deduce that for any x ∈ R, we have:

∂ x v n 01 (x) ≤ C 0 . (4.95) 
where C 0 is the constant appearing in (2.31) . From (4.94) and (4.95) we deduce also that:

w n 01 (x) ≤ C 1 (4.96)
withC 1 > 0 large enough and from Proposition 3.1 we have set

w n 01 = f 1 (ρ n 0 )∂ x v n 01 + F 1,1 (ρ n ).
Next, Theorem 3.3 gives the existence of strong solutions (ρ n , u n ) of the system ((1.1) on a finite time interval (0, T n ) with T n > 0. Our main goal now is to prove that for any n, we have T n = +∞. To do this, we are going again to use the blow-up criterion of Theorem 3.3. More precisely we wish to show that it exists a continuous fonction on R + such that for any n ∈ N we have for any t ∈ (0, min(T n , T * )) with T * > 0 independent on n and depending in a suitable way of the initial data (ρ 0 , u 0 ) and of α 2 :

1 ρ n (t, •) L ∞ ≤ C(t), (4.97) 
with C a continuous function on R + . We now simply recall that the strong solution (ρ n , u n ) satisfy the energy estimates (1.14) and (1.17) for any t ∈ (0, T n ). Using (1.14), (1.17) and Sobolev embedding we get that for C > 0 large enough we have for any t ∈ (0, T n ) (see [START_REF] Jiu | The Cauchy problem for 1D compressible flows with densitydependent viscosity coefficients[END_REF][START_REF] Burtea | New effective pressure and existence of global strong solution for compressible Navier-Stokes equations with general viscosity coefficient in one dimension[END_REF][START_REF] Chen | Large-time behavior of smooth solutions to the isothermal compressible fluid models of Korteweg type with large initial data[END_REF][START_REF] Chen | Global classical solutions to the one-dimensional compressible fluid models of Korteweg type with large initial data[END_REF] for details):

ρ n (t, •) L ∞ ≤ C. (4.98) 4.1 Estimate of the L ∞ norm of ( 1 ρn ) n∈N
We are going now to proceed as in the section 3 by considering the effective pressure w 1,n which satisfies the parabolic equation (3.37). Since lim

x→±∞ w 1,n (t, x) = F 1,1 (1) 
, we deduce that for all t ∈ [0, T n ) we have:

sup x∈R w 1,n (t, x) ≥ F 1,1 (1) 
. (4.99)

We set:

D n := t ∈ (0, T n ) : sup x∈R w 1,n (t, x) > F 1,1 (1) 
which is open in [0, T n ) and we have:

D n = I n 0 ∪ j∈N I n j ,
where I n j j≥1

with I n j = a n j , b n j are open disjoint intervals and

I 0 = ∅ if sup x∈R w 1,n (0, x) = F 1,1 (1) 
and

I n 0 = [0, b n 0 ) for some b n 0 ∈ (0, T n ) if sup x∈R w 1,n (0, x) > F 1,1 (1) 
. From the definition of I j we have that sup

x∈R w 1,n (a j , x) = F 1,1 (1) 
and for all t ∈ I n j since w 1,n (t, •) is continuous, it reaches its maximum on R. It implies that for any j ∈ N and any t ∈ I j there exists a point x n t ∈ R such that:

sup x∈R w 1,n (t, x) def. 
= w n M (t) = w 1,n (t, x n t ).

As previously we are going simply evaluate w 1,n on an interval I n j 0 , it is important to note for the sequel that we have from (4.96):

w n 01 (x) ≤ C 1 (4.100)
Proceeding as in the previous section, we recall that w n M is differentiable almost everywhere on D n and for any t ∈ I n j 0 , we deduce from (3.37) that:

∂ t w n M (t) + w n M (t)(g 21 ) n (t) + (g 31 ) n (t) + (g 41 ) n (t)(w n M )(t) 2 ≤ 0, (4.101) 
with:

(g 21 ) n (t) = -(α 1 -1)α 1 ρ n (t, x n t ) β-3 (β -1)α 1 -β 2α 1 -1 β + 1 2α 1 -1 (∂ x ρ n )(t, x n t ) 2 + ρ n (t, x n t ) γ-β γ 2α 1 -1 -3α 1 β -3α 1 + 2α 1 γ -γ + 2β + 2 -α 1 (β + 1) + γ(2α 1 -1) . (4.102) (g 31 ) n (t) = ρ n (t, x n t ) -α 1 (β+1) 2α 1 -1 +2γ-β γ 2 (-α 1 (β + 1) + γ(2α 1 -1)) 2 (β + 1 -γ) + (∂ x ρ n ) 2 (t, x n t )ρ n (t, x n t ) -α 1 (β+1) 2α 1 -1 +γ+β-3 γα 1 (γ -β -1)(γ -β) (-α 1 (β + 1) + γ(2α 1 -1)) (4.103)
and:

g n 41 (t) = (α 1 -1) β + 1 2α 1 -1 ρ n (t, x n t ) -(β-1)α 1 +β 2α 1 -1 . (4.104) First case, γ ∈ [β, β + 1[
First we are going to study the case γ ∈ [β, β + 1[, we know from the proposition 3.2 that (g 31 ) n (t) ≥ 0 then from (4.101) we deduce that w n M satisfies the following equation on I n j with j ≥ 0:

∂ t w n M (t) + w n M (t)(g 21 ) n (t) + (g 41 ) n (t)(w n M )(t) 2 ≤ 0, (4.105) 
It implies that w n M is a subsolution of a Bernoulli equation. Now we can consider the behavior of w n M (t) on I n j = (a n j , b n j ) when j ≥ 1 and where we know that w n M (a n j ) = F 1,1 (1) ≤ 0 from Proposition 3.2. From (4.105) using the fact that w M n is absolutely continuous and that (g 21 ) n , (g 41 ) n are in L 1 (0, T n ) we have for any t ∈ I n j with j ≥ 1: It implies in particular that for any t in I n j we have for j ≥ 1:

∂ t (
w n M (t) ≤ 0. (4.107)
We are in a similar situation if we consider I n 0 and that we assume w n M (0) ≤ 0. We are then reduced to study the behavior of w n M on I n 0 when w n M (0) > 0. Now as previously since w M n is continuous we deduce that:

I n 0 ∩ {t ∈ R + , w M n (t) > 1 2 } = ∪ j K n j ,
with K n 0 = [0, c n 0 [ and K n j =]c n j , d n j [ for j ≥ 1 with w n M (c n j ) = 1 2 for j ≥ 1. We are then reduced to study the behavior of w n M on each K n j with j ≥ 0. Now we can observe that for any t ∈ (0, T n ) we have:

-(α 1 -1)α 1 ρ n (t, x n t ) β-3 (β -1)α 1 -β 2α 1 -1 β + 1 2α 1 -1 (∂ x ρ n )(t, x n t ) 2 ≤ 0 ρ n (t, x n t ) γ-β γ 2α 1 -1 -3α 1 β -3α 1 + 2α 1 γ -γ + 2β + 2 -α 1 (β + 1) + γ(2α 1 -1) ≥ 0. (4.108)
The second inequality is true if α 1 is sufficiently close from 1 (it depends in particular of γ and β), in other words if c > 0 the capillary coefficient is sufficiently small. It is exactly the case that we consider in the Theorem 2.2. From (4.105) we deduce then that for any t ∈ K n j :

∂ t w n M (t) ≤ w n M (t)(g 211 ) n (t) -(g 41 ) n (t)(w n M )(t) 2 . (4.109)
with:

(g 211 ) n (t) = (α 1 -1)α 1 ρ n (t, x n t ) β-3 (β -1)α 1 -β 2α 1 -1 β + 1 2α 1 -1 (∂ x ρ n )(t, x n t ) 2 (4.110)
From (4.104) we have always g n 41 (t) ≤ 0 and for any t ∈ K n j we get using (4.98):

|g n 41 (t)| ≤ (1 -α 1 ) β + 1 2α 1 -1 ρ n -(β-1)α 1 +β 2α 1 -1 L ∞ ((0,Tn),L ∞ ) ≤ (1 -α 1 ) β + 1 2α 1 -1 C -(β-1)α 1 +β 2α 1 -1 (4.111)
From (4.102), we have for any t ∈ K n j and using (4.98), there exists C > 0 large enough and independent on n such that:

|(g 211 ) n (t)| ≤ C(1 -α 1 ) ρ n (t, •) 1-β L ∞ ∂ x ϕ(ρ n )(t, •) 2 L ∞ . (4.112) 
We recall now that

∂ x ϕ(ρ n ) = 1 2α 1 -1 (v 1,n -v 2,n
), it implies then that there exists C > 0 large enough such that for t ∈ K n j :

|(g 211 ) n (t)| ≤ C(1 -α 1 ) (v 1,n -v 2,n )(t, •) 2 L ∞ 1 ρ n (t, •) β-1 . (4.113)
We must now estimate the L ∞ norm of v 1,n and v 2,n , we recall that v 1,n and v 2,n satisfy the equations (1.10) that we can rewrite as follows using the fact that

∂ x ρ γ n = γ 2α 1 -1 ρ γ+1-β n (v 1,n -v 2,n ):      ρ n ∂ t v 1,n + ρ n u n ∂ x v 1,n -(1 -α 1 )∂ x (µ(ρ n )∂ x v 1,n ) + γ 2α 1 -1 ρ γ+1-β n (v 1,n -v 2,n ) = 0 ρ n ∂ t v 2,n + ρ n u n ∂ x v 2,n -(1 -α 2 )∂ x (µ(ρ n )∂ x v 2,n ) + γ 2α 1 -1 ρ γ+1-β n (v 1,n -v 2,n ) = 0
(4.114) Applying again a maximum principle, we get using (4.93) for any t ∈ (0, T n ) and for C > 0 large enough:

v 1,n (t, •) L ∞ + v 2,n (t, •) L ∞ ≤ C + C t 0 ρ n (s, •) γ+1-β L ∞ ( v 1,n (s, •) L ∞ + v 2,n (s, •) L ∞ )ds.
(4.115) From (4.98) and using Gronwall inequality, there exists C > 0 large enough such that for any t ∈ (0, T n ) we have:

v 1,n (t, •) L ∞ + v 2,n (t, •) L ∞ ≤ Ce Ct .
(4.116)

Combining now (4.116) , (4.98)and (4.113), it yields that for any t ∈ K n j and C > 0 large enough:

|(g 211 ) n (t)| ≤ C(1 -α 1 )e Ct 1 ρ n (t, •) β-1 L ∞ . (4.117) 
Combining (4.117), (4.111) and (4.119), we have for C > 0 large enough and t ∈ K n j with j ≥ 0:

∂ t w n M (t) ≤ C(1 -α 1 )e Ct 1 ρ n (t, •) β-1 L ∞ w n M (t) + (1 -α 1 )C(w n M )(t) 2 . (4.118)
In particular on K n j since w n M is strictly positive and 1

w n M is Lipschitz on K n j then absolutely continuous. It will be possible in particular to apply Gronwall Lemma. More precisely dividing (4.119) by (w n M ) 2 we have:

∂ t (- 1 w n M (t) ) ≤ C(1 -α 1 )e Ct 1 ρ n (t, •) β-1 L ∞ 1 w n M (t) + (1 -α 1 )C. (4.119)
It implies in particular that for t ∈ K n j we have:

∂ t (- 1 w n M (t) e t c n j C(1-α 1 )e Cs 1 ρn(s,•) β-1 L ∞ ds ) ≤ (1 -α 1 )Ce t c n j C(1-α 1 )e Cs 1 ρn(s,•) β-1 L ∞ ds . (4.120)
We can now integrate since we work with absolutely continuous function, and we have:

- 1 w n M (t) e t c n j C(1-α 1 )e Cs 1 ρn(s,•) β-1 L ∞ ds + 1 w n M (c n j ) ≤ (1-α 1 )C t c n j e u c n j C(1-α 1 )e Cs 1 ρn(s,•) β-1 L ∞ ds du.
(4.121) It gives in particular using the fact that w n M (c n j ) = 1 2 for j ≥ 1 that for any t ∈ K n j with j ≥ 1:

1 w n M (t) ≥ e -t c n j C(1-α 1 )e Cs 1 ρn(s,•) β-1 L ∞ ds (2 -(1 -α 1 )C t c n j e u c n j C(1-α 1 )e Cs 1 ρn(s,•) β-1 L ∞ ds du). (4.122)
We deduce now that for any t ∈ K n j with j ≥ 1 we have:

w n M (t) ≤ e t c n j C(1-α 1 )e Cs 1 ρn(s,•) β-1 L ∞ ds 1 2 -(1 -α 1 )C t c n j e u c n j C(1-α 1 )e Cs 1 ρn(s,•) β-1 L ∞ ds du . (4.123) provided that we have: 2 -(1 -α 1 )C t c n j e u c n j C(1-α 1 )e Cs 1 ρn(s,•) β-1 L ∞ ds du > 0.
(4.124)

We have similarly for t ∈ K n 0 : 

w n M (t) ≤ e t c n j C(1-α 1 )e Cs 1 ρn(s,•) β-1 L ∞ ds 1 1 w M n (0) -(1 -α 1 )C t c n j e u c n j C(1-α 1 )e Cs
{t ∈ [0, T n ), sup x∈R 1 ρ n (t, x) > 1} = Q n 0 ∪ ∪ j≥1 Q n j ,
with Q n j open intervals. From (3.60), (3.35) we have for any t ∈ Q n j with j ≥ 0: Now we are going to fix T > 0 and we are going to prove that for any n ∈ N we have T n ≥ T provided that c > 0 the capillary coefficient is sufficiently small. To do this we set:

∂ t z n (t) ≤ 1 ρ n f 1 (ρ n ) (w n -F 11 (ρ n ))(t, x n t ) ≤ ρ (1-α 1 )(β+1) 2α 1 -1 n (t, x n t )w n (t, x n t ) + γ α 1 (β + 1) -γ(2α 1 -1) ρ γ-β-1 n (t,
T 1,n = sup{t ∈ [0, min(T, T n )[, ∀s ∈ (0, t) 1 ρ n (s, •) L ∞ < M ( 1 ρ 0,n L ∞ + CT )e CT }
with C defined in (4.128) and M > 2 sufficiently large that we will fix later. We wish now to prove that for any n ∈ N, we have

T 1,n = min(T, T n ) (4.129)
provided that c > 0 is sufficiently small. If we prove this claim, we deduce then that for any n ∈ N, we have

1 ρ n (s, •) L ∞ ([0,T 1,n ],L ∞ ) ≤ M ( 1 ρ 0,n L ∞ + CT )e CT < +∞
Using the blow-up criterion of Theorem 3.3, we deduce that necessarily we have for any n ∈ N, T n > T and in addition for any n ∈ N we have:

1 ρ n (s, •) L ∞ ([0,T ],L ∞ ) ≤ M ( 1 ρ 0,n L ∞ + CT )e CT (4.130)
Let us prove now that (4.129) is satisfied provided that c > 0 is small enough. First by contin uity of the fonction z n (t) = 1 ρn(t,•) L ∞ we deduce that T 1,n > 0 and that

E n = {t ∈ [0, min(T, T n )], ∀s ∈ (0, t) 1 ρn(s,•) L ∞ < 2( 1 ρ 0,n L ∞ + CT )e CT } = [0, T 1,n
[. We are now going to assume by absurd that T 1,n < min(T, T n ). From (4.123) we deduce that for any t ∈ K n j ∩ [0, T 1,n [ with j ≥ 1 we have:

w n M (t) ≤ e t c n j C(1-α 1 )e Cs (M ( 1 ρ 0,n L ∞ +CT )e CT ) β-1 ds × 1 2 -(1 -α 1 )C t c n j e u c n j C(1-α 1 )e Cs (M ( 1 ρ 0,n L ∞ +CT )e CT ) β-1 ds du . (4.131)
It is now clear that choosing c > 0 sufficiently small, then 1 -α 1 is sufficiently small such that (4.124) is satisfied for any t ∈ K n j ∩ [0, T 1,n [ with j ≥ 1 and we have in addition:

w n M (t) ≤ 1. (4.132)
We have a similar result for t ∈ K n 0 ∩ [0, T 1,n [ taking c > 0 sufficiently small which can written as follows:

w n M (t) ≤ 2w n M (0). (4.133)
From (4.132),( 4.133) and from the definition of K n j with j ≥ 0, we deduce that for any t ∈ [0, T 1,n [ we have:

w n M (t) ≤ max(1, 2w n M (0)). (4.134)
From (4.128), (4.134) and for any t ∈ [0, T 1,n [∩Q n j with j ≥ 0 we have:

∂ t z n (t) ≤ C max(1, 2w n M (0)) + C(1 + z n (t)). (4.135)
In particular using Gronwall Lemma, it implies that for any t ∈ [0, T 1,n [∩Q n j with j ≥ 1 and using the fact that if Q n j =]e n j , f n j [ we have z n (e n j ) = 1:

z n (t) ≤ (1 + C(1 + max(1, 2w n M (0))T )e CT (4.136)
For t ∈ [0, T 1,n [∩Q n j we have:

z n (t) ≤ ( 1 ρ 0,n L ∞ + C(1 + max(1, 2w n M (0))T )e CT (4.137)
And finally when t 

∈ [0, T 1,n [\(Q n 0 ∪ ∪ j≥1 Q n j ),
z n (t) ≤ ( 1 ρ 0,n L ∞ + C(1 + max(1, 2w n M (0))T )e CT (4.139) Now taking M = 2(1 + max(1, 2w n M (0))) we have proved that for any t ∈ [0, T 1,n [ we have: 1 ρ n (t, •) L ∞ ≤ M 2 ( 1 ρ 0,n L ∞ + CT )e CT } (4.140)
It contradicts the definition of T 1,n and it implies that T 1,n < min(T, T n ) is absurd. In conclusion we have proved that for any n ∈ N we have T n > T and from (4.130):

1 ρ n (s, •) L ∞ ([0,T ],L ∞ ) ≤ M ( 1 ρ 0 L ∞ + CT )e CT (4.141) Second case, γ ≥ β + 1
The only point we change when we consider the case γ ≥ β + 1 is that the term (g 31 ) n (t) is not necessary positive when γ ≥ β + 1. In particular we recall that:

(g 31 ) n (t) = ρ n (t, x n t ) -α 1 (β+1) 2α 1 -1 +2γ-β γ 2 (-α 1 (β + 1) + γ(2α 1 -1)) 2 (β + 1 -γ) + (∂ x ρ n ) 2 (t, x n t )ρ n (t, x n t ) -α 1 (β+1) 2α 1 -1 +γ+β-3 γα 1 (γ -β -1)(γ -β) (-α 1 (β + 1) + γ(2α 1 -1)) (4.142)
We can observe that the term (∂

x ρ n ) 2 (t, x n t )ρ n (t, x n t ) -α 1 (β+1) 2α 1 -1 +γ+β-3 γα 1 (γ-β-1)(γ-β) (-α 1 (β+1)+γ(2α 1 -1)
) is always positive provided that c > 0 is sufficiently small. Indeed when γ = β + 1 this term is null and when γ > β + 1 it requires that α 1 ≥ γ γ+(γ-β-1) .In opposite the term ρ n (t, x n t )

-α 1 (β+1) 2α 1 -1 +2γ-β γ 2
(-α 1 (β+1)+γ(2α 1 -1)) 2 (β + 1 -γ) is always negative, we deduce then from (4.101) that for any t ∈ D n we have:

∂ t w n M (t) + w n M (t)(g 21 ) n (t) + (g 41 ) n (t)(w n M )(t) 2 + g n 5 (t) ≤ 0, (4.143)
with:

g n 5 (t) = ρ n (t, x n t ) -α 1 (β+1) 2α 1 -1 +2γ-β γ 2 (-α 1 (β + 1) + γ(2α 1 -1)) 2 (β + 1 -γ).
(4.144)

It is now easy to observe that for c > 0 the capillary coefficient we have -α 1 (β+1) 2α 1 -1 +2γ-β > 0 and then we can bound the term g n 5 using the L ∞ estimate on ρ n (4.98). We can then proceed as in the previous section and show that for any T > 0 it exists c 0 > 0 sufficiently small such that for any c ≤ c 0 we have T n > T for any n ∈ N and for any t ≤ T we have for any n ∈ N:

1 ρ n L ∞ ([0,T ]×R) ≤ C(T ) < +∞ (4.145)
with C(T ) sufficiently large. In addition we have seen that for γ ≥ β we have always for any n ∈ N, t ∈ [0, T ] and x ∈ R: 

w 1,n (t, x) ≤ C(T ), ( 4 

Compactness

Let us fix now T > 0 and we wish now to prove that the approximate solution (ρ n , u n ) n∈N converge up to a subsequence to a unique solution (ρ, u) of the system (1.1) on [0, T ] provided that 0 < c ≤ c 0 with c 0 sufficiently small. We recall the previous estimates that we have obtained with C(T ) > 0 depending on the initial data of the Theorem 2.2, c > 0 and of T , we have for any n ∈ N, i ∈ {1, 2} and 0 ≤ t ≤ T :

C(T ) -1 ≤ ρ n (t, •) ≤ C(T ), (4.148) sup 0<t≤T ρ n (t, •) -1 L 2 + v i,n (t, •) L 2 + ∂ x ρ n (t, •) L 2 + σ(t) 1 2 ∂ x v i,n (t, •) L 2 + σ(t)( vi,n (t, •) L 2 + (1 -α i )∂ x (ρ β n ∂ x v i,n (t, •) -P (ρ n ) + P (1)) L 2 ≤ C(T ), (4.149) T 0 [ ∂ x v i,n (t, •) 2 L 2 + ∂ x ρ n (t, •) 2 L 2 + σ(t) vi,n (t, •) 2 L 2 + σ 2 (t) ∂ x vi,n (t, •) 2 L 2 ]dt ≤ C(T ), (4.150) T 0 σ 1 2 (τ ) ∂ x u n (τ ) 2 L ∞ dτ ≤ C (T ) . (4.151) sup 0<t≤T σ(t) 1 2 ∂ x u n (t, •) L ∞ ≤ C (T ) . (4.152)
We mention that (4.149) and (4.150) are also true if we replace v i,n by u n since

u n = 1 √ 1-4c ((1 -α 2 )v 2,n -(1 -α 1 )v 1,n ).
Using classical arguments (see [START_REF] Jiu | The Cauchy problem for 1D compressible flows with densitydependent viscosity coefficients[END_REF][START_REF] Mellet | Existence and Uniqueness of global strong solutions for one-dimensional compressible Navier-Stokes equations[END_REF]), we prove that up to a subsequence, (ρ n , u n ) n∈N converges in the sense of distributions to (ρ, u) a weak solution of (1.1) on [0, T ]. Furthermore the limit functions ρ, u ihave all the bounds (4.148), (4.149), (4.150), (4.151) and (4.152) via Fatou type-lemmas for the weak topology. We wish now to prove (2.32). Using classical arguments of thpe Aubin-Lions Lemma, we can prove that up to a subsequence (v 1,n ) n∈N converges almost everywhere to v 1 in [0, T ] × R. Using now (4.147) and the fact that v 1,n converges almost everywhere to v 1 on [0, T ] × R implies (2.32) since for all x > y and t ∈ [0, T ] we have:

v 1,n (t, x) -v 1,n (t, y) x -y = 1 x -y x y ∂ z v 1,n (t, z)dz ≤ C(T ).
It concludes the proof of (2.32).

