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This document provides the proofs of all the Lemmas and Propositions of the manuscript Estima-
tion of extremes for heavy-tailed and light-tailed distributions in the presence of random censoring.
For ease of reference, a number of assumptions, definitions and notations are recalled here and there
in this document. Propositions 2 and 3 are the cornerstones for proving the theorems stated in the
main manuscript.

In all this document, cst will denote a positive generic constant which exact value does not need
to be explicited.

1. Assumptions

We recall here some of the assumptions under which our asymptotic results are proved.

1.1. Assumptions on the model

The main assumption is
Assumption (A1) : there exist 7x € [0, 1], 7¢ € [0, 1], Ox > 0, O > 0 such that
Fx € Ai(tx,0x) and Fg e Ai(rc,0c).
This means that there exists positive functions Hx and H¢ such that
Fx(z) =1-Fx(z) = exp(— K., (log(Hx(z)))) and Fg(z) = 1—Fo(z) = exp(—K,, (log(Hc(2))))
and, for some slowly varying functions lx and lc at infinity,
Hy(z) = 2%Ix(z) and Hg(z) = 2%lc(x).

It is clear that under this condition we also have Hy(z) = z'/%*ix(z) and Ho(z) = V% Ilc(x)
where both Ix and [ are slowly varying functions at infinity.

Remind that (7x,7¢) = (0,0) and (7x,7c) = (1,1) have not been considered in this paper.
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The second important assumption is about the second order tail properties of Fxy and F¢ :

Assumption (A2) : there exist some negative constants px and pc, and some rate functions
bx and bc having constant sign at +o0 and satisfying |bx| € RV, and
|bc| € RV, such that, as t — +o0,

Ix(tr)/lx(t) — 1 lo(tz)/lc(t) — 1
0 — K, (x), and bo (D)

— K, (z),Vz > 0.
(1)
where K,(z) = (¥ —1)/p if p <0, and Ko(z) = log(x).

Consider the functions :

0z
— 2
eX ) ( )

where both [ and [ are slowly varying. The crucial parameter a = 67/6x is equal to 1 in ”low
censoring” situations (in particular when 7x < 7¢).

H (x) — 2%7](x) and HxoHy(x) =2%(x) with a:=

Our important technical Lemma 1 ensures that functions H, and Hx o H, also satisfy a second
order condition SR2. For technical reasons though, we need to consider the following stronger
conditions on [ and [, respectively noted R;(b, p) and R;(b, p), and defined by :

Assumption Ry(B, p) : for some constant p < 0 and a rate function B satisfying
limg 4o B(z) = 0, such that for all € > 0, we have

(Oa)/lx) 1

su < e, for z sufficiently large .
e B(m)Kpu) e

1.2. Assumptions on the sample fraction (k)

The basic assumption on (k) is

log k
> logn

Hlik‘—>+OO,* — 0

— 0, as n — +o0.

Introducing the important notation
Lnk = IOg(n/k)v
let v, be the factor which contributes to the rates of convergence of our estimators, it depends on

the censoring strength in the tail :

1 fOo<rmx<1mc<1lor O<7mx=7c<1 or 0=7x <70 <1,

vp =19 L) if0<7mo<tx <1,

L 1/2(10gLnk)%(i_l) if0=7m7c<7x <1.

1("70,

We also consider the following conditions

, GVELZE ™ s 0if L~ L > 1
Hy:0<7x <710 <1 and{(z)\/ELnTX_)Oif,:cT_cé(;_l
()Vkvy, — 400
Hs;:0<70c<7x <1 and (i1) v kvn L TC/TX_l—»Olf——;B—l
(i7i)Vkv, L, TC—>01f———< -1

Hy:0<7x=717c<1 and \fL =0
Hs:0=71x <70 <1 and 36 > 0,vVkL’[® -0



(i)Vkv, — +0

(i1)Vkv, (log L)~ — 0

(in assumption Hs above, p denotes the second order parameter associated to the slowly varying
function [, which is negative in this case ; see formula (2) as well as Lemma 1)

Hg:0=17c<7x <1 and {

2. Second Order expansions

Proposition 1. Under Assumption (A1), the distribution function of Z = min(X,C) satisfies
condition Ai(1z,07), where

Ox f0<71x <10 <1

— ) i 0, — Oc if0<71o<71x <1

Tz = L Te) an 7= (0;(1/TZ + 95””)‘72 if0<7tx =10 <1
min(fx, 0¢c) iftx =17¢ =0

Therefore, there exists x4 > 0 such that for any x = x., we have
P(Z > o) = exp(— K, (log(Hz(2)))),
where H, € RVy,. Consequently, if E denotes a standard exponential distribution, we have

Z = H, (exp K;,(E)).

Proof of Proposition 1

Let us first consider the case 0 < 7x < 7¢ < 1 (note that the case 7x = 7¢ = 0 is already treated
n [30]). We are going to prove that Az(z) = K, (log(Hz(z))), where Hz(z) = 21/%214(x), with,
in this case, 77 = 7x, 07 = 0x and [z is a slowly varying function to be determined.
Recall that Hx (z) = z'/%1x(z), Ho(x) = V%1 (z),
tTx —1
KTX (t) =

We thus have by Assumption (A1)

and K_ (y)=(1+ TXy)l/TX.
TX

l/TX
Ax(z) = (1 + 7xlog Hx(z))Y/™ = (1 + %log:n + Tx long(:c)>

) <TX>1/TX<1 )+ ex (@) (3)
= 0y ogx ex(x

and similarly

TC

1/7e
AC(I) = (00> (logx)l/TC (1 + 60(33))1/70

where we set ey (x) 1= QV/TVJFligiOglV(x), for V being X or C.

By independence of X and C' (independent censoring), the cumulative hazard function of Z is
the sum of those of X and C'. Hence

Koo (Az(2)) = Kr(Ax(z) + Ac(x))
= Ko (Ax(2)(1 + A(2))),



where
Ac()
AX (33)

1/ —1/7x
= ()" (1) Gogm e (1t et e+ ex ().
Since both ex and e tend to 0, it is also the case for the function A. Consequently, we define

Hz(z) = exp(Kr,(Az(2)))
= exp {7y’ [(Ax(2))™ (1 + A(2))™ = 1) + (Ax(2))™ = 1)]}.

