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This document provides the proofs of all the Lemmas and Propositions of the manuscript Estima-
tion of extremes for heavy-tailed and light-tailed distributions in the presence of random censoring.
For ease of reference, a number of assumptions, definitions and notations are recalled here and there
in this document. Propositions 2 and 3 are the cornerstones for proving the theorems stated in the
main manuscript.

In all this document, cst will denote a positive generic constant which exact value does not need
to be explicited.

1. Assumptions

We recall here some of the assumptions under which our asymptotic results are proved.

1.1. Assumptions on the model

The main assumption is

Assumption (A1) : there exist τX P r0, 1s, τC P r0, 1s, θX ą 0, θC ą 0 such that

FX P A1pτX , θXq and FC P A1pτC , θCq.

This means that there exists positive functions HX and HC such that

sFXpxq “ 1´FXpxq “ expp´K´
τX plogpHXpxqqqq and sFCpxq “ 1´FCpxq “ expp´K´

τC plogpHCpxqqqq

and, for some slowly varying functions l̄X and l̄C at infinity,

H´Xpxq “ xθX l̄Xpxq and H´C pxq “ xθC l̄Cpxq.

It is clear that under this condition we also have HXpxq “ x1{θX lXpxq and HCpxq “ x1{θC lCpxq
where both lX and lC are slowly varying functions at infinity.

Remind that pτX , τCq “ p0, 0q and pτX , τCq “ p1, 1q have not been considered in this paper.
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The second important assumption is about the second order tail properties of FX and FC :

Assumption (A2) : there exist some negative constants ρX and ρC , and some rate functions
bX and bC having constant sign at `8 and satisfying |bX | P RVρX and
|bC | P RVρC , such that, as tÑ `8,

lXptxq{lXptq ´ 1

bXptq
ÝÑ KρX pxq, and

lCptxq{lCptq ´ 1

bCptq
ÝÑ KρC pxq,@x ą 0.

(1)

where Kρpxq “ px
ρ ´ 1q{ρ if ρ ă 0, and K0pxq “ logpxq.

Consider the functions :

H´Z pxq “ xθZ l̃pxq and HX ˝H
´
Z pxq “ xalpxq with a :“

θZ
θX

, (2)

where both l̃ and l are slowly varying. The crucial parameter a “ θZ{θX is equal to 1 in ”low
censoring” situations (in particular when τX ă τC).

Our important technical Lemma 1 ensures that functions H´Z and HX ˝H
´
Z also satisfy a second

order condition SR2. For technical reasons though, we need to consider the following stronger
conditions on l̃ and l, respectively noted Rl̃pb̃, ρ̃q and Rlpb, ρq, and defined by :

Assumption R`pB, ρq : for some constant ρ ď 0 and a rate function B satisfying
limxÑ`8Bpxq “ 0, such that for all ε ą 0, we have

sup
λě1

ˇ

ˇ

ˇ

ˇ

`pλxq{`pxq ´ 1

BpxqKρpλq
´ 1

ˇ

ˇ

ˇ

ˇ

ď ε, for x sufficiently large .

1.2. Assumptions on the sample fraction (kn)

The basic assumption on pknq is

H1 : k Ñ `8, k
n Ñ 0, log k

logn Ñ 0, as nÑ `8.

Introducing the important notation

Lnk “ logpn{kq,

let vn be the factor which contributes to the rates of convergence of our estimators, it depends on
the censoring strength in the tail :

vn :“

$

’

’

&

’

’

%

1 if 0 ă τX ă τC ď 1 or 0 ă τX “ τC ă 1 or 0 “ τX ă τC ď 1,

L
1

2
p
τC
τX
´1q

nk if 0 ă τC ă τX ď 1,

L
´1{2
nk plogLnkq

1

2
p 1

τX
´1q

if 0 “ τC ă τX ď 1.

We also consider the following conditions

H2 : 0 ă τX ă τC ď 1 and

#

piq
?
kL

τX{τC´1
nk Ñ 0 if 1

τC
´ 1

τX
ě ´1

piiq
?
kL´τXnk Ñ 0 if 1

τC
´ 1

τX
ă ´1

H3 : 0 ă τC ă τX ď 1 and

$

’

&

’

%

piq
?
kvn Ñ `8

piiq
?
kvnL

τC{τX´1
nk Ñ 0 if 1

τX
´ 1

τC
ě ´1

piiiq
?
kvnL

´τC
nk Ñ 0 if 1

τX
´ 1

τC
ă ´1

H4 : 0 ă τX “ τC ă 1 and
?
kL´τXnk Ñ 0

H5 : 0 “ τX ă τC ď 1 and Dδ ą 0,
?
kLρ̃`δnk Ñ 0
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H6 : 0 “ τC ă τX ď 1 and

"

piq
?
kvn Ñ `8

piiq
?
kvnplogLnkq

´1 Ñ 0

(in assumption H5 above, ρ̃ denotes the second order parameter associated to the slowly varying
function l̃, which is negative in this case ; see formula (2) as well as Lemma 1)

2. Second Order expansions

Proposition 1. Under Assumption (A1), the distribution function of Z “ minpX,Cq satisfies
condition A1pτZ , θZq, where

τZ “ minpτX , τCq and θZ “

$

’

’

&

’

’

%

θX if 0 ď τX ă τC ď 1
θC if 0 ď τC ă τX ď 1

pθ
´1{τZ
X ` θ

´1{τZ
C q´τZ if 0 ă τX “ τC ď 1

minpθX , θCq if τX “ τC “ 0

Therefore, there exists x˚ ą 0 such that for any x ě x˚, we have

PpZ ą xq “ expp´K´
τZ plogpHZpxqqqq,

where H´Z P RVθZ . Consequently, if E denotes a standard exponential distribution, we have

Z “ H´Z pexpKτZ pEqq.

Proof of Proposition 1

Let us first consider the case 0 ă τX ă τC ď 1 (note that the case τX “ τC “ 0 is already treated
in [30]). We are going to prove that ΛZpxq “ K´

τZ plogpHZpxqqq, where HZpxq “ x1{θZ lZpxq, with,
in this case, τZ “ τX , θZ “ θX and lZ is a slowly varying function to be determined.

Recall that HXpxq “ x1{θX lXpxq, HCpxq “ x1{θC lCpxq,

KτX ptq “
tτX ´ 1

τX
and K´

τX pyq “ p1` τXyq
1{τX .

We thus have by Assumption (A1)

ΛXpxq “ p1` τX logHXpxqq
1{τX “

ˆ

1`
τX
θX

log x` τX log lXpxq

˙1{τX

“

ˆ

τX
θX

˙1{τX

plog xq1{τX p1` εXpxqq
1{τX (3)

and similarly

ΛCpxq “

ˆ

τC
θC

˙1{τC

plog xq1{τC p1` εCpxqq
1{τC

where we set εV pxq :“ θV {τV`θV log lV pxq
log x , for V being X or C.

By independence of X and C (independent censoring), the cumulative hazard function of Z is
the sum of those of X and C. Hence

KτX pΛZpxqq “ KτX pΛXpxq ` ΛCpxqq

“ KτX pΛXpxqp1` λpxqqq,
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where

λpxq “
ΛCpxq

ΛXpxq

“

´

τC
θC

¯1{τC ´
τX
θX

¯´1{τX
plog xq1{τC´1{τX p1` εCpxqq

1{τC p1` εXpxqq
´1{τX .

Since both εX and εC tend to 0, it is also the case for the function λ. Consequently, we define

HZpxq :“ exppKτX pΛZpxqqq

“ exp
 

τ´1
X rpΛXpxqq

τX pp1` λpxqqτX ´ 1q ` ppΛXpxqq
τX ´ 1qs

(

.

But exp
´

pΛXpxqqτX´1
τX

¯

“ KτX pΛXpxqq “ logHXpxq, hence

HZpxq “ HXpxq exp
 

τ´1
X pΛXpxqq

τX rp1` λpxqqτX ´ 1s
(

.

Using (3) and a Taylor expansion of order 2 of p1` λpxqqτX , we thus obtain

HZpxq “ x1{θX lZpxq with lZpxq “ lXpxq.φpxq

where, introducing the constant BpX,Cq “
´

τC
θC

¯1{τC ´
τX
θX

¯1´1{τX
,

φpxq “ exp
´

θ´1
X plog xqp1` εXpxqqpτXλpxq `

τXpτX´1q
2 λ2pxq ` opλ2pxqqq

¯

“ exp
`

BpX,Cq plog xqr p1` εCpxqq
1{τC p1` εXpxqq

1´1{τX
`

1` τX´1
2 λpxq ` opλpxqq

˘˘

,

with r “ 1´
ˇ

ˇ

ˇ

1
τC
´ 1

τX

ˇ

ˇ

ˇ
ă 1.

