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Abstract In this paper, we use the flexible semi-parametric model A1pτ, θq introduced in Gardes et
al. (2011) for estimating extremes of censored data. Both the censored and the censoring variables are
supposed to belong to this family of distributions. Solutions for modeling the tail of censored data which
are between Weibull-tail and Pareto-tail behavior are considered. Estimators of the parameters, as well as
high-quantiles, are proposed and asymptotic normality results are proved. Various combinations of the tails
of censored and censoring distributions are covered, ranging from rather light censoring to severe censoring
in the tail.
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1. Introduction

This paper proposes new contributions to the topic of extreme value statistics for data which are randomly
censored from the right.

Consider the classical random censoring setup, where one observes a sample from a couple pZ, δq “
pminpX,Cq, IXďCq with X denoting the variable of interest, and C a censoring variable (independent from X)
which may prevent the user from observing the data X. The observed data is a sample pZ1, δ1q, . . . , pZn, δnq
where pX1, . . . , Xnq and pC1, . . . , Cnq are independent samples of i.i.d. copies of X and C. The topic of
extreme value statistics for randomly censored data deals with the estimation of the tail of X (extreme
quantiles, rare probabilities of exceeding a large value), while observing such an incomplete data sample.

This topic has benefited from a number of contributions in the recent years (see Worms and Worms (2019)
and references therein), which were stimulated by applications in a variety of domains, mainly reliability
analysis, survival/lifetime analysis and insurance. A characteristic of all of these papers is that X and C are
always supposed to share the same type of tail, i.e. a heavy tail censored by a heavy tail, a light (Gumbel)
tail censored by another light tail, or a finite tail censored by a finite tail. This is for instance very well
described by the 3 cases exhibited in formula (7) of the insightful paper Einmahl et al. (2008).

The main and initial objective of this paper is to broaden the type of tails in the Gumbel domain that
the user will be able to handle for estimating extremes for censored data. As a matter of fact, the lighter-
than-Pareto-tails situation was slightly overlooked in censored extremes works, and this may be considered
unfortunate since several applications of the censored extremes question do not necessarily exhibit a heavy
tail behavior (particularly in survival/lifetimes analysis). Essentially only two research papers proposed so
far solutions for dealing with light tails. Einmahl et al. (2008) considered the double Gumbel case but
with an assumption on the ultimate probability of non-censoring in the tail, and without parametrization of
the tail (only extreme quantiles were estimated, without further exploration of the tail). Worms & Worms
(2019) considered the general two Weibull-tails case, a subset of the double Gumbel case, which allows for
interesting configurations where the utimate probability of non-censoring in the tail can be zero (see its
definition in next Section).

The basement of the present work is the flexible semi-parametric model proposed in Gardes et al. (2011)
(model A1pτ, θq described in the next section), which encompasses the Gumbel and the Fréchet maximum
domain of attraction, and therefore provides a more flexible option for modeling various phenomena. In this
paper, estimation of the parameters of this model will be made possible in the presence of censoring, with
very simple expressions for the estimators. In addition, this setup will allow for a more diverse combination
of tails (without prior knowledge of that combination) than the Fréchet versus Fréchet or the Weibull-tail
versus Weibull-tail cases.

The paper is organised as follows. Section 2 formally settles the framework and describes how the
parameters of the observed Z can be deduced from those of X and C, thus explaining what is statistically at
stake. Section 3 explains how the parameters and extreme quantiles of X can be estimated from the observed
censored data, while Section 4 states the main results of this paper, along with the required assumptions on
the number kn of order statistics retained for the estimation. Section 5 contains simulations to illustrate the
performance of our estimators. Part A to D of the Appendix are devoted to the proofs of our asymptotic
results, while part E contains important technical aspects.

2. Description of the framework and assumptions

Let us now describe more formally the setting. Defining for τ P r0, 1s the Box-Cox function

Kτ pxq “

ż x

1

uτ´1du “

"

pxτ ´ 1q{τ if τ Ps0, 1s,
logpxq if τ “ 0,

we consider, for parameters τ P r0, 1s and θ ą 0, that a distribution function F belongs to the semi-parametric
family A1pτ, θq if the following holds (see Gardes et al. (2011) where this model was first introduced):

A1pτ, θq : for some x˚ ą 0 and every x ě x˚, we have

1´ F pxq “ expp´K´τ plogpHpxqqqq,

where H is an increasing positive function such that H´ is regularly varying
at infinity with index θ (which will be denoted by H´ P RVθ).
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Let us highlight that the tail heaviness of a distribution belonging to A1pτ, θq is mainly driven by τ , although
in practice both shape parameters τ and θ play an important role in the properties and shape of the upper
tail. It is easy to see that A1p1, θq corresponds to distributions in the Fréchet domain of attraction with
extreme value index θ, A1p0, θq corresponds to Weibull-tail distributions with Weibull-tail coefficient θ. The
case τ Ps0, 1r corresponds to distributions in the Gumbel domain having tails heavier than Weibull-type
ones : such distributions can be conveniently qualified as having log-Weibull-type tails, and log-normal
distributions belong to this category with τ “ 1{2 (see Gardes et al. (2011) for more examples).

In this work, the main assumption is that both the censored and the censoring variables have their
distribution belonging to the A1pτ, θq family. This assumption covers a quite flexible setting. We thus
assume the following :

Assumption (A1) : there exist τX P r0, 1s, τC P r0, 1s, θX ą 0, θC ą 0 such that

FX P A1pτX , θXq and FC P A1pτC , θCq.

This means that there exists positive functions HX and HC such that

sFXpxq “ 1´ FXpxq “ expp´K´τX plogpHXpxqqqq and sFCpxq “ 1´ FCpxq “ expp´K´τC plogpHCpxqqqq

and, for some slowly varying functions l̄X and l̄C at infinity,

H´Xpxq “ xθX l̄Xpxq and H´C pxq “ xθC l̄Cpxq.

It is clear that under this condition we also have HXpxq “ x1{θX lXpxq and HCpxq “ x1{θC lCpxq where both
lX and lC are slowly varying functions at infinity.

The estimation of the parameters τX and θX is the main objective of this work. To do so, some relation
must be found between the parameters of X and C, and those of the observed variable Z “ mintX,Cu. Under
assumption (A1), we can prove that the distribution of Z also belongs to the same family of distributions as
those of X and C, for some parameters τZ and θZ precised below :

Proposition 1. Under Assumption (A1), the distribution function of Z “ minpX,Cq satisfies condition
A1pτZ , θZq, where

τZ “ minpτX , τCq and θZ “

$

’

’

&

’

’

%

θX if 0 ď τX ă τC ď 1
θC if 0 ď τC ă τX ď 1

pθ
´1{τZ
X ` θ

´1{τZ
C q´τZ if 0 ă τX “ τC ď 1

minpθX , θCq if τX “ τC “ 0

Therefore, there exists x˚ ą 0 such that for any x ě x˚, we have

PpZ ą xq “ expp´K´τZ plogpHZpxqqqq,

where H´Z P RVθZ . Consequently, if E denotes a standard exponential distribution, we have

Z “ H´Z pexpKτZ pEqq.

The proof of this Proposition is not very difficult but tedious. It is therefore omitted for brevity.

Remark 1. It is interesting to note that :

´ in the two-heavy-tails case τX “ τC “ 1, we recover the well-known fact that θZ “ γZ “ pγ
´1
X ` γ´1

C q´1

where γX and γC are the extreme value indices of X and C (see Beirlant et al. (2007)).

´ in the two-Weibull-tails case τX “ τC “ 0, we recover the fact that the Weibull-tail parameter of Z is
equal to the minimum of those of X and C (see Worms and Worms (2019)).

´ when τX “ τC , we have θZ ď minpθX , θCq, but otherwise this is not necessarily the case.

´ the expression of θZ in the fourth case is continuously coherent with the third one in the sense that

minpθX , θCq is indeed the limit of pθ
´1{τ
X ` θ

´1{τ
C q´τ as τ Ñ 0.

In this paper, we will exclude the first two situations evoked in Remark 1 above, which have already been
explored in anterior works, and therefore suppose that pτX , τCq P r0, 1s

2zt p0, 0q , p1, 1q u.
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Continuing with the probabilistic features of this model, let us now point out that, if ppxq “ Ppδ “ 1|Z “
xq denotes the probability of being non-censored at level x, the following holds true (it is a copy of statement
piq of the much more complete Lemma 2 stated in the Appendix) :

lim
xÑ`8

ppxq “ p :“

$

’

&

’

%

1 if 0 ď τX ă τC ď 1,

0 if 0 ď τC ă τX ď 1,

θ
1{τX
X { pθ

1{τX
X ` θ

1{τX
C q if 0 ă τX “ τC ă 1,

In the first situation (the light censoring one), the fact that the ultimate probability p of non-censoring in
the tail is 1 and that the parameters of X are the same as those of Z (see Proposition 1) would suggest that
taking into account the censoring is useless. However, as Worms and Worms (2019) already put forward,
this is not advisable because those settings produce finite size data where censoring is still present and needs
to be taken into account. Similarly, the strong censoring situation where the ultimate probability p is 0
produces, in practice, data which are not completely censored in the tail, and thus the statistical problem
of estimating the tail parameters and extreme quantiles of X should and can be addressed. Finally, one can
note that the particular situation where tails of X and C have the same heaviness (τX “ τC) is interesting
on its own.

Note that in Einmahl et al. (2008) the double Gumbel case was considered with the assumption p Ps0, 1r,
which is difficult to check in practice.

Let us close this section by now describing the more technical assumptions required for our results to
hold. This part of the section may be skipped on first reading. In order to achieve asymptotic normality of
the estimators defined in this paper, the slowly varying functions lX and lC associated to HX and HC are
supposed to satisfy a classical second order condition (usually called the SR2 condition) :

Assumption (A2) : there exist some negative constants ρX and ρC , and some rate
functions bX and bC having constant sign at `8 and satisfying
|bX | P RVρX and |bC | P RVρC , such that, as tÑ `8,

lXptxq{lXptq ´ 1

bXptq
ÝÑ KρX pxq, and

lCptxq{lCptq ´ 1

bCptq
ÝÑ KρC pxq,@x ą 0.

(1)
According to the last statement of Proposition 1 and to the expression of our estimators (see next Section),
it will be important in the sequel to consider the functions

H´Z pxq “ xθZ l̃pxq and HX ˝H
´
Z pxq “ xalpxq with a :“

θZ
θX

, (2)

where both l̃ and l are slowly varying. The crucial parameter a “ θZ{θX is equal to 1 in ”low censoring”
situations (in particular when τX ă τC).

Our important technical Lemma 1, stated in Appendix E.1, ensures that functions HZ and H´Z also
satisfy a second order condition SR2. For technical reasons though, we need to consider the following
stronger conditions on l̃ and l, respectively noted Rl̃pb̃, ρ̃q and Rlpb, ρq, and defined by :

Assumption R`pB, ρq : for some constant ρ ď 0 and a rate function B satisfying
limxÑ`8Bpxq “ 0, such that for all ε ą 0, we have

sup
λě1

ˇ

ˇ

ˇ

ˇ

`pλxq{`pxq ´ 1

BpxqKρpλq
´ 1

ˇ

ˇ

ˇ

ˇ

ď ε, for x sufficiently large .

Note that, according to Lemma 1 in the Appendix, we have ρ “ ρ̃, and that this parameter is negative when
either τX “ 0 or τC “ 0, but otherwise (i.e. in most cases) it is zero, an unpleasant fact which often implies
some challenge in the proofs.

3. Construction of the estimators

Let us denote by ΛX and ΛC the cumulative hazard functions associated to FX and FC , respectively

ΛXpxq “ ´ log sFXpxq and ΛCpxq “ ´ log sFCpxq,
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and let Λ̂nX denote the Nelson-Aalen estimator of ΛX defined as

Λ̂nXpxq “
ÿ

Zi,nďx

δi,n
n´ i` 1

, (3)

where Z1,n ď . . . ď Zn,n are the order statistics of the sample pZiq and δ1,n, . . . , δn,n are the corresponding
indicators associated to these reordered Z values. Let kn “ opnq be an intermediate sequence of integers

(which will often be simply denoted by k). The estimators of τX and θX that we propose are τ̂X and θ̂X,τ̂X
where we define

τ̂X :“
HHk,n

Dk,0
and θ̂X,τX :“

Hk,n

Dk,τX

(4)

with

Hk,n :“
1

kn

kn
ÿ

j“1

logpZn´j`1,nq ´ logpZn´kn,nq,

HHk,n :“
1

kn

kn
ÿ

j“1

log logpZn´j`1,nq ´ log logpZn´kn,nq,

Dk,τX :“
1

kn

kn
ÿ

j“1

KτX pΛ̂nXpZn´j`1,nqq ´KτX pΛ̂nXpZn´kn,nqq.

Note that the expressions of the estimators defined in (4) do not depend on the relative positions of τX
and τC (or of θX and θC). They can be calculated whatever the combinations of the tails of X and C are,
with the same formulas. However, we will see in the next Section that the rates of convergence, performances,
and assumptions of these estimators can differ depending on the strength of censoring.