But exp (%) = K, (Ax(x)) = log Hx (x), hence
Hy(x) = Hx () exp {75 (Ax (2)7 [(1 + A@))™ — 1]}
Using (3) and a Taylor expansion of order 2 of (1 4+ A(z))™, we thus obtain
Hy(x) = 2915 (x) with Iz(z) = Ix(z).¢(x)

AMz) =

1/’7’0 1—1/7’X
where, introducing the constant B(X,C) = (%) <;—’;)

)

o(z) = exp (05 (logx)(1 + ex (@) (rxA(@) + 5N (@) + o(X2(a))))
= exp (B(X, C) (logz)" (1 + ec($))1/70(1 + eX(x))l_l/TX (1 + TXT_l)\(m) + 0()\(.’E)))) ,

1 _ 1
TC TX

withr =1 — < 1.

Now, using the expression of Ix and l¢ in Lemma 1 (7), we can perform a Taylor expansion of
ex, €c and A to obtain that (after some careful computations)

O(x) = exp (B(X, C) (log ) (1 + R(@)}, ()
where
e (1+o(1)) if r<o0
) = log x
e { Topa T e (L +0(1)) if 7 >0.

It is then easy to check that ¢ is slowly varying at infinity and so does [z. We thus have proved that
Az(z) = K, (log(Hz(x))) with, in this case, 77 = 7x, 07 = 0x and Hz(z) = 24921, (x) where
lz = lx ¢ is slowly varying. In addition, one can remark that

1 if <0,
p(z) — { exp(B(X,C)) if r=0,
0 if O0<r<l.

Concerning the other cases (0 < 7¢ < 7x < 1,0 =7x <70 < 1,0 = 7¢ < 7x < 1 and
0 < 7x = 7¢ < 1), they are proved similarly : the functions \(z) and ¢(x) slightly differ from the
case above, but the proof is substantially the same. Of particular interest is the proof for the case
0 < 7x = ¢ < 1 which starts by setting 77 = 7x = 7¢ and writing

K’Tz<AZ(CC>) = 7-1Z {(AX(.Z') +AC(.Z'))TZ . 1}
- TlZ {[((Tz/ex)l/TZ + (TZ/HC)l/TZ> (10g[1;)1/7'z(1 + 0(1))]77 . 1}
= (6377 +05") ™ (log ) (1 + 0(1) — 7

which identifies 87 as 07 = 07 g YT 7TZ, since Hz(x) = exp(K,,(Az(x is then
X C 4



of the order x'/%2. Note that in this case, with a more refined expansion of K, (Az(z)) (un-
der the assumptions of Lemma 1 below), it can be proved that Hy(z) = x'/%7¢~1/72¢(z) with
limg o0 ¢(x) = exp((cx + co)12/02) €]0, +0]. O

Lemma 1 stated below provides details about the second order properties of the functions H,
and Hx o H, (and therefore, on the behavior of the variables Z; and Ax(Z;)). These properties
not only depend on the position of the parameters 7x and 7¢ with respect to each other, but on
their proximity through the parameter r defined by

1
ri=1—|———|€[-mw,1]
TC TX
(if either 7x = 0 or 7¢ = 0, indeed consider that r = —o0). This parameter r appears in the function

¢(x) which is introduced in the previous proof of Proposition 1.

Lemma 1. Let conditions (A1) and (Az) hold.
(i) For different slowly varying functions generically noted v, we have
Ix(z) = cx (1 — zP¥v(x)) and lo(z) = co(1 — xPeu(x))
Ix(x) = c;(ex(l —afxrxy(z))  and lo(x) = 0596(1 — aferey(x)).

(1i) The slowly varying functions [ and | associated to H, and Hx o H, satisfy a second order
condition SR2 : as t — +00,

I(tx) _ 1 (tx)
OB K;(x) and O~

where

max(Oxpx,—1) if0=7x <10 <1
p=p=1 max(cpc,—1) if0=17c<71x <1
0 in the other cases ,

and |b] € RV and |b| € RV,. When p = 0, both b(t) and b(t) are (ast — +x) of the order
O((logt)™=Y) when r # 0, and of the order O((logt)™2) when r = 0.
(tit) The slowly varying function lz associated to Hyz satisfies

i, ) = ez

€]0,4| if Tx =7c orr <0,
=40 if ™x # 1¢ and r €]0,1]

where in particular cz; = cx if Tx < 7c and r < 0, and cz = co if 7o < Tx and r < 0.
Moreover we have (with the convention (+0)~% = 0 when 6 > 0)

I(t) — ¢ := 6292 and U(t) — ¢ = cxe/?% ast— +o0.

When tx = 17¢ orr <0, both ¢ and é are positive. When 1x # 17¢ and r €]0, 1], both ¢ and ¢
are zero and the following relation holds for some v > 0, as x — o

logl(expz) log I(exp x)

—va"  (1+0(1)) — 0 and

: . = —Oxv.a" (1+0(1)) — 0 (5)

Proof of Lemma 1
Part (i)
Let us prove the statements for [y and lx, the slowly varying functions involved in Hx and Hy.

The expansion for [y is a direct consequence of the assumption (A2) (which states that px < 0)
and Lemma 3 in [21] (a corollary of Theorem B.2.2 in [19], thereafter referred to as Hua & Joe’s



Lemma). Assumptions (A1) and (A2) also imply that, for every z

Hx (tx) 1/0x
i PxX __ 1
— X
Hx(®) T tooo 1/ex T T 1

bx (1) pPX
It is a rather standard technique in extreme value theory that Vervaat’s Lemma implies, for every
Y,

Hy(ty) _ ,0x Ix(ty) _
) Y i gy -1 M0 oo Y —1
5 — — y*¥>——— and thus ———— ———
_QXbX(HX (t)) PX bx (t) QXPX

for some slowly varying bx. Therefore, the slowly varying function Ix associated to H Y satisfies
the second order condition with index Oxpx < 0 and, for the same reason as above (Hua &
Joe’s Lemma), we have the expansion lx (y) = ¢x (1 — y?*#*v(y)) for some slowly varying function
v(y) and constant ¢x. Finally, the fact that the limit ¢x of Ix at infinity is c;(ex can be justified
using the following lines : if y = Hx(z) = 2%/%%x(x), then at infinity y*ix(y) = Hy(y) ~ = =
y?% (Ix (x))~%%, and thus, since limy, lx = cx, we have limy, [x = c)_(e".