Now, using the expression of lX and lC in Lemma 1 piq, we can perform a Taylor expansion of
εX , εC and λ to obtain that (after some careful computations)

φpxq “ exp tBpX,Cqplog xqrp1`Rpxqqu , (4)

where

Rpxq “

#

cst
log xp1` op1qq if r ď 0

cst
plog xq1´r `

cst
log xp1` op1qq if r ą 0.

It is then easy to check that φ is slowly varying at infinity and so does lZ . We thus have proved that
ΛZpxq “ K´

τZ plogpHZpxqqq with, in this case, τZ “ τX , θZ “ θX and HZpxq “ x1{θZ lZpxq where
lZ “ lXφ is slowly varying. In addition, one can remark that

φpxq Ñ

$

’

&

’

%

1 if r ă 0,

exp pBpX,Cqq if r “ 0,

8 if 0 ă r ă 1.

Concerning the other cases (0 ă τC ă τX ď 1, 0 “ τX ă τC ď 1, 0 “ τC ă τX ď 1 and
0 ă τX “ τC ď 1), they are proved similarly : the functions λpxq and φpxq slightly differ from the
case above, but the proof is substantially the same. Of particular interest is the proof for the case
0 ă τX “ τC ď 1 which starts by setting τZ “ τX “ τC and writing

KτZ pΛZpxqq “
1

τZ
tpΛXpxq ` ΛCpxqq

τZ ´ 1u

“
1

τZ

!”´

pτZ{θXq
1{τZ ` pτZ{θCq

1{τZ
¯

plog xq1{τZ p1` op1qq
ıτZ

´ 1
)

“

´

θ
´1{τZ
X ` θ

´1{τZ
C

¯τZ
plog xqp1` op1qq ´ τ´1

Z

which identifies θZ as θZ “

´

θ
´1{τZ
X ` θ

´1{τZ
C

¯´τZ
, since HZpxq “ exppKτZ pΛZpxqqq is then
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of the order x1{θZ . Note that in this case, with a more refined expansion of KτZ pΛZpxqq (un-
der the assumptions of Lemma 1 below), it can be proved that HZpxq “ x1{θZe´1{τZφpxq with
limxÑ8 φpxq “ expppcX ` cCqτZ{θZq Ps0,`8r.

Lemma 1 stated below provides details about the second order properties of the functions H´Z
and HX ˝ H

´
Z (and therefore, on the behavior of the variables Zi and ΛXpZiq). These properties

not only depend on the position of the parameters τX and τC with respect to each other, but on
their proximity through the parameter r defined by

r :“ 1´

ˇ

ˇ

ˇ

ˇ

1

τC
´

1

τX

ˇ

ˇ

ˇ

ˇ

P r´8, 1s

(if either τX “ 0 or τC “ 0, indeed consider that r “ ´8). This parameter r appears in the function
φpxq which is introduced in the previous proof of Proposition 1.

Lemma 1. Let conditions pA1q and pA2q hold.

piq For different slowly varying functions generically noted v, we have

lXpxq “ cXp1´ x
ρXvpxqq and lCpxq “ cCp1´ x

ρCvpxqq

l̄Xpxq “ c´θXX p1´ xθXρXvpxqq and l̄Cpxq “ c´θCC p1´ xθCρCvpxqq.

piiq The slowly varying functions l̃ and l associated to H´Z and HX ˝H
´
Z satisfy a second order

condition SR2 : as tÑ `8,

l̃ptxq

l̃ptq
´ 1

b̃ptq
ÝÑ Kρ̃pxq and

lptxq
lptq ´ 1

bptq
ÝÑ Kρpxq

where

ρ̃ “ ρ “

$

&

%

maxpθXρX ,´1q if 0 “ τX ă τC ă 1
maxpθCρC ,´1q if 0 “ τC ă τX ă 1
0 in the other cases ,

and |b̃| P RVρ̃ and |b| P RVρ. When ρ “ 0, both bptq and b̃ptq are (as t Ñ `8) of the order
Opplog tqr´1q when r ‰ 0, and of the order Opplog tq´2q when r “ 0.

piiiq The slowly varying function lZ associated to HZ satisfies

lim
xÑ`8

lZpxq “ cZ

"

Ps0,`8r if τX “ τC or r ď 0,
“ `8 if τX ‰ τC and r Ps0, 1r

where in particular cZ “ cX if τX ă τC and r ă 0, and cZ “ cC if τC ă τX and r ă 0.
Moreover we have (with the convention p`8q´θ “ 0 when θ ą 0)

l̃ptq Ñ c̃ :“ c´θZZ and lptq Ñ c :“ cX c̃
1{θX , as tÑ `8.

When τX “ τC or r ď 0, both c and c̃ are positive. When τX ‰ τC and r Ps0, 1r, both c̃ and c
are zero and the following relation holds for some ν ą 0, as xÑ8

log lpexpxq

x
“ ´ν.xr´1p1`op1qq ÝÑ 0 and

log l̃pexpxq

x
“ ´θXν.x

r´1p1`op1qq ÝÑ 0 (5)

Proof of Lemma 1

Part piq

Let us prove the statements for lX and l̄X , the slowly varying functions involved in HX and H´X .
The expansion for lX is a direct consequence of the assumption (A2) (which states that ρX ă 0)
and Lemma 3 in [21] (a corollary of Theorem B.2.2 in [19], thereafter referred to as Hua & Joe’s
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Lemma). Assumptions (A1) and (A2) also imply that, for every x

HXptxq
HXptq

´ x1{θX

bXptq
tÑ8
ÝÑ x1{θX x

ρX ´ 1

ρX
.

It is a rather standard technique in extreme value theory that Vervaat’s Lemma implies, for every
y,

H´Xptyq

H´Xptq
´ yθX

´θ2
XbXpH

´
Xptqq

tÑ8
ÝÑ yθX

yθXρX ´ 1

ρX
and thus

l̄Xptyq

l̄Xptq
´ 1

b̄Xptq

tÑ8
ÝÑ

yθXρX ´ 1

θXρX

for some slowly varying b̄X . Therefore, the slowly varying function l̄X associated to H´X satisfies
the second order condition with index θXρX ă 0 and, for the same reason as above (Hua &
Joe’s Lemma), we have the expansion l̄Xpyq “ c̄Xp1´ y

θXρXvpyqq for some slowly varying function

vpyq and constant c̄X . Finally, the fact that the limit c̄X of l̄X at infinity is c´θXX can be justified

using the following lines : if y “ HXpxq “ x1{θX lXpxq, then at infinity yθX l̄Xpyq “ H´Xpyq „ x “

yθX plXpxqq
´θX , and thus, since lim8 lX “ cX , we have lim8 l̄X “ c´θXX .

Part piiq

We only provide details in the case 0 ă τX ă τC ď 1, the other cases are similar. The proof of
Proposition 1 yields that

HZpxq “ x1{θZ lZpxq “ x1{θX lZpxq

where lZpxq “ lXpxq.φpxq. Starting from p4q, one can prove that

φptxq

φptq
´ 1 “

"

cstplog tqr´1p1` op1qqplog xq if r ‰ 0,

cstplog tq´2p1` op1qqplog xq if r “ 0,

i.e. φ satisfies the SR2 condition with a ρ-coefficient equal to 0. Moreover, since

lZptxq

lZptq
´ 1 “

lXptxq

lXptq

ˆ

φptxq

φptq
´ 1

˙

`
lXptxq

lXptq
´ 1,

it is clear that lZ satisfies the SR2 condition with ρZ “ 0 and

bZptq “

"

Opplog tqr´1q if r ‰ 0,

Opplog tq´2q if r “ 0.

The result for l̃ (associated to H´Z ) thus follows using Vervaat’s Lemma : l̃ satisfies the SR2 condition
with ρ̃ “ 0 and

b̃ptq “

"

Opplog tqr´1q if r ‰ 0,

Opplog tq´2q if r “ 0.