Remark 2. In the case τX “ τC “ 0, corresponding to the purely Weibull-tail framework, the estimator
θ̂X,0 corresponds to the one studied in Worms and Worms (2019), because KτZ pxq “ logpxq in that case. In

the case τX “ τC “ 1, corresponding to the purely heavy-tail framework, the estimator θ̂X,1 corresponds to
the adapted Hill estimator studied in Beirlant et al. (2007), because in that case KτZ pxq “ x´ 1 and thus
we have exactly Dk,1 “ p̂k (see formula (7) below). As said earlier, these two particular cases are excluded

from the scope of the statements of this paper because properties of θ̂X,0 and θ̂X,1 are already known.

In the following lines, we derive the approximations that inspired the definitions in (4). Under Assumption
(A1), HX is regularly varying with index 1{θX and KτX pΛXpxqq “ logpHXpxqq, hence, for u large, we have

KτX puq «
1

θX
logpΛ´Xpuqq.

Moreover, for s large and any u ą 1

log

ˆ

KτX psuq

KτX psq

˙

“ log

ˆ

psuqτX ´ 1

psqτX ´ 1

˙

» τX log u.

Combining these two results, we obtain a first approximation, for u and s large, relating τX to ΛX :

τX log u « log logpΛ´Xpsuqq ´ log logpΛ´Xpsqq. (5)

The second approximation comes from the fact that, for t large and any given x ą 1, we have

HXptxq

HXptq
“ exppKτX pΛXptxqq ´KτX pΛXptqqq » x1{θX ,

hence θX is related to τX and ΛX via the formula :

1

θX
log x « KτX pΛXptxqq ´KτX pΛXptqq. (6)

Therefore, the two definitions in relation (4) come by applying approximation (5) to s “ ΛXpZn´kn,nq
and u “ ΛXpZn´j`1,nq{ΛXpZn´kn,nq on one hand, and approximation (6) to t “ Zn´kn,n and x “

Zn´j`1,n{Zn´kn,n on the other hand, and then by plugging in the Nelson-Aalen estimator of ΛX and sum-
ming for 1 ď j ď k.

The two estimators above are thus ratios involving on one hand the mean of either the log-spacings (i.e.
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the Hill statistic) or the log-log-spacings, and on the other hand a denominator involving the Nelson-Aalen
estimator at the k upper values of the observed Z sequence.

The main issue in the proofs lies in the treatment of the denominators Dk,τX and Dk,0. In fact, the
statistic Dk,τX defined below p4q turns out to be related to the proportion of uncensored data in the tail via
the relation (see Lemma 3 in the Appendix for the details)

Dk,τX «

´

Λ̂nXpZn´k,nq
¯τX´1

p̂k where p̂k :“
1

k

k
ÿ

j“1

δn´j`1,n

because of the nature of the Box-Cox transformation KτX , Taylor’s formula, and of the fact that

1

k

k
ÿ

j“1

´

Λ̂nXpZn´j`1,nq ´ Λ̂nXpZn´k,nq
¯

“
1

k

k
ÿ

j“1

k
ÿ

l“j

δn´l`1,n

l
“

1

k

k
ÿ

j“1

δn´j`1,n. (7)

Therefore, the properties of our estimators will rely on a careful study of two sequences. The first one
is Λ̂nXpZn´k,nq (in particular, how it can be approximated by ΛXpZn´k,nq and written as an increasing
function of log n{k ; see Lemma 4 in the Appendix). The second one is the sequence p̂k, which converges to
0, 1 or a value p Ps0, 1r depending on the position of τX with respect to τC (Proposition 2 provides the full
details about this, and relies on sharp second order developments of the different regularly varying functions
that appear in this framework, cf the important technical Lemmas 1 and 2 in the Appendix).

Finally, let us deal with the estimation of an extreme quantile xpn :“ sF´X ppnq of the distribution of X,
with pn Ñ 0, as nÑ `8. Applying the approximation (6) now to t “ Zn´k,n and x “ xpn{Zn´k,n, we can
propose the following estimator of xpn (with both θX and τX being unknown) :

x̂pn :“ Zn´k,n exp
!

θ̂X,τ̂X

´

Kτ̂X p´ logppnqq ´Kτ̂X pΛ̂nXpZn´k,nqq
¯)

. (8)

Note that if we know that τX “ 0 and set τ̂X “ 0, then this estimator is the same as the one proposed
in Worms and Worms (2019).

4. Asymptotic results

The main assumptions on the model and the different notations have been stated in the previous sections.
In order to obtain the asymptotic normality of our estimators, we naturally need the sequence pknq (number
of top order statistics to use) to satisfy some conditions (we will note k “ kn from now on). The first one is
standard in the literature on Weibull-tail models :

H1 : k Ñ `8, k
n Ñ 0, log k

logn Ñ 0, as nÑ `8.

Moreover, introducing the important notation

Lnk “ logpn{kq,

let vn be a factor which will contribute to the rates of convergence of our estimators, it depends on the
censoring strength in the tail :

vn :“

$

’

’

&

’

’

%

1 if 0 ă τX ă τC ď 1 or 0 ă τX “ τC ă 1 or 0 “ τX ă τC ď 1,

L
1
2 p
τC
τX
´1q

nk if 0 ă τC ă τX ď 1,

L
´1{2
nk plogLnkq

1
2 p

1
τX
´1q

if 0 “ τC ă τX ď 1.

We also consider the following conditions

H2 : 0 ă τX ă τC ď 1 and

#

piq
?
kL

τX{τC´1
nk Ñ 0 if 1

τC
´ 1

τX
ě ´1

piiq
?
kL´τXnk Ñ 0 if 1

τC
´ 1

τX
ă ´1

H3 : 0 ă τC ă τX ď 1 and

$

’

&

’

%

piq
?
kvn Ñ `8

piiq
?
kvnL

τC{τX´1
nk Ñ 0 if 1

τX
´ 1

τC
ě ´1

piiiq
?
kvnL

´τC
nk Ñ 0 if 1

τX
´ 1

τC
ă ´1

H4 : 0 ă τX “ τC ă 1 and
?
kL´τXnk Ñ 0

H5 : 0 “ τX ă τC ď 1 and Dδ ą 0,
?
kLρ̃`δnk Ñ 0
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H6 : 0 “ τC ă τX ď 1 and

"

piq
?
kvn Ñ `8

piiq
?
kvnplogLnkq

´1 Ñ 0

(in assumption H5 above, ρ̃ denotes the second order parameter associated to the slowly varying function l̃,
which is negative in this case ; see formula (2) in Section 2 as well as Lemma 1 in Appendix E.1)

The following four theorems respectively state the convergence in distribution of the estimators τ̂X , θ̂X,τX
(with τX known), θ̂X,τ̂X , and x̂pn , all of them being defined in the previous section.

Theorem 1. Let assumptions (A1) and (A2) hold, as well as Rlpb, ρq and Rl̃pb̃, ρ̃q. If pknq satisfies H1 and
one of the conditions H2, . . . ,H6, then we have, as nÑ8,

if τX ‰ 0,
?
kvnpτ̂X ´ τXq

d
ÝÑ N

`

0, τ2
Xσ

2
˘

,

if τX “ 0, τ̂X “ OPp1{ logpLnkqq
P
ÝÑ 0,

where a “ θZ{θX and

σ2 “

$

’

’

’

’

&

’

’

’

’

%

1 if 0 ď τX ă τC ď 1,

a´1{τX
´

τX
τC

¯1´1{τX
if 0 ă τC ă τX ď 1,

a´1{τX if 0 ă τX “ τC ă 1,

a´1{τX τ
1´1{τX
X if 0 “ τC ă τX ď 1.

Theorem 2. Under the same assumptions as Theorem 1, we have, as nÑ8,
?
kvnpθ̂X,τX ´ θXq

d
ÝÑ N

`

0, θ2
Xσ

2
˘

.

Remark 3. When τX ă τC , the ultimate probability p of non-censoring is 1, this is the light-censoring
situation. When τX “ τC , it is easy to see that θZ ă θX and thus the asymptotic variance is larger than
in the case τX ă τC (i.e. we have σ2 ą 1). When 0 ă τC ă τX (strong censoring setting), the ultimate
probability of non-censoring p is zero, and the factor σ2 is ă 1 when θC ą θX , but otherwise this is not
necessarily the case.

Theorem 3. Under the same assumptions as Theorem 1, if τX ą 0 and if we further assume that
?
kvn

logLnk
Ñ `8 pif τC ‰ 0q or

?
kvn

log logLnk
Ñ `8 pif τC “ 0q, (9)

we then have, as nÑ8,

if τC ‰ 0

?
kvn

logLnk
pθ̂X,τ̂X ´ θXq

d
ÝÑ N

`

0, θ2
Xσ

2τ2
Z

˘

,

if τC “ 0

?
kvn

log logLnk
pθ̂X,τ̂X ´ θXq

d
ÝÑ N

`

0, θ2
Xσ

2
˘

.

Remark 4. Note that the rate of convergence and asymptotic variance of θ̂X,τ̂X are altered and different

from that of θ̂X,τX due to the plug-in of τ̂X .

Theorem 4. Under the same assumptions as Theorem 3, if moreover
?
kvn

log logp1{pnqp´ logppnqqτX
Ñ `8 (10)

and
logLnk

log logp1{pnq
Ñ 0 pif τC ‰ 0q or

log logLnk
log logp1{pnq

Ñ 0 pif τC “ 0q, (11)

we then have, as nÑ8,
?
kvn

log logp1{pnqp´ logppnqqτX

ˆ

x̂pn
xpn

´ 1

˙

d
ÝÑ N

`

0, θ2
Xσ

2
˘

.
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Remark 5. There is some sort of phase transition phenomenon in the above results. As a matter of fact,
not only the rate of convergence of our estimators vary whether τX is ď τC or not, but the closeness of the
parameters τX and τC also play a role (see assumptions H2 and H3) : the assumptions vary whether τX is
lower than τC but not too close to it (i.e. 1 ă 1

τX
´ 1
τC

), lower than τC but close to it (i.e. 0 ă 1
τX
´ 1
τC
ď 1),

equal to τC , larger than and close to τC (i.e. 0 ă 1
τC
´ 1

τX
ď 1), or sufficiently larger than τC (i.e.

1 ă 1
τC
´ 1

τX
). However, in practice, for finite and moderate values of n, visualizing these findings on

simulations is not easy, because other factors (than just the tail parameters) play a non-negligible role in the
estimation quality.

Let us finish this section by providing a hint of the consistency of our estimators. Let us note τ̂
pcq
Z and

θ̂
pcq
Z the following estimators of τZ and θZ

θ̂
pcq
Z “

Hk,n

µ1,τZ pLnkq
and τ̂

pcq
Z “

HHk,n

µ1,0pLnkq
where µ1,τ ptq “

ż 8

0

pKτ px` tq ´Kτ ptqqq e
´x dx. (12)

The first one was introduced in Gardes et al. (2011). The second one is similar to the estimator proposed

in Albert et al. (2020) (in a slightly different setting) ; by the way, note that τ̂
pcq
Z is a new estimator of τ

in the A1pτ, θq model without censoring, and thus a competitor of the estimator which was proposed in El
Methni et al. (2012) (which required the delicate choice of two intermediate sequences kn and k1n).

Using the material of Gardes et al. (2011) and Albert et al. (2020), one can prove that θ̂
pcq
Z and τ̂

pcq
Z

are consistent estimators of θZ and τZ , and we have

θ̂X,τX “ θ̂
pcq
Z ˆ

µ1,τZ pLnkq

Dk,τX

and τ̂X “ τ̂
pcq
Z ˆ

µ1,0pLnkq

lµ1,τZ pLnkq
ˆ
lµ1,τZ pLnkq

Dk,0
(13)

where lµ1,τ ptq :“
ş8

0
plogpKτ px` tqq ´ logpKτ ptqqq e

´x dx. The consistency of θ̂X,τX will thus come from the
convergence of the ratio µ1,τZ pLnkq{Dk,τX to 1{a “ θX{θZ , which is deduced from Corollary 1 (stated in
Appendix A of this paper). The consistency of τ̂X comes from the convergence of lµ1,τZ pLnkq{Dk,0 to τX
(which is deduced from Corollary 2 in Appendix B), and the fact that µ1,0ptq{lµ1,τZ ptq converges to 1{τZ as
tÑ8 (which is deduced from relations (A.3) and (B.3) in the Appendix).

It is noteworthy that equation (13) describes a way of adapting to the censoring context any estimators
of θ or τ which are known in the complete data setting, by simply dividing by the appropriate expression
involving Dk,τX or Dk,0.

5. Finite sample comparisons

In this section, we illustrate, using few simulations, the finite sample performances of our estimators of
τX , θX and xpn (for small pn), in terms of observed bias and mean squared error (MSE). Note that numerous
different situations could be considered with our flexible framework : a thorough and extensive simulation
study is however not possible within the limits of the present paper. We generate N “ 1000 samples of size
n “ 500.

We consider three classes of distributions of Log-Weibull-tail type, for the target variable X and the
censoring variable C :

• Log-Weibullpθq distribution such that its logarithm has c.d.f. 1 ´ expp´x1{θq (x ą 0). It satisfies
assumption A1pθ, θq.

• Log-Normal distribution LNpµ, σ2q, which satisfies assumption A1p
1
2 ,

σ
?

2
2 q, according to Proposition

3 in Gardes et al. (2011).

• Model F with c.d.f. Fτ satisfying A1pτ, 1{5q, with H´pxq “ x1{5p1` x´1{2q p@xq.