Part (i)

We only provide details in the case 0 < 7x < 7¢ < 1, the other cases are similar. The proof of
Proposition 1 yields that

Hy(z) = 29215 (x) = 2M9% 1 4 (z)

where lz(z) = Ix(x).¢(z). Starting from (4), one can prove that
o(tx) | cst(log "1 +o(1))(logz) if 70,
o(t) | est(logt)"2(1 4+ o(1))(logz) if r=0,
i.e. ¢ satisfies the SR2 condition with a p-coefficient equal to 0. Moreover, since
Iz(tx) 1= Ix(tx) (¢(tx) B 1> N Ix(tx)
lz(t) Ix(t) \ o(t)
it is clear that [z satisfies the SR2 condition with pz = 0 and
O((logt)™™1) if r #0,
bz(t) = 9 .
O((logt)=@) ifr=0.

Ix (1) 7

The result for | (associated to H, ) thus follows using Vervaat’s Lemma : [ satisfies the SR2 condition
with p = 0 and

b(t) = { O((logt)™™1) if r # 0,

O((logt)=2) ifr =0.
Now, recall that
— . 1/ez~ 1/9){ — _ a
Hx o H,(x) = (x/"%l(x))/"*Ix(H, (x)) = 2°l(z),

with a = g—i (= 1 in the present case 0 < 7x < 7¢ < 1) and I(z) = ZX(HE(:U))(Z(JU))VQX.
Consequently,

Utz) | Ix(Hy () (Ut2) |\ | Ix(Hy (tr)
I(t) Lx(Hy(t))



and clearly [ also satisfies an SR2 condition with p = max(0, px) = 0 and b of the same order as b.

This phenomenon p = p = 0 holds in other cases (not detailed here), except when either 7x or
T¢ is equal to zero. For instance, when 0 = 7x < 7¢ < 1, in the proof of Proposition 1, the function
e(x) = Ac(x)/Ax(z) is of the order of (logz)Y7@z~1/9x and it implies that Iz (z) = Ix(z)¢(x)
where, this time, the function ¢ satisfies the SR2 condition with a p-coefficient equal to —1/6x < 0.
As a consequence, the coefficient py associated to the SR2 condition for [ is now max{px, —1/0x},
which yields p = max{fxpx,—1} < 0 as announced.

Part (ii1)
Again in the case 0 < 7x < T¢ < 1, the limiting result for [z is an easy consequence of the fact that
lz = lx¢, with [x tending to cx and the limit of ¢ stated in the proof of Proposition 1. In the case

0 < 7x = 7¢ < 1, as said at the end of the proof of Proposition 1, we have lim,_, 1 lz(x) €]0, +00[.
The other cases are similar to the first one, details are omitted.

Concerning now the function /, the same argument as in Part (i) of the proof yields that [ tends
to ¢ = c}gz, with the convention (—i—oo)*ex = 0. Concerning the limit ¢ = c¢x&/fx of [, it is a
consequence of the relation I(z) = Iy (H, (z))(I(z))"?% (in the case 0 < 7x < 7¢ < 1).

In the case where ¢z = 0 (i.e. when r €]0,1[ and 7x # 7¢), both ¢ and ¢ are equal to 0 and we
use the fact that

[(x) ~ (Iz(Hy (2)) ™" and I(z) = Ix (Hy (2))(I(x))V*

to deduce the statement (5), after some calculations. These rates will prove useful in two occasions
later in the proofs. O

Let us now turn our attention to the second order expansion for the function p(-) defined by
p(z) =P =1|Z = x).
The following lemma provides useful expansions of functions p(-) and r(+)
r(t) = po Hy (exp(Kr,(—logt))),

which are crucial to derive the properties of the random proportion py (and therefore the statements
of Proposition 2).

Lemma 2. Let us define the following constants (for Tx and T¢ positive only)
Ax =0x(txt = 1)(1x" +logex) , Ao = Oc(r5" — 1) (75" +log o)
and

1-1/7x 1/7c—1
A= Apc— Ay and B=X (X Te .
Oc \Ox Oc

Let assumptions (A1) and (Az) hold.

(i) We have, as x — +00,



and, more precisely,

D (logz)" ! [1 + g(r)(log ac)max(*l”*l)(l + 0(1))] if 0 < 71x # 70

<1,
)| if0=7x <7c <1

p(r)—p— | Dt (oga) ~H[1+ Ac(loga) ™! (1 + (1) :
Dz Y% (logx)™ ~1[1+ Ax(logz) "' (1 +o(1))] f0=1c<7x <1,
D (logz)~'(1 4+ O(1/log z)) if0<70 =Ty <1,
where
—B if0<Tx<70<1,
B! if0<to<7x <1,
D=1 —(r¢/8c)c L(0x/0ccx) if0=1x <710 <1,
(Tx/ex)TX _1(90/9)(60) f0=10c<71x <1,
—AB(1 + B)™2 if0 <10 =71x <1,
and
(T‘) _ Al o + (A — B)Hr:() + (_B)]Ire](),l[ if0<71x <70 <1,
g N (—A)HT<0 + (—A — Bil)]L:() + (—Bil)ﬂre]()’l[ ’ifO <10 <Tx < 1.

(17) When 17z >0 and 7x # 7¢, as t | 0 we have
r(t) = p = D(07/72) " (~10g ) #07) (14 O ((~log )T minitI=r) ) |
i particular, when 0 < 70 < 7x < 1,
r(t) = a¥™ (rx/7e) ™ "= log ) T (14 0 ((~logpym=reme/m 1)
When 77 > 0 and 7x = 17¢, we have
r(t) —p=—AB[(1+ B)*(82/72)] " (~logt)™™ (1 + O ((~logt)~™2)).
When 77 = 0, if 74 = max(7x,7¢c) we have

r(t) —p = est(—logt) ! (log log(l/t))if1 (1+ 0 ((loglog(1/))™1)).

1
|
with the constant being equal to T~ al/™ when 0 = 7¢ < Tx < 1.

Proof of Lemma 2 :

This proof is even more technical than the previous ones. As in the main part of the paper, a
complete proof of all the cases would be too lengthy, we only provide here a sketch of the proof,
focusing on some subcases.