Uniqueness

The uniqueness is a consequence of the fact that on [0, T ], ∂ x u belongs to L 1 ([0, T 1 ], L ∞ ). We refer to [START_REF] Burtea | New effective pressure and existence of global strong solution for compressible Navier-Stokes equations with general viscosity coefficient in one dimension[END_REF] for the details of the proof where we use a Lagrangian formulation.

Appendix

Proof of the Proposition 3.1

In this Appendix, we start by giving a proof of the Proposition 3.1. We work in fact in a more general case as µ(ρ) = ρ β since we deal with general viscosity coefficient µ(ρ) > 0, pressure term P (ρ) and a capillary coefficient κ(ρ) satisfying (1.3). It enables us in particular to extend the notion of effective pressures for compressible Navier-Stokes equations (see [START_REF] Burtea | New effective pressure and existence of global strong solution for compressible Navier-Stokes equations with general viscosity coefficient in one dimension[END_REF][START_REF] Constantin | Compressible fluids and active potentials[END_REF]) to a general framework for the Navier-Stokes Korteweg system.

Proposition 5.3 Setting w i = f i (ρ)∂ x v i + F 1,i (ρ) with i ∈ {1, 2} and f i , F 1,i such that: f i (ρ) = (µ(ρ)) α i -1 2α i -1 ρ α i 2α i -1 and F 1,i (ρ) = 1 2α i -1 (ρµ(ρ))
-α i 2α i -1 P (ρ).

(5.153)

If (ρ, u) is a classical solution of the system (1.1) then w i with i ∈ {1, 2} satisfy the following parabolic equation:

∂ t w i + (u + g 1,i )∂ x w i + w i g 2,i + (α i -1)∂ x ( µ(ρ) ρ ∂ x w i ) + g 3,i + g 4,i w 2 = 0, (5.154) 
with setting F (ρ) = P (ρ) ρ :

g 1,i = -2(α i -1)∂ x f (ρ) µ(ρ) ρ 1 f i (ρ) + (α i -1) ∂ x µ(ρ) ρ , g 4,i = α i -1 α i ρ f 2 i (ρ) µ (ρ) µ(ρ) f i (ρ) -f i (ρ) , g 2,i = g 2,i -2 α i -1 α i ρ f 2 i (ρ) µ (ρ) µ(ρ) f i (ρ) -f i (ρ) F 1,i (ρ), g 2,i = 2(α i -1)∂ x f i (ρ) µ(ρ) ρ f i (ρ) f i (ρ) 2 ∂ x ρ + (α i -1) α 2 i µ (ρ)ρ 2 2µ(ρ) -µ (ρ)ρ µ(ρ) 3 (v i -u) 2 + (α i -1) (∂ x ρ) 2 (µ (ρ)ρ -µ (ρ)) ρ 2 -(α i -1) ∂ x µ(ρ) ρ f i (ρ) f i (ρ) ∂ x ρ + F (ρ) α i ρ 2 µ(ρ) -(α i -1) µ(ρ) ρ F 1,i (ρ) ρ 2 α i f i (ρ)µ(ρ) - (α i -1) f i (ρ) (∂ x ρ) 2 f i (ρ) µ (ρ)ρ -µ(ρ) ρ 2 + µ(ρ) ρ f i (ρ) + 1 α 2 i ρf i (ρ)( 2ρµ(ρ) -ρ 2 µ (ρ) µ(ρ) 2 )(v i -u) 2
(5.155) and:

g 3,i = g 32,i + g 33,i , g 33,i = g 33,i + α i -1 α i ρ f 2 i (ρ) µ (ρ) µ(ρ) f i (ρ) -f i (ρ) F 1,i (ρ) 2 , g 33,i = -F 1,i (ρ) P (ρ)ρ α i 1 µ(ρ) -(α i -1)F 1,i (ρ) ρ α i f i (ρ) , g 32,i = -∂ x F 1 (ρ) -2(α i -1)∂ x f i (ρ) µ(ρ) ρ 1 f i (ρ) + (α i -1) ∂ x µ(ρ) ρ -F 1,i (ρ) 2(α i -1)∂ x f i (ρ) µ(ρ) ρ f i (ρ) f i (ρ) 2 ∂ x ρ + (α i -1) α 2 i µ (ρ)ρ 2 2µ(ρ) -µ (ρ)ρ µ(ρ) 3 (v i -u) 2 + (α i -1) (∂ x ρ) 2 (µ (ρ)ρ -µ (ρ)) ρ 2 -(α i -1) ∂ x µ(ρ) ρ f i (ρ) f i (ρ) ∂ x ρ - (α i -1) f i (ρ) (∂ x ρ) 2 f i (ρ) µ (ρ)ρ -µ(ρ) ρ 2 + µ(ρ) ρ f i (ρ) + 1 α 2 i ρf i (ρ)( 2ρµ(ρ) -ρ 2 µ (ρ) µ(ρ) 2 )(v i -u) 2 -(α i -1) ∂ x ( µ(ρ) ρ )∂ x F 1,i (ρ) + µ(ρ) ρ F 1,i (ρ)(∂ x ρ) 2 + µ(ρ) ρ F 1,i (ρ) ρ 3 α 2 i 2µ(ρ) -ρµ (ρ) µ(ρ) 3 (v i -u) 2 + f i (ρ)F (ρ)(∂ x ρ) 2 + f i (ρ)F (ρ)ρ 3 α 2 i 2µ(ρ) -ρµ (ρ) µ(ρ) 3 (v i -u) 2 .
(5.156)

Proof of the Proposition 5.3: In the sequel for simplicity in the notation, we forget the subscript i ∈ {1, 2}. Derivating (1.10) we have with F (ρ) = P (ρ) ρ :

∂ t ∂ x v + u∂ x ∂ x v + ∂ x u∂ x v + (α -1)∂ x ( µ(ρ) ρ ∂ x ∂ x v) + (α -1)∂ x ( ∂ x µ(ρ) ρ )∂ x v + (α -1) ∂ x µ(ρ) ρ ∂ x ∂ x v + ∂ xx F (ρ) = 0 (5.157)
We recall now that:

       ∂ x ρ = ρ 2 αµ(ρ) (v -u) ∂ xx ρ = ρ 3 α 2 2µ(ρ) -ρµ (ρ) µ(ρ) 3 (v -u) 2 + ρ 2 αµ(ρ) (∂ x v -∂ x u) (5.158) 
We have now:

∂ x ( ∂ x µ(ρ) ρ ) = µ (ρ)∂ xx ρ ρ + µ (ρ)(∂ x ρ) 2 ρ - µ (ρ)(∂ x ρ) 2 ρ 2
Using again (5.158), we obtain:

∂ x ( ∂ x µ(ρ) ρ ) = 1 α 2 µ (ρ)ρ 2 2µ(ρ) -µ (ρ)ρ µ(ρ) 3 (v -u) 2 + 1 α ρµ (ρ) µ(ρ) (∂ x v -∂ x u) + (∂ x ρ) 2 (µ (ρ)ρ -µ (ρ)) ρ 2
Plugging this equality in (5.157), we get:

∂ t ∂ x v + u∂ x ∂ x v + ∂ x u∂ x v - α -1 α ρµ (ρ) µ(ρ) ∂ x v∂ x u + (α -1)∂ x ( µ(ρ) ρ ∂ x ∂ x v) + (α -1) α 2 µ (ρ)ρ 2 2µ(ρ) -µ (ρ)ρ µ(ρ) 3 (v -u) 2 ∂ x v + α -1 α ρµ (ρ) µ(ρ) (∂ x v) 2 + (α -1) (∂ x ρ) 2 (µ (ρ)ρ -µ (ρ)) ρ 2 ∂ x v + (α -1) ∂ x µ(ρ) ρ ∂ x ∂ x v + ∂ xx F (ρ) = 0 (5.159)
Next we multiply the previous equation by a regular function f (ρ) in order to eliminate the terms in ∂ x u∂ x v (we will fix later the function f (ρ)), we have then:

∂ t (f (ρ)∂ x v) + u∂ x (f (ρ)∂ x v) -(∂ t f (ρ) + u∂ x f (ρ))∂ x v + f (ρ)∂ x u∂ x v(1 - α -1 α ρµ (ρ) µ(ρ) ) + (α -1)f (ρ)∂ x ( µ(ρ) ρ ∂ x ∂ x v) + (α -1) α 2 µ (ρ)ρ 2 2µ(ρ) -µ (ρ)ρ µ(ρ) 3 (v -u) 2 f (ρ)∂ x v + α -1 α ρµ (ρ) µ(ρ) f (ρ)(∂ x v) 2 + (α -1) (∂ x ρ) 2 (µ (ρ)ρ -µ (ρ)) ρ 2 f (ρ)∂ x v + (α -1) ∂ x µ(ρ) ρ f (ρ)∂ x ∂ x v + f (ρ)∂ xx F (ρ) = 0 (5.160)
Next we have:

f (ρ)∂ x ∂ x v = ∂ x (f (ρ)∂ x v) -∂ x f (ρ)∂ x v. (5.161) 
and:

f (ρ)∂ x ( µ(ρ) ρ ∂ x ∂ x v) = ∂ x ( µ(ρ)f (ρ) ρ ∂ x ∂ x v) -∂ x f (ρ) µ(ρ) ρ ∂ x ∂ x v = ∂ x ( µ(ρ) ρ ∂ x (f (ρ)∂ x v)) -∂ x ( µ(ρ) ρ ∂ x f (ρ)∂ x v) -∂ x f (ρ) µ(ρ) ρ ∂ x ∂ x v = ∂ x ( µ(ρ) ρ ∂ x (f (ρ)∂ x v)) -∂ x ( µ(ρ) ρ ∂ x f (ρ))∂ x v - µ(ρ) ρ ∂ x f (ρ)∂ x ∂ x v -∂ x f (ρ) µ(ρ) ρ ∂ x ∂ x v = ∂ x ( µ(ρ) ρ ∂ x (f (ρ)∂ x v)) -∂ x ( µ(ρ) ρ ∂ x f (ρ))∂ x v -2∂ x f (ρ) µ(ρ) ρ ∂ x ∂ x v (5.162) 
Next from (5.161) we have:

∂ xx v = 1 f (ρ) ∂ x (f (ρ)∂ x v) - f (ρ) f (ρ) ∂ x ρ∂ x v (5.163)
and from (5.158):

∂ x ( µ(ρ) ρ ∂ x f (ρ)) = ∂ x ( µ(ρ) ρ )∂ x f (ρ) + µ(ρ) ρ (f (ρ)∂ xx ρ + f (ρ)(∂ x ρ) 2 ) = f (ρ) µ (ρ)ρ -µ(ρ) ρ 2 (∂ x ρ) 2 + µ(ρ) ρ f (ρ)(∂ x ρ) 2 + µ(ρ)f (ρ) ρ ρ 3 α 2 2µ(ρ) -ρµ (ρ) µ(ρ) 3 (v -u) 2 + ρ 2 αµ(ρ) (∂ x v -∂ x u) = (∂ x ρ) 2 f (ρ) µ (ρ)ρ -µ(ρ) ρ 2 + µ(ρ) ρ f (ρ) + 1 α 2 ρf (ρ)( 2ρµ(ρ) -ρ 2 µ (ρ) µ(ρ) 2 )(v -u) 2 + 1 α ρf (ρ)(∂ x v -∂ x u)
(5.164) We obtain then combining (5.162), (5.163) and (5.164):

f (ρ)∂ x ( µ(ρ) ρ ∂ x ∂ x v) = ∂ x ( µ(ρ) ρ ∂ x (f (ρ)∂ x v)) -2∂ x f (ρ) µ(ρ) ρ 1 f (ρ) ∂ x (f (ρ)∂ x v) - f (ρ) f (ρ) ∂ x ρ∂ x v -∂ x v (∂ x ρ) 2 f (ρ) µ (ρ)ρ -µ(ρ) ρ 2 + µ(ρ) ρ f (ρ) + 1 α 2 ρf (ρ)( 2ρµ(ρ) -ρ 2 µ (ρ) µ(ρ) 2 )(v -u) 2 + 1 α ρf (ρ)(∂ x v -∂ x u) .
(5.165) Now combining (5.165), (5.163) and (5.160), we have:

∂ t (f (ρ)∂ x v) + u∂ x (f (ρ)∂ x v) -(∂ t f (ρ) + u∂ x f (ρ))∂ x v + f (ρ)∂ x u∂ x v(1 - α -1 α ρµ (ρ) µ(ρ) ) + (α -1)∂ x ( µ(ρ) ρ ∂ x (f (ρ)∂ x v)) -2(α -1)∂ x f (ρ) µ(ρ) ρ 1 f (ρ) ∂ x (f (ρ)∂ x v) - f (ρ) f (ρ) ∂ x ρ∂ x v -(α -1)∂ x v (∂ x ρ) 2 f (ρ) µ (ρ)ρ -µ(ρ) ρ 2 + µ(ρ) ρ f (ρ) + 1 α 2 ρf (ρ)( 2ρµ(ρ) -ρ 2 µ (ρ) µ(ρ) 2 )(v -u) 2 + 1 α ρf (ρ)(∂ x v -∂ x u) + (α -1) α 2 µ (ρ)ρ 2 2µ(ρ) -µ (ρ)ρ µ(ρ) 3 (v -u) 2 f (ρ)∂ x v + α -1 α ρµ (ρ) µ(ρ) f (ρ)(∂ x v) 2 + (α -1) (∂ x ρ) 2 (µ (ρ)ρ -µ (ρ)) ρ 2 f (ρ)∂ x v + (α -1) ∂ x µ(ρ) ρ f (ρ)( 1 f (ρ) ∂ x (f (ρ)∂ x v) - f (ρ) f (ρ) ∂ x ρ∂ x v) + f (ρ)∂ xx F (ρ) = 0
(5.166) We recall now that using the mass equation, we have:

-(∂ t f (ρ) + u∂ x f (ρ))∂ x v = f (ρ)ρ∂ x u∂ x v.
From (5.166) we have then:

∂ t (f (ρ)∂ x v) + u∂ x (f (ρ)∂ x v) + ∂ x u∂ x v f (ρ)(1 - α -1 α ρµ (ρ) µ(ρ) ) + (2 - 1 α )f (ρ)ρ + (α -1)∂ x ( µ(ρ) ρ ∂ x (f (ρ)∂ x v)) + f (ρ)∂ xx F (ρ) + ∂ x (f (ρ)∂ x v) -2(α -1)∂ x f (ρ) µ(ρ) ρ 1 f (ρ) + (α -1) ∂ x µ(ρ) ρ + ∂ x v 2(α -1)∂ x f (ρ) µ(ρ) ρ f (ρ) f (ρ) ∂ x ρ + (α -1) α 2 µ (ρ)ρ 2 2µ(ρ) -µ (ρ)ρ µ(ρ) 3 (v -u) 2 f (ρ) + (α -1) (∂ x ρ) 2 (µ (ρ)ρ -µ (ρ)) ρ 2 f (ρ) -(α -1) ∂ x µ(ρ) ρ f (ρ)∂ x ρ -(α -1) (∂ x ρ) 2 f (ρ) µ (ρ)ρ -µ(ρ) ρ 2 + µ(ρ) ρ f (ρ) + 1 α 2 ρf (ρ)( 2ρµ(ρ) -ρ 2 µ (ρ) µ(ρ) 2 )(v -u) 2 + α -1 α ρ µ (ρ) µ(ρ) f (ρ) -f (ρ) (∂ x v) 2 = 0.
(5.167) We note now that using (5.158) we have:

f (ρ)∂ xx F (ρ) = f (ρ)(F (ρ)∂ xx ρ + F (ρ)(∂ x ρ) 2 ) = f (ρ)F (ρ) ρ 3 α 2 2µ(ρ) -ρµ (ρ) µ(ρ) 3 (v -u) 2 + ρ 2 αµ(ρ) (∂ x v -∂ x u) + f (ρ)F (ρ)(∂ x ρ) 2 = f (ρ)F (ρ)ρ 3 α 2 2µ(ρ) -ρµ (ρ) µ(ρ) 3 (v -u) 2 + f (ρ)F (ρ) α ρ 2 µ(ρ) (∂ x v -∂ x u) + f (ρ)F (ρ)(∂ x ρ) 2
(5.168) Plugging (5.168) in (5.166) it yields:

∂ t (f (ρ)∂ x v) + u∂ x (f (ρ)∂ x v) + ∂ x u∂ x v f (ρ)(1 - α -1 α ρµ (ρ) µ(ρ) ) + (2 - 1 α )f (ρ)ρ + (α -1)∂ x ( µ(ρ) ρ ∂ x (f (ρ)∂ x v)) + ∂ x (f (ρ)∂ x v) -2(α -1)∂ x f (ρ) µ(ρ) ρ 1 f (ρ) + (α -1) ∂ x µ(ρ) ρ + ∂ x v 2(α -1)∂ x f (ρ) µ(ρ) ρ f (ρ) f (ρ) ∂ x ρ + (α -1) α 2 µ (ρ)ρ 2 2µ(ρ) -µ (ρ)ρ µ(ρ) 3 (v -u) 2 f (ρ) + (α -1) (∂ x ρ) 2 (µ (ρ)ρ -µ (ρ)) ρ 2 f (ρ) -(α -1) ∂ x µ(ρ) ρ f (ρ)∂ x ρ + f (ρ)F (ρ) α ρ 2 µ(ρ) -(α -1) (∂ x ρ) 2 f (ρ) µ (ρ)ρ -µ(ρ) ρ 2 + µ(ρ) ρ f (ρ) + 1 α 2 ρf (ρ)( 2ρµ(ρ) -ρ 2 µ (ρ) µ(ρ) 2 )(v -u) 2 + α -1 α ρ µ (ρ) µ(ρ) f (ρ) -f (ρ) (∂ x v) 2 + f (ρ)F (ρ)ρ 3 α 2 2µ(ρ) -ρµ (ρ) µ(ρ) 3 (v -u) 2 - f (ρ)F (ρ) α ρ 2 µ(ρ) ∂ x u + f (ρ)F (ρ)(∂ x ρ) 2 = 0 (5.169)
Now we are going to chose the function f (ρ) such that:

f (ρ)(1 - α -1 α ρµ (ρ) µ(ρ) ) + (2 - 1 α )f (ρ)ρ = 0 (5.170)
It implies that there exists C ≥ 0 such that:

f (ρ) = C (µ(ρ)) α-1 2α-1 ρ α 2α-1 .
(5.171)

In the sequel we will take C = 1. We can now rewrite the previous system (5.169) as follows with w = f (ρ)∂ x v + F 1 (ρ) and with F 1 that we will define later, it gives using (5.169):

∂ t w + u∂ x w + F 1 (ρ)ρ∂ x u + (α -1)∂ x ( µ(ρ) ρ ∂ x w) -(α -1)∂ x ( µ(ρ) ρ ∂ x F 1 (ρ)) + ∂ x w -2(α -1)∂ x f (ρ) µ(ρ) ρ 1 f (ρ) + (α -1) ∂ x µ(ρ) ρ -∂ x F 1 (ρ) -2(α -1)∂ x f (ρ) µ(ρ) ρ 1 f (ρ) + (α -1) ∂ x µ(ρ) ρ + ∂ x v 2(α -1)∂ x f (ρ) µ(ρ) ρ f (ρ) f (ρ) ∂ x ρ + (α -1) α 2 µ (ρ)ρ 2 2µ(ρ) -µ (ρ)ρ µ(ρ) 3 (v -u) 2 f (ρ) + (α -1) (∂ x ρ) 2 (µ (ρ)ρ -µ (ρ)) ρ 2 f (ρ) -(α -1) ∂ x µ(ρ) ρ f (ρ)∂ x ρ + f (ρ)F (ρ) α ρ 2 µ(ρ) -(α -1) (∂ x ρ) 2 f (ρ) µ (ρ)ρ -µ(ρ) ρ 2 + µ(ρ) ρ f (ρ) + 1 α 2 ρf (ρ)( 2ρµ(ρ) -ρ 2 µ (ρ) µ(ρ) 2 )(v -u) 2 + α -1 α ρ µ (ρ) µ(ρ) f (ρ) -f (ρ) (∂ x v) 2 + f (ρ)F (ρ)ρ 3 α 2 2µ(ρ) -ρµ (ρ) µ(ρ) 3 (v -u) 2 - f (ρ)F (ρ) α ρ 2 µ(ρ) ∂ x u + f (ρ)F (ρ)(∂ x ρ) 2 = 0
(5.172) Now basic computation gives using (5.158):

∂ x ( µ(ρ) ρ ∂ x F 1 (ρ)) = ∂ x ( µ(ρ) ρ )∂ x F 1 (ρ) + µ(ρ) ρ F 1 (ρ)(∂ x ρ) 2 + µ(ρ) ρ F 1 (ρ) ρ 3 α 2 2µ(ρ) -ρµ (ρ) µ(ρ) 3 (v -u) 2 + µ(ρ) ρ F 1 (ρ) ρ 2 αµ(ρ) (∂ x v -∂ x u)
(5.173) Plugging (5.173) in (5.172), we get:

∂ t w + u∂ x w + (α -1)∂ x ( µ(ρ) ρ ∂ x w) + ∂ x w -2(α -1)∂ x f (ρ) µ(ρ) ρ 1 f (ρ) + (α -1) ∂ x µ(ρ) ρ -∂ x F 1 (ρ) -2(α -1)∂ x f (ρ) µ(ρ) ρ 1 f (ρ) + (α -1) ∂ x µ(ρ) ρ + ∂ x v 2(α -1)∂ x f (ρ) µ(ρ) ρ f (ρ) f (ρ) ∂ x ρ + (α -1) α 2 µ (ρ)ρ 2 2µ(ρ) -µ (ρ)ρ µ(ρ) 3 (v -u) 2 f (ρ) + (α -1) (∂ x ρ) 2 (µ (ρ)ρ -µ (ρ)) ρ 2 f (ρ) -(α -1) ∂ x µ(ρ) ρ f (ρ)∂ x ρ + f (ρ)F (ρ) α ρ 2 µ(ρ) -(α -1) ρF 1 (ρ) α -(α -1) (∂ x ρ) 2 f (ρ) µ (ρ)ρ -µ(ρ) ρ 2 + µ(ρ) ρ f (ρ) + 1 α 2 ρf (ρ)( 2ρµ(ρ) -ρ 2 µ (ρ) µ(ρ) 2 )(v -u) 2 + α -1 α ρ µ (ρ) µ(ρ) f (ρ) -f (ρ) (∂ x v) 2 + f (ρ)F (ρ)ρ 3 α 2 2µ(ρ) -ρµ (ρ) µ(ρ) 3 (v -u) 2 -(α -1) ∂ x ( µ(ρ) ρ )∂ x F 1 (ρ) + µ(ρ) ρ F 1 (ρ)(∂ x ρ) 2 + µ(ρ) ρ F 1 (ρ) ρ 3 α 2 2µ(ρ) -ρµ (ρ) µ(ρ) 3 (v -u) 2 + ∂ x u F 1 (ρ)ρ - f (ρ)F (ρ) α ρ 2 µ(ρ) + (α -1) ρF 1 (ρ) α + f (ρ)F (ρ)(∂ x ρ) 2 = 0
(5.174) We choose now F 1 (ρ) such that:

(2 - 1 α )F 1 (ρ)ρ - f (ρ)F (ρ) α ρ 2 µ(ρ) = 0. (5.175)
With this choice, it yields:

∂ t w + u∂ x w + (α -1)∂ x ( µ(ρ) ρ ∂ x w) + ∂ x w -2(α -1)∂ x f (ρ) µ(ρ) ρ 1 f (ρ) + (α -1) ∂ x µ(ρ) ρ -∂ x F 1 (ρ) -2(α -1)∂ x f (ρ) µ(ρ) ρ 1 f (ρ) + (α -1) ∂ x µ(ρ) ρ + f (ρ)∂ x v 2(α -1)∂ x f (ρ) µ(ρ) ρ f (ρ) f (ρ) 2 ∂ x ρ + (α -1) α 2 µ (ρ)ρ 2 2µ(ρ) -µ (ρ)ρ µ(ρ) 3 (v -u) 2 + (α -1) (∂ x ρ) 2 (µ (ρ)ρ -µ (ρ)) ρ 2 -(α -1) ∂ x µ(ρ) ρ f (ρ) f (ρ) ∂ x ρ + F (ρ) α ρ 2 µ(ρ) -(α -1)F 1 (ρ) ρ αf (ρ) - (α -1) f (ρ) (∂ x ρ) 2 f (ρ) µ (ρ)ρ -µ(ρ) ρ 2 + µ(ρ) ρ f (ρ) + 1 α 2 ρf (ρ)( 2ρµ(ρ) -ρ 2 µ (ρ) µ(ρ) 2 )(v -u) 2 + α -1 α ρ µ (ρ) µ(ρ) f (ρ) -f (ρ) (∂ x v) 2 + f (ρ)F (ρ)(∂ x ρ) 2 + f (ρ)F (ρ)ρ 3 α 2 2µ(ρ) -ρµ (ρ) µ(ρ) 3 (v -u) 2 -(α -1) ∂ x ( µ(ρ) ρ )∂ x F 1 (ρ) + µ(ρ) ρ F 1 (ρ)(∂ x ρ) 2 + µ(ρ) ρ F 1 (ρ) ρ 3 α 2 2µ(ρ) -ρµ (ρ) µ(ρ) 3 (v -u) 2 = 0
(5.176) Using (5.171), we note that (5.175) is satisfied if:

F 1 (ρ) = 1 2α -1 (ρµ(ρ)) -α
2α-1 P (ρ).

(5.177)

We can now rewrite (5.176) as follows:

∂ t w + u∂ x w + (α -1)∂ x ( µ(ρ) ρ ∂ x w) + f (ρ)F (ρ)(∂ x ρ) 2 + ∂ x w -2(α -1)∂ x f (ρ) µ(ρ) ρ 1 f (ρ) + (α -1) ∂ x µ(ρ) ρ -∂ x F 1 (ρ) -2(α -1)∂ x f (ρ) µ(ρ) ρ 1 f (ρ) + (α -1) ∂ x µ(ρ) ρ + w 2(α -1)∂ x f (ρ) µ(ρ) ρ f (ρ) f (ρ) 2 ∂ x ρ + (α -1) α 2 µ (ρ)ρ 2 2µ(ρ) -µ (ρ)ρ µ(ρ) 3 (v -u) 2 + (α -1) (∂ x ρ) 2 (µ (ρ)ρ -µ (ρ)) ρ 2 -(α -1) ∂ x µ(ρ) ρ f (ρ) f (ρ) ∂ x ρ + F (ρ) α ρ 2 µ(ρ) -(α -1)F 1 (ρ) ρ αf (ρ) - (α -1) f (ρ) (∂ x ρ) 2 f (ρ) µ (ρ)ρ -µ(ρ) ρ 2 + µ(ρ) ρ f (ρ) + 1 α 2 ρf (ρ)( 2ρµ(ρ) -ρ 2 µ (ρ) µ(ρ) 2 )(v -u) 2 -F 1 (ρ) 2(α -1)∂ x f (ρ) µ(ρ) ρ f (ρ) f (ρ) 2 ∂ x ρ + (α -1) α 2 µ (ρ)ρ 2 2µ(ρ) -µ (ρ)ρ µ(ρ) 3 (v -u) 2 + (α -1) (∂ x ρ) 2 (µ (ρ)ρ -µ (ρ)) 2 -(α -1) ∂ x µ(ρ) ρ f (ρ) f (ρ) ∂ x ρ + F (ρ) α ρ 2 µ(ρ) -(α -1)F 1 (ρ) ρ αf (ρ) - (α -1) f (ρ) (∂ x ρ) 2 f (ρ) µ (ρ)ρ -µ(ρ) ρ 2 + µ(ρ) ρ f (ρ) + 1 α 2 ρf (ρ)( 2ρµ(ρ) -ρ 2 µ (ρ) µ(ρ) 2 )(v -u) 2 + α -1 α ρ µ (ρ) µ(ρ) f (ρ) -f (ρ) (∂ x v) 2 + f (ρ)F (ρ)ρ 3 α 2 2µ(ρ) -ρµ (ρ) µ(ρ) 3 (v -u) 2 -(α -1) ∂ x ( µ(ρ) ρ )∂ x F 1 (ρ) + µ(ρ) ρ F 1 (ρ)(∂ x ρ) 2 + µ(ρ) ρ F 1 (ρ) ρ 3 α 2 2µ(ρ) -ρµ (ρ) µ(ρ) 3 (v -u) 2 = 0.
(5.178) It means that w satisfies the following equation:

∂ t w + u∂ x w + ∂ x wg 1 + wg 2 + (α -1)∂ x ( µ(ρ) ρ ∂ x w) + g 3 = 0
(5.179) with:

g 1 = -2(α -1)∂ x f (ρ) µ(ρ) ρ 1 f (ρ) + (α -1) ∂ x µ(ρ) ρ .
(5.180)

g 2 = 2(α -1)∂ x f (ρ) µ(ρ) ρ f (ρ) f (ρ) 2 ∂ x ρ + (α -1) α 2 µ (ρ)ρ 2 2µ(ρ) -µ (ρ)ρ µ(ρ) 3 (v -u) 2 + (α -1) (∂ x ρ) 2 (µ (ρ)ρ -µ (ρ)) ρ 2 -(α -1) ∂ x µ(ρ) ρ f (ρ) f (ρ) ∂ x ρ + F (ρ) α ρ 2 µ(ρ) -(α -1)F 1 (ρ) ρ αf (ρ) - (α -1) f (ρ) (∂ x ρ) 2 f (ρ) µ (ρ)ρ -µ(ρ) ρ 2 + µ(ρ) ρ f (ρ) + 1 α 2 ρf (ρ)( 2ρµ(ρ) -ρ 2 µ (ρ) µ(ρ) 2 )(v -u) 2
(5.181) and:

g 3 = -∂ x F 1 (ρ) -2(α -1)∂ x f (ρ) µ(ρ) ρ 1 f (ρ) + (α -1) ∂ x µ(ρ) ρ -F 1 (ρ) 2(α -1)∂ x f (ρ) µ(ρ) ρ f (ρ) f (ρ) 2 ∂ x ρ + (α -1) α 2 µ (ρ)ρ 2 2µ(ρ) -µ (ρ)ρ µ(ρ) 3 (v -u) 2 + (α -1) (∂ x ρ) 2 (µ (ρ)ρ -µ (ρ)) ρ 2 -(α -1) ∂ x µ(ρ) ρ f (ρ) f (ρ) ∂ x ρ + F (ρ) α ρ 2 µ(ρ) -(α -1)F 1 (ρ) ρ αf (ρ) - (α -1) f (ρ) (∂ x ρ) 2 f (ρ) µ (ρ)ρ -µ(ρ) ρ 2 + µ(ρ) ρ f (ρ) + 1 α 2 ρf (ρ)( 2ρµ(ρ) -ρ 2 µ (ρ) µ(ρ) 2 )(v -u) 2 + α -1 α ρ µ (ρ) µ(ρ) f (ρ) -f (ρ) (∂ x v) 2 + f (ρ)F (ρ)ρ 3 α 2 2µ(ρ) -ρµ (ρ) µ(ρ) 3 (v -u) 2 -(α -1) ∂ x ( µ(ρ) ρ )∂ x F 1 (ρ) + µ(ρ) ρ F 1 (ρ)(∂ x ρ) 2 + µ(ρ) ρ F 1 (ρ) ρ 3 α 2 2µ(ρ) -ρµ (ρ) µ(ρ) 3 (v -u) 2 + f (ρ)F (ρ)(∂ x ρ) 2
(5.182) Furthermore we can rewrite g 3 as follows:

g 3 = g 31 + g 32 + g 33 ,
with:

g 31 = α -1 α ρ µ (ρ) µ(ρ) f (ρ) -f (ρ) (∂ x v) 2 , g 33 = -F 1 (ρ) P (ρ)ρ α 1 µ(ρ) -(α -1)F 1 (ρ) ρ αf (ρ)
.

(5.183) and:

g 32 = -∂ x F 1 (ρ) -2(α -1)∂ x f (ρ) µ(ρ) ρ 1 f (ρ) + (α -1) ∂ x µ(ρ) ρ -F 1 (ρ) 2(α -1)∂ x f (ρ) µ(ρ) ρ f (ρ) f (ρ) 2 ∂ x ρ + (α -1) α 2 µ (ρ)ρ 2 2µ(ρ) -µ (ρ)ρ µ(ρ) 3 (v -u) 2 + (α -1) (∂ x ρ) 2 (µ (ρ)ρ -µ (ρ)) ρ 2 -(α -1) ∂ x µ(ρ) ρ f (ρ) f (ρ) ∂ x ρ - (α -1) f (ρ) (∂ x ρ) 2 f (ρ) µ (ρ)ρ -µ(ρ) ρ 2 + µ(ρ) ρ f (ρ) + 1 α 2 ρf (ρ)( 2ρµ(ρ) -ρ 2 µ (ρ) µ(ρ) 2 )(v -u) 2 -(α -1) ∂ x ( µ(ρ) ρ )∂ x F 1 (ρ) + µ(ρ) ρ F 1 (ρ)(∂ x ρ) 2 + µ(ρ) ρ F 1 (ρ) ρ 3 α 2 2µ(ρ) -ρµ (ρ) µ(ρ) 3 (v -u) 2 + f (ρ)F (ρ)(∂ x ρ) 2 + f (ρ)F (ρ)ρ 3 α 2 2µ(ρ) -ρµ (ρ) µ(ρ) 3 (v -u) 2
(5.184)

We note that g 32 has terms only in (∂ x ρ) 2 and (v -u) 2 . We are now going to rewrite g 31 as follows:

g 31 = α -1 α ρ µ (ρ) µ(ρ)f (ρ) - f (ρ) f (ρ) 2 (f (ρ)∂ x v) 2 = α -1 α ρ µ (ρ) µ(ρ)f (ρ) - f (ρ) f (ρ) 2 (w -F 1 (ρ)) 2 = α -1 α ρ f 2 (ρ) µ (ρ) µ(ρ) f (ρ) -f (ρ) w 2 + α -1 α ρ f 2 (ρ) µ (ρ) µ(ρ) f (ρ) -f (ρ) F 1 (ρ) 2 -2 α -1 α ρ f 2 (ρ) µ (ρ) µ(ρ) f (ρ) -f (ρ) F 1 (ρ)w (5.185)
We finally rewrite the equation (5.186) as follows:

∂ t w + (u + g 1 )∂ x w + wg 2 + (α -1)∂ x ( µ(ρ) ρ ∂ x w) + g 3 + g 4 w 2 = 0, (5.186) 
with:

g 4 = α -1 α ρ f 2 (ρ) µ (ρ) µ(ρ) f (ρ) -f (ρ) , g 3 = g 32 + g 33 , g 2 = g 2 -2 α -1 α ρ f 2 (ρ) µ (ρ) µ(ρ) f (ρ) -f (ρ) F 1 (ρ), (5.187) 
and:

g 33 = g 33 + α -1 α ρ f 2 (ρ) µ (ρ) µ(ρ) f (ρ) -f (ρ) F 1 (ρ) 2 .
(5.188)

It concludes the proof of the Proposition 5.3.