We then consider three cases : a Log-WeibullpθXq distribution censored by the Log-Normalp1, 1{2q distribu-
tion (Figure 1), the Log-Normalp1, 1{2q distribution censored by a Log-WeibullpθCq distribution (Figure 2),
and then a distribution in the F model censored by another distribution in the F model (Figure 3). In each
case, we consider three situations with τX ă τC , τX “ τC or τX ą τC , corresponding to different (ultimate)
intensities of censoring in the tail.

In parts paq,pbq,pcq of Figures 1, 2 and 3, we present the bias and the MSE of our estimators τ̂X and θ̂X,τ̂X
as a function of k. In parts pdq,peq,pfq of Figures 1, 2 and 3, we present the relative bias and the relative
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Figure 1: Simulation with X log-Weibull censored by C log-Normal, where τX “ 0.4 ă τC “ 0.5 in first line (figures (a)-(b)),
τX “ 0.5 “ τC in second line (figures (c)-(d)), and τX “ 0.6 ą τC “ 0.5 in third line (figures (e)-(f)). The graphs represent

observed bias and MSE of estimators τ̂X (blue) and θ̂X,τ̂X (dashed red) in figures (a)-(c)-(e), and relative bias and MSE of

estimators x̂pn (black) and x̂EFGpn (dashed green) in figures (b)-(d)-(f).
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MSE of our estimator x̂pn for the value pn “ 0.01, compared with those of the existing estimator defined, in
a more general censored setting, by equation p8q in Einmahl et al. (2008) :

x̂EFGpn “ Zn´k,n ` âk
pp1´ F̂npZn´kqq{pnq

γ̂c,Mom ´ 1

γ̂c,Mom
, (14)

where γ̂c,Mom is the moment estimator of the extreme value index γX of F adapted to censoring and F̂n
stands for the Kaplan-Meier estimator of the c.d.f. F . We refer to Einmahl et al. (2008) for the expression
of âk. Note that no formal asymptotic result is currently available for x̂EFGpn .

Concerning the performance of the estimators θ̂X,τ̂X and τ̂X , we observe that when X has a Log-Weibull
tail, the bias and the MSE for both estimators are very small. When one deviates from this situation, though,
they are not very satisfactory on the situations presented here. Note however that these estimators are the
first to be proposed in this context, which is why no comparison to competitors is presented . Another
remark is that the quality of the estimators do not systematically deteriorate when censoring gets stronger.

Concerning the performance of the high quantile estimator, the figures show very good performances when
X has a Log-Weibull tail. When one deviates from this situation, things may become worse. It is particularly
true here in the Log-Normal versus Log-Weibull case. However, our estimator remains competitive in terms
of bias and MSE in a number of other situations, for instance in Figure 3.

0 100 200 300 400

−
0

.2
0

.0
0

.1
0

.2
0

.3
0

.4

kn

B
ia

s

0 100 200 300 400

0
.0

0
0

.0
4

0
.0

8

kn

M
S

E

(a)

0 100 200 300 400

−
0

.2
0

.0
0

.1
0

.2
0

.3
0

.4

kn

B
ia

s

0 100 200 300 400

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0

kn

M
S

E

(b)

0 100 200 300 400

−
0

.2
0

.0
0

.1
0

.2
0

.3
0

.4

kn

B
ia

s

0 100 200 300 400

0
.0

0
0

.0
4

0
.0

8

kn

M
S

E

(c)

0 100 200 300 400

−
0

.2
0

.0
0

.1
0

.2
0

.3
0

.4

kn

B
ia

s

0 100 200 300 400

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0

kn

M
S

E

(d)

0 100 200 300 400

−
0

.2
0

.0
0

.1
0

.2
0

.3
0

.4

kn

B
ia

s

0 100 200 300 400

0
.0

0
0

.0
4

0
.0

8

kn

M
S

E

(e)

0 100 200 300 400

−
0

.2
0

.0
0

.1
0

.2
0

.3
0

.4

kn

B
ia

s

0 100 200 300 400

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0

kn

M
S

E

(f)

Figure 2: Simulation with X log-Normal censored by C log-Weibull, where τX “ 0.5 ă τC “ 0.6 in first line (figures (a)-(b)),
τX “ 0.5 “ τC in second line (figures (c)-(d)), and τX “ 0.5 ą τC “ 0.4 in third line (figures (e)-(f)). The graphs represent

observed bias and MSE of estimators τ̂X (blue) and θ̂X,τ̂X (dashed red) in figures (a)-(c)-(e), and relative bias and MSE of

estimators x̂pn (black) and x̂EFGpn (dashed green) in figures (b)-(d)-(f).
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Figure 3: Simulation with X and C in the F model, where τX “ 0.4 ă τC “ 0.6 in first line (figures (a)-(b)), τX “ 0.5 “ τC
in second line (figures (c)-(d)), and τX “ 0.6 ą τC “ 0.4 in third line (figures (e)-(f)). The graphs represent observed bias

and MSE of estimators τ̂X (blue) and θ̂X,τ̂X (dashed red) in figures (a)-(c)-(e), and relative bias and MSE of estimators x̂pn
(black) and x̂EFGpn (dashed green) in figures (b)-(d)-(f).
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6. Conclusion

In this paper we proposed a solution for dealing with tail and extreme quantile estimation of data which
are randomly right censored, within a rather large family of distributions encompassing power tail distribu-
tions, Weibull-tail distributions, and intermediary situations such as (for instance) log-normal distributions.
This family was first introduced in a complete data context in Gardes et al. (2011). Our asymptotic nor-
mality results support all possible amounts of censoring in the tail, even very strong ones where the ultimate
probability of being censored in the tail is equal to one.

The main two contributions of this work are that very diverse combinations of tails of the censored and
censoring distributions are dealt with (not just a combination of tails from the same category), and that tail
estimation of log-Weibull-type distributions (not heavier than Pareto tails though) are dealt with as well.
The fact that one can estimate the tail parameters of this flexible model, and not just the extreme quantiles,
means that the user may consider estimating more elaborated parameters than the extreme quantiles (for
instance, expected tail losses EpX|X ą F´X p1´ pqq for small p).

Concerning the performances, the bias of our estimators of θ and τ remains a problem, as soon as one
moves away from the pure log-Weibull situation. However our opinion is that this bias problem was already
present for the original estimators of τ and θ (which inspired ours) in the non-censoring context. This topic
of bias reduction still needs to be explored for this family of distributions, even in the non-censored situation.
In this paper, we did not try to detail the asymptotic bias, mainly because of the great diversity of situations
that our model handled, which already made the exposition quite complicated. This would require further
work.

Finally, a continuation of this work could be to look for estimators of τ and θ which are weighted
modifications of their non-censored versions (the estimators in equation (12)), but with varying weights, not
the constant weights Dk,0 and Dk,τX , with in mind a possible improvement in terms of bias and mean-squared
error.
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Appendix
Let us first summarize the contents of the Appendix. It is composed of 4 main parts.

Part A is devoted to the proof of Theorem 2.

Part B is devoted to the proof of Theorem 1.

Part C is devoted to the proof of Theorem 3

Part D is devoted to the proof of Theorem 4.

Part E contains different technical aspects.

Remind that Lnk is the notation for logpn{kq. Let us introduce the following notations :

Λk “ ΛF pZn´k,nq and Λ̂k “ Λ̂nXpZn´k,nq.

Appendix A. Proof of Theorem 2

This section details how the asymptotic normality of θ̂X,τX stems from the combination of properties
of the Hill estimator Hk,n (relations (A.1), (A.2) and (A.4) below) and of the proportion p̂k of uncensored
data in the tail (Proposition 2 stated next page), via the important decomposition (A.6). Some details are
postponed to other sections, in particular the crucial technical Lemma 2 (stated in Appendix E.1) which
states the second order properties of the function ppxq “ Ppδ “ 1|Z “ xq. The behavior of the (numerous)
remainder terms is detailed in Proposition 3.

First, remind that θ̂X,τX “
Hk,n

Dk,τX

, with

Hk,n “
1

k

k
ÿ

j“1

logpZn´j`1,nq ´ logpZn´k,nq and Dk,τX “
1

k

k
ÿ

j“1

KτX pΛ̂nXpZn´j`1,nqq ´KτX pΛ̂nXpZn´k,nqq.

According to Proposition 1, we have Zi “ H´Z pexppKτZ pEiqqq, where E1, . . . , En are n independent standard

exponential random variables and (see relation (2)) H´Z pxq “ xθZ l̃pxq, l̃ being RV0. Hence

Hk,n “ θZMn `Rn,l̃ (A.1)

where

Mn :“
1

k

k
ÿ

j“1

KτZ pEn´i`1,nq ´KτZ pEn´k,nq and Rn,l̃ :“
1

k

k
ÿ

j“1

log

˜

l̃pexppKτZ pEn´j`1,nqqq

l̃pexppKτZ pEn´k,nqqq

¸

.

By the Renyi representation, we have En´j`1,n ´ En´k
d
“ Fk´j`1,k , where F1, . . . , Fk are k independent

standard exponential random variables. As was done in Gardes et al. (2011) (and borrowing their notations),
we have

Mn
d
“ θn,1pEn´kq where θn,1ptq :“

1

k

k
ÿ

j“1

KτZ pFi ` tq ´KτZ ptq. (A.2)

Introducing, for q P N˚, (see Lemma 2 of Gardes et al. (2011))

µq,τZ ptq :“ Epθn,qptqq “
ż 8

0

pKτZ px` tq ´KτZ ptqq
q e´x dx “ pq!q tqpτZ´1qp1` op1qq (as tÑ `8) (A.3)

and σ2
1,τZ ptq :“ µ2,τZ ptq ´ µ

2
1,τZ ptq, it is proved in Lemma 5 of Gardes et al. (2011) that

?
kA1,n

d
ÝÑ Np0, 1q where A1,n :“

θn,1pEn´kq ´ µ1,τZ pEn´kq

σ1,τZ pEn´kq
. (A.4)

Moreover, we prove in Lemma 3 (stated in Appendix E.4) that

Dk,τX “ Λ̂τX´1
k p̂k `R1,n (A.5)

where p̂k denotes the proportion of uncensored data among the k upper data values (see Lemma 3 for the
definition of the remainder term R1,n). Formulas pA.1q and pA.5q thus easily entail the following important
intermediate relation :

θ̂X,τX ´ θX
d
“
θZMn ´ θXΛτX´1

k p̂k
Dk,τX

`

3
ÿ

i“1

Ti,n,

13



where

T1,n :“
Rn,l̃
Dk,τX

T2,n :“ ´θX
R1,n

Dk,τX

T3,n :“ ´θX
Λ̂τX´1
k ´ ΛτX´1

k

Dk,τX

p̂k.

Concerning now p̂k, reminding that a :“ θZ{θX , we prove in Lemma 5 (stated in Appendix E.4) that,
when τX ě 0 and τC ą 0,

ΛτX´1
k p̂k “

ˆ

aτX
τZ

˙1´1{τX

E
τZp1´1{τXq
n´k p̂k `R2,n

(note that the first term is equal to E´1
n´kp̂k when 0 “ τX ă τC ď 1, since then τZ “ τX and a “ 1), and

when τX ą 0 and τC “ 0,

ΛτX´1
k p̂k “ paτXq

1´1{τX plogEn´kq
1´1{τX p̂k `R2,n,

where the remainder term R2,n is detailed for each case in the statement of Lemma 5.

Consequently, defining T4,n :“ ´θX
R2,n

Dk,τX
, we obtain the following decomposition : when τX ě 0 and τC ą 0

θ̂X,τX ´ θX
d
“

σ1,τZ pEn´kq

Dk,τX

˜

θZA1,n ´ θX
µ1,τZ pEn´kq

σ1,τZ pEn´kq

˜

ˆ

aτX
τZ

˙1´1{τX E
τZp1´1{τXq
n´k

µ1,τZ pEn´kq
p̂k ´

θZ
θX

¸¸

`

4
ÿ

i“1

Ti,n,

and, when τX ą 0 and τC “ 0,

θ̂X,τX ´ θX
d
“

σ1,τZ pEn´kq

Dk,τX

˜

θZA1,n ´ θX
µ1,τZ pEn´kq

σ1,τZ pEn´kq

˜

paτXq
1´1{τX plogEn´kq

1´1{τX

µ1,τZ pEn´kq
p̂k ´

θZ
θX

¸¸

`

4
ÿ

i“1

Ti,n.

Then, reminding that µ1,τZ ptq „ tτZ´1 as tÑ8, we define the following remainder term as (note again that
aτX{τZ “ 1 and τZp1´ 1{τXq “ ´1 when τX “ 0 ă τC)

R3,n :“

$

&

%

´

aτX
τZ

¯1´1{τX
p̂k

´

pEn´kq
τZ p1´1{τX q

µ1,τZ
pEn´kq

´ L
1´τZ{τX
nk

¯

when τX ě 0, τC ą 0,

paτXq
1´1{τX p̂k

´

plogEn´kq
1´1{τX

µ1,0pEn´kq
´ LnkplogLnkq

1´τZ{τX
¯

when 0 “ τC ă τX .

Finally, using the additional fact that, thanks to pA.3q,
µ1,τZ

pEn´kq

σ1,τZ
pEn´kq

P
ÝÑ 1, we can state the main relation of

the proof of Theorem 2 :

θ̂X,τX ´ θX
d
“
µ1,τZ pEn´kq

Dk,τX

pθZA1,n ´ θXA2,np1` oPp1qqq `
5
ÿ

i“1

Ti,n, (A.6)

where the second important term A2,n is defined as

A2,n :“

$

’

&

’

%

ˆ

aτX
τZ

˙1´1{τX

L
1´τZ{τX
nk p̂k ´ a if τX ě 0 and τC ą 0,

paτXq
1´1{τX LnkplogLnkq

1´τZ{τX p̂k ´ a if 0 “ τC ă τX ,

and the last remainder term to be introduced is T5,n :“ θZR3,np1` oPp1qq.