Part (1)

We start by introducing fx and fc the respective probability density functions of X and C. By
Assumption (Al), the cumulative hazard function Ax of X is defined by Ax(z) = —log F'x(z) =
K, (log Hx(z)), and its derivative is fx (x)/Fx (), which is therefore equal to (K__)'(log Hx (x)) x
H'\(z)/Hx (z). The following thus comes easily

 Fe@)fx(@) _ (1 . () log Ho(x)) Hp(x)/He(x) >
Fo(x)fx(x) + Fx(a) fo(x) (K )/ (log Hx (2)) Hy (2)/Hx (x) )

Consider first the case where neither 7x nor 7¢ is zero. Since Hx (x) = 2% Ix () and (K-)'(u) =
(tu + 1)Y71, we have

p(x) =

1/7')(71 ! !
_y _ (= Hy(@) _ 1 2l (@)
(K;,) (log Hx(x)) = <9X logz + 7x loglx () + 1> and Hx (@) = Iz 1+ 0x (@) )’

where the slow variation of [x ensures that zly (z)/lx(xz) — 1 as x — oo. With the corresponding



formula for the C version, the following comes

1-1/7x 1/7c—1
p(lx) = 1+Z)C‘ (;f{) (;g) (logz) /™ ~Y™ (140(1)) = 1+ B (log 2) /™™ (1+0(1)).
The convergence to 1 of p(z) is thus proved when 0 < 7x < 7¢ < 1, and it can be proved similarly
that it is also valid when 7x = 0. It is easy to see that when 0 < 7¢ < 7x < 1, we have instead
1/p(x) — oo, and thus p(xz) — 0, as x — oo (also valid when 7¢ = 0). When 0 < 7x = 7¢ < 1, we
have 1/p(z) = 1 + B(1 + o(1)) — 1 + B which is equal in this case to 1 4+ (fx/0c)"™, and this
provides the announced limit for p(z), belonging to ]0, 1].

Of course, to derive the more precise expansions for p(z) — p stated in Part (i), second order
properties are required. Suppose neither 7x nor 7¢ is zero, and assumption (A2) holds. Part (i) of
Lemma 1 ensures that

[Tx— -
(K=Y (log Hx (1)) = (X) " (loga) /et (1 b (et - pyOxlogex + 7 o<1/1oga:>>

Ox log

and

H (z) 1 .~
Hi(x) ~ Oxa (I —OxpxaP*ox(z)),

where vy is a slowly varying function. Similar formulas are valid for X instead of C. Therefore,
after some efforts, we obtain

1
e 1+ B(logz)" =™ (14 A(logz) ' (1 + o(1)))
p(x
where A and B are the constants described in the statement of Lemma 2. This is the moment
where knowing the position of 7x with respect of 7¢ is needed, and it can be easily checked (but it
is a bit tedious) that the different expansions of p(x) — p stated in Part (i7) of Lemma 2 are valid

when neither 7x nor 7¢ is zero. When either 7x or 7¢ is zero, the proof is very similar, with the
expression of either (K~ ) (log Hx(x)) or (K- ) (log Ho(z)) varying from what is detailed above.

TX TCc
Part (i)

A complete description of all the cases would be too lengthy, let us focus on the case 0 < 7¢ <
T7x < 1. For t €]0, o[, if s denotes the quantity s = K,,(—logt), we have

r(t) ~p=po Hy(exps) —p = D (log Hy(exps)) (1+ Ra(t).
where R;(t) = g(r) {log H (exp K-, (— log t))}max(*l’rfl) (I+o0(1)). But

log Hy (exp ) = log ((¢)*1(¢") ) = (625) (1 + 67 (logl(e"))/s)
and thus

r(t) —p = (DO ") (Kr, (= log))" ™" (1 + Ri(1))(1 + Ra(1)),

where Ry(t) = (logl(exp K, (—logt)))/(0zK,,(—logt)). When 77 > 0 , we have K, (—logt) =
(—logt)™ (1 — (—logt)~"7), and therefore we obtain
(t

r(t) —p =D (0z/72)" " (=log ) #U7 (1 4+ Ri(1))(1 + Ra(1))(1 + Ra(1)),

where R3(t) = —(—logt)™"#. When 0 < 7¢ < 7x < 1, it can be checked that the mutliplying
constant is indeed equal to a'/™ (7 /7¢)™* 1, and a careful study of the 3 multiplicative remainder
terms leads to the stated big O, by relying on relation (5) in Part (ii7) of Lemma 1. The other cases
are similar, details are omitted. ]

1
Tz



3. Proofs of the other propositions

Proposition 2. Under assumptions (A1) and (A2), with (7x,7¢) € [0,1]*\{ (0,0), (1,1) }, as well
as Ry(b,p) and R;(b, p) and if (ky) satisfies Hy and one of the conditions H, ..., Hg, we have, as
n — oo,

if 0<7x<70<1, VkvnAgn = Vkon(pr —a) = VE(pr — 1) = 0,
L P 1-1/7x
if 0<7o<mx <1, Vhuadan = Vv, (() N Lo e~ “) 5 N <0,a21/”‘ (%) ) :

Zf 0< T = T0 < 1, \/E,UTLAQ,TL = \/E(al_l/TXﬁk — a) i) N (0’ a2_1/TX (1 _ al/TX)) ,
if O=710<71x <1, \/E/UnAQ,n = \/Evn ((aTX)lii Ly (log Lnk)lfi P — a) —d>N(0, a2_1/7'x7-)1{1/7—x) '

Proof of Proposition 2
The function p(-) being defined in the previous subsection, and proceeding as in [13], we carry
on the proof by considering now that ¢; is related to Z; by
0i = ly,<p(z,)>

where (U;);<, denotes an independent sequence of standard uniform variables, independent of the
sequence (Z;)i<n. We denote by Up ), .-, Uy the (unordered) values of the uniform sample
pertaining to the order statistics Z1, < ... < Z,, of the observed sample Z1,..., Z,.

Recall that Z; = H, (exp(K;,(E;))), where E,. .., E, are independent standard exponential
random variables (Proposition 1). We introduce, for every 1 < i < n, the standard uniform random
variables V; = 1 — exp(—E;) such that

Zi = Hy (exp(K7,(—log(1 - V;)))) = r(1 - V)

where the function r(-) was defined before the statement of Lemma 2, which provides valuable
information about it. Let us provide a detailed proof of Proposition 2 in the case 0 < 7¢ < 7x < 1
(the non-Weibull-tail strong censoring case) ; all the other cases are treated similarly. We start by
writing

1—1/Tx )T .
Vv, Az = Vv, <<W) (L)' C/ka—a>

TC

1-1/7x k
aTx 1—7¢/Tx 1
= \/E'Un (TC> (Lnk) of E E (]IU[n,—j-%—l,n]éT(l_Vn—J‘Fl)") - HU[n—jH‘n]@(j/n))

1& arx \ Y™ 1
+\/%U'n,%z <> (Lnk) _TC/TX HU[n—jJrl.,n]Sr(j/n) —-a
i=t\\TC
=: T+ Top.