Now, recall that

HX ˝H
´
Z pxq “ px

1{θZ l̃pxqq1{θX lXpH
´
Z pxqq “ xalpxq,

with a “ θZ
θX

(“ 1 in the present case 0 ă τX ă τC ď 1) and lpxq “ lXpH
´
Z pxqqpl̃pxqq

1{θX .
Consequently,

lptxq

lptq
´ 1 “

lXpH
´
Z ptxqq

lXpH
´
Z ptqq

˜

l̃ptxq

l̃ptq
´ 1

¸

`
lXpH

´
Z ptxqq

lXpH
´
Z ptqq

´ 1,

6



and clearly l also satisfies an SR2 condition with ρ “ maxp0, ρXq “ 0 and b of the same order as b̃.

This phenomenon ρ “ ρ̃ “ 0 holds in other cases (not detailed here), except when either τX or
τC is equal to zero. For instance, when 0 “ τX ă τC ď 1, in the proof of Proposition 1, the function
εpxq “ ΛCpxq{ΛXpxq is of the order of plog xq1{τCx´1{θX , and it implies that lZpxq “ lXpxqφpxq
where, this time, the function φ satisfies the SR2 condition with a ρ-coefficient equal to ´1{θX ă 0.
As a consequence, the coefficient ρZ associated to the SR2 condition for lZ is now maxtρX ,´1{θXu,
which yields ρ̃ “ maxtθXρX ,´1u ă 0 as announced.

Part piiiq

Again in the case 0 ă τX ă τC ď 1, the limiting result for lZ is an easy consequence of the fact that
lZ “ lXφ, with lX tending to cX and the limit of φ stated in the proof of Proposition 1. In the case
0 ă τX “ τC ă 1, as said at the end of the proof of Proposition 1, we have limxÑ`8 lZpxq Ps0,`8r.
The other cases are similar to the first one, details are omitted.

Concerning now the function l̃, the same argument as in Part (i) of the proof yields that l̃ tends

to c̃ “ c´θZZ , with the convention p`8q´θX “ 0. Concerning the limit c “ cX c̃
1{θX of l, it is a

consequence of the relation lpxq “ lXpH
´
Z pxqqpl̃pxqq

1{θX (in the case 0 ă τX ă τC ď 1).

In the case where cZ “ 0 (i.e. when r Ps0, 1r and τX ‰ τC), both c̃ and c are equal to 0 and we
use the fact that

l̃pxq „ plZpH
´
Z pxqqq

´θZ and lpxq “ lXpH
´
Z pxqqpl̃pxqq

1{θX

to deduce the statement p5q, after some calculations. These rates will prove useful in two occasions
later in the proofs.

Let us now turn our attention to the second order expansion for the function pp¨q defined by

ppxq “ Ppδ “ 1|Z “ xq.

The following lemma provides useful expansions of functions pp¨q and rp¨q

rptq “ p ˝H´Z pexppKτZ p´ log tqqq,

which are crucial to derive the properties of the random proportion p̂k (and therefore the statements
of Proposition 2).

Lemma 2. Let us define the following constants (for τX and τC positive only)

AX “ θXpτ
´1
X ´ 1qpτ´1

X ` log cXq , AC “ θCpτ
´1
C ´ 1qpτ´1

C ` log cCq

and

A “ AC ´AX and B “
θX
θC

ˆ

τX
θX

˙1´1{τX ˆ

τC
θC

˙1{τC´1

.

Let assumptions pA1q and pA2q hold.

piq We have, as xÑ `8,

ppxq Ñ p :“

$

’

’

’

’

&

’

’

’

’

%

1 if 0 ď τX ă τC ď 1,

0 if 0 ď τC ă τX ď 1,

θ
1{τX
X

pθ
1{τX
X ` θ

1{τX
C q

“ a1{τX if 0 ă τX “ τC ă 1,
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and, more precisely,

ppxq ´ p “

$

’

’

&

’

’

%

D plog xqr´1
“

1` gprqplog xqmaxp´1,r´1qp1` op1qq
‰

if 0 ă τX ‰ τC ď 1,

D x´1{θX plog xqτ
´1
C ´1

“

1`ACplog xq´1p1` op1qq
‰

if 0 “ τX ă τC ď 1,

D x´1{θC plog xqτ
´1
X ´1

“

1`AXplog xq´1p1` op1qq
‰

if 0 “ τC ă τX ď 1,
D plog xq´1p1`Op1{ log xqq if 0 ă τC “ τX ă 1,

where

D “

$

’

’

’

’

&

’

’

’

’

%

´B if 0 ă τX ă τC ď 1,
B´1 if 0 ă τC ă τX ď 1,

´pτC{θCq
τ´1
C ´1pθX{θCcXq if 0 “ τX ă τC ď 1,

pτX{θXq
τ´1
X ´1pθC{θXcCq if 0 “ τC ă τX ď 1,

´ABp1`Bq´2 if 0 ă τC “ τX ă 1,

and

gprq “

"

AIră0 ` pA´BqIr“0 ` p´BqIrPs0,1r if 0 ă τX ă τC ď 1,
p´AqIră0 ` p´A´B

´1qIr“0 ` p´B
´1qIrPs0,1r if 0 ă τC ă τX ď 1.

piiq When τZ ą 0 and τX ‰ τC , as t Ó 0 we have

rptq ´ p “ DpθZ{τZq
r´1p´ log tq´τZp1´rq

´

1`O
´

p´ log tq´τZ mint1,1´ru
¯¯

,

in particular, when 0 ă τC ă τX ď 1,

rptq “ a1{τX pτX{τCq
τ´1
X ´1p´ log tq

τC
τX
´1

´

1`O
´

p´ log tqmaxt´τC ,τC{τX´1u
¯¯

.

When τZ ą 0 and τX “ τC , we have

rptq ´ p “ ´AB
“

p1`Bq2pθZ{τZq
‰´1

p´ log tq´τZ
`

1`O
`

p´ log tq´τZ
˘˘

.

When τZ “ 0, if τ` “ maxpτX , τCq we have

rptq ´ p “ cstp´ log tq´1plog logp1{tqq
1

τ`
´1 `

1`O
`

plog logp1{tqq´1
˘˘

.

with the constant being equal to τ
1

τX
´1

X a1{τX when 0 “ τC ă τX ď 1.

Proof of Lemma 2 :

This proof is even more technical than the previous ones. As in the main part of the paper, a
complete proof of all the cases would be too lengthy, we only provide here a sketch of the proof,
focusing on some subcases.

Part piq

We start by introducing fX and fC the respective probability density functions of X and C. By
Assumption (A1), the cumulative hazard function ΛX of X is defined by ΛXpxq “ ´ log sFXpxq “
K´
τX plogHXpxqq, and its derivative is fXpxq{ sFXpxq, which is therefore equal to pK´

τX q
1plogHXpxqqˆ

H 1Xpxq{HXpxq. The following thus comes easily

ppxq “
sFCpxqfXpxq

sFCpxqfXpxq ` sFXpxqfCpxq
“

ˆ

1`
pK´

τC q
1plogHCpxqq

pK´
τX q

1plogHXpxqq

H 1Cpxq{HCpxq

H 1Xpxq{HXpxq

˙´1

.

Consider first the case where neither τX nor τC is zero. Since HXpxq “ x1{θX lXpxq and pK´
τ q
1puq “

pτu` 1q1{τ´1, we have

pK´
τX q

1plogHXpxqq “

ˆ

τX
θX

log x` τX log lXpxq ` 1

˙1{τX´1

and
H 1Xpxq

HXpxq
“

1

θXx

ˆ

1` θX
xl1Xpxq

lXpxq

˙

,

where the slow variation of lX ensures that xl1Xpxq{lXpxq Ñ 1 as x Ñ 8. With the corresponding
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formula for the C version, the following comes

1

ppxq
“ 1`

θX
θC

ˆ

τX
θX

˙1´1{τX ˆ

τC
θC

˙1{τC´1

plog xq1{τC´1{τX p1`op1qq “ 1`B plog xq1{τC´1{τX p1`op1qq.

The convergence to 1 of ppxq is thus proved when 0 ă τX ă τC ď 1, and it can be proved similarly
that it is also valid when τX “ 0. It is easy to see that when 0 ă τC ă τX ď 1, we have instead
1{ppxq Ñ 8, and thus ppxq Ñ 0, as x Ñ 8 (also valid when τC “ 0). When 0 ă τX “ τC ă 1, we
have 1{ppxq “ 1 ` Bp1 ` op1qq Ñ 1 ` B which is equal in this case to 1 ` pθX{θCq

1{τX , and this
provides the announced limit for ppxq, belonging to s0, 1r.