We deal with the asymptotic normality of A2,n and the reminder terms Ti,n in the following two proposi-
tions, which are proved, respectively, in Appendix E.2 and Appendix E.3. Remind that the rate vn is defined
as

vn :“

$

’

’

&

’

’

%

1 if 0 ă τX ă τC ď 1 or 0 ă τX “ τC ă 1 or 0 “ τX ă τC ă 1

L
1
2 p
τC
τX
´1q

nk if 0 ă τC ă τX ď 1

L
´1{2
nk plogLnkq

1
2 p

1
τX
´1q

if 0 “ τC ă τX ă 1
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Proposition 2. Under the conditions of Theorem 1,

if 0 ď τX ă τC ď 1,
?
kvnA2,n “

?
kvnpp̂k ´ aq “

?
kpp̂k ´ 1q

P
ÝÑ 0,

if 0 ă τC ă τX ď 1,
?
kvnA2,n “

?
kvn

ˆ

´

aτX
τZ

¯1´ 1
τX L

1´τZ{τX
nk p̂k ´ a

˙

d
ÝÑ N

ˆ

0, a2´1{τX
´

τX
τC

¯1´1{τX
˙

,

if 0 ă τX “ τC ă 1,
?
kvnA2,n “

?
kpa1´1{τX p̂k ´ aq

d
ÝÑ N

`

0, a2´1{τX p1´ a1{τX q
˘

,

if 0 “ τC ă τX ă 1,
?
kvnA2,n “

?
kvn

´

paτXq
1´ 1

τX Lnk plogLnkq
1´ 1

τX p̂k ´ a
¯

d
ÝÑ N

´

0, a2´1{τX τ
1´1{τX
X

¯

.

Proposition 3. Under the conditions of Theorem 1, for all 1 ď i ď 5 ,
?
kvnTi,n

P
ÝÑ 0, as n tends to

infinity.

Let us now explain how the combination of relations (A.6) and (A.4) and Propositions 2 and 3 imply

that
?
kvnpθ̂X,τX ´ θXq

d
ÝÑ Np0, vq where v “ θ2

Xσ
2 and ends the proof of Theorem 2.

When 0 ď τX ă τC ď 1, Proposition 2 states that
?
kA2,n converges to 0. Hence, the leading term

in pA.6q is
?
kA1,n which converges in distribution to Np0, 1q (see pA.4q), and we thus obtain as desired

v “ p 1
a q

2θ2
Z “ θ2

X .

When 0 ă τX “ τC ă 1, Proposition 2 states that
?
kA2,n

d
ÝÑ N

`

0, a2´1{τX p1´ a1{τX q
˘

. Moreover
?
kA1,n

converges in distribution to Np0, 1q. Since A1,n and A2,n are independent, we obtain as desired

v “
θ2
Z

a2
`
θ2
X

a2
a2´1{τX p1´ a1{τX q “ θ2

X ` θ
2
Xpa

´1{τX ´ 1q “ θ2
Xa

´1{τX .

In the other two cases, since vn Ñ 0,
?
kvnA1,n converges to 0, and on the other hand Proposition 2 states

that
?
kvnA2,n converges in distribution to N p0, Dq with variances described above, and it is easy to check

that p 1
a q

2θ2
XD equals to θ2

Xσ
2 as stated. This ends the proof of Theorem 2.

Let us end this section with the following corollary of Propositions 2 and 3.

Corollary 1. Under the conditions of Theorem 1, we have
Dk,τX

µ1,τZ pEn´kq
P
ÝÑ a, as n tends to infinity.

Indeed, according to pA.5q, and since µ1,τZ ptq „ tτZ´1 as tÑ8 (see relation (A.3)),

Dk,τX

µ1,τZ pEn´kq
“ L1´τZ

nk ΛτX´1
k p̂kp1` op1qq

d
“ pA2,n ` aqp1` op1qq

P
ÝÑ a.

Of course, the conditions of Theorem 1 are too strong for Corollary 1 to hold.

Appendix B. Proof of Theorem 1

The proof is very similar to the previous one. First, remind that τ̂X “
HHk,n
Dk,0

. Concerning the numerator,

we have by Proposition 1 that Zi “ H´Z pexppKτZ pEiqqq, where E1, . . . , En are standard exponential, and
thus

HHk,n :“
1

kn

kn
ÿ

j“1

log logpZn´j`1,nq ´ log logpZn´kn,nq “ LMn `RRn,l̃ (B.1)

where

LMn :“
1

k

k
ÿ

j“1

logpKτZ pEn´i`1,nqq´logpKτZ pEn´k,nqq and RRn,l̃ :“
1

k

k
ÿ

j“1

log

¨

˝

1`
logpl̃pexppKτZ pEn´j`1,nqqqq

θZKτZ pEn´j`1,nq

1`
logpl̃pexppKτZ pEn´k,nqqqq

θZKτZ pEn´k,nq

˛

‚.

By the Renyi representation, for some independent standard exponential random variables F1, . . . , Fk we
have

LMn
d
“ lθn,1pEn´kq where lθn,1ptq :“

1

k

k
ÿ

j“1

logpKτZ pFi ` tqq ´ logpKτZ ptqq. (B.2)
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Introducing, for q P N˚,

lµq,τZ ptq :“ Eplθn,qptqq “
ż 8

0

plogpKτZ px` tqq ´ logpKτZ ptqqq
q e´x dx

and lσ2
1,τZ ptq :“ lµ2,τZ ptq ´ lµ

2
1,τZ ptq, we have

lµq,τZ ptq “

#

pq!qτ qZt
´qp1` op1qq if τZ ‰ 0,

pq!qt´qplogptqq´qp1` op1qq if τZ “ 0.
(B.3)

We can then prove that (the proof is similar to that of Lemma 5 in Gardes et al. (2011))

?
kLA1,n

d
ÝÑ Np0, 1q where LA1,n :“

lθn,1pEn´kq ´ lµ1,τZ pEn´kq

lσ1,τZ pEn´kq
. (B.4)

Concerning now the denominator, we prove in Lemma 3 (stated in Appendix E.4) that

Dk,0 :“
1

kn

kn
ÿ

j“1

logpΛ̂nXpZn´j`1,nqq ´ logpΛ̂nXpZn´kn,nqq “ Λ̂´1
k p̂k `R1,n, (B.5)

where

R1,n “
1

k

k
ÿ

j“1

˜

log

˜

1`
∆̂j,k

Λ̂k

¸

´
∆̂j,k

Λ̂k

¸

and p̂k denotes the proportion of uncensored data in the tail. From now on we consider that τX ‰ 0 (see
Remark 6 below for the τX “ 0 case). Formulas pB.1q and pB.5q easily entail the following important
intermediary relation :

τ̂X ´ τX
d
“
LMn ´ τXΛ´1

k p̂k
Dk,0

`

3
ÿ

i“1

TTi,n,

where

TT1,n :“
RRn,l̃
Dk,0

TT2,n :“ ´τX
R1,n

Dk,0

TT3,n :“ ´τXpΛ̂
´1
k ´ Λ´1

k qpDk,0q
´1p̂k.

Moreover, we prove in Lemma 6 (stated in Appendix E.4) that, when τX ą 0 and τC ą 0 (the case τX ą 0
and τC “ 0 is omitted for brevity),

Λ´1
k p̂k “

ˆ

aτX
τZ

˙´1{τX

E
´τZ{τX
n´k p̂k `RR2,n,

the expression for the remainder term RR2,n being detailed for each case in the statement of Lemma 6.

Consequently, defining TT4,n :“ ´τX
RR2,n

Dk,0
, we obtain the following decomposition : when τX ą 0 and

τC ą 0

τ̂X ´ τX
d
“

lσ1,τZ pEn´kq

Dk,0

˜

LA1,n ´ τX
lµ1,τZ pEn´kq

lσ1,τZ pEn´kq

˜

ˆ

aτX
τZ

˙´1{τX E
´τZ{τX
n´k

lµ1,τZ pEn´kq
p̂k ´

1

τX

¸¸

`

4
ÿ

i“1

Ti,n.

But lµ1,τZ ptq „ τZt
´1, so we define the following remainder term as

RR3,n :“

ˆ

aτX
τZ

˙´1{τX

p̂k

˜

pEn´kq
´τZ{τX

lµ1,τZ pEn´kq
´

1

τZ
L

1´τZ{τX
nk

¸

.

Finally, using the additional fact that
lµ1,τZ

pEn´kq

lσ1,τZ
pEn´kq

P
ÝÑ 1, we can state the main relation of the proof of

Theorem 1 :

τ̂X ´ τX
d
“
lµ1,τZ pEn´kq

Dk,0

`

LA1,n ´ a
´1A2,np1` oPp1qq

˘

`

5
ÿ

i“1

TTi,n, (B.6)

where LA1,n is defined in (B.4), the second main term A2,n is defined in section Appendix A and the last
remainder term to be introduced is TT5,n :“ ´τXRR3,np1 ` oPp1qq. The asymptotic normality of A2,n is
dealt with in Proposition 2. Concerning the remainder terms TTi,n, we prove the following proposition :
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Proposition 4. Under the conditions of Theorem 1, for all 1 ď i ď 5,
?
kvnTTi,n

P
ÝÑ 0, as n tends to

infinity.

The proof of this Proposition is very similar to the proof of Proposition 3. It is omitted. The proof of
Theorem 1 can be concluded in the same way as was that of Theorem 2 , details are also omitted. l

Finally the following statement is a Corollary of Propositions 2 and 4, in the same way that Corollary 1
was deduced from Propositions 2 and 3.

Corollary 2. Under the conditions of Theorem 1, when τX ‰ 0 we have

Dk,0

lµ1,τZ pEn´kq
P
ÝÑ

1

τX

and, when 0 “ τX ă τC , we have as nÑ8

Dk,0

lµ1,0pEn´kq
“ plogLnkqp1` oPp1qq.

Remark 6. In the case 0 “ τX ă τC , we have Dk,0{lµ1,0pEn´k,nq
P
„ logLnk, and thus the estimator

τ̂X
d
“ lθn,1pEn´kq {Dk,0 ` TT1,n is contiguous to lµ1,0pEn´kq {Dk,0 ` TT1,n, which is itself equivalent in

probability to 1{ logLnk. Thus only the consistency and rate of convergence of τ̂X is obtained in this case.

Appendix C. Proof of Theorem 3

Remind that θ̂X,τ̂X “ Hk,n{Dk,τ̂X where

Hk,n “
1

k

k
ÿ

j“1

logpZn´j`1,nq ´ logpZn´k,nq and Dk,τ̂X “
1

k

k
ÿ

j“1

Kτ̂X pΛ̂nXpZn´j`1,nqq ´Kτ̂X pΛ̂nXpZn´k,nqq.

Moreover

log

˜

θ̂X,τ̂X
θX

¸

“ log

˜

θ̂X,τ̂X

θ̂X,τX

¸

` log

˜

θ̂X,τX
θX

¸

. (C.1)

Theorem 2 and the delta-method yields that the second term of the right-hand side in pC.1q satisfies

?
kvn log

˜

θ̂X,τX
θX

¸

d
ÝÑ N

`

0, σ2
˘

. (C.2)

Now let us treat the first term. Since Dk,τX “ pΛ̂kq
τX´1p̂k ` R1,n (see Lemma 3) and, similarly, Dk,τ̂X “

pΛ̂kq
τ̂X´1p̂k ` R̂1,n, where R̂1,n is obtained by replacing τX by τ̂X in the expression for R1,n, we obtain

log

˜

θ̂X,τX

θ̂X,τ̂X

¸

“ pτ̂X ´ τXq logpΛ̂kq ´ log

˜

1`
R1,n

Λ̂τX´1
k p̂k

¸

` log

˜

1`
R̂1,n

Λ̂τ̂X´1
k p̂k

¸

.

Let us study separately the first two terms in the expression above (the third one being similar to the second
one). The starting point is

pτ̂X ´ τXq logpΛ̂kq “ pτ̂X ´ τXq logpΛkq ` pτ̂X ´ τXq log

˜

Λ̂k
Λk

¸

.

Let us continue with the case τX ‰ 0 and τC ‰ 0 (the case 0 “ τC ă τX being similar and the case
0 “ τX ă τC being excluded, see Remark 7 below).

Since
?
kvnpτ̂X ´ τXq

d
ÝÑ N

`

0, σ2τ2
X

˘

(Theorem 1), and, according to Lemma 7, logpΛkq “
τZ
τX
plogLnkqp1`

oPp1qq, we obtain that ?
kvn

logLnk
pτ̂X ´ τXq logpΛkq

d
ÝÑ N

`

0, σ2τ2
Z

˘

and
?
kvn

logLnk
pτ̂X ´ τXq log

´

Λ̂k
Λk

¯

“ oPp1q (because Λ̂k
Λk
“ OPp1q).
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Now, log
´

1`
R1,n

pΛ̂kq
τX´1p̂k

¯

“
R1,n

pΛ̂kq
τX´1p̂k

p1 ` oPp1qq, and we prove in Proposition 3 that
?
kvn

R1,n

pΛ̂kq
τX´1p̂k

“

oPp1q. Hence
?
kvn

logLnk
log

´

1`
R1,n

pΛ̂kq
τX´1p̂k

¯

“ oPp1q. This ensures that

?
kvn

logLnk
log

˜

θ̂X,τX

θ̂X,τ̂X

¸

d
ÝÑ N

`

0, σ2τ2
Z

˘

.