We will prove below that the term T}, above converges to 0 in probability. Let us, first, treat the
term 15 ;. We write

1-1/7x —re)Tx )
) @) TS W arm — /)

) ) T i) )

1
Top = VEln <ﬂ

TC
1 k atx
+ /Rt 2=t (( 7o
. ’ "
= Th, + 15,

1—1/’7’)(
Let us prove that T2’7k 4, N(0,D) where D = a2l (T—X>

TC

, while T, = 0.

10



We deduce from Lemma 2 that

I/Txfl
r(t) = at/mx (:X> (—log t)To/TX*1 (1+0(1)) — 0.
C

Hence,

v(ry,) = ok (e

) n TC

= 02D (L)' T (L o)X (B

) S (1= )

)TC/TX—I

i

)Tc/TXfl

denoting Ln; = log(n/j). We have $>7°_, (Lm

Lnj
converges to 1, because 7 converges
Lnk Lnk

uniformly to 1. Consequently,
V(T3,) = Dv2 (L)~ ™/™ (1 + 0(1)) — D.

We conclude, for this term, using Lyapunov’s Theorem (details are omitted).
1-1/7x
Concerning Ty, we see that (%) (Lni) ™™ r(j/n) = a + o(1). Hence, we need a
second order development for 7(j/n). According to Lemma 2 (part (ii)), we have

arx I-ox 1—7c/ L,; =t L.\ ¢
— L™ r(j/n) —a= —_—_ —1 oML |2 .
() ™ m i —a=a (22 somr (1

where a = max{—7¢,7¢/Tx — 1}. Hence,

1
Ty, = avEv, (

k i .
"0 1) L+ o)) D) os(hld) + O Eu L1+ o) 3 (72)
j=1

T o Lok

—
But %Z?Zl log(k/j) and %Z?Zl <£;) both tend to 1 . Hence, according to assumption Hg ((74)

or (iii), depending on the closeness of 7x w.r.t. 7¢), Ty, indeed tends to 0. This concludes the
proof for Ty .

It remains to prove that T, above converges to 0 in probability. Following the same lines as in
the proof of Lemma 2 (Subsection C.3) in [30], it turns out that this amounts to proving that, for
some positive sequence s, = k~%/n (§ > 0) and some constant ¢ > 0,

- 1 k
VEv,Spp =5 0 where S, := sup{ Ir(s) —r(t)]; —<t<—, |s—t|<eVk/n, s=s,
n n

(6)
In the case considered here, 0 < 7¢ < 7x < 1, 7(t) = cst(—logt)™/™~1y(—logt), where v is a
slowly varying function such that v(—logt) tends to 1 when t — 0. Let h(t) = (—logt)™/™x~1,
Applying the mean value theorem, we obtain

r(t) —7(s)] < est]t — s|supyesq B (w)v(—logu) <1 + M)}

v(—log u)
< 08t|t - S| SUDPye[s,t] ‘h/(U)‘,

since % tends to 1, as ¢ tends to infinity. This entails that
S < cst BYZHOLTE2,
. . i -1
Recall that in this case v,, = Lfl,(;C/TX ). Hence
A 2(146)
\/EvnSmk < cst (\/ELZ‘Z"; ) ,
for some &' > 0 and a = 2(7¢/7x — 1) — 3. We easily prove that, if we choose 0 < ¢ < 3,

11



VEL — 0, under assumption Hj(ii) or H(iii). O

Let us now turn our attention to the proof of Proposition 3. This proof often implies the random
functions pq 7, (t) (defined for ¢ € N*) and UiTZ (t) which are defined by and satisfy (see Lemma 2
of [15])

fig,r (t) = E(bng(t)) = Lw(KTz (24t) =Ko, (£)* ™" da = (g) 19727V (1+0(1)) (as t — +o0) (7)

and UiTZ (t) == por,(t) — ,u%TZ (t). In addition, if for a sample of standard exponential variables

(F}i)i<k, we define
1k
07171 EZ Tz F +t> KTZ(t))
then we recall that Lemma 5 of [15] establishes that

971,1 (Enfk> — Ml,75 <Enfk)
Ol,14 (En—k) .

VEAL, 4, N(0,1) where Aj,:= (8)

Proposition 3. Under the conditions of Proposition 2, for all 1 <i <5 , \/EvnTi,n LN 0, asn

tends to infinity.

Proof of Proposition 3
The proofs for the terms T, ..., T5 , are respectively detailed in parts (1),...,(5) below.

(1) Recall that T1, = R ;/Dy. r, where

1 i ( (exp(Kr, (En_m,n))))
i .

exp(K (En—k:,n)))

According to assumption Rz(i), p), we have log (ll%;)) ~ b(t)K5(z), uniformly for z > 1,

as t — +o00. The Renyi representation yields that E,_j 1, — Ep—p 4 Fy_iy1% , where
Fy, ..., Fy are k independent standard exponential random variables. Consequently, taking
t =exp(Kr,(Ep_gn)) — +0 and z = exp(Kr, (En—it1,n) — K7, (En—kn)) = 1, we obtain

4
R, ;< b(exp(Kr, (En—kn)))(1 + 0p(1 ZK (exp(Kyr, (Fi + En_pn) — Kry (Brgn)))-
] 1
But on one hand, vkv,b(exp(Kr, (E,_k,))) tends to 0, under conditions Ha-Hg. On the other
hand, since % tends to 1 (thanks to (7)), Corollary 1 (a corollary of Proposition 2

Lrz
and the result for T, proved in the next bullet) yields that o1 ,,(En—k)/Dg.ry SN 1/a.
Consequently, in order to have negligibility of \/%vnTl,n, it thus remains to prove that

%Z?:lKﬁ(eXp(KTz (Fz + Enfk’,n) - K., (Enfk,n»)
Ul,TZ (E’I’L—k?)

is bounded in probability.
In the cases where p is equal to 0, we readily have
k 1 k
ZK (exp(Kry (Fi+En_tn)—Kry (Bn_.n) %Z o (Fit B jn) =Koy (Bnkn)) = 01 (En_t),
J 1 Jj=1

12



and % 1 (see (8)). In the cases where p < 0, we use the fact that |Kj;(e") —u| <
1,7y n—

17|, and we easily prove (following the lines of the proof of (8)) that

ij 1( Tz(F+En kn>_KTz(Enfk,n))2 P 0
O‘l,Tz(E’I’L—kJ) )

This concludes the proof for Tt .