Of course, to derive the more precise expansions for ppxq ´ p stated in Part piq, second order
properties are required. Suppose neither τX nor τC is zero, and assumption (A2) holds. Part piq of
Lemma 1 ensures that

pK´
τX q

1plogHXpxqq “

ˆ

τX
θX

˙1{τX´1

plog xq1{τX´1

˜

1` pτ´1
X ´ 1q

θXplog cX ` τ
´1
X q

log x
` op1{ log xq

¸

and

H 1Xpxq

HXpxq
“

1

θXx
p1´ θXρXx

ρX ṽXpxqq ,

where vX is a slowly varying function. Similar formulas are valid for X instead of C. Therefore,
after some efforts, we obtain

1

ppxq
“ 1`Bplog xq1{τC´1{τX

`

1`Aplog xq´1p1` op1qq
˘

,

where A and B are the constants described in the statement of Lemma 2. This is the moment
where knowing the position of τX with respect of τC is needed, and it can be easily checked (but it
is a bit tedious) that the different expansions of ppxq ´ p stated in Part piiq of Lemma 2 are valid
when neither τX nor τC is zero. When either τX or τC is zero, the proof is very similar, with the
expression of either pK´

τX q
1plogHXpxqq or pK´

τC q
1plogHCpxqq varying from what is detailed above.

Part piiq

A complete description of all the cases would be too lengthy, let us focus on the case 0 ă τC ă
τX ď 1. For t Ps0,8r, if s denotes the quantity s “ KτZ p´ log tq, we have

rptq ´ p “ p ˝H´Z pexp sq ´ p “ D
`

logH´Z pexp sq
˘r´1

p1`R1ptqq,

where R1ptq “ gprq
 

logH´Z pexpKτZ p´ log tqq
(maxp´1,r´1q

p1` op1qq. But

logH´Z pexp sq “ log
´

pesqθZ l̃pesq
¯

“ pθZsq
´

1` θ´1
Z plog l̃pesqq{s

¯

,

and thus

rptq ´ p “
`

Dθr´1
Z

˘

pKτZ p´ log tqqr´1
p1`R1ptqqp1`R2ptqq,

where R2ptq “ plog l̃pexpKτZ p´ log tqqq{pθZKτZ p´ log tqq. When τZ ą 0 , we have KτZ p´ log tq “
1
τZ
p´ log tqτZ p1´ p´ log tq´τZ q, and therefore we obtain

rptq ´ p “ D pθZ{τZq
r´1

p´ log tq´τZp1´rq p1`R1ptqqp1`R2ptqqp1`R3ptqq,

where R3ptq “ ´p´ log tq´τZ . When 0 ă τC ă τX ď 1, it can be checked that the mutliplying

constant is indeed equal to a1{τX pτX{τCq
τ´1
X ´1, and a careful study of the 3 multiplicative remainder

terms leads to the stated big O, by relying on relation (5) in Part piiiq of Lemma 1. The other cases
are similar, details are omitted.
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3. Proofs of the other propositions

Proposition 2. Under assumptions (A1) and (A2), with pτX , τCq P r0, 1s
2zt p0, 0q , p1, 1q u, as well

as Rlpb, ρq and Rl̃pb̃, ρ̃q and if pknq satisfies H1 and one of the conditions H2, . . . ,H6, we have, as
nÑ8,

if 0 ď τX ă τC ď 1,
?
kvnA2,n “

?
kvnpp̂k ´ aq “

?
kpp̂k ´ 1q

P
ÝÑ 0,

if 0 ă τC ă τX ď 1,
?
kvnA2,n “

?
kvn

ˆ

´

aτX
τZ

¯1´ 1

τX L
1´τZ{τX
nk p̂k ´ a

˙

d
ÝÑ N

ˆ

0, a2´1{τX
´

τX
τC

¯1´1{τX
˙

,

if 0 ă τX “ τC ă 1,
?
kvnA2,n “

?
kpa1´1{τX p̂k ´ aq

d
ÝÑ N

`

0, a2´1{τX p1´ a1{τX q
˘

,

if 0 “ τC ă τX ă 1,
?
kvnA2,n “

?
kvn

´

paτXq
1´ 1

τX Lnk plogLnkq
1´ 1

τX p̂k ´ a
¯

d
ÝÑN

´

0, a2´1{τXτ
1´1{τX
X

¯

.

Proof of Proposition 2

The function pp¨q being defined in the previous subsection, and proceeding as in [13], we carry
on the proof by considering now that δi is related to Zi by

δi “ IUiďppZiq,

where pUiqiďn denotes an independent sequence of standard uniform variables, independent of the
sequence pZiqiďn. We denote by Ur1,ns, . . . , Urn,ns the (unordered) values of the uniform sample
pertaining to the order statistics Z1,n ď . . . ď Zn,n of the observed sample Z1, . . . , Zn.

Recall that Zi “ H´Z pexppKτZ pEiqqq, where E1, . . . , En are independent standard exponential
random variables (Proposition 1). We introduce, for every 1 ď i ď n, the standard uniform random
variables Vi “ 1´ expp´Eiq such that

Zi “ H´Z pexppKτZ p´ logp1´ Viqqqq “ rp1´ Viq

where the function rp¨q was defined before the statement of Lemma 2, which provides valuable
information about it. Let us provide a detailed proof of Proposition 2 in the case 0 ă τC ă τX ď 1
(the non-Weibull-tail strong censoring case) ; all the other cases are treated similarly. We start by
writing

?
kvnA2,n “

?
kvn

ˆ

´

aτX
τC

¯1´1{τX
pLnkq

1´τC{τX p̂k ´ a

˙

“
?
kvn

ˆ

aτX
τC

˙1´1{τX

pLnkq
1´τC{τX 1

k

k
ÿ

j“1

`

IUrn´j`1,nsďrp1´Vn´j`1,nq ´ IUrn´j`1,nsďrpj{nq

˘

`
?
kvn

1

k

k
ÿ

j“1

˜

ˆ

aτX
τC

˙1´1{τX

pLnkq
1´τC{τX IUrn´j`1,nsďrpj{nq ´ a

¸

“: T1,k ` T2,k.

We will prove below that the term T1,k above converges to 0 in probability. Let us, first, treat the
term T2,k. We write

T2,k “ 1?
k
vn

´

aτX
τC

¯1´1{τX
pLnkq

1´τC{τX
řk
j“1

`

IUn´j`1,nďrpj{nq ´ rpj{nq
˘

` 1?
k
vn
řk
j“1

ˆ

´

aτX
τC

¯1´1{τX
pLnkq

1´τC{τX rpj{nq ´ a

˙

“: T 12,k ` T
2
2,k,

Let us prove that T 12,k
d
ÝÑ Np0, Dq where D “ a2´1{τX

´

τX
τC

¯1´1{τX
, while T 22,k

P
ÝÑ 0.
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We deduce from Lemma 2 that

rptq “ a1{τX

ˆ

τX
τC

˙1{τX´1

p´ log tqτC{τX´1
p1` op1qq Ñ 0.

Hence,

VpT 12,kq “ v2
n

´

aτX
τC

¯2´2{τX
pLnkq

2´2τC{τX 1
k

řk
j“1rpj{nqp1´ rpj{nqq

“ v2
nD pLnkq

1´τC{τX p1` op1qq 1
k

řk
j“1

´

Lnj
Lnk

¯τC{τX´1
,

denoting Lnj “ logpn{jq. We have 1
k

řk
j“1

´

Lnj
Lnk

¯τC{τX´1
converges to 1, because Lnj

Lnk
converges

uniformly to 1. Consequently,

VpT 12,kq “ Dv2
n pLnkq

1´τC{τX p1` op1qq Ñ D.

We conclude, for this term, using Lyapunov’s Theorem (details are omitted).