Finally, pC.1q and pC.2q yield
?
kvn

logLnk
log

˜

θ̂X,τ̂X
θX

¸

d
ÝÑ N

`

0, σ2τ2
Z

˘

.

This entails the announced asymptotic normality, via the delta-method. l

Remark 7. In the case τX “ 0, logpΛkq “ aplogLnkqp1` oPp1qq, according to Lemma 7. Hence, τ̂X logpΛkq

does not converge to 0, in this case. This is why τX “ 0 is excluded from the asymptotic result of θ̂X,τ̂X .

Appendix D. Proof of Theorem 4

Remind that xpn “
sF´X ppnq “ H´XpexppKτX p´ log pnqqq and

x̂pn “ Zn´k,n exp
´

θ̂X,τ̂X

´

Kτ̂X p´ logppnqq ´Kτ̂X pΛ̂kq
¯¯

where H´Xpxq “ xθX l̄Xpxq, and l̄X is slowly varying at infinity. Moreover, since Zn´k,n “ sF´X pexpp´Λkqq, it
is easy to prove that

log
´

x̂pn
xpn

¯

“ θ̂X,τ̂X tpKτ̂X p´ logppnqq ´Kτ̂X pΛkqq ´ pKτX p´ logppnqq ´KτX pΛkqqu

`pθ̂X,τ̂X ´ θXqKτX p´ logppnqq ` θ̂X,τ̂X

´

Kτ̂X pΛkq ´Kτ̂X pΛ̂kq
¯

´pθ̂X,τ̂X ´ θXqKτX pΛkq ` log
´

l̄XpexppKτX pΛkqqq

l̄XpexppKτX p´ logppnqqq

¯

“: Q1 `Q2 `Q3 `Q4 `Q5.

Let us treat separately these five terms, in the case τX ‰ 0 and τC ‰ 0, the case 0 “ τX ă τC being similar.
Remind that

Lk :“

#

paτX{τZq
1{τX pLnkq

τZ{τX if τX ‰ 0 and τC ‰ 0,

paτXq
1{τX plogLnkq

1{τX if τX ‰ 0 and τC “ 0.

Consider the temporary notations

σn :“
´?

kvn

¯´1

and wn :“

ż ´ logppnq

Lk

uτx´1 log u du.

By integration by parts, and under assumption p11q (which implies that Lk “ op´ logppnqq), we can prove
that

wn “
1

τX
logplogp1{pnqq p´ logppnqq

τX p1` op1qq, (D.1)

and similarly w̃n :“
ş´ logppnq

Lk
uτx´1 log2 u du “ 1

τX
plogplogp1{pnqqq

2 p´ logppnqq
τX p1` op1qq.

• Let us prove that σ´1
n w´1

n Q1 converges in distribution to N p0, θ2
Xτ

2
Xσ

2q, which (via (D.1)) will imply
that ?

kvn
log logp1{pnqp´ log pnqτX

Q1
d
ÝÑ N p0, θ2

Xσ
2q. (D.2)

According to Theorem 1, τ̂X “ τX ` σnξn, where ξn converges in distribution to N p0, τ2
Xσ

2q. Hence,

Q1 “ θ̂X,τ̂X

´

ş´ log pn
Λk

uτX`σnξn´1du´
ş´ log pn
Λk

uτX´1du
¯

“ θ̂X,τ̂X

´

ş´ log pn
Lk

uτX´1puσnξn ´ 1qdu´
şΛk
Lk
uτX´1puσnξn ´ 1qdu

¯

.
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Let us introduce φpxq “ ex ´ 1´ x. Consequently,

Q1 “

4
ÿ

i“1

Q
piq
1 ,

where
Q
p1q
1 “ θ̂X,τ̂X

ş´ log pn
Lk

uτX´1φpσnξn log uqdu

Q
p2q
1 “ θ̂X,τ̂Xσnξn

ş´ log pn
Lk

uτX´1 log u du

Q
p3q
1 “ ´θ̂X,τ̂X

şΛk
Lk
uτX´1φpσnξn log uqdu

Q
p4q
1 “ ´θ̂X,τ̂Xσnξn

şΛk
Lk
uτX´1 log u du

Now, there exists η ą 0, such that x ă log η implies that |φpxq| ă pη{2qx2. As a consequence, since
σn log logp1{pnq Ñ 0 and σn logLk Ñ 0 (according to p10q and p11q),

|Q
p1q
1 | ă θ̂X,τ̂X

η

2
σ2
nξ

2
n

ż ´ log pn

Lk

uτX´1plog uq2 du “ η OPp1qσ
2
nw̃n.

Hence, via (10) and the previous approximations of wn and w̃n,

σ´1
n w´1

n |Q
p1q
1 | ă η OPp1qσnw̃n{wn “ η OPp1qσn log logp1{pnq

P
ÝÑ 0.

Concerning Q
p2q
1 , we have

σ´1
n w´1

n Q
p2q
1 “ θ̂X,τ̂X ξn

d
ÝÑ N p0, θ2

Xτ
2
Xσ

2q.

Let us now consider Q
p3q
1 . We proceed as for Q

p1q
1 to obtain

σ´1
n w´1

n |Q
p3q
1 | ă θ̂X,τ̂X

η
2σnξ

2
n

şΛk
Lk

uτX´1
plog uq2 du

ş

´ log pn
Lk

uτX´1 log u du

ă θ̂X,τ̂X
η
2σn maxplog Λk, logLkqξ

2
n

şΛk
Lk

uτX´1 log u du
ş

´ log pn
Lk

uτX´1 log u du
.

Since σn log Λk
P
ÝÑ 0 (this is an easy consequence of assumption p11q and Lemma 7), the right hand-side

tends to 0, according to Lemma 8 and assumption p11q.

Concerning Q
p4q
1 , Lemma 8 and assumption p11q entails that σ´1

n w´1
n Q

p4q
1 tends to 0. This completes

the proof of (D.2).

• Let us prove that σ´1
n w´1

n Q2 “ oPp1q : according to Theorem 3,

Q2 “ σnplogLnkqKτX p´ logppnqqδn,

where δn converges to a gaussian distribution. Hence,

σ´1
n w´1

n Q2 “
plogLnkq KτX p´ logppnqq
ş´ logppnq

Lk
uτx´1 log u du

δn,

and assumption p11q yields the result.

• In order to prove that σ´1
n w´1

n Q3 “ oPp1q, we obtain via a Taylor expansion that

σ´1
n w´1

n |Q3| “ θ̂X,τ̂X
?
k|Λk ´ Λ̂k|

ˇ

ˇ

ˇ

ˇ

K 1τ̂X pT̂kq
vn
wn

ˇ

ˇ

ˇ

ˇ

where T̂k is a value between Λk and Λ̂k. The fact that
?
k|Λk ´ Λ̂k| “ OPp1q (see Lemma 7 in Worms

and Worms (2019)) and assumption p11q yields the result.

• Let us prove that σ´1
n w´1

n Q4 “ oPp1q : as above (see treatment of Q2)

Q4 “ σn logLnkKτX pΛkqδn,

where δn converges to a gaussian distribution. Moreover KτX pΛkq
d
“ aKτZ pLnkqp1`oPp1qq (see Lemma
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4 piq). Hence

σ´1
n w´1

n Q4
d
“ a

KτZ pLnkq logLnk
ş´ logppnq

Lk
uτx´1 log u du

δnp1` oPp1qq.

Assumption p11q yields the result.

• Let us finally prove that σ´1
n w´1

n Q5 “ oPp1q : remind that

Q5 “ log
´

l̄XpexppKτX pΛkqqq

l̄XpexppKτX p´ logppnqqq

¯

“ log
´

l̄XpexppKτX pLkqqq

l̄XpexppKτX p´ logppnqqq

¯

` log
´

l̄XpexppKτX pΛkqqq

l̄XpexppKτX pLkqqq

¯

“ Q
p1q
5 `Q

p2q
5 .

Concerning Q
p1q
5 , we know that l̄X satisfies the SR2 condition (see Remark 8). Hence

´Q
p1q
5 “ log

´

l̄Xpλnxnq

l̄Xpxnq

¯

“ b̄XpxnqKθXρX pλnqp1` oPp1qq,

where |b̄X | P RVθXρX , λn “
exppKτX p´ logppnqqq

exppKτX pLkqq
and xn “ exppKτX pLkqq. Moreover, since λn tends to

`8, as n tends to infinity (because
KτX pLkq

KτX p´ logppnqq
tends to 0 under assumption p11q), we obtain that

KθXρX pλnq tends to ´1{pθXρXq. Moreover,
?
kvnb̄XpexppKτX pLkqqq tends to 0 under the appropriate

assumption among H2, . . . ,H5. Hence,

?
kvn

Q
p1q
5

KτX p´ logppnqq
“
?
kvnb̄XpexppKτX pLkqqq

KρX pλnq

KτX p´ logppnqq
,

tends to 0. Then,

σ´1
n w´1

n Q
p1q
5 “

?
kvn

Q
p1q
5

KτX p´ logppnqq

KτX p´ log pnq
ş´ logppnq

Lk
uτx´1 log u du

,

which tends to 0 thanks to pD.1q.

Similarly, we have

Q
p2q
5 “ log

´

l̄Xpλnxnq

l̄Xpxnq

¯

“ b̄XpxnqKθXρX pλnqp1` oPp1qq,

where xn “ exppKτX pLkqq and

λn “
exppKτX pΛkqq

exppKτX pLkqq
“ exppτ´1

X pΛτXk ´ LτXk qq “ exppcst.LτZ´αnk p1` op1qqq,

where, according to Lemma 4, the constant above is negative and

α “

"

τZ when either τX “ τC , or τX ‰ τC and r ď 0,
τZp1´ rq when τX ‰ τC and r Ps0, 1r.

In the case where α “ τZ , KθXρX pλnq converges to a constant. Hence we obtain, for the term Q
p1q
5 ,

that
?
kvn

Q
p2q
5

KτX p´ logppnqq
P
ÝÑ 0.

Therefore σ´1
n w´1

n Q
p2q
5

P
ÝÑ 0, thanks to pD.1q.

In the case where α “ τZp1 ´ rq, we have KθXρX pλnq “ Op1q exppcst.LrτZnk p1 ` op1qqq, where here the
constant is positive. Moreover, for some small δ ą 0,

b̄Xpxnq “ expppθXρX ` δqKτX pLkqqop1q “ exp ppθXρX ` δq.cst.L
τZ
nkp1` op1qqq op1q,

where the constant above is positive. Consequently,
?
kvnb̄XpxnqKθXρX pλnq tends to 0 according to

the appropriate assumption among H2, . . . ,H5. To conclude, we proceed as in the previous case. l
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Appendix E. Technical aspects

Appendix E.1. Details about second order conditions and censoring probabilities

Remind that

sFXpxq “ expp´K´τX plogpHXpxqqqq and sFCpxq “ expp´K´τC plogpHCpxqqqq

where
H´Xpxq “ xθX l̄Xpxq , H´C pxq “ xθC l̄Cpxq , HXpxq “ x1{θX lXpxq , HCpxq “ x1{θC lCpxq.

Moreover (see Proposition 1),
PpZ ą xq “ expp´K´τZ plogpHZpxqqqq,

where H´Z pxq “ xθZ l̃pxq and l̃ is slowly varying. This implies that HX ˝ H
´
Z pxq “ xalpxq, with l a slowly

varying function and a “ θZ{θX .
Lemma 1 stated below provides details about the second order properties of the functions H´Z and

HX ˝H
´
Z (and therefore, on the behavior of the variables Zi and ΛXpZiq). These properties not only depend

on the position of the parameters τX and τC with respect to each other, but on their proximity through the
parameter r defined by

r :“ 1´

ˇ

ˇ

ˇ

ˇ

1

τC
´

1

τX

ˇ

ˇ

ˇ

ˇ

P r´8, 1s

(if either τX “ 0 or τC “ 0, indeed consider that r “ ´8). The proof of the lemma is based on Theorem
B.2.2 in de Haan and Ferreira (2006) as well as the concept of de Bruyn conjugate (see Proposition 2.5 in
Beirlant et al. (2004)). Its demonstration is tedious, details are omitted for brevity.

Lemma 1. Let conditions pA1q and pA2q hold.

piq For different slowly varying functions generically noted v, we have

lXpxq “ cXp1´ x
ρXvpxqq and lCpxq “ cCp1´ x

ρCvpxqq

l̄Xpxq “ c´θXX p1´ xθXρXvpxqq and l̄Cpxq “ c´θCC p1´ xθCρCvpxqq.

piiq The slowly varying functions l̃ and l associated to H´Z and HX ˝H
´
Z satisfy a second order condition

SR2 : as tÑ `8,
l̃ptxq

l̃ptq
´ 1

b̃ptq
ÝÑ Kρ̃pxq and

lptxq
lptq ´ 1

bptq
ÝÑ Kρpxq

where

ρ̃ “ ρ “

$

&

%

maxpθXρX ,´1q if 0 “ τX ă τC ă 1
maxpθCρC ,´1q if 0 “ τC ă τX ă 1
0 in the other cases ,

and |b̃| P RVρ̃ and |b| P RVρ. When ρ “ 0, both bptq and b̃ptq are (as tÑ `8) of the order Opplog tqr´1q

when r ‰ 0, and of the order Opplog tq´2q when r “ 0.

piiiq The function HZ satisfies

lim
xÑ`8

HZpxq “ cZ

"

Ps0,`8r if τX “ τC or r ď 0,
“ `8 if τX ‰ τC and r Ps0, 1r

where in particular cZ “ cX if τX ă τC and r ă 0, and cZ “ cC if τC ă τX and r ă 0. Moreover we
have (with the convention p`8q´θ “ 0 when θ ą 0)

l̃ptq Ñ c̃ :“ c´θZZ and lptq Ñ c :“ cX c̃
1{θX , as tÑ `8.