Recall that Ty ,, =
3)

, where R; ,, is defined in Lemma 3 and we have (also in Lemma

D7y = AX 7Py + Ry

Ry

TX 1p’c

It suffices to prove that kv, = P, 0. Let us consider the case where 7x # 0 and

7o # 0, and introduce the notatlons

A —AX( n— ]+1n) and A —AnX( n— j+1n)

In this case (except when 7x = 1, since in that case Ry, = 0),

2
1.
i = TX2 AZXkE ( Jk) (1+Tjp)™ 2,

with Aj,k: = ]\j — Ak and Tj,k 6]0

, Sk [. Since 7x — 2 < 0, we are led to prove that

A
Aot (A)
Vv, ZEN [ Z2E ) B,
Pk kal Ak
and, introducing
Aj Ay, A;
k= = ipi=-——1
g],k Aj Ak 5,k Ak ’

we have (A J, R/AR)2 = (Ak: £j k+djg)? < ((Aj/Ak)2 £j2k + d2- ). We thus need to prove that

Ak 1 A Ak 1 P
Vv, = k (Ak) fjk—>0 and \FvnA ZdQ,k_’O 9)
Let Fy,...E, be ii.d. standard exponential random variables. We have (see Lemma 4 (7))
A =
/Tk — 1L (14 a1,
where
= Txal (Baojin)trx loglexp(Koy (B g n)))+L 4
Lik = Tixak,, (Bu_nn)+7x 108 1(exp(Kry (Bn_gn)))+1
= (1+o0p(1))(Ajk + Bjpr),
with
KT En—‘ n 1 l KTZ En—‘ n
o1 BB (Lo Easssa))
K+, (Ep—kn) aKo, (En—jt1,n) l(exp(Kr, (En—jt1n)))

Hence, dj; = 75 ' (Ajx + Bjx)(1 + op(1)). Moreover, the Renyi representation yields that

d . .
En ivin — En—kn = Fi—it1k , where Fy,..., Fj are k independent standard exponential

13



random variables. Consequently,

E’Z. —1
. — _ n—j+tln -
Aj’k 1 E:Zk,n_l

£ B (14 0p(1)).

n—

Concerning Bj j, we use the second order condition R;(b, p) for I to write

B = b(exp(KTz(En—k,n))))
Pk aKr, (En—k: n))

Since (Ajr + Bj)? < (A2 + B] ), we only have to prove that \fvn Z] 1A§k .0

K, (exp(Kr, (En—j+1,n) — Kr, (En—gn))) (1 + op(1)).

1/7x
and \fvn Z] 1Bj2k £, 0. Moreover A, < <ﬂ> (En,k,n)TZ/TX(l + op(1)), where

Tz
En k,n

n

LN 1 and ﬁ—’; — 1. Hence

Tz/TX -2

2
Dk kZ] 1F

Vv, Zj 1A§k 4 cste(1+0P(1))\/Ean

Tz

1— L
But (@> ~ (Lnk)l_TZ/TX Dk 2o, according to Proposition 2. Consequently,

\fvn i Op(1)Vkv, L}, which, using assumptions Ho, ... Hy, goes to 0 in prob-
] 1 nk
ablhty
Now, according to Lemma 5 in [15], we have

! P
12, ( EZ (exp(Kr, (En—j+1,n) — Kr, (En—kn))) — cst.

Hence,

\/> Z] lszk

[l

727X p(exp(Kr, (Bn_in 2
est(1+ op(D)V ko BE (MR i (B

£ est(L+ op(1)Vhoa Lt (exp(Kr, (Buin)):
since p2 7, (En—r) ~ 2L, (TZ 2 , according to Lemma 2 in [15]. The second part of relation (9)

is thus proved.

Let us now deal with the first part of relation (9). We have

Aj Ay, Ak>< Ay ) .
—1= (=) (ASE —Ap | A
f], A Ak (Ak ]Aj k+1 k

where A; := A; — A; and Apq = Ay — Ay. Lemmas 6 and 7 in [30] ensure that |A;| =
Op(1/y/7—1) for all j = 2,....k+1, |A1] = Op(1) and Z=52 55 1. Since in addition
both % and % tend to 1 in probability, and the latter is < 1, we thus obtain |{;,| <

k

(1 + op(1)) (opu) + op(1/\/E)) A7t and
S5l < (1 +0p(1)) (Op(l/x/j -1)+ Op(l/x/%)) A forj=2,... k.

Therefore,

A1 A;j 2 Un, N i )
VEn gD (1) Ges (o) T 1(op<1>+§op<1/<y—1>>).

But Ay, < est(1+ O]}D(l))L:LZ/TX and, according to Proposition 2, L TZ/TX]ﬁ = cst(1 + op(1)).
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Consequently

Ak 1 k A 2 1 2 log k
k' n-~ 5 7] 2 n TZ/TX
\/77) jjk kj:l (Ak> Sj,k ( )\/71) k p

due to kzj 1] ~ lolfk. If 7z = 7x (thus v, = 1), then the right-hand side above becomes

Op(1 )\/ELn,i 1O%k , which tends to 0 in probability, under assumption Hy or Hy. If 77 = 70 <

Tc‘l'x12
(/ )/)

Tx (thus v, = L let 0 <e< % and write

12ZXlogk: 12 X em T T3 e by 2e—
\/* L Tz /T \f L To/T k 1 (1) _ Lnk L 1/20(1) _ (\/ELnIS)2 10(1)7
3T 1
where —b > 3 TC I remains to ensure that vk L’/ * tends to infinity : this is the case

under assumpmon H3( /).

Recall that T3, = —(9;((A£X71 —A;Xfl)(Dk,TX)_lﬁk. Since Dy, r, = f\;xflﬁk + R1 y, according
to Lemma 3 (stated in 4 below) and Ry /Dy, = op(1) (term T5 ;, in Proposition 3), we obtain

that
T = Op(1) (1 - (2’;) 1) .

But |Ay — A| = Op(k~Y2) (see Lemma 7 in [30]). Hence
T3] < Op(k™H )AL

But Ay = K (aK,,(E,—) + logl(exp(K, (En—k)))) (see statement (i) of Lemma 4). In the

case where both 7x and 7¢ are not equal to 0 (the other cases are treated similarly), this
yields that Ay = O]}D(l)L;Z/ ™ Since an;kTZ/ ™ = op(1), this concludes the proof for T5 .

Recall that Ty, = —0x 5" D , where Ry ,, is defined in the statement of Lemma 5.