Concerning T 22,k, we see that
´

aτX
τC

¯1´1{τX
pLnkq

1´τC{τX rpj{nq “ a ` op1q. Hence, we need a

second order development for rpj{nq. According to Lemma 2 (part piiq), we have
ˆ

aτX
τC

˙1´ 1

τX

L
1´τC{τX
nk rpj{nq ´ a “ a

˜

ˆ

Lnj
Lnk

˙

τC
τX
´1

´ 1

¸

`Op1qL´αnk

ˆ

Lnj
Lnk

˙´α

.

where α “ maxt´τC , τC{τX ´ 1u. Hence,

T 22,k “ a
?
kvn

ˆ

τC
τX
´ 1

˙

L´1
nk p1` op1qq

1

k

k
ÿ

j“1

logpk{jq `Op1q
?
kvnL

´α
nk p1` op1qq

1

k

k
ÿ

j“1

ˆ

Lnj
Lnk

˙´α

.

But 1
k

řk
j“1 logpk{jq and 1

k

řk
j“1

´

Lnj
Lnk

¯´α
both tend to 1 . Hence, according to assumption H3 (piiq

or piiiq, depending on the closeness of τX w.r.t. τC), T 22,k indeed tends to 0. This concludes the
proof for T2,k.

It remains to prove that T1,k above converges to 0 in probability. Following the same lines as in
the proof of Lemma 2 (Subsection C.3) in [30], it turns out that this amounts to proving that, for
some positive sequence sn “ k´δ{n (δ ą 0) and some constant c ą 0,

?
kvnSn,k

nÑ8
ÝÑ 0 where Sn,k :“ sup

"

|rpsq ´ rptq| ;
1

n
ď t ď

k

n
, |s´ t| ď c

?
k{n , s ě sn

*

.

(6)
In the case considered here, 0 ă τC ă τX ď 1, rptq “ cstp´ log tqτC{τX´1vp´ log tq, where v is a
slowly varying function such that vp´ log tq tends to 1 when t Ñ 0. Let hptq “ p´ log tqτC{τX´1.
Applying the mean value theorem, we obtain

|rptq ´ rpsq| ď cst|t´ s| supuPrs,ts

ˇ

ˇ

ˇ
h1puqvp´ log uq

´

1` p´ log uqv1p´ log uq
vp´ log uq

¯ˇ

ˇ

ˇ

ď cst|t´ s| supuPrs,ts |h
1puq|,

since tv1ptq
vptq tends to 1, as t tends to infinity. This entails that

Sn,k ď cst k1{2`δL
τC{τX´2
nk .

Recall that in this case vn “ L
1

2
pτC{τX´1q

nk . Hence

?
kvnSn,k ď cst

´?
kLα`δ

1

nk

¯2p1`δq
,

for some δ1 ą 0 and α “ 3
4pτC{τX ´ 1q ´ 1

2 . We easily prove that, if we choose 0 ă δ1 ă 1
2 ,

11



?
kLα`δ

1

nk Ñ 0, under assumption H3piiq or H3piiiq.

Let us now turn our attention to the proof of Proposition 3. This proof often implies the random
functions µq,τZ ptq (defined for q P N˚) and σ2

1,τZ ptq which are defined by and satisfy (see Lemma 2
of [15])

µq,τZ ptq :“ Epθn,qptqq “
ż 8

0
pKτZ px`tq´KτZ ptqq

q e´x dx “ pq!q tqpτZ´1qp1`op1qq (as tÑ `8) (7)

and σ2
1,τZ ptq :“ µ2,τZ ptq ´ µ2

1,τZ ptq. In addition, if for a sample of standard exponential variables
pFiqiďkn we define

θn,1ptq “
1

k

k
ÿ

j“1

pKτZ pFi ` tq ´KτZ ptqq,

then we recall that Lemma 5 of [15] establishes that

?
kA1,n

d
ÝÑ Np0, 1q where A1,n :“

θn,1pEn´kq ´ µ1,τZ pEn´kq

σ1,τZ pEn´kq
. (8)

Proposition 3. Under the conditions of Proposition 2, for all 1 ď i ď 5 ,
?
kvnTi,n

P
ÝÑ 0, as n

tends to infinity.

Proof of Proposition 3

The proofs for the terms T1,n, . . . , T5,n are respectively detailed in parts (1), . . . ,(5) below.

p1q Recall that T1,n “ Rn,l̃{Dk,τX , where

Rn,l̃ “
1

k

k
ÿ

j“1

log

˜

l̃pexppKτZ pEn´i`1,nqqq

l̃pexppKτZ pEn´k,nqqq

¸

.

According to assumption Rl̃pb̃, ρ̃q, we have log
´

l̃ptxq

l̃ptq

¯

„ b̃ptqKρ̃pxq, uniformly for x ě 1,

as t Ñ `8. The Renyi representation yields that En´i`1,n ´ En´k
d
“ Fk´i`1,k , where

F1, . . . , Fk are k independent standard exponential random variables. Consequently, taking
t “ exppKτZ pEn´k,nqq Ñ `8 and x “ exppKτZ pEn´i`1,nq ´KτZ pEn´k,nqq ě 1, we obtain

Rn,l̃
d
“ b̃pexppKτZ pEn´k,nqqqp1` oPp1qq

1

k

k
ÿ

j“1

Kρ̃pexppKτZ pFi ` En´k,nq ´KτZ pEn´k,nqqq.

But on one hand,
?
kvnb̃pexppKτZ pEn´k,nqqq tends to 0, under conditions H2-H6. On the other

hand, since
µ1,τZ

pEn´kq

σ1,τZ
pEn´kq

tends to 1 (thanks to p7q), Corollary 1 (a corollary of Proposition 2

and the result for T2,n proved in the next bullet) yields that σ1,τZ pEn´kq{Dk,τX
P
ÝÑ 1{a.

Consequently, in order to have negligibility of
?
kvnT1,n, it thus remains to prove that

1
k

řk
j“1Kρ̃pexppKτZ pFi ` En´k,nq ´KτZ pEn´k,nqqq

σ1,τZ pEn´kq

is bounded in probability.

In the cases where ρ̃ is equal to 0, we readily have

1

k

k
ÿ

j“1

Kρ̃pexppKτZ pFi`En´k,nq´KτZ pEn´k,nqqq “
1

k

k
ÿ

j“1

pKτZ pFi`En´k,nq´KτZ pEn´k,nqq “ θn,1pEn´kq,
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and θn,1pEn´kq
σ1,τZ

pEn´kq
P
ÝÑ 1 (see p8q). In the cases where ρ̃ ă 0, we use the fact that |Kρ̃pe

uq ´ u| ď

|ρ̃|u
2

2 , and we easily prove (following the lines of the proof of p8q) that

1
k

řk
j“1 pKτZ pFi ` En´k,nq ´KτZ pEn´k,nqq

2

σ1,τZ pEn´kq
P
ÝÑ 0.

This concludes the proof for T1,n.

p2q Recall that T2,n “ ´θX
R1,n

Dk,τX
, where R1,n is defined in Lemma 3 and we have (also in Lemma

3)

Dk,τX “ Λ̂τX´1
k p̂k `R1,n.

It suffices to prove that
?
kvn

R1,n

Λ̂
τX´1

k p̂k

P
ÝÑ 0. Let us consider the case where τX ‰ 0 and

τC ‰ 0, and introduce the notations

Λj :“ ΛXpZn´j`1,nq and Λ̂j :“ Λ̂nXpZn´j`1,nq.

In this case (except when τX “ 1, since in that case R1,n “ 0),

R1,n “
τX ´ 1

2
Λ̂τXk

1

k

k
ÿ

j“1

˜

∆̂j,k

Λ̂k

¸2

p1` Tj,kq
τX´2,

with ∆̂j,k “ Λ̂j ´ Λ̂k and Tj,k Ps0,
∆̂j,k

Λ̂k
r. Since τX ´ 2 ă 0, we are led to prove that

?
kvn

Λ̂k
p̂k

1

k

k
ÿ

j“1

˜

∆̂j,k

Λ̂k

¸2
P
ÝÑ 0,

and, introducing

ξj,k :“
Λ̂j
Λj

Λk

Λ̂k
´ 1 and dj,k :“

Λj
Λk
´ 1,

we have p∆̂j,k{Λ̂kq
2 “ p

Λj
Λk
ξj,k ` dj,kq

2 ď 2ppΛj{Λkq
2 ξ2

j,k ` d
2
j,kq. We thus need to prove that

?
kvn

Λ̂k
p̂k

1

k

k
ÿ

j“1

ˆ

Λj
Λk

˙2

ξ2
j,k

P
ÝÑ 0 and

?
kvn

Λ̂k
p̂k

1

k

k
ÿ

j“1

d2
j,k

P
ÝÑ 0. (9)

Let E1, . . . En be i.i.d. standard exponential random variables. We have (see Lemma 4 piq)

Λj
Λk
´ 1

d
“ p1` xj,kq

1{τX ´ 1,

where

xj,k “
τXaKτZ pEn´j`1,nq`τX log lpexppKτZ pEn´j`1,nqqq`1

τXaKτZ pEn´k,nq`τX log lpexppKτZ pEn´k,nqqq`1 ´ 1

“ p1` oPp1qqpAj,k `Bj,kq,

with

Aj,k “ 1´
KτZ pEn´j`1,nq

KτZ pEn´k,nq
and Bj,k “

1

aKτZ pEn´j`1,nq
log

ˆ

lpexppKτZ pEn´j`1,nqqq

lpexppKτZ pEn´j`1,nqqq

˙

.