When τX “ τC or r ď 0, both c and c̃ are positive and the following relations hold:

l̃ptq “ c̃p1´ xρ̃vpxqq and lptq “ cp1´ xρvpxqq,

where v is a generic slowly varying function.
When τX ‰ τC and r Ps0, 1r, both c̃ and c are zero and the following relation holds for some ν ą 0, as
xÑ8

log lpexpxq

x
“ ´ν.xr´1p1` op1qq ÝÑ 0 and

log l̃pexpxq

x
“ ´θXν.x

r´1p1` op1qq ÝÑ 0 (E.1)
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Remark 8. A consequence of this Lemma is that l̄X and l̄C also satisfy the SR2 condition with rate functions
|b̄X | P RVθXρX and |b̄C | P RVθCρC respectively.

Remind now that the function pp¨q is defined by

ppxq “ Ppδ “ 1|Z “ xq.

The following lemma provides useful developments of functions pp¨q and rp¨q

rptq “ p ˝H´Z pexppKτZ p´ log tqqq,

which are crucial to derive the properties of the random proportion p̂k (and therefore the statements of
Proposition 2). Its proof is based on the fact that

ppxq “
sFCpxqfXpxq

sFCpxqfCpxq ` sFXpxqGpxq
“

ˆ

1`
pK´τC q

1plogHCpxqq

pK´τX q
1plogHXpxqq

H 1Cpxq{HCpxq

H 1Xpxq{HXpxq

˙´1

(where fX and fC are the respective probability density functions of X and C), as well as on the results of
Lemma 1. It is omitted for brevity.

Lemma 2. Let us define the constants

AX “ θXpτ
´1
X ´ 1qpτ´1

X ` log cXq , AC “ θCpτ
´1
C ´ 1qpτ´1

C ` log cCq

and

A “ AC ´AX and B “
θX
θC

ˆ

τX
θX

˙1´1{τX ˆ

τC
θC

˙1{τC´1

.

Let assumptions pA1q and pA2q hold (the asymptotics below are xÑ `8 and t Ó 0).

piq We have

ppxq Ñ p :“

$

’

’

’

’

&

’

’

’

’

%

1 if 0 ď τX ă τC ď 1,

0 if 0 ď τC ă τX ď 1,

θ
1{τX
X

pθ
1{τX
X ` θ

1{τX
C q

“ a1{τX if 0 ă τX “ τC ă 1,

and, more precisely,

ppxq ´ p “

$

’

’

&

’

’

%

D plog xqr´1
“

1` gprqplog xqmaxp´1,r´1qp1` op1qq
‰

if 0 ă τX ‰ τC ď 1,

D x´1{θX plog xqτ
´1
C ´1

“

1`ACplog xq´1p1` op1qq
‰

if 0 “ τX ă τC ď 1,

D x´1{θC plog xqτ
´1
X ´1

“

1`AXplog xq´1p1` op1qq
‰

if 0 “ τC ă τX ď 1,
D plog xq´1p1`Op1{ log xqq if 0 ă τC “ τX ă 1,

where

D “

$

’

’

’

’

&

’

’

’

’

%

´B if 0 ă τX ă τC ď 1,
B´1 if 0 ă τC ă τX ď 1,

´pτC{θCq
τ´1
C ´1pθX{θCcXq if 0 “ τX ă τC ď 1,

pτX{θXq
τ´1
X ´1pθC{θXcCq if 0 “ τC ă τX ď 1,

´ABp1`Bq´2 if 0 ă τC “ τX ă 1,

and

gprq “

"

AIră0 ` pA´BqIr“0 ` p´BqIrPs0,1r if 0 ă τX ă τC ď 1,
p´AqIră0 ` p´A´B

´1qIr“0 ` p´B
´1qIrPs0,1r if 0 ă τC ă τX ď 1.

piiq When τZ ą 0 and τX ‰ τC , as t Ó 0 we have

rptq ´ p “ DpθZ{τZq
r´1p´ log tq´τZp1´rq

´

1`O
´

p´ log tq´τZ mint1,1´ru
¯¯

,

in particular, when 0 ă τC ă τX ď 1,

rptq “ a1{τX pτX{τCq
τ´1
X ´1p´ log tq

τC
τX
´1

´

1`O
´

p´ log tqmaxt´τC ,τC{τX´1u
¯¯

.

When τZ ą 0 and τX “ τC , we have

rptq ´ p “ ´AB
“

p1`Bq2pθZ{τZq
‰´1

p´ log tq´τZ
`

1`O
`

p´ log tq´τZ
˘˘

.
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When τZ “ 0, if τ` “ maxpτX , τCq we have

rptq ´ p “ cstp´ log tq´1plog logp1{tqq
1
τ`
´1 `

1`O
`

plog logp1{tqq´1
˘˘

.

with the constant being equal to τ
1
τX
´1

X a1{τX when 0 “ τC ă τX ď 1.

Appendix E.2. Proof of Proposition 2

The function pp¨q being defined in the previous subsection, and proceeding as in Einmahl et al. (2008),
we carry on the proof by considering now that δi is related to Zi by

δi “ IUiďppZiq,

where pUiqiďn denotes an independent sequence of standard uniform variables, independent of the sequence
pZiqiďn. We denote by Ur1,ns, . . . , Urn,ns the (unordered) values of the uniform sample pertaining to the
order statistics Z1,n ď . . . ď Zn,n of the observed sample Z1, . . . , Zn.

Remind that Zi “ H´Z pexppKτZ pEiqqq, where E1, . . . , En are independent standard exponential random
variables (Proposition 1). We introduce, for every 1 ď i ď n, the standard uniform random variables
Vi “ 1´ expp´Eiq such that

Zi “ H´Z pexppKτZ p´ logp1´ Viqqqq “ rp1´ Viq

where the function rp¨q was defined before the statement of Lemma 2, which provides valuable information
about it. Let us provide a detailed proof of Proposition 2 in the case 0 ă τC ă τX ď 1 (the non-Weibull-tail
strong censoring case) ; all the other cases are treated similarly. We start by writing

?
kvnA2,n “

?
kvn

ˆ

´

aτX
τC

¯1´1{τX
pLnkq

1´τC{τX p̂k ´ a

˙

“
?
kvn

ˆ

aτX
τC

˙1´1{τX

pLnkq
1´τC{τX 1

k

k
ÿ

j“1

´

IUrn´j`1,nsďrp1´Vn´j`1,nq ´ IUrn´j`1,nsďrpj{nq

¯

`
?
kvn

1

k

k
ÿ

j“1

˜

ˆ

aτX
τC

˙1´1{τX

pLnkq
1´τC{τX IUrn´j`1,nsďrpj{nq ´ a

¸

“: T1,k ` T2,k.

We will prove below that the term T1,k above converges to 0 in probability. Let us, first, treat the term T2,k.
We write

T2,k “ 1?
k
vn

´

aτX
τC

¯1´1{τX
pLnkq

1´τC{τX řk
j“1

`

IUn´j`1,nďrpj{nq ´ rpj{nq
˘

` 1?
k
vn
řk
j“1

ˆ

´

aτX
τC

¯1´1{τX
pLnkq

1´τC{τX rpj{nq ´ a

˙

“: T 12,k ` T
2
2,k,

Let us prove that T 12,k
d
ÝÑ Np0, Dq where D “ a2´1{τX

´

τX
τC

¯1´1{τX
, while T 22,k

P
ÝÑ 0.

We deduce from Lemma 2 that

rptq “ a1{τX

ˆ

τX
τC

˙1{τX´1

p´ log tq
τC{τX´1

p1` op1qq Ñ 0.

Hence,

VpT 12,kq “ v2
n

´

aτX
τC

¯2´2{τX
pLnkq

2´2τC{τX 1
k

řk
j“1rpj{nqp1´ rpj{nqq

“ v2
nD pLnkq

1´τC{τX p1` op1qq 1
k

řk
j“1

´

Lnj
Lnk

¯τC{τX´1

,

denoting Lnj “ logpn{jq. We have 1
k

řk
j“1

´

Lnj
Lnk

¯τC{τX´1

converges to 1, because
Lnj
Lnk

converges uniformly

to 1. Consequently,

VpT 12,kq “ Dv2
n pLnkq

1´τC{τX p1` op1qq Ñ D.

We conclude, for this term, using Lyapunov’s Theorem (details are omitted).
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Concerning T 22,k, we see that
´

aτX
τC

¯1´1{τX
pLnkq

1´τC{τX rpj{nq “ a`op1q. Hence, we need a second order

development for rpj{nq. According to Lemma 2 (part piiq), we have

ˆ

aτX
τC

˙1´ 1
τX

L
1´τC{τX
nk rpj{nq ´ a “ a

˜

ˆ

Lnj
Lnk

˙

τC
τX
´1

´ 1

¸

`Op1qL´αnk

ˆ

Lnj
Lnk

˙´α

.

where α “ maxt´τC , τC{τX ´ 1u. Hence,

T 22,k “ a
?
kvn

ˆ

τC
τX
´ 1

˙

L´1
nk p1` op1qq

1

k

k
ÿ

j“1

logpk{jq `Op1q
?
kvnL

´α
nk p1` op1qq

1

k

k
ÿ

j“1

ˆ

Lnj
Lnk

˙´α

.

But 1
k

řk
j“1 logpk{jq and 1

k

řk
j“1

´

Lnj
Lnk

¯´α

both tend to 1 . Hence, according to assumption H3 (piiq or piiiq,

depending on the closeness of τX w.r.t. τC), T 22,k indeed tends to 0. This concludes the proof for T2,k.

It remains to prove that T1,k above converges to 0 in probability. Following the same lines as in the proof
of Lemma 2 (Subsection C.3) in Worms and Worms (2019), it turns out that this amounts to proving that,
for some positive sequence sn “ k´δ{n (δ ą 0) and some constant c ą 0,

?
kvnSn,k

nÑ8
ÝÑ 0 where Sn,k :“ sup

"

|rpsq ´ rptq| ;
1

n
ď t ď

k

n
, |s´ t| ď c

?
k{n , s ě sn

*

. (E.2)

In the case considered here, 0 ă τC ă τX ď 1, rptq “ cstp´ log tqτC{τX´1vp´ log tq, where v is a slowly
varying function such that vp´ log tq tends to 1 when tÑ 0. Let hptq “ p´ log tqτC{τX´1. Applying the mean
value theorem, we obtain

|rptq ´ rpsq| ď cst|t´ s| supuPrs,ts

ˇ

ˇ

ˇ
h1puqvp´ log uq

´

1` p´ log uqv1p´ log uq
vp´ log uq

¯
ˇ

ˇ

ˇ

ď cst|t´ s| supuPrs,ts |h
1puq|,

since tv1ptq
vptq tends to 1, as t tends to infinity. This entails that

Sn,k ď cst k1{2`δL
τC{τX´2
nk .

Remind that in this case vn “ L
1
2 pτC{τX´1q

nk . Hence

?
kvnSn,k ď cst

´?
kLα`δ

1

nk

¯2p1`δq

,

for some δ1 ą 0 and α “ 3
4 pτC{τX ´ 1q ´ 1

2 . We easily prove that, if we choose 0 ă δ1 ă 1
2 ,
?
kLα`δ

1

nk Ñ 0,
under assumption H3piiq or H3piiiq. l

Appendix E.3. Proof of Proposition 3

The proofs for the terms T1,n, . . . , T5,n are respectively detailed in parts (1), . . . ,(5) of this Section.

p1q Remind that T1,n “
Rn,l̃
Dk,τX

, where Rn,l̃ “
1
k

řk
j“1 log

´

l̃pexppKτZ pEn´i`1,nqqq

l̃pexppKτZ pEn´k,nqqq

¯

. According to assumption

Rl̃pb̃, ρ̃q, we have log
´

l̃ptxq

l̃ptq

¯

„ b̃ptqKρ̃pxq, uniformly for x ě 1, as t Ñ `8. The Renyi representation

yields that En´i`1,n ´ En´k
d
“ Fk´i`1,k , where F1, . . . , Fk are k independent standard exponential

random variables. Consequently, taking t “ exppKτZ pEn´k,nqq Ñ `8 and x “ exppKτZ pEn´i`1,nq ´

KτZ pEn´k,nqq ě 1, we obtain

Rn,l̃
d
“ b̃pexppKτZ pEn´k,nqqqp1` oPp1qq

1

k

k
ÿ

j“1

Kρ̃pexppKτZ pFi ` En´k,nq ´KτZ pEn´k,nqqq.