Let us consider the case where 7x > 0 and 7¢ > 0. If 7x = 1, then Ry, = 0 and there is
nothing to prove, so we suppose Tx €]0, 1[. We then have
1

1--= 21— 1L 17x log l(exp(Kyy (Bnrn)) \ 1~ 75
Rop = (2) 7 (Baoen) ™07 <(1—E e VT (14 Lol (B s

) Tz n—k,n

According to Lemma 3 (stated in Section 4 below) and the fact that ﬁ—: N 1, since

1/TX
a (X> (Bnn) /™ (1 + 02(1)),
TZ
it remains to prove that v/kv,R,,, where

1

n k " aTXK’TZ (En—k,n)

But I(z) tends to a constant ¢ that can be 0, as z tends to +oo. Hence,

log l(exp(K+, (En—kmn)))
KTZ (En—k,n)

where b = (1/7x — 1)(1 —a~'77/7x — 77/alogc). According to Lemma 1 (part (iii)), in the
logl(e®)

R, =bE "2 (14+o0p(1)) if ¢c#0 and R, =

n—k,n

(I4o0p(1)) if ¢=0,

cases when ¢ = 0, we have = cst.2"H(1 + o(1)) as z — +oo. Consequently,

R, = cst.L;z(rfl)(l + op(1)).

15
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Hence, VEkv, Ry, B, 0, under assumption Hs or Hj. The cases when ¢ # 0 are treated
similarly. This concludes the proof for T , when 7y > 0 and 7¢ > 0. The other cases (7x = 0
or 7¢ = 0) can be treated similarly, details are omitted.

Recall that T, = 0z(1 + op(1))R3,,, and that, in the case 7x # 0 and 7¢ # 0,

1-1/7x E T72(1-1/7x)
R3,n = <CL7_X> Dk <( n—k) - (Lnk)l_TZ/TX> :

Tz P17y (k)

But, according to Proposition 2, R3, = a(1 + op(1))R,,, where

Iz 1 _ 1
Ly (Ban)™ 7

R, =
H1,75 (En—k)

—1=RY + R® + RO,

and

1 L e m2(1-77)
RY = Lai )<(En_k) =) )

Hi,7y (En—k
(2) . p7z—1 1 . 1
B’ =Ly (ul,z En) m,TZ(Lnk))
RS’) c= LZi _ 1

Hi,75 (Lnk)

Let us prove that \/EvnRif) tend to 0 , for i = 1,2, 3.
(1)

Concerning Ry, , we use Lemma 4 of [15] to prove that v/k times the large brackets in
1-L)-1 Tz—1
the definition of Rg) is Op(l)L:;( =3 . Moreover, ﬁ tends to 1, in probability,
1,7y n—k
according to (7). Consequently, Vv RY = Op(1)v, L}, which tends to 0.
(2)

Concerning Ry, ’, we also use Lemma 4 of [15] to prove that Vk times the large brackets in

the definition of R\ is Op(1 )M1 irg (L1 or(1))) L tends to 1, we obtain that

L (Thor (D)) - DIRCe s

1+ op(1))) 1.7y (L)
VEkv, R = 0p(1 i EACTL SEA L ,
w = O L1+ 08(1)) By (Lo (1 + 0 (1))
which tends to 0, according to Lemma 2 (iii) of [15].

Concerning R( ) recall that, if 7 # 0, p1 () = S_OO(KT(.’E +t) — K, (t))e™® dx and t7~1 =
K/ (t). This entalls that

L (t +0 K. (z+t)—K,(t) —z + —z
“ﬁ,ii(l) = OOOI'%Q dJ,'—SOOO.%'e dx
0+OO 5 K(t(Jr) Jze® du (a €]0, z])

= 57 T E (4 ng) e dr (n €]0,1])

Hence R = 1*%L;kl(l + op(1)) and VEu,RY = Op(1)v, L.}, which tends to 0 under
assumptions Ho, Hs, Hy. O]

The following corollary is a consequence of Proposition 2 and Proposition 3 (term 75 ,,), and is also
related to Lemma 3 stated a few lines below. It was used above in the proof of the term 77, of
Proposition 3.

Corollary 1. Under the conditions of Proposition 2, we have

DkTX

P
—2=— — qa, as n tends to
M1, TZ(ETL k)

nfinity.

Its proof is particularly short : according to Lemma 3, and since u1 ., (t) ~ 7271 as t — o0 (see
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relation (7)), we have indeed
— R Pl AT (14 0(1)) £ (Ag + a)(1 4 0(1)) — a.
The next proposition is the version of Proposition 3 adapted to the setting of Theorem 2. Its
proof is very similar to the proof of Proposition 3, and is omitted.

Proposition 4. Under the conditions of Proposition 2, for all 1 < i < 5, \/EUHTTM LN 0, asn
tends to infinity.

4. Other technical Lemmas

Lemma 3. The denominator of the estimator éXJX satisfies the relation

k
1 A L
Dk,'rx = %ZK’T‘X (AnX(Zn—j-‘rl,n)) - KTX (AnX(ank,n)) = AkX lpk + RLn,
j=1

where

L N2
—1a k A _ .
DA Y ( Aif) (L+Tjp)™ 72, if0<7x <1,

Ryn = %25:1 <log (1 + AA’:) - AAJk’“> if Tx =0,
0 iftx =1

~

with, for each j = 1,...,k, Ajj = AnX(anj%»l,n) — AnX(Zn_;m) and the random variable T}

)

lies between 0 and %
k

Proof of Lemma 8

It is straightforward via Taylor’s formula and the definition of function K, (the negligibility of
Ry, is another story, it is dealt with in the proof of Proposition 3, part (2)). O

For the following lemma, recall that (E;) denote the i.i.d. standard exponential variable (Ej)
satisfying Z; = H, (exp(Kr, (F;)), and that [(-) denotes the slowly varying function which properties
are described in Lemma 1 and which is such that Hy o H, (z) = x®l(x). Note that in part (i7) of
this lemma, the results also hold when one replaces E,,_j , by Ly, or replaces Z,,_j , and E,,_j
by Zn—j+1,n and Ej,_ji1, (this will occasionally prove useful).

Lemma 4. (i) For everyi = 1,...,n, and whether 77 > 0 or is equal to 0, we have
Ax(Z;) = K7 (aKy,(E;) + logl(exp K-, (E;))).

(1) When 77 > 0, we have

1/7x 1/7x
Ax(Zp_ppn) = [a=X E™T (1 4 0p(1) = (0= BT (1 +BE . (1+ OP(1)))
Ty ’ ’ ’
(10)

for some constant 5 and exponent o = { 72(1=7)  when ¢ # 0 and r €]0, 1].

When 0 = 7x < 7¢, we have Ax(Zyn—kn) = En—tnl(En—kn) = En—rn(1+ op(1)).
When 0 = 1o < Tx, we have

AX (Zn—tm) = (amx)"™ (g Ep_n)™ (1 + B(log Ep_n) " (1 + 0p(1))) .