Hence, dj,k “ τ´1
X pAj,k ` Bj,kqp1 ` oPp1qq. Moreover, the Renyi representation yields that

En´i`1,n ´ En´k,n
d
“ Fk´i`1,k , where F1, . . . , Fk are k independent standard exponential
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random variables. Consequently,

Aj,k “ 1´
E
τZ
n´j`1,n´1

E
τZ
n´k,n´1

d
“ ´τZ

Fk´j`1,k

En´k,n
p1` oPp1qq.

Concerning Bj,k, we use the second order condition Rlpb, ρq for l to write

Bj,k “
bpexppKτZ pEn´k,nqqqq

aKτZ pEn´k,nqq
Kρ pexppKτZ pEn´j`1,nq ´KτZ pEn´k,nqqq p1` oPp1qq.

Since pAj,k ` Bj,kq
2 ď 2pA2

j,k ` B2
j,kq, we only have to prove that

?
kvn

Λ̂k
p̂k

1
k

řk
j“1A

2
j,k

P
ÝÑ 0

and
?
kvn

Λ̂k
p̂k

1
k

řk
j“1B

2
j,k

P
ÝÑ 0. Moreover Λk

d
“

´

aτX
τZ

¯1{τX
pEn´k,nq

τZ{τX p1 ` oPp1qq, where

En´k,n
Lnk

P
ÝÑ 1 and Λ̂k

Λk

P
ÝÑ 1. Hence

?
kvn

Λ̂k
p̂k

1
k

řk
j“1A

2
j,k

d
“ cstep1` oPp1qq

?
kvn

L
τZ {τX´2

nk

p̂k
1
k

řk
j“1F

2
j .

But
´

aτX
τZ

¯1´ 1

τX
pLnkq

1´τZ{τX p̂k
P
ÝÑ a, according to Proposition 2. Consequently,

?
kvn

Λ̂k
p̂k

1
k

řk
j“1A

2
j,k

d
“ OPp1q

?
kvnL

´1
nk , which, using assumptions H2, . . . H4, goes to 0 in prob-

ability.
Now, according to Lemma 5 in [15], we have

1

µ2,τZ pEn´kq

1

k

k
ÿ

j“1

K2
ρ pexppKτZ pEn´j`1,nq ´KτZ pEn´k,nqqq

P
ÝÑ cst.

Hence,

?
kvn

Λ̂k
p̂k

1
k

řk
j“1B

2
j,k

d
“ cstp1` oPp1qq

?
kvn

L
τZ {τX
nk

p̂k

´

bpexppKτZ pEn´k,nqqqq

aKτZ pEn´k,nqq

¯2
µ2,τZ pEn´kq

d
“ cstp1` oPp1qq

?
kvnL

´1
nk b

2pexppKτZ pEn´k,nqqqq,

since µ2,τZ pEn´kq „ 2L
2pτZ´1q
nk , according to Lemma 2 in [15]. The second part of relation (9)

is thus proved.

Let us now deal with the first part of relation (9). We have

ξj,k “
Λ̂j
Λj

Λk

Λ̂k
´ 1 “

ˆ

Λk

Λ̂k

˙ˆ

∆j
Λk
Λj
´∆k`1

˙

Λ´1
k ,

where ∆j :“ Λ̂j ´ Λj and ∆k`1 :“ Λ̂k ´ Λk. Lemmas 6 and 7 in [30] ensure that |∆j | “

OPp1{
?
j ´ 1q for all j “ 2, . . . , k ` 1, |∆1| “ OPp1q and En´k,n

Lnk

P
ÝÑ 1. Since in addition

both Λk
Λ̂k

and Λk
Λj

tend to 1 in probability, and the latter is ď 1, we thus obtain |ξ1,n| ď

p1` oPp1qq
´

OPp1q `OPp1{
?
kq
¯

Λ´1
k and

|ξj,n| ď p1` oPp1qq
´

OPp1{
a

j ´ 1q `OPp1{
?
kq
¯

Λ´1
k , for j “ 2, . . . , k.

Therefore,

?
kvn

Λ̂k
p̂k

1

k

k
ÿ

j“1

ˆ

Λj
Λk

˙2

ξ2
j,k ď p1` oPp1qq

vn
?
k
pΛkp̂kq

´1

˜

OPp1q `
k
ÿ

j“2

OPp1{pj ´ 1qq

¸

.

But Λk
d
“ cstp1` oPp1qqL

τZ{τX
nk and, according to Proposition 2, L

1´τZ{τX
nk p̂k “ cstp1` oPp1qq.
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Consequently

?
kvn

Λ̂k
p̂k

1

k

k
ÿ

j“1

ˆ

Λj
Λk

˙2

ξ2
j,k ď OPp1q

?
kvnL

1´2τZ{τX
nk

log k

k
,

due to 1
k

řk
j“1

1
j „

log k
k . If τZ “ τX (thus vn “ 1), then the right-hand side above becomes

OPp1q
?
kL´1

nk
log k
k , which tends to 0 in probability, under assumption H2 or H4. If τZ “ τC ă

τX (thus vn “ L
pτC{τX´1q{2
nk ), let 0 ă ε ă 1

2 and write

?
kvnL

1´2τZ{τX
nk

log k

k
“
?
kvnL

1´2τC{τX
nk kε´1op1q “ L

3

2

τC
τX
´ 1

2

nk kε´1{2op1q “ p
?
kL´bnkq

2ε´1op1q,

where ´b ą 3
2
τC
τX
´ 1

2 It remains to ensure that
?
kL

3

2

τC
τX
´ 1

2

nk tends to infinity : this is the case
under assumption H3piq.

p3q Recall that T3,n “ ´θXpΛ̂
τX´1
k ´ΛτX´1

k qpDk,τX q
´1p̂k. Since Dk,τX “ Λ̂τX´1

k p̂k`R1,n, according
to Lemma 3 (stated in 4 below) and R1,n{Dk,τX “ oPp1q (term T2,n in Proposition 3), we obtain
that

T3,n “ OPp1q

˜

1´

ˆ

Λk

Λ̂k

˙τX´1
¸

.

But |Λk ´ Λ̂k| “ OPpk
´1{2q (see Lemma 7 in [30]). Hence

|T3,n| ď OPpk
´1{2qΛ´1

k .

But Λk “ K´
τX paKτZ pEn´kq ` log lpexppKτZ pEn´kqqqq (see statement piq of Lemma 4). In the

case where both τX and τC are not equal to 0 (the other cases are treated similarly), this

yields that Λk “ OPp1qL
τZ{τX
nk . Since vnL

´τZ{τX
nk “ oPp1q, this concludes the proof for T3,n.

p4q Recall that T4,n “ ´θX
R2,n

Dk,τX
, where R2,n is defined in the statement of Lemma 5.

Let us consider the case where τX ą 0 and τC ą 0. If τX “ 1, then R2,n “ 0 and there is
nothing to prove, so we suppose τX Ps0, 1r. We then have

R2,n “

´

aτX
τZ

¯1´ 1

τX
pEn´k,nq

τZp1´
1

τX
q
p̂k

ˆ

p1´ E´τZn´k,nq
1´ 1

τX

´

1`
1`τX log lpexppKτZ pEn´k,nqqq

aτXKτZ pEn´k,nq

¯1´ 1

τX
´ 1

˙

According to Lemma 3 (stated in Section 4 below) and the fact that Λ̂k
Λk

P
ÝÑ 1, since

Λk “

ˆ

aτX
τZ

˙1{τX

pEn´k,nq
τZ{τX p1` oPp1qq,

it remains to prove that
?
kvnRn, where

Rn :“

˜

p1´ E´τZn´k,nq
1´ 1

τX

ˆ

1`
1` τX log lpexppKτZ pEn´k,nqqq

aτXKτZ pEn´k,nq

˙1´ 1

τX

´ 1

¸

.