We recall now that we are interested in dealing with the following viscosity and capillary coefficients (with β ≥ 0): µ(ρ) = ρ β , κ(ρ) = cρ 2β-3 and P (ρ) = ρ γ .

(5.189) From (5.171) and (5.177) we obtain:

f (ρ) = ρ (β-1)α-β 2α-1 and F 1 (ρ) = γ 2α -1 ρ -α(β+1)
2α-1 ρ γ-1 (5.190) and:

F 1 (ρ) = γ -α(β + 1) + γ(2α -1) ρ -α(β+1)
2α-1 +γ (5.191) We are now interested in computing g 1 , g 2 , g 3 and g 4 with the choice (5.189) of viscosity and capillary coefficients.

Value of g 1

We have then using (5.180) and (5.190):

g 1 = -2(α -1)∂ x f (ρ) µ(ρ) ρ 1 f (ρ) + (α -1) ∂ x µ(ρ) ρ = ∂ x ρ(-2(α -1) µ(ρ) ρ f (ρ) f (ρ) + (α -1) µ (ρ) ρ ) = ∂ x ρ(α -1)(-2 (β -1)α -β 2α -1 ρ β-2 + βρ β-2 ) = ρ β-2 ∂ x ρ(α -1) β + 2α 2α -1 (5.192)
Value of g 4

We are now interested in looking at the value of g 4 . First we have from (5.187) and (5.190):

g 4 = α -1 α ρ f (ρ) 2 µ (ρ) µ(ρ) f (ρ) -f (ρ) = α -1 α β - (β -1)α -β 2α -1 )ρ -(β-1)α+β 2α-1 = (α -1) β + 1 2α -1 ρ -(β-1)α+β 2α-1
.

(5.193)

Value of g 33

We recall from (5.188) that: .194) with:

g 33 = g 33 + α -1 α ρ f 2 (ρ) µ (ρ) µ(ρ) f (ρ) -f (ρ) F 1 (ρ) 2 . ( 5 
g 33 = -F 1 (ρ) P (ρ)ρ α 1 µ(ρ) -(α -1)F 1 (ρ) ρ αf (ρ) . (5.195) 
From (5.190), (5.194) and (5.195) we obtain then:

g 33 = -F 1 (ρ) P (ρ)ρ α 1 µ(ρ) -(α -1)F 1 (ρ) ρ αf (ρ) + α -1 α ρ f 2 (ρ) µ (ρ) µ(ρ) f (ρ) -f (ρ) F 1 (ρ) 2 = ρ -α(β+1) 2α-1 +2γ-β -γ 2 -α(β + 1) + γ(2α -1) 1 2α -1 + (α -1) β + 1 2α -1 ρ -α(β+1) 2α-1 +2γ-β ( γ -α(β + 1) + γ(2α -1) ) 2 = ρ -α(β+1) 2α-1 +2γ-β γ 2 (-α(β + 1) + γ(2α -1)) 2 (β + 1 -γ).
(5.196) Value of g 3

We start by estimating g 32 . From (5.184) we recall that:

g 32 = -∂ x F 1 (ρ) -2(α -1)∂ x f (ρ) µ(ρ) ρ 1 f (ρ) + (α -1) ∂ x µ(ρ) ρ -F 1 (ρ) 2(α -1)∂ x f (ρ) µ(ρ) ρ f (ρ) f (ρ) 2 ∂ x ρ + (α -1) α 2 µ (ρ)ρ 2 2µ(ρ) -µ (ρ)ρ µ(ρ) 3 (v -u) 2 + (α -1) (∂ x ρ) 2 (µ (ρ)ρ -µ (ρ)) ρ 2 -(α -1) ∂ x µ(ρ) ρ f (ρ) f (ρ) ∂ x ρ - (α -1) f (ρ) (∂ x ρ) 2 f (ρ) µ (ρ)ρ -µ(ρ) ρ 2 + µ(ρ) ρ f (ρ) + 1 α 2 ρf (ρ)( 2ρµ(ρ) -ρ 2 µ (ρ) µ(ρ) 2 )(v -u) 2 + f (ρ)F (ρ)ρ 3 α 2 2µ(ρ) -ρµ (ρ) µ(ρ) 3 (v -u) 2 + f (ρ)F (ρ)(∂ x ρ) 2 -(α -1) ∂ x ( µ(ρ) ρ )∂ x F 1 (ρ) + µ(ρ) ρ F 1 (ρ)(∂ x ρ) 2 + µ(ρ) ρ F 1 (ρ) ρ 3 α 2 2µ(ρ) -ρµ (ρ) µ(ρ) 3 (v -u) 2 .
(5.197) It gives then using the fact that (v -u) 2 = α 2 µ(ρ) 2 ρ 4 (∂ x ρ) 2 : .198) We have then obtained:

g 32 = -(∂ x ρ) 2 -2(α -1)F 1 (ρ)f (ρ) µ(ρ) ρ 1 f (ρ) + (α -1)F 1 (ρ) µ (ρ) ρ -(∂ x ρ) 2 2(α -1)F 1 (ρ)f (ρ) µ(ρ) ρ f (ρ) f (ρ) 2 + F 1 (ρ)(α -1)µ (ρ)ρ 2 2µ(ρ) -µ (ρ)ρ µ(ρ) 3 µ(ρ) 2 ρ 4 + (α -1) F 1 (ρ)(µ (ρ)ρ -µ (ρ)) ρ 2 -(α -1) µ (ρ)F 1 (ρ) ρ f (ρ) f (ρ) - (α -1) f (ρ) F 1 (ρ) f (ρ) µ (ρ)ρ -µ(ρ) ρ 2 + µ(ρ) ρ f (ρ) + F 1 (ρ)ρf (ρ)( 2ρµ(ρ) -ρ 2 µ (ρ) µ(ρ) 2 ) µ(ρ) 2 ρ 4 + f (ρ)F (ρ)ρ 3 2µ(ρ) -ρµ (ρ) µ(ρ) 3 µ(ρ) 2 ρ 4 (∂ x ρ) 2 + f (ρ)F (ρ)(∂ x ρ) 2 -(α -1)(∂ x ρ) 2 µ (ρ)ρ -µ(ρ) ρ 2 F 1 (ρ) + µ(ρ) ρ F 1 (ρ) + µ(ρ) ρ F 1 (ρ)ρ 3 2µ(ρ) -ρµ (ρ) µ(ρ) 3 µ(ρ) 2 ρ 4 . ( 5 
g 32 = (∂ x ρ) 2 2(α -1)F 1 (ρ)f (ρ) µ(ρ) ρ 1 f (ρ) -(α -1)F 1 (ρ) µ (ρ) ρ -2(α -1)F 1 (ρ)f (ρ) µ(ρ) ρ f (ρ) f (ρ) 2 -F 1 (ρ)(α -1)µ (ρ) 2µ(ρ) -µ (ρ)ρ µ(ρ)ρ 2 -(α -1) F 1 (ρ)(µ (ρ)ρ -µ (ρ)) ρ 2 + (α -1) µ (ρ)F 1 (ρ) ρ f (ρ) f (ρ) + (α -1) f (ρ) F 1 (ρ) f (ρ) µ (ρ)ρ -µ(ρ) ρ 2 + µ(ρ) ρ f (ρ) + F 1 (ρ)f (ρ)( 2ρµ(ρ) -ρ 2 µ (ρ) ρ 3 ) + f (ρ)F (ρ) 2µ(ρ) -ρµ (ρ) µ(ρ)ρ -(α -1) µ (ρ)ρ -µ(ρ) ρ 2 F 1 (ρ) + µ(ρ) ρ F 1 (ρ) + µ(ρ) ρ F 1 (ρ) 2µ(ρ) -ρµ (ρ) µ(ρ)ρ + f (ρ)F (ρ)
(5.199)

We have now:

g 3,2 = k 1 + k 2 + k 3 + k 4 , (5.200) 
with:

k 1 = (∂ x ρ) 2 (α -1)F 1 (ρ) 2 f (ρ) f (ρ) µ(ρ) ρ - µ (ρ) ρ - µ(ρ) ρ 2 k 2 = (∂ x ρ) 2 (α -1)F 1 (ρ) -2( f (ρ) f (ρ) ) 2 µ(ρ) ρ - µ (ρ) ρ 2 + (µ (ρ)) 2 µ(ρ)ρ - µ (ρ) ρ + µ (ρ) ρ f (ρ) f (ρ) + f (ρ) f (ρ) µ(ρ) ρ 2 + f (ρ) f (ρ) µ(ρ) ρ k 3 = -(∂ x ρ) 2 (α -1) µ(ρ) ρ F 1 (ρ) k 4 = (∂ x ρ) 2 f (ρ)F (ρ) 2µ(ρ) -ρµ (ρ) µ(ρ)ρ + f (ρ)F (ρ) .
We start by computing k 4 , using (5.190) we have:

f (ρ)F (ρ) 2µ(ρ) -ρµ (ρ) µ(ρ)ρ = ρ (β-1)α-β 2α-1 +γ-3 γ(2 -β) f (ρ)F (ρ) = γ(γ -2)ρ -α(β+1)
2α-1 +γ+β-3

and:

k 4 = γ(γ -β)ρ -α(β+1) 2α-1 +γ+β-3 (∂ x ρ) 2 .
(5.201)

Similarly we get:

k 1 = (∂ x ρ) 2 (α -1)F 1 (ρ) 2 f (ρ) f (ρ) µ(ρ) ρ - µ (ρ) ρ - µ(ρ) ρ 2 = (∂ x ρ) 2 (α -1) γ 2α -1 ρ -α(β+1) 2α-1 +γ+β-3 2 (β -1)α -β 2α -1 -β -1 = (∂ x ρ) 2 (α -1) γ 2α -1 ρ -α(β+1) 2α-1 +γ+β-3 -4α -β + 1 2α -1 . 
(5.202)

We have now:

k 2 = (∂ x ρ) 2 (α -1)F 1 (ρ) -2( f (ρ) f (ρ) ) 2 µ(ρ) ρ - µ (ρ) ρ 2 + (µ (ρ)) 2 µ(ρ)ρ - µ (ρ) ρ + µ (ρ) ρ f (ρ) f (ρ) + f (ρ) f (ρ) µ(ρ) ρ 2 + f (ρ) f (ρ) µ(ρ) ρ = (∂ x ρ) 2 (α -1) γ -α(β + 1) + γ(2α -1) ρ -α(β+1) 2α-1 +γ+β-3 -2( (β -1)α -β 2α -1 ) 2 -β + β 2 -β(β -1) + ( (β -1)α -β 2α -1 )(β + 1) + ( (β -1)α -β 2α -1 )( (β -1)α -β 2α -1 -1) = (∂ x ρ) 2 (α -1) γ -α(β + 1) + γ(2α -1) ρ -α(β+1) 2α-1 +γ+β-3 -2( (β -1)α -β 2α -1 ) 2 + ( (β -1)α -β 2α -1 )(β + 1) + ( (β -1)α -β 2α -1 )( (β -1)α -β 2α -1 -1) = (∂ x ρ) 2 (α -1) γ -α(β + 1) + γ(2α -1) (β -1)α -β 2α -1 ρ -α(β+1)
2α-1 +γ+β-3 α(β + 1) 2α -1

(5.203) And:

k 3 = -(∂ x ρ) 2 (α -1) µ(ρ) ρ F 1 (ρ) = -(∂ x ρ) 2 (α -1)ρ β-1 γ 2α -1 ( -α(β + 1) 2α -1 + γ -1)ρ -α(β+1) 2α-1 ρ γ-2
(5.204)