17
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Note that the constant /3 is negative in the case 7x # 7¢ and r €]0, 1[.

Proof of Lemma 4

The first statement (i) holds because on one hand, since Fx € Ai(7x,0x), we have Ax(z) =
K7 (log Hx(x)), and on the other hand, Z; = H, (exp(K;,(E;))) where Hx o H (x) = 2%l(x).

The second statement is essentially a consequence of the first one and of some of the second
order results contained in Lemma 1. Suppose for the moment that 7 > 0, i.e. 7x > 0 and 7¢ > 0.
We thus have K (z) = (txz + 1)1/7x . Hence, noting temporarily ¢(z) = logl(exp x)/z, it is easy
to see that (i) implies

Ax(Zn-kn) = {(amxKr, (Bn_pn) + 7x log l(exp(Kr, (En_jn))) + 1377
= (aTX)l/TX (KTZ (En—k,n))l/TX {1 + (aTXKTZ (En—k:,n))_l + a_1¢(KTZ (En—k:,n))}
But Ky, (En_pn) = E7, (1—E-™ Y/r5 = E,_ (1+o0p(1)), so

1/7')(

n—k,n n—k,n n—k,n
TZ/[Tx 1 —Tz
MxlZon) = o) B (1= B (1 0n(0) ) ¢ B,

where B,, denotes the quantity in curly brackets above. Thanks to part (iii) of Lemma 1, we have

Bn=1+ QTTZE*TZ (1+ 0p(1)) + est. B (1+ op(1))
X b

n—k,n

where either o = 7 and ¢st = (logc)rz/a (when 7x = 7¢ or 7x # 7¢ and r < 0) or a = 77 and

cst = —va~l7,; " < 0 (when 7x # 7¢ and 7 €]0, 1[). The proof is thus over when 77 > 0.

The cases 7x = 0 and 7¢ > 0, or 7¢ = 0 and 7x > 0, can be proved similarly. When 0 = 7x < 7¢,
we have 77 = 0 and a = 1 so it immediately comes Ax(Zp—rn) = En—pnl(En—kn) = En—pn(l +
op(1)) (because ¢ = 1 in that case, see Lemma 1). When 0 = 7¢ < 7x, we have 7z = 0 and thus

Ax(Zn—n) = {atx log(En—kpn) + Tx logl(En—kn) + 1}1/7"
The end of the proof is then very similar to the first case covered in details above.

The fact that relation (10) also holds when E,,_j ,, is replaced by L,y is due to Lemma 4 in [15],
which states that \/E(En_kn — Lyy) converges in distribution to a standard normal variable. [

Lemma 5. Let Eq,...,E, be i.i.d. standard exponential random variables.
1-1/7x _
(%) E;Z—(Ii,nl/TX)ﬁk + R2,n7 Zf T # 0 and TC # 0
—1 X
A e = ﬁ—Fsz”’ if0=717x <10 <1

(aTX)l_l/TX (log(En,km))l_l/TX P+ Rap if0=7c <7x <1,

where

( (ﬂ) 1_i ETZ(lii)p\k <(1 . EfTZ )17i (1 + 1+7x logl(eXP(Kfz(Enk,n))))l_;( o 1) ,

n—k,n atx K., (En_k.n)
if0<71x <land 1o #0

R27n=< Eyfkk,n (Z(El l), if0=1x <10 <1

)
11— 1-=4 14+7x 1ogl(Ep_k.n) 1*i .
(ax) ™ (log(En—kn)) ™ Dk (1 + m) —1), f0=1c<1x <1

koa ZfTX:]-

Proof of Lemma 5
Using part (i) of Lemma 4, we have

Ay = K (aK7,(En_kn) +logl(exp(Kr, (En—kn))))

TX
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which yields, in the case 7x # 0 and 7¢ # 0,

jE— 1 L 17%
A;x*l — (GTX> X E:;Z(kn )(1 i En TZ n)l—a <1 n 1+7x IOgl(eXp(K‘rz (En—k,n)))> )
TZ aTXK‘rz (En—k,n)
The expression of Rs , follows in this case. The other cases are similar. O]
Lemma 6. Let Eq,...,E, be i.i.d. standard exponential random variables.
71/7’){
(=) " B bk + RRap, if Tx # 0 and 70 # 0
—1aA .
Ay ke = f0=7y <70 <1

(aTx)_l/TX (log(En,k’n))_l/TX ﬁk + RRQW ifO =70 <Tx < 1,

where
( T e rz -1 1+7x log l(exp(Kr ) (Bn—r.n)))\ ~7x
(52) % o, e (1 77, ) (1 i By ),
if0<7x <landTtc #0
RRy, = < Eﬁ’”’k‘" <Z(En1—k,n) - 1) , if0=717x <710 <1

(ar) 7 Qo)) 7 i (14 SEHE) 1)L 0= e < ny <1

v—k,n

0, ifrx=1

The proof of the previous lemma is very similar to the one of Lemma 5, it is therefore omitted. The
following one is an easy consequence of Lemma 4.

Lemma 7. Under the assumptions of Proposition 2, we have, as n — 0,
ifrx #0 and 7¢ # 0, log(Ag) = T2 log Lk (1 + op(1))
if x =0, log(Ag) = alog L,k(1 + op(1))
if x #0, and ¢ =0 log(Ax) = % loglog Ly (1 + op(1))

Finally, the next lemma is used inside the proof of Theorem 4.

Lemma 8. Under the assumptions of Theorem 4, we have, as n tends to infinity,

Op(log L) if x #0,7¢ # 0 and (7x = 7¢ orr <0),
A Op(L"%log Lyy)  if x # 0,7¢ # 0,7x # ¢ and 7 €]0,1[,
u X " logudu = .
Ly Op(loglog L) if x #0 and 7¢ = 0,
Op(log Lnk) if ™ = 0.

Proof of Lemma 8
We only treat the case where both 7x and 7¢ are positive. In this case, recall that L, =
(a7x /72)"™ (Lni)™/™ and, according to Lemma 4, /L\—: -, 1. We have (with v = u/Ly,)

v~ (logv + log Ly) dv

() ()" 5 ()" —) e ((22) 7 1)

An immediate consequence of Lemma 4 is that both log (A:> and (L:) — 1 are Op ((Lnk)"72) if
AL

S/L\:uTX_llogu du = Li* A"/L’“

7x = Tc or 7 < 0, and are Op (( o) 20 1)) if Tx # 7¢c and r €]0 The result follows easily. [
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