But lpxq tends to a constant c that can be 0, as x tends to `8. Hence,

Rn “ bE´τZn´k,np1`oPp1qq if c ‰ 0 and Rn “ cst
log lpexppKτZ pEn´k,nqqq

KτZ pEn´k,nq
p1`oPp1qq if c “ 0,

where b “ p1{τX ´ 1qp1´ a´1τZ{τX ´ τZ{a log cq. According to Lemma 1 (part piiiq), in the

cases when c “ 0, we have log lpexq
x “ cst.xr´1p1` op1qq as xÑ `8. Consequently,

Rn “ cst.L
τZpr´1q
nk p1` oPp1qq.
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Hence,
?
kvnRn

P
ÝÑ 0, under assumption H2 or H3. The cases when c ‰ 0 are treated

similarly. This concludes the proof for T4,n when τX ą 0 and τC ą 0. The other cases (τX “ 0
or τC “ 0) can be treated similarly, details are omitted.

p5q Recall that T5,n “ θZp1` oPp1qqR3,n, and that, in the case τX ‰ 0 and τC ‰ 0,

R3,n “

ˆ

aτX
τZ

˙1´1{τX

p̂k

˜

pEn´kq
τZp1´1{τXq

µ1,τZ pEn´kq
´ pLnkq

1´τZ{τX

¸

.

But, according to Proposition 2, R3,n “ ap1` oPp1qqRn, where

Rn :“
L
τZ
τX
´1

nk pEn´kq
τZp1´

1

τX
q

µ1,τZ pEn´kq
´ 1 “ Rp1qn `Rp2qn `Rp3qn ,

and

R
p1q
n :“

L

τZ
τX

´1

nk

µ1,τZ
pEn´kq

ˆ

pEn´kq
τZp1´

1

τX
q
´ L

τZp1´
1

τX
q

nk

˙

,

R
p2q
n :“ LτZ´1

nk

´

1
µ1,τZ

pEn´kq
´ 1

µ1,τZ
pLnkq

¯

R
p3q
n :“

L
τZ´1

nk

µ1,τZ
pLnkq

´ 1.

Let us prove that
?
kvnR

piq
n tend to 0 , for i “ 1, 2, 3.

Concerning R
p1q
n , we use Lemma 4 of [15] to prove that

?
k times the large brackets in

the definition of R
p1q
n is OPp1qL

τZp1´
1

τX
q´1

nk . Moreover,
L
τZ´1

nk

µ1,τZ
pEn´kq

tends to 1, in probability,

according to (7). Consequently,
?
kvnR

p1q
n “ OPp1qvnL

´1
nk , which tends to 0.

Concerning R
p2q
n , we also use Lemma 4 of [15] to prove that

?
k times the large brackets in

the definition of R
p2q
n is OPp1q

µ11,τZ pLnkp1`oPp1qqq

µ2
1,τZ

pLnkp1`oPp1qqq
. Since

L
τZ´1

nk

µ1,τZ
pLnkq

tends to 1, we obtain that

?
kvnR

p2q
n “ OPp1qvn

µ11,τZ pLnkp1` oPp1qqq

µ1,τZ pLnkp1` oPp1qqq

µ1,τZ pLnkq

µ1,τZ pLnkp1` oPp1qqq
,

which tends to 0, according to Lemma 2 (iii) of [15].

Concerning R
p3q
n , recall that, if τ ‰ 0, µ1,τ ptq “

ş`8

0 pKτ px` tq ´Kτ ptqqe
´x dx and tτ´1 “

K 1
τ ptq. This entails that

µ1,τ ptq
tτ´1 “

ş`8

0 xKτ px`tq´Kτ ptqxK1τ ptq
e´x dx´

ş`8

0 xe´x dx

“
ş`8

0
x
2
K2τ pt`αq
K1τ ptq

xe´x dx pα Ps0, xrq

“
ş`8

0
τ´1

2
x2

t p1` η
x
t q
τ´2e´x dx pη Ps0, 1rq

Hence R
p3q
n “ 1´τZ

2 L´1
nk p1 ` oPp1qq and

?
kvnR

p3q
n “ OPp1qvnL

´1
nk , which tends to 0 under

assumptions H2, H3, H4.

The following corollary is a consequence of Proposition 2 and Proposition 3 (term T2,n), and is also
related to Lemma 3 stated a few lines below. It was used above in the proof of the term T1,n of
Proposition 3.

Corollary 1. Under the conditions of Proposition 2, we have
Dk,τX

µ1,τZ pEn´kq
P
ÝÑ a, as n tends to

infinity.

Its proof is particularly short : according to Lemma 3, and since µ1,τZ ptq „ tτZ´1 as t Ñ 8 (see
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relation (7)), we have indeed

Dk,τX

µ1,τZ pEn´kq
“ L1´τZ

nk ΛτX´1
k p̂kp1` op1qq

d
“ pA2,n ` aqp1` op1qq

P
ÝÑ a.

The next proposition is the version of Proposition 3 adapted to the setting of Theorem 2. Its
proof is very similar to the proof of Proposition 3, and is omitted.

Proposition 4. Under the conditions of Proposition 2, for all 1 ď i ď 5,
?
kvnTTi,n

P
ÝÑ 0, as n

tends to infinity.

4. Other technical Lemmas

Lemma 3. The denominator of the estimator θ̂X,τX satisfies the relation

Dk,τX “
1

k

k
ÿ

j“1

KτX pΛ̂nXpZn´j`1,nqq ´KτX pΛ̂nXpZn´k,nqq “ Λ̂τX´1
k p̂k `R1,n,

where

R1,n “

$

’

’

’

&

’

’

’

%

τX´1
2 Λ̂τXk

1
k

řk
j“1

´

∆̂j,k

Λ̂k

¯2
p1` Tj,kq

τX´2, if 0 ă τX ă 1,

1
k

řk
j“1

´

log
´

1` ∆̂j,k

Λ̂k

¯

´
∆̂j,k

Λ̂k

¯

if τX “ 0,

0 if τX “ 1

with, for each j “ 1, . . . , k, ∆̂j,k :“ Λ̂nXpZn´j`1,nq ´ Λ̂nXpZn´k,nq and the random variable Tj,k

lies between 0 and ∆̂j,k

Λ̂k
.

Proof of Lemma 3

It is straightforward via Taylor’s formula and the definition of function KτZ (the negligibility of
R1,n is another story, it is dealt with in the proof of Proposition 3, part (2)).

For the following lemma, recall that pEiq denote the i.i.d. standard exponential variable pEiq
satisfying Zi “ H´Z pexppKτZ pEiqq, and that lp¨q denotes the slowly varying function which properties
are described in Lemma 1 and which is such that HX ˝H

´
Z pxq “ xalpxq. Note that in part piiq of

this lemma, the results also hold when one replaces En´k,n by Lnk, or replaces Zn´k,n and En´k,n
by Zn´j`1,n and En´j`1,n (this will occasionally prove useful).

Lemma 4. piq For every i “ 1, . . . , n, and whether τZ ą 0 or is equal to 0, we have

ΛXpZiq “ K´
τX

`

aKτZ pEiq ` log lpexpKτZ pEiqq
˘

.

piiq When τZ ą 0, we have

ΛXpZn´k,nq “

ˆ

a
τX
τZ

˙1{τX

E
τZ{τX
n´k,np1` oPp1qq “

ˆ

a
τX
τZ

˙1{τX

E
τZ{τX
n´k,n

´

1` βE´αn´k,np1` oPp1qq
¯

(10)

for some constant β and exponent α “

"

τZ when either τX “ τC , or τX ‰ τC and r ď 0,
τZp1´ rq when τX ‰ τC and r Ps0, 1r.

When 0 “ τX ă τC , we have ΛXpZn´k,nq “ En´k,nlpEn´k,nq “ En´k,np1` oPp1qq.

When 0 “ τC ă τX , we have

ΛXpZn´k,nq “ paτXq
1{τX plogEn´k,nq

1{τX
`

1` βplogEn´k,nq
´1p1` oPp1qq

˘

.

17



Note that the constant β is negative in the case τX ‰ τC and r Ps0, 1r.