But
?
kvnb̃pexppKτZ pEn´k,nqqq tends to 0, under conditions H2-H6. Since

µ1,τZ
pEn´kq

σ1,τZ
pEn´kq

tends to 1

(thanks to pA.3q), Corollary 1 yields that σ1,τZ pEn´kq{Dk,τX
P
ÝÑ 1{a. It thus remains to prove that

1
k

řk
j“1Kρ̃pexppKτZ pFi ` En´k,nq ´KτZ pEn´k,nqqq

σ1,τZ pEn´kq
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is bounded in probability. In the cases where ρ̃ is equal to 0,

1

k

k
ÿ

j“1

Kρ̃pexppKτZ pFi`En´k,nq´KτZ pEn´k,nqqq “
1

k

k
ÿ

j“1

pKτZ pFi`En´k,nq´KτZ pEn´k,nqq “ θn,1pEn´kq,

and
θn,1pEn´kq
σ1,τZ

pEn´kq

P
ÝÑ 1 (see pA.4q). In the cases where ρ̃ ă 0, we use the fact that |Kρ̃pe

uq ´ u| ď |ρ̃|u
2

2 ,

and we easily prove that

1
k

řk
j“1 pKτZ pFi ` En´k,nq ´KτZ pEn´k,nqq

2

σ1,τZ pEn´kq
P
ÝÑ 0.

This concludes the proof for T1,n.

p2q Remind that T2,n “ ´θX
R1,n

Dk,τX
, where R1,n is defined in Lemma 3 and we have (also in Lemma 3)

Dk,τX “ Λ̂τX´1
k p̂k `R1,n.

It suffices to prove that
?
kvn

R1,n

Λ̂
τX´1

k p̂k

P
ÝÑ 0. Let us consider the case where τX ‰ 0 and τC ‰ 0, and

introduce the notations

Λj :“ ΛXpZn´j`1,nq and Λ̂j :“ Λ̂nXpZn´j`1,nq.

In this case (except when τX “ 1, since in that case R1,n “ 0),

R1,n “
τX ´ 1

2
Λ̂τXk

1

k

k
ÿ

j“1

˜

∆̂j,k

Λ̂k

¸2

p1` Tj,kq
τX´2,

with ∆̂j,k “ Λ̂j ´ Λ̂k and Tj,k Ps0,
∆̂j,k

Λ̂k
r. Since τX ´ 2 ă 0, we are led to prove that

?
kvn

Λ̂k
p̂k

1

k

k
ÿ

j“1

˜

∆̂j,k

Λ̂k

¸2

P
ÝÑ 0,

and, introducing

ξj,k :“
Λ̂j
Λj

Λk

Λ̂k
´ 1 and dj,k :“

Λj
Λk
´ 1,

we have p∆̂j,k{Λ̂kq
2 “ p

Λj
Λk
ξj,k ` dj,kq

2 ď 2ppΛj{Λkq
2
ξ2
j,k ` d

2
j,kq. We thus need to prove that

?
kvn

Λ̂k
p̂k

1

k

k
ÿ

j“1

ˆ

Λj
Λk

˙2

ξ2
j,k

P
ÝÑ 0 and

?
kvn

Λ̂k
p̂k

1

k

k
ÿ

j“1

d2
j,k

P
ÝÑ 0. (E.3)

Let E1, . . . En be i.i.d. standard exponential random variables. We have (see Lemma 4 piq)

Λj
Λk
´ 1

d
“ p1` xj,kq

1{τX ´ 1,

where
xj,k “

τXaKτZ pEn´j`1,nq`τX log lpexppKτZ pEn´j`1,nqqq`1

τXaKτZ pEn´k,nq`τX log lpexppKτZ pEn´k,nqqq`1 ´ 1

“ p1` oPp1qqpAj,k `Bj,kq,

with

Aj,k “ 1´
KτZ pEn´j`1,nq

KτZ pEn´k,nq
and Bj,k “

1

aKτZ pEn´j`1,nq
log

ˆ

lpexppKτZ pEn´j`1,nqqq

lpexppKτZ pEn´j`1,nqqq

˙

.

Hence, dj,k “ τ´1
X pAj,k `Bj,kqp1` oPp1qq. Moreover, the Renyi representation yields that En´i`1,n ´

En´k,n
d
“ Fk´i`1,k , where F1, . . . , Fk are k independent standard exponential random variables.

Consequently,

Aj,k “ 1´
E
τZ
n´j`1,n´1

E
τZ
n´k,n´1

d
“ ´τZ

Fk´j`1,k

En´k,n
p1` oPp1qq.
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Concerning Bj,k, we use the second order condition Rlpb, ρq for l to write

Bj,k “
bpexppKτZ pEn´k,nqqqq

aKτZ pEn´k,nqq
Kρ pexppKτZ pEn´j`1,nq ´KτZ pEn´k,nqqq p1` oPp1qq.

Since pAj,k ` Bj,kq
2 ď 2pA2

j,k ` B2
j,kq, we only have to prove that

?
kvn

Λ̂k
p̂k

1
k

řk
j“1A

2
j,k

P
ÝÑ 0 and

?
kvn

Λ̂k
p̂k

1
k

řk
j“1B

2
j,k

P
ÝÑ 0. Moreover Λk

d
“

´

aτX
τZ

¯1{τX
pEn´k,nq

τZ{τX p1 ` oPp1qq, where
En´k,n
Lnk

P
ÝÑ 1

and Λ̂k
Λk

P
ÝÑ 1. Hence

?
kvn

Λ̂k
p̂k

1
k

řk
j“1A

2
j,k

d
“ cstep1` oPp1qq

?
kvn

L
τZ {τX´2

nk

p̂k
1
k

řk
j“1F

2
j .

But
´

aτX
τZ

¯1´ 1
τX
pLnkq

1´τZ{τX p̂k
P
ÝÑ a, according to Proposition 2. Consequently,

?
kvn

Λ̂k
p̂k

1
k

řk
j“1A

2
j,k

d
“

OPp1q
?
kvnL

´1
nk , which, using assumptions H2, . . . H4, goes to 0 in probability.

Now, according to Lemma 5 in Gardes et al. (2011), we have

1

µ2,τZ pEn´kq

1

k

k
ÿ

j“1

K2
ρ pexppKτZ pEn´j`1,nq ´KτZ pEn´k,nqqq

P
ÝÑ cst.

Hence,

?
kvn

Λ̂k
p̂k

1
k

řk
j“1B

2
j,k

d
“ cstp1` oPp1qq

?
kvn

L
τZ {τX
nk

p̂k

´

bpexppKτZ pEn´k,nqqqq

aKτZ pEn´k,nqq

¯2

µ2,τZ pEn´kq

d
“ cstp1` oPp1qq

?
kvnL

´1
nk b

2pexppKτZ pEn´k,nqqqq,

since µ2,τZ pEn´kq „ 2L
2pτZ´1q
nk , according to Lemma 2 in Gardes et al. (2011). The second part of

relation (E.3) is thus proved.

Let us now deal with the first part of relation (E.3). We have

ξj,k “
Λ̂j
Λj

Λk

Λ̂k
´ 1 “

ˆ

Λk

Λ̂k

˙ˆ

∆j
Λk
Λj
´∆k`1

˙

Λ´1
k ,

where ∆j :“ Λ̂j ´ Λj and ∆k`1 :“ Λ̂k ´ Λk. Lemmas 6 and 7 in Worms and Worms (2019) en-

sure that |∆j | “ OPp1{
?
j ´ 1q for all j “ 2, . . . , k ` 1, |∆1| “ OPp1q and

En´k,n
Lnk

P
ÝÑ 1. Since in

addition both Λk
Λ̂k

and Λk
Λj

tend to 1 in probability, and the latter is ď 1, we thus obtain |ξ1,n| ď

p1` oPp1qq
´

OPp1q `OPp1{
?
kq
¯

Λ´1
k and

|ξj,n| ď p1` oPp1qq
´

OPp1{
a

j ´ 1q `OPp1{
?
kq
¯

Λ´1
k , for j “ 2, . . . , k.

Therefore,

?
kvn

Λ̂k
p̂k

1

k

k
ÿ

j“1

ˆ

Λj
Λk

˙2

ξ2
j,k ď p1` oPp1qq

vn
?
k
pΛkp̂kq

´1

˜

OPp1q `
k
ÿ

j“2

OPp1{pj ´ 1qq

¸

.

But Λk
d
“ cstp1` oPp1qqL

τZ{τX
nk and, according to Proposition 2, L

1´τZ{τX
nk p̂k “ cstp1` oPp1qq. Conse-

quently
?
kvn

Λ̂k
p̂k

1

k

k
ÿ

j“1

ˆ

Λj
Λk

˙2

ξ2
j,k ď OPp1q

?
kvnL

1´2τZ{τX
nk

log k

k
,

due to 1
k

řk
j“1

1
j „

log k
k . If τZ “ τX (thus vn “ 1), then the right-hand side above becomes

OPp1q
?
kL´1

nk
log k
k , which tends to 0 in probability, under assumption H2 or H4. If τZ “ τC ă τX

(thus vn “ L
pτC{τX´1q{2
nk ), let 0 ă ε ă 1

2 and write

?
kvnL

1´2τZ{τX
nk

log k

k
“
?
kvnL

1´2τC{τX
nk kε´1op1q “ L

3
2

τC
τX
´ 1

2

nk kε´1{2op1q “ p
?
kL´bnkq

2ε´1op1q,

where ´b ą 3
2
τC
τX
´ 1

2 It remains to ensure that
?
kL

3
2

τC
τX
´ 1

2

nk tends to infinity : this is the case under
assumption H3piq.
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p3q Remind that T3,n “ ´θXpΛ̂
τX´1
k ´ ΛτX´1

k qpDk,τX q
´1p̂k. Since Dk,τX “ Λ̂τX´1

k p̂k ` R1,n, according to
Lemma 3 (stated in Appendix E.4 below) and R1,n{Dk,τX “ oPp1q (term T2,n in Proposition 3), we
obtain that

T3,n “ OPp1q

˜

1´

ˆ

Λk

Λ̂k

˙τX´1
¸

.

But |Λk ´ Λ̂k| “ OPpk
´1{2q (see Lemma 7 in Worms and Worms (2019)). Hence

|T3,n| ď OPpk
´1{2qΛ´1

k .

But Λk “ K´τX paKτZ pEn´kq ` log lpexppKτZ pEn´kqqqq (see statement piq of Lemma 4). In the case
where both τX and τC are not equal to 0 (the other cases are treated similarly), this yields that

Λk “ OPp1qL
τZ{τX
nk . Since vnL

´τZ{τX
nk “ oPp1q, this concludes the proof for T3,n.

p4q Remind that T4,n “ ´θX
R2,n

Dk,τX
, where R2,n is defined in Lemma 5.

Let us consider the case where τX ą 0 and τC ą 0. If τX “ 1, then R2,n “ 0 and there is nothing to
prove, so we suppose τX Ps0, 1r. We then have

R2,n “

´

aτX
τZ

¯1´ 1
τX
pEn´k,nq

τZp1´
1
τX
q
p̂k

ˆ

p1´ E´τZn´k,nq
1´ 1

τX

´

1`
1`τX log lpexppKτZ pEn´k,nqqq

aτXKτZ pEn´k,nq

¯1´ 1
τX
´ 1

˙

According to Lemma 3 (stated in Appendix E.4 below) and the fact that Λ̂k
Λk

P
ÝÑ 1, since

Λk “

ˆ

aτX
τZ

˙1{τX

pEn´k,nq
τZ{τX p1` oPp1qq,

it remains to prove that
?
kvnRn, where

Rn :“

˜

p1´ E´τZn´k,nq
1´ 1

τX

ˆ

1`
1` τX log lpexppKτZ pEn´k,nqqq

aτXKτZ pEn´k,nq

˙1´ 1
τX

´ 1

¸

.

But lpxq tends to a constant c that can be 0, as x tends to `8. Hence,

Rn “ bE´τZn´k,np1` oPp1qq if c ‰ 0 and Rn “ cst
log lpexppKτZ pEn´k,nqqq

KτZ pEn´k,nq
p1` oPp1qq if c “ 0,

where b “ p1{τX´1qp1´a´1τZ{τX´τZ{a log cq. According to Lemma 1 (part piiiq), in the cases when

c “ 0, we have log lpexq
x “ cst.xr´1p1` op1qq as xÑ `8. Consequently,

Rn “ cst.L
τZpr´1q
nk p1` oPp1qq.

Hence,
?
kvnRn

P
ÝÑ 0, under assumption H2 or H3. The cases when c ‰ 0 are treated similarly. This

concludes the proof for T4,n when τX ą 0 and τC ą 0. The other cases (τX “ 0 or τC “ 0) can be
treated similarly, details are ommited.

p5q Remind that T5,n “ θZp1` oPp1qqR3,n, and that, in the case τX ‰ 0 and τC ‰ 0,

R3,n “

ˆ

aτX
τZ

˙1´1{τX

p̂k

˜

pEn´kq
τZp1´1{τXq

µ1,τZ pEn´kq
´ pLnkq

1´τZ{τX

¸

.

But, according to Proposition 2, R3,n “ ap1` oPp1qqRn, where

Rn :“
L
τZ
τX
´1

nk pEn´kq
τZp1´

1
τX
q

µ1,τZ pEn´kq
´ 1 “ Rp1qn `Rp2qn `Rp3qn ,

and

R
p1q
n :“

L

τZ
τX

´1

nk

µ1,τZ
pEn´kq

ˆ

pEn´kq
τZp1´

1
τX
q
´ L

τZp1´
1
τX
q

nk

˙

,

R
p2q
n :“ LτZ´1

nk

´

1
µ1,τZ

pEn´kq
´ 1

µ1,τZ
pLnkq

¯

R
p3q
n :“

L
τZ´1

nk

µ1,τZ
pLnkq

´ 1.
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Let us prove that
?
kvnR

piq
n tend to 0 , for i “ 1, 2, 3.