Finally combining (5.200), (5.202), (5.203), (5.204) and (5.201), we have:

g 32 = γ(γ -β)ρ -α(β+1) 2α-1 +γ+β-3 (∂ x ρ) 2 + (∂ x ρ) 2 (α -1) γ 2α -1 ρ -α(β+1) 2α-1 +γ+β-3 -4α -β + 1 2α -1 + (∂ x ρ) 2 (α -1) γ -α(β + 1) + γ(2α -1) (β -1)α -β 2α -1 ρ -α(β+1) 2α-1 +γ+β-3 α(β + 1) 2α -1 -(∂ x ρ) 2 (α -1)ρ β-1 γ 2α -1 ( -α(β + 1) 2α -1 + γ -1)ρ -α(β+1) 2α-1 ρ γ-2 = (∂ x ρ) 2 ρ -α(β+1) 2α-1 +γ+β-3 γ(γ -β) + (α -1) γ 2α -1 -4α -β + 1 2α -1 + (α -1) γ -α(β + 1) + γ(2α -1) (β -1)α -β 2α -1 α(β + 1) 2α -1 -(α -1)( -α(β + 1) 2α -1 + γ -1) γ 2α -1 (5.205) We have now: (α -1) γ 2α -1 -4α -β + 1 2α -1 + (α -1) α(β + 1) 2α -1 γ 2α -1 = (α -1)γ (2α -1) 2 (-3α -β + 1 + αβ) (5.206) (α -1) γ 2α -1 -4α -β + 1 2α -1 -(α -1)( -α(β + 1) 2α -1 + γ -1) γ 2α -1 = (α -1)γ (2α -1) 2 (γ -β + α(β -2γ -1)).
(5.207)

Next we have:

(α -1) γ 2α -1 -4α -β + 1 2α -1 + (α -1) γ -α(β + 1) + γ(2α -1) (β -1)α -β 2α -1 α(β + 1) 2α -1 -(α -1)( -α(β + 1) 2α -1 + γ -1) γ 2α -1 = γ(α -1)(γ -β) (2α -1) 2 (-α(β + 1) + γ(2α -1)) (4αγ -γ -4γα 2 ).
(5.208) And finally we get:

γ(γ -β) + (α -1) γ 2α -1 -4α -β + 1 2α -1 + (α -1) γ -α(β + 1) + γ(2α -1) (β -1)α -β 2α -1 α(β + 1) 2α -1 -(α -1)( -α(β + 1) 2α -1 + γ -1) γ 2α -1 = γ(γ -β) (2α -1) 2 (-α(β + 1) + γ(2α -1)) (α(γ -β -1) + 4α 2 (β + 1 -γ) + 4α 3 (γ -β -1)) = γ(γ -β -1)(γ -β) (2α -1) 2 (-α(β + 1) + γ(2α -1)) (α -4α 2 + 4α 3 ).
(5.209) It implies from (5.209) and (5.205) that:

g 32 = (∂ x ρ) 2 ρ -α(β+1) 2α-1 +γ+β-3 γα(γ -β -1)(γ -β) (-α(β + 1) + γ(2α -1)) .
(5.210)

Combining (5.187), (5.196) and (5.210) we have obtained:

g 3 = ρ -α(β+1) 2α-1 +2γ-β γ 2 (-α(β + 1) + γ(2α -1)) 2 (β + 1 -γ) + (∂ x ρ) 2 ρ -α(β+1) 2α-1 +γ+β-3 γα(γ -β -1)(γ -β) (-α(β + 1) + γ(2α -1)) (5.211)
Value of g 2 From (5.187) we have:

g 2 = g 2 -2 α -1 α ρ f 2 (ρ) µ (ρ) µ(ρ) f (ρ) -f (ρ) F 1 (ρ). (5.212) 
with from (5.181):

g 2 = 2(α -1)∂ x f (ρ) µ(ρ) ρ f (ρ) f (ρ) 2 ∂ x ρ + (α -1) α 2 µ (ρ)ρ 2 2µ(ρ) -µ (ρ)ρ µ(ρ) 3 (v -u) 2 + (α -1) (∂ x ρ) 2 (µ (ρ)ρ -µ (ρ)) ρ 2 -(α -1) ∂ x µ(ρ) ρ f (ρ) f (ρ) ∂ x ρ + F (ρ) α ρ 2 µ(ρ) -(α -1) µ(ρ) ρ F 1 (ρ) ρ 2 αf (ρ)µ(ρ) - (α -1) f (ρ) (∂ x ρ) 2 f (ρ) µ (ρ)ρ -µ(ρ) ρ 2 + µ(ρ) ρ f (ρ) + 1 α 2 ρf (ρ)( 2ρµ(ρ) -ρ 2 µ (ρ) µ(ρ) 2 )(v -u) 2 . (5.213) We have now since(v -u) 2 = α 2 µ(ρ) 2 ρ 4 (∂ x ρ) 2 : g 2 = (α -1)(∂ x ρ) 2 2 µ(ρ) ρ ( f (ρ) f (ρ) ) 2 + µ (ρ) 2µ(ρ) -µ (ρ)ρ ρ 2 µ(ρ) + µ (ρ)ρ -µ (ρ) ρ 2 - µ (ρ) ρ f (ρ) f (ρ) - 1 f (ρ) f (ρ) µ (ρ)ρ -µ(ρ) ρ 2 + µ(ρ) ρ f (ρ) + f (ρ) 2µ(ρ) -ρµ (ρ) ρ 2 + F (ρ) α ρ 2 µ(ρ) -(α -1) µ(ρ) ρ F 1 (ρ) ρ 2 αf (ρ)µ(ρ) -2 α -1 α ρ f 2 (ρ) µ (ρ) µ(ρ) f (ρ) -f (ρ) F 1 (ρ) (5.214)
and we get:

g 2 = (α -1)(∂ x ρ) 2 2 µ(ρ) ρ (f (ρ)) 2 f (ρ) 2 + µ (ρ) ρ 2 - (µ (ρ)) 2 ρµ(ρ) + µ (ρ) ρ - f (ρ) f (ρ) µ (ρ) ρ - f (ρ) f (ρ) µ(ρ) ρ 2 - f (ρ) f (ρ) µ(ρ) ρ + F (ρ) α ρ 2 µ(ρ) -(α -1) µ(ρ) ρ F 1 (ρ) ρ 2 αf (ρ)µ(ρ) -2 α -1 α ρ f 2 (ρ) µ (ρ) µ(ρ) f (ρ) -f (ρ) F 1 (ρ)
(5.215) Using (5.190), it yields:

2 µ(ρ) ρ (f (ρ)) 2 f (ρ) 2 + µ (ρ) ρ 2 - (µ (ρ)) 2 ρµ(ρ) + µ (ρ) ρ - f (ρ) f (ρ) µ (ρ) ρ - f (ρ) f (ρ) µ(ρ) ρ 2 - f (ρ) f (ρ) µ(ρ) ρ = ρ β-3 2( (β -1)α -β 2α -1 ) 2 + β -β 2 + (β -1)β -(β + 1)( (β -1)α -β 2α -1 ) -( (β -1)α -β 2α -1 )( (β -1)α -β 2α -1 -1) = -αρ β-3 (β -1)α -β 2α -1 β + 1 2α -1
(5.216) From (5.190), we have:

F (ρ) α ρ 2 µ(ρ) -(α -1) µ(ρ) ρ F 1 (ρ) ρ 2 αf (ρ)µ(ρ) -2 α -1 α ρ f 2 (ρ) µ (ρ) µ(ρ) f (ρ) -f (ρ) F 1 (ρ) = ρ γ-β γ α - α -1 α γ 2α -1 -2 α -1 α (β - (β -1)α -β 2α -1 ) γ -α(β + 1) + γ(2α -1) = ρ γ-β γ 2α -1 -2 (α -1)(β + 1) 2α -1 γ -α(β + 1) + γ(2α -1) = ρ γ-β γ 2α -1 -3αβ -3α + 2αγ -γ + 2β + 2 -α(β + 1) + γ(2α -1) . 
(5.217) From (5.215), (5.216) and (5.217) we have finally: 

Proof of the blow-up criterion in the Theorem 3.3

We are now giving a sketch of the proof of the blow-up criterion in the Theorem 3.3. The part concerning the existence of strong solution in finite time is classical (see [START_REF] Chen | Large-time behavior of smooth solutions to the isothermal compressible fluid models of Korteweg type with large initial data[END_REF][START_REF] Chen | Global classical solutions to the one-dimensional compressible fluid models of Korteweg type with large initial data[END_REF]). We begin by observing that the Korteweg system (1.10) can be written under the following form using the fact that ρ β-2 ∂ x ρ = 1 √ 1-4c (v 1 -v 2 ):

∂ t v 1 + u∂ x v 1 -(1 -α 1 )∂ x ρ β-1 ∂ x v 1 = -γ √ 1-4c ρ γ-β (v 1 -v 2 ) + 1-α 1 √ 1-4c (v 1 -v 2 )∂ x v 1 , ∂ t v 2 + u∂ x v 2 -(1 -α 2 )∂ x ρ β-1 ∂ x v 2 = -γ √ 1-4c ρ γ-β (v 1 -v 2 ) + 1-α 2 √ 1-4c (v 1 -v 2 )∂ x v 2
(5.219) Let us recall now classical Kato-Ponce comutator estimates in Sobolev spaces.

Lemma 1 (Kato-Ponce) The following estimates holds true for s > 0 with FΛ s f (ξ) = |ξ| s Ff (ξ) for f a temperated distribution and C > 0 large enough:

Λ s (f g) L 2 ≤ C( f L ∞ Λ s g L 2 + g L ∞ Λ s f L 2 ),
(5.220)

Λ s (f ∂ x g) -f Λ s ∂ x g L 2 ≤ C ( ∂ x f L ∞ Λ s g L 2 + Λ s f L 2 ∂ x g L ∞ ) .
(5.221)

In the sequel we wish to describe how to preserve all along the time the H s norm of v 1 , v 2 and ρ -1 for s > 3 2 . We apply the operator Λ s to the system (5.219):

           ∂ t Λ s v 1 + u∂ x Λ s v 1 -(1 -α 1 )∂ x ρ β-1 ∂ x Λ s v 1 = Λ s 1-α 1 √ 1-4c (v 1 -v 2 )∂ x v 1 -Λ s γ √ 1-4c ρ γ-β (v 1 -v 2 ) -[Λ s , u] ∂ x v 1 -(1 -α 1 )∂ x ρ β-1 , Λ s ∂ x v 1 , ∂ t Λ s v 2 + u∂ x Λ s v 2 -(1 -α 2 )∂ x ρ β-1 ∂ x Λ s v 2 = Λ s 1-α 2 √ 1-4c (v 1 -v 2 )∂ x v 2 -Λ s γ √ 1-4c ρ γ-β (v 1 -v 2 ) -[Λ s , u] ∂ x v 2 -(1 -α 2 )∂ x ρ β-1 , Λ s ∂ x v 2 ,
(5.222) Multiply the first equation with Λ s v 1 and integrate over R, we get that:

1 2 d dt R |Λ s v 1 | 2 + (1 -α 1 ) R ρ β-1 |∂ x Λ s v 1 | 2 = 1 2 R ∂ x u |Λ s v 1 | 2 + R Λ s 1 -α 1 √ 1 -4c (v 1 -v 2 )∂ x v 1 Λ s v 1 - R Λ s γ √ 1 -4c ρ γ-β (v 1 -v 2 ) Λ s v 1 - R [Λ s , u] ∂ x v 1 Λ s v 1 -(1 -α 1 ) R ∂ x ρ β-1 , Λ s ∂ x v 1 Λ s v 1 .
(5.223) Multiplyng the second equation of (5.222) with Λ s v we obtain that:

1 2 d dt R |Λ s v 2 | 2 + (1 -α 2 ) R ρ β-1 |∂ x Λ s v 2 | 2 = 1 2 R ∂ x u |Λ s v 2 | 2 + R Λ s 1 -α 2 √ 1 -4c (v 1 -v 2 )∂ x v 2 Λ s v 2 - R Λ s γ √ 1 -4c ρ γ-β (v 1 -v 2 ) Λ s v 2 - R [Λ s , u] ∂ x v 2 Λ s v 2 -(1 -α 2 ) R ∂ x ρ β-1 , Λ s ∂ x v 2 Λ s v 2 .
(5.224) If we add up (5.223) and (5.224), it yields that 1 2

d dt R |Λ s v 1 | 2 + (1 -α 1 ) R ρ β-1 |∂ x Λ s v 1 | 2 + 1 2 d dt R |Λ s v 2 | 2 + (1 -α 2 ) R ρ β-1 |∂ x Λ s v 2 | 2 = 1 2 R ∂ x u |Λ s v 1 | 2 + R Λ s 1 -α 1 √ 1 -4c (v 1 -v 2 )∂ x v 1 Λ s v 1 + 1 2 R ∂ x u |Λ s v 2 | 2 + R Λ s 1 -α 2 √ 1 -4c (v 1 -v 2 )∂ x v 2 Λ s v 2 - R Λ s γ √ 1 -4c ρ γ-β (v 1 -v 2 ) Λ s v 1 - R [Λ s , u] ∂ x v 1 Λ s v 1 -(1 -α 1 ) R ∂ x ρ β-1 , Λ s ∂ x v 1 Λ s v 1 - R Λ s γ √ 1 -4c ρ γ-β (v 1 -v 2 ) Λ s v 2 - R [Λ s , u] ∂ x v 2 Λ s v 2 -(1 -α 2 ) R ∂ x ρ β-1 , Λ s ∂ x v 2 Λ s v 2 .
(5.225)

In the following lines, we analyse the different terms appearing in the left hand side of (5.225). The first four terms are treated in the following manner using Lemma 1 and for any ε > 0 with C, C ε > 0 sufficiently large we have using Young inequality:

1 2 R ∂ x u |Λ s v 1 | 2 + R Λ s 1 -α 1 √ 1 -4c (v 1 -v 2 )∂ x v 1 Λ s v 1 + 1 2 R ∂ x u |Λ s v 2 | 2 + R Λ s 1 -α 2 √ 1 -4c (v 1 -v 2 )∂ x v 2 Λ s v 2 ≤ C ∂ x u L ∞ ( Λ s v 1 2 L 2 + Λ s v 2 2 L 2 ) + Λ s v 1 L 2 ∂ x v 1 L ∞ Λ s (v 1 -v 2 ) L 2 + ∂ x Λ s v 1 L 2 v 1 -v 2 L ∞ + Λ s v 2 L 2 ∂ x v 2 L ∞ Λ s (v 1 -v 2 ) L 2 + ∂ x Λ s v 2 L 2 v 1 -v 2 L ∞ , ≤ C ε ∂ x u L ∞ ( Λ s v 1 2 L 2 + Λ s v 2 2 L 2 ) + Λ s (v 1 -v 2 ) L 2 Λ s v 1 L 2 ∂ x v 1 L ∞ + Λ s v 2 L 2 ∂ x v 2 L ∞ + v 1 -v 2 2 L ∞ ρ 1-β L ∞ Λ s v 1 2 L 2 + v 1 -v 2 2 L ∞ ρ 1-β L ∞ Λ s v 2 2 L 2 + ε ρ β-1 2 ∂ x Λ s v 2 L 2 + ε ρ β-1 2 ∂ x Λ s v 1 L 2 .
(5.226) We have now for C > 0 large enough:

- R Λ s γ √ 1 -4c ρ γ-β (v 1 -v 2 ) Λ s v 1 - R Λ s γ √ 1 -4c ρ γ-β (v 1 -v 2 ) Λ s v 2 ≤ C( ρ γ-β L ∞ + 1) ( Λ s v 1 L 2 + Λ s v 2 L 2 ) ( Λ s v 1 L 2 + Λ s v 2 L 2 ) + (v 1 -v 2 ) L ∞ Λ s ρ γ-β -1 L 2 ( Λ s v 1 L 2 + Λ s v 2 L 2 ).
(5.227) In a similar way using Lemma 1, we get for C > 0 large enough:

- R [Λ s , u] ∂ x v 1 Λ s v 1 - R [Λ s , u] ∂ x v 2 Λ s v 2 ≤ C Λ s v 1 L 2 ( Λ s v 1 L 2 ∂ x u L ∞ + Λ s u L 2 ∂ x v 1 L ∞ ) + C Λ s v 2 L 2 ( Λ s v 2 L 2 ∂ x u L ∞ + Λ s u L 2 ∂ x v 2 L ∞ ).
(5.228)

The last term are treated as follows using the fact that ρ β-2 ∂ x ρ = 1 √ 1-4c (v 1 -v 2 ) for any ε > 0 and C ε ; C 1 > 0 large enough we get:

-(1 -α 1 ) R ∂ x ρ β-1 , Λ s ∂ x v 1 Λ s v 1 -(1 -α 2 ) R ∂ x ρ β-1 , Λ s ∂ x v 2 Λ s v 2 . ≤ C( ρ β-1 , Λ s ∂ x v 1 L 2 ∂ x Λ s v 1 L 2 + ρ β-1 , Λ s ∂ x v 2 L 2 ∂ x Λ s v 2 L 2 ) ≤ C 1 ∂ x Λ s v 1 L 2 ∂ x ρ β-1 L ∞ Λ s v 1 L 2 + Λ s (ρ β-1 -1) L 2 ∂ x v 1 L ∞ + C 1 ∂ x Λ s v 2 L 2 ∂ x ρ β-1 L ∞ Λ s v 2 L 2 + Λ s (ρ β-1 -1) L 2 ∂ x v 2 L ∞ ≤ C ε ρ 1-β L ∞ ∂ x ρ β-1 L ∞ Λ s v 1 L 2 + ∂ x v 1 L ∞ Λ s ρ β-1 -1 L 2 2 + ε ρ β-1 2 ∂ x Λ s v 1 2 L 2 48 + C ε ρ 1-β L ∞ ∂ x ρ β-1 L ∞ Λ s v 2 L 2 + ∂ x v 2 L ∞ Λ s ρ β-1 -1 L 2 2 + ε ρ β-1 2 ∂ x Λ s v 2 2 L 2 ≤ C ε ρ 1-β L ∞ v 1 -v 2 L ∞ Λ s v 1 L 2 + ∂ x v 1 L ∞ Λ s ρ β-1 -1 L 2 2 + ε ρ β-1 2 ∂ x Λ s v 1 2 L 2 + C ε ρ 1-β L ∞ v 1 -v 2 L ∞ Λ s v 2 L 2 + ∂ x v 2 L ∞ Λ s ρ β-1 -1 L 2 2 + ε ρ β-1 2 ∂ x Λ s v 2 2 L 2 .
(5.229) Let us observe that in the estimates (5.227) (5.229) we have to treat the H s -norm of ρ γ-β -1 and ρ β-1 -1 . This is now our goal. For each θ = 0, we may write that ∂ t ρ θ + u∂ x ρ θ = -θρ θ ∂ x u.

and consequently applying Λ s to the previous equality we have:

∂ t Λ s ρ θ -1 + u∂ x Λ s ρ θ -1 = -θΛ s ρ θ ∂ x u -[Λ s , u] ∂ x ρ θ -1 .
We get then for any ε > 0 and C, C ε > 0 large enough: 

1 2 d dt R Λ s ρ θ -1 2 ≤ 1 2 ∂ x u L ∞ Λ s ρ θ -1 2 L 2 +Cθ ∂ x u L ∞ Λ s ρ θ -1 L 2 + ( ρ θ -1 L ∞ + 1) Λ s ∂ x u L 2 Λ s ρ θ -1 L 2 +C ∂ x u L ∞ Λ s ρ θ -1 L 2 + ∂ x ρ θ L ∞ Λ s u L 2 Λ s ρ θ -1 L 2 ≤ C ε ∂ x u L ∞ + ρ 1-β L ∞ ( ρ θ -1 2 L ∞ + 1) + ρ θ+1-β 2 L ∞ v 1 -v 2 2 L ∞ Λ s ρ θ -1 2 L 2 +ε Λ s u 2 L 2 + ε ρ β-1 2 ∂ x Λ s u 2 L 2
+ (1 -α 1 ) 2 t 0 R ρ β-1 |∂ x Λ s v 1 | 2 (s, x)dsdx + (1 -α 2 )2 t 0 R ρ β-1 |∂ x Λ s v 2 | 2 (s, x)dsdx ≤ C (u 0 , ρ 0 ) exp C t 0 1 + ρ, 1 ρ L ∞ δ 1 + (v 1 , v 2 , ∂ x v 1 , ∂v 2 ) 2 L ∞
(5.231) with δ depending on β and γ. We mention also that C (u 0 , ρ 0 ) depends on u 0 H s , ρ 0 -1 H s , ρ 0 L ∞ and 1 ρ 0 L ∞ . Let us denote now by:

A i (ρ, v i ) (t) = (1 -α i ) 2 R ρ β (t) (∂ x v i ) 2 (t) + t 0 R ρ vi 2 .
(5.232) with i ∈ {1, 2}. Using the same techniques as in the section on the Hoff estimates but with σ(t) = 1 now, we may show that for δ 2 , C > 0 sufficiently large

A i (ρ, v i ) (t) ≤ C 0 exp   Ct 1 + (ρ, 1 ρ ) L ∞ t (L ∞ ) δ 2   (5.233)
which ensures a control on ∂ x v i L 2 t (L ∞ ) for i ∈ {1, 2} as in (3.76) provided that we control (ρ, 1 ρ ) L ∞ t (L ∞ ) To summarize: • The Bresch-Desjardins entropy provides control on ρ L ∞ t (L ∞ x ) for any t > 0,

• The Hoff-type estimates ensure that (∂

x v 1 , ∂ x v 2 ) L 2 t (L ∞ x ) is controlled by ρ, 1 ρ L ∞ t (L ∞ )
• The energy estimates (1.17) yield using Sobolev embedding that (v 1 , v 2 )

L 2 t (L ∞ x ) is controlled by ρ, 1 ρ L ∞ t (L ∞ )
.

Taking into account the estimate (5.231) we get that for any T > 0 and any s > 3 2 the H s -Sobolev norm of (u, v 1 , v 2 , ρ -1) is uniformly controlled by

1 ρ L ∞ t (L ∞ )
. It explains why we get a blow-uo criterion depending on the quantity

1 ρ L ∞ T * (L ∞ )
when T * is the maximal time interval for a strong solution.

  interested in estimating the L ∞ norm of 1 ρn(t,•) for t ∈ (0, T n ). Proceeding as in the section 3.1, setting z n (t) = sup x∈R 1 ρn(t,x) with:

g 2 = 1 β + 1 2α - 1 (∂ x ρ) 2 + ρ γ-β γ 2α - 1 -

 21121 -(α -1)αρ β-3 (β -1)α -β 2α -3αβ -3α + 2αγ -γ + 2β + 2 -α(β + 1) + γ(2α -1).(5.218) Combining now (5.186), (5.187), (5.188), (5.192),(5.193), (5.211) and (5.218) we can show the Proposition 3.1.

( 5 . 1 2 (|Λ s v 1 | 2 +

 51212 230)Thus putting together the estimates (5.225), (5.226),(5.227),(5.228),(5.229) and (5.230) for θ = β -1, γ -β we get choosing ε > 0 small enough and applying Gronwall Lemma, there exists C > 0 large enough such that:R |Λ s v 2 | 2 + |Λ s (ρ β-1 -1)| 2 + |Λ s (ρ γ-β -1)| 2 )

  Now using (4.98), (4.127) and the fact that γ ∈ [β, β + 1[ we deduce that for C > 0 large enough we have:∂ t z n (t) ≤ Cw n (t, x n t ) + C(1 + z n (t)).

	(4.128)
	(4.127)
	x n t )
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