Proof of Lemma 4

The first statement piq holds because on one hand, since sFX P A1pτX , θXq, we have ΛXpxq “
K´
τX plogHXpxqq, and on the other hand, Zi “ H´Z pexppKτZ pEiqqq where HX ˝H

´
Z pxq “ xalpxq.

The second statement is essentially a consequence of the first one and of some of the second
order results contained in Lemma 1. Suppose for the moment that τZ ą 0, i.e. τX ą 0 and τC ą 0.
We thus have K´

τX pxq “ pτXx` 1q1{τX . Hence, noting temporarily φpxq “ log lpexpxq{x, it is easy
to see that piq implies

ΛXpZn´k,nq “ tpaτXKτZ pEn´k,nq ` τX log lpexppKτZ pEn´k,nqqq ` 1u1{τX

“ paτXq
1{τX pKτZ pEn´k,nqq

1{τX
 

1` paτXKτZ pEn´k,nqq
´1 ` a´1φpKτZ pEn´k,nqq

(1{τX

But KτZ pEn´k,nq “ EτZn´k,np1´ E
´τZ
n´k,nq{τZ “ EτZn´k,np1` oPp1qq, so

ΛXpZn´k,nq “ paτX{τZq
1{τXE

τZ{τX
n´k,n

ˆ

1´
1

τX
E´τZn´k,np1` oPp1qq

˙

ˆBn

where Bn denotes the quantity in curly brackets above. Thanks to part piiiq of Lemma 1, we have

Bn “ 1`
τZ
aτX

E´τZn´k,np1` oPp1qq ` cst.E
´α
n´k,np1` oPp1qq

where either α “ τZ and cst “ plog cqτZ{a (when τX “ τC or τX ‰ τC and r ď 0) or α “ τZ and
cst “ ´νa´1τ1´r

Z ă 0 (when τX ‰ τC and r Ps0, 1r). The proof is thus over when τZ ą 0.

The cases τX “ 0 and τC ą 0, or τC “ 0 and τX ą 0, can be proved similarly. When 0 “ τX ă τC ,
we have τZ “ 0 and a “ 1 so it immediately comes ΛXpZn´k,nq “ En´k,nlpEn´k,nq “ En´k,np1 `
oPp1qq (because c “ 1 in that case, see Lemma 1). When 0 “ τC ă τX , we have τZ “ 0 and thus

ΛXpZn´k,nq “ taτX logpEn´k,nq ` τX log lpEn´k,nq ` 1u1{τX

The end of the proof is then very similar to the first case covered in details above.

The fact that relation (10) also holds when En´k,n is replaced by Lnk is due to Lemma 4 in [15],

which states that
?
kpEn´k,n ´ Lnkq converges in distribution to a standard normal variable.

Lemma 5. Let E1, . . . , En be i.i.d. standard exponential random variables.

ΛτX´1
k p̂k “

$

’

’

’

&

’

’

’

%

´

aτX
τZ

¯1´1{τX
E
τZp1´1{τXq
n´k,n p̂k `R2,n, if τX ‰ 0 and τC ‰ 0

p̂k
En´k,n

`R2,n, if 0 “ τX ă τC ă 1

paτXq
1´1{τX plogpEn´k,nqq

1´1{τX p̂k `R2,n if 0 “ τC ă τX ă 1,

where

R2,n “

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

´

aτX
τZ

¯1´ 1

τX E
τZp1´

1

τX
q

n´k,n p̂k

ˆ

p1´ E´τZn´k,nq
1´ 1

τX

´

1`
1`τX log lpexppKτZ pEn´k,nqqq

aτXKτZ pEn´k,nq

¯1´ 1

τX
´ 1

˙

,

if 0 ă τX ă 1 and τC ‰ 0

p̂k
En´k,n

´

1
lpEn´k,nq

´ 1
¯

, if 0 “ τX ă τC ă 1

paτXq
1´ 1

τX plogpEn´k,nqq
1´ 1

τX p̂k

ˆ

´

1` 1`τX log lpEn´k,nq
aτX logpEn´k,nq

¯1´ 1

τX
´ 1

˙

, if 0 “ τC ă τX ă 1

0, if τX “ 1

Proof of Lemma 5

Using part piq of Lemma 4, we have

Λk “ K´
τX paKτZ pEn´k,nq ` log lpexppKτZ pEn´k,nqqqq ,
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which yields, in the case τX ‰ 0 and τC ‰ 0,

ΛτX´1
k “

ˆ

aτX
τZ

˙1´ 1

τX

E
τZp1´

1

τX
q

n´k,n p1´ E´τZn´k,nq
1´ 1

τX

ˆ

1`
1` τX log lpexppKτZ pEn´k,nqqq

aτXKτZ pEn´k,nq

˙1´ 1

τX

.

The expression of R2,n follows in this case. The other cases are similar.

Lemma 6. Let E1, . . . , En be i.i.d. standard exponential random variables.

Λ´1
k p̂k “

$

’

’

’

&

’

’

’

%

´

aτX
τZ

¯´1{τX
E
´τZ{τX
n´k,n p̂k `RR2,n, if τX ‰ 0 and τC ‰ 0

p̂k
En´k,n

`RR2,n, if 0 “ τX ă τC ă 1

paτXq
´1{τX plogpEn´k,nqq

´1{τX p̂k `RR2,n if 0 “ τC ă τX ă 1,

where

RR2,n “

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

´

aτX
τZ

¯´ 1

τX E
´
τZ
τX

n´k,np̂k

ˆ

p1´ E´τZn´k,nq
´ 1

τX

´

1`
1`τX log lpexppKτZ pEn´k,nqqq

aτXKτZ pEn´k,nq

¯´ 1

τX
´ 1

˙

,

if 0 ă τX ă 1 and τC ‰ 0

p̂k
En´k,n

´

1
lpEn´k,nq

´ 1
¯

, if 0 “ τX ă τC ă 1

paτXq
´ 1

τX plogpEn´k,nqq
´ 1

τX p̂k

ˆ

´

1` 1`τX log lpEn´k,nq
aτX logpEn´k,nq

¯´ 1

τX
´ 1

˙

, if 0 “ τC ă τX ă 1

0, if τX “ 1

The proof of the previous lemma is very similar to the one of Lemma 5, it is therefore omitted. The
following one is an easy consequence of Lemma 4.

Lemma 7. Under the assumptions of Proposition 2, we have, as nÑ8,

if τX ‰ 0 and τC ‰ 0, logpΛkq “
τZ
τX

logLnkp1` oPp1qq

if τX “ 0, logpΛkq “ a logLnkp1` oPp1qq

if τX ‰ 0, and τC “ 0 logpΛkq “
1
τX

log logLnkp1` oPp1qq

Finally, the next lemma is used inside the proof of Theorem 4.

Lemma 8. Under the assumptions of Theorem 4, we have, as n tends to infinity,

ż Λk

Lk

uτX´1 log u du “

$

’

’

’

&

’

’

’

%

OPplogLnkq if τX ‰ 0, τC ‰ 0 and pτX “ τC or r ď 0q,

OPpL
rτZ
nk logLnkq if τX ‰ 0, τC ‰ 0, τX ‰ τC and r Ps0, 1r,

OPplog logLnkq if τX ‰ 0 and τC “ 0,

oPplogLnkq if τX “ 0.

Proof of Lemma 8

We only treat the case where both τX and τC are positive. In this case, recall that Lk “

paτX{τZq
1{τX pLnkq

τZ{τX and, according to Lemma 4, Λk
Lk

P
ÝÑ 1. We have (with v “ u{Lk)

şΛk
Lk
uτX´1 log u du “ LτXk

şΛk{Lk
1 vτX´1plog v ` logLkq dv

“
L
τX
k

τX
log

´

Λk
Lk

¯´

Λk
Lk

¯τX
´

L
τX
k

τ2
X

´´

Λk
Lk

¯τX
´ 1

¯

` logLk
L
τX
k

τX

´´

Λk
Lk

¯τX
´ 1

¯

.

An immediate consequence of Lemma 4 is that both log
´

Λk
Lk

¯

and
´

Λk
Lk

¯τX
´ 1 are OP ppLnkq

´τZ q if

τX “ τC or r ď 0, and are OP
`

pLnkq
´τZpr´1q

˘

if τX ‰ τC and r Ps0, 1r. The result follows easily.
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