Concerning R
p1q
n , we use Lemma 4 of Gardes et al. (2011) to prove that

?
k times the large brackets in

the definition of R
p1q
n is OPp1qL

τZp1´
1
τX
q´1

nk . Moreover,
L
τZ´1

nk

µ1,τZ
pEn´kq

tends to 1, in probability, according

to see (A.3). Consequently,
?
kvnR

p1q
n “ OPp1qvnL

´1
nk , which tends to 0.

Concerning R
p2q
n , we also use Lemma 4 of Gardes et al. (2011) to prove that

?
k times the large

brackets in the definition of R
p2q
n is OPp1q

µ11,τZ
pLnkp1`oPp1qqq

µ2
1,τZ

pLnkp1`oPp1qqq
. Since

L
τZ´1

nk

µ1,τZ
pLnkq

tends to 1, we obtain that

?
kvnR

p2q
n “ OPp1qvn

µ11,τZ pLnkp1` oPp1qqq

µ1,τZ pLnkp1` oPp1qqq

µ1,τZ pLnkq

µ1,τZ pLnkp1` oPp1qqq
,

which tends to 0, according to Lemma 2 (iii) of Gardes et al. (2011).

Concerning R
p3q
n , remind that, if τ ‰ 0, µ1,τ ptq “

ş`8

0
pKτ px ` tq ´Kτ ptqqe

´x dx and tτ´1 “ K 1τ ptq.
This entails that

µ1,τ ptq
tτ´1 “

ş`8

0
xKτ px`tq´Kτ ptqxK1τ ptq

e´x dx´
ş`8

0
xe´x dx

“
ş`8

0
x
2
K2τ pt`αq
K1τ ptq

xe´x dx pα Ps0, xrq

“
ş`8

0
τ´1

2
x2

t p1` η
x
t q
τ´2e´x dx pη Ps0, 1rq

Hence R
p3q
n “ 1´τZ

2 L´1
nk p1` oPp1qq and

?
kvnR

p3q
n “ OPp1qvnL

´1
nk , which tends to 0 under assumptions

H2, H3, H4. l

Appendix E.4. Technical Lemmas

Lemma 3. The denominator of the estimator θ̂X,τX satisfies the relation

Dk,τX “
1

k

k
ÿ

j“1

KτX pΛ̂nXpZn´j`1,nqq ´KτX pΛ̂nXpZn´k,nqq “ Λ̂τX´1
k p̂k `R1,n,

where

R1,n “

$

’

’

’

&

’

’

’

%

τX´1
2 Λ̂τXk

1
k

řk
j“1

´

∆̂j,k

Λ̂k

¯2

p1` Tj,kq
τX´2, if 0 ă τX ă 1,

1
k

řk
j“1

´

log
´

1`
∆̂j,k

Λ̂k

¯

´
∆̂j,k

Λ̂k

¯

if τX “ 0,

0 if τX “ 1

with, for each j “ 1, . . . , k, ∆̂j,k :“ Λ̂nXpZn´j`1,nq´ Λ̂nXpZn´k,nq and the random variable Tj,k lies between

0 and
∆̂j,k

Λ̂k
.

Proof : straightforward via Taylor’s formula and the definition of function KτZ (the negligibility of R1,n is
another story, it is dealt with in Appendix E.3, part (2)). l

For the following lemma, remind that pEiq denote the i.i.d. standard exponential variable pEiq satisfying
Zi “ H´Z pexppKτZ pEiqq, and that lp¨q denotes the slowly varying function which properties are described in
Lemma 1 and which is such that HX ˝ H

´
Z pxq “ xalpxq. Note that in part piiq of this lemma, the results

also hold when one replaces En´k,n by Lnk, or replaces Zn´k,n and En´k,n by Zn´j`1,n and En´j`1,n (this
will occasionally prove useful).

Lemma 4. piq For every i “ 1, . . . , n, and whether τZ ą 0 or is equal to 0, we have

ΛXpZiq “ K´τX
`

aKτZ pEiq ` log lpexpKτZ pEiqq
˘

.

piiq When τZ ą 0, we have

ΛXpZn´k,nq “

ˆ

a
τX
τZ

˙1{τX

E
τZ{τX
n´k,np1` oPp1qq “

ˆ

a
τX
τZ

˙1{τX

E
τZ{τX
n´k,n

´

1` βE´αn´k,np1` oPp1qq
¯

(E.4)

for some constant β and exponent α “

"

τZ when either τX “ τC , or τX ‰ τC and r ď 0,
τZp1´ rq when τX ‰ τC and r Ps0, 1r.
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When 0 “ τX ă τC , we have ΛXpZn´k,nq “ En´k,nlpEn´k,nq “ En´k,np1` oPp1qq.

When 0 “ τC ă τX , we have

ΛXpZn´k,nq “ paτXq
1{τX plogEn´k,nq

1{τX
`

1` βplogEn´k,nq
´1p1` oPp1qq

˘

.

Note that the constant β is negative in the case τX ‰ τC and r Ps0, 1r.

Proof of Lemma 4 :

The first statement piq holds because on one hand, since sFX P A1pτX , θXq, we have ΛXpxq “ K´τX plogHXpxqq,
and on the other hand, Zi “ H´Z pexppKτZ pEiqqq where HX ˝ H

´
Z pxq “ xalpxq (see beginning of Appendix

E.1).

The second statement is essentially a consequence of the first one and of some of the second order results
contained in Lemma 1. Suppose for the moment that τZ ą 0, i.e. τX ą 0 and τC ą 0. We thus have
K´τX pxq “ pτXx` 1q1{τX . Hence, noting temporarily φpxq “ log lpexpxq{x, it is easy to see that piq implies

ΛXpZn´k,nq “ tpaτXKτZ pEn´k,nq ` τX log lpexppKτZ pEn´k,nqqq ` 1u
1{τX

“ paτXq
1{τX pKτZ pEn´k,nqq

1{τX
 

1` paτXKτZ pEn´k,nqq
´1 ` a´1φpKτZ pEn´k,nqq

(1{τX

But KτZ pEn´k,nq “ EτZn´k,np1´ E
´τZ
n´k,nq{τZ “ EτZn´k,np1` oPp1qq, so

ΛXpZn´k,nq “ paτX{τZq
1{τXE

τZ{τX
n´k,n

ˆ

1´
1

τX
E´τZn´k,np1` oPp1qq

˙

ˆBn

where Bn denotes the quantity in curly brackets above. Thanks to part piiiq of Lemma 1, we have

Bn “ 1`
τZ
aτX

E´τZn´k,np1` oPp1qq ` cst.E
´α
n´k,np1` oPp1qq

where either α “ τZ and cst “ plog cqτZ{a (when τX “ τC or τX ‰ τC and r ď 0) or α “ τZ and
cst “ ´νa´1τ1´r

Z ă 0 (when τX ‰ τC and r Ps0, 1r). The proof is thus over when τZ ą 0.

The cases τX “ 0 and τC ą 0, or τC “ 0 and τX ą 0, can be proved similarly. When 0 “ τX ă τC ,
we have τZ “ 0 and a “ 1 so it immediately comes ΛXpZn´k,nq “ En´k,nlpEn´k,nq “ En´k,np1 ` oPp1qq
(because c “ 1 in that case, see Lemma 1). When 0 “ τC ă τX , we have τZ “ 0 and thus

ΛXpZn´k,nq “ taτX logpEn´k,nq ` τX log lpEn´k,nq ` 1u
1{τX

The end of the proof is then very similar to the first case covered in details above.

The fact that relation E.4 also holds when En´k,n is replaced by Lnk is due to Lemma 4 in Gardes et

al. (2011), which states that
?
kpEn´k,n ´ Lnkq converges in distribution to a standard normal variable. l

Lemma 5. Let E1, . . . , En be i.i.d. standard exponential random variables.

ΛτX´1
k p̂k “

$

’

’

’

&

’

’

’

%

´

aτX
τZ

¯1´1{τX
E
τZp1´1{τXq
n´k,n p̂k `R2,n, if τX ‰ 0 and τC ‰ 0

p̂k
En´k,n

`R2,n, if 0 “ τX ă τC ă 1

paτXq
1´1{τX plogpEn´k,nqq

1´1{τX p̂k `R2,n if 0 “ τC ă τX ă 1,

where

R2,n “

$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

´

aτX
τZ

¯1´ 1
τX E

τZp1´
1
τX
q

n´k,n p̂k

ˆ

p1´ E´τZn´k,nq
1´ 1

τX

´

1`
1`τX log lpexppKτZ pEn´k,nqqq

aτXKτZ pEn´k,nq

¯1´ 1
τX
´ 1

˙

,

if 0 ă τX ă 1 and τC ‰ 0

p̂k
En´k,n

´

1
lpEn´k,nq

´ 1
¯

, if 0 “ τX ă τC ă 1

paτXq
1´ 1

τX plogpEn´k,nqq
1´ 1

τX p̂k

ˆ

´

1`
1`τX log lpEn´k,nq
aτX logpEn´k,nq

¯1´ 1
τX
´ 1

˙

, if 0 “ τC ă τX ă 1

0, if τX “ 1

Proof : Using part piq of Lemma 4, we have

Λk “ K´τX paKτZ pEn´k,nq ` log lpexppKτZ pEn´k,nqqqq ,
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which yields, in the case τX ‰ 0 and τC ‰ 0,

ΛτX´1
k “

ˆ

aτX
τZ

˙1´ 1
τX

E
τZp1´

1
τX
q

n´k,n p1´ E´τZn´k,nq
1´ 1

τX

ˆ

1`
1` τX log lpexppKτZ pEn´k,nqqq

aτXKτZ pEn´k,nq

˙1´ 1
τX

.

The expression of R2,n follows in this case. The other cases are similar. l

Lemma 6. Let E1, . . . , En be i.i.d. standard exponential random variables.

Λ´1
k p̂k “

$

’

’

’

&

’

’

’

%

´

aτX
τZ

¯´1{τX
E
´τZ{τX
n´k,n p̂k `RR2,n, if τX ‰ 0 and τC ‰ 0

p̂k
En´k,n

`RR2,n, if 0 “ τX ă τC ă 1

paτXq
´1{τX plogpEn´k,nqq

´1{τX p̂k `RR2,n if 0 “ τC ă τX ă 1,

where

RR2,n “

$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

´

aτX
τZ

¯´ 1
τX E

´
τZ
τX

n´k,np̂k

ˆ

p1´ E´τZn´k,nq
´ 1
τX

´

1`
1`τX log lpexppKτZ pEn´k,nqqq

aτXKτZ pEn´k,nq

¯´ 1
τX
´ 1

˙

,

if 0 ă τX ă 1 and τC ‰ 0

p̂k
En´k,n

´

1
lpEn´k,nq

´ 1
¯

, if 0 “ τX ă τC ă 1

paτXq
´ 1
τX plogpEn´k,nqq

´ 1
τX p̂k

ˆ

´

1`
1`τX log lpEn´k,nq
aτX logpEn´k,nq

¯´ 1
τX
´ 1

˙

, if 0 “ τC ă τX ă 1

0, if τX “ 1

The proof of the previous lemma is very similar to the one of Lemma 5, it is therefore omitted. The following
one is an easy consequence of Lemma 4.

Lemma 7. Under the same assumptions in Theorem 1, we have, as nÑ8,

if τX ‰ 0 and τC ‰ 0, logpΛkq “
τZ
τX

logLnkp1` oPp1qq

if τX “ 0, logpΛkq “ a logLnkp1` oPp1qq

if τX ‰ 0, and τC “ 0 logpΛkq “
1
τX

log logLnkp1` oPp1qq

Lemma 8. Under the assumptions of Theorem 4, we have, as n tends to infinity,

ż Λk

Lk

uτX´1 log u du “

$

’

’

’

&

’

’

’

%

OPplogLnkq if τX ‰ 0, τC ‰ 0 and pτX “ τC or r ď 0q,

OPpL
rτZ
nk logLnkq if τX ‰ 0, τC ‰ 0, τX ‰ τC and r Ps0, 1r,

OPplog logLnkq if τX ‰ 0 and τC “ 0,

oPplogLnkq if τX “ 0.

Proof : We only treat the case where both τX and τC are positive. In this case, remind that Lk “

paτX{τZq
1{τX pLnkq

τZ{τX and, according to Lemma 4, Λk
Lk

P
ÝÑ 1. We have (with v “ u{Lk)

şΛk
Lk
uτX´1 log u du “ LτXk

şΛk{Lk
1

vτX´1plog v ` logLkq dv

“
L
τX
k

τX
log

´

Λk
Lk

¯´

Λk
Lk

¯τX
´

L
τX
k

τ2
X

´´

Λk
Lk

¯τX
´ 1

¯

` logLk
L
τX
k

τX

´´

Λk
Lk

¯τX
´ 1

¯

.

An immediate consequence of Lemma 4 is that both log
´

Λk
Lk

¯

and
´

Λk
Lk

¯τX
´1 are OP ppLnkq

´τZ q if τX “ τC

or r ď 0, and are OP
`

pLnkq
´τZpr´1q

˘

if τX ‰ τC and r Ps0, 1r. The result follows easily. l
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