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Abstract In this paper, we use the flexible semi-parametric model A;(7,6) introduced in Gardes et
al. (2011) for estimating extremes of censored data. Both the censored and the censoring variables are
supposed to belong to this family of distributions. Solutions for modeling the tail of censored data which
are between Weibull-tail and Pareto-tail behavior are considered. Estimators of the parameters, as well as
high-quantiles, are proposed and asymptotic normality results are proved. Various combinations of the tails
of censored and censoring distributions are covered, ranging from rather light censoring to severe censoring
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1. Introduction

This paper proposes new contributions to the topic of extreme value statistics for data which are randomly
censored from the right.

Consider the classical random censoring setup, where one observes a sample from a couple (Z,9) =
(min(X, C),Ix<¢) with X denoting the variable of interest, and C' a censoring variable (independent from X)
which may prevent the user from observing the data X. The observed data is a sample (Z1,01),...,(Zn,0n)
where (X1,...,X,,) and (Cy,...,C,,) are independent samples of i.i.d. copies of X and C. The topic of
extreme value statistics for randomly censored data deals with the estimation of the tail of X (extreme
quantiles, rare probabilities of exceeding a large value), while observing such an incomplete data sample.

This topic has benefited from a number of contributions in the recent years (see Worms and Worms (2019)
and references therein), which were stimulated by applications in a variety of domains, mainly reliability
analysis, survival/lifetime analysis and insurance. A characteristic of all of these papers is that X and C' are
always supposed to share the same type of tail, i.e. a heavy tail censored by a heavy tail, a light (Gumbel)
tail censored by another light tail, or a finite tail censored by a finite tail. This is for instance very well
described by the 3 cases exhibited in formula (7) of the insightful paper Einmahl et al. (2008).

The main and initial objective of this paper is to broaden the type of tails in the Gumbel domain that
the user will be able to handle for estimating extremes for censored data. As a matter of fact, the lighter-
than-Pareto-tails situation was slightly overlooked in censored extremes works, and this may be considered
unfortunate since several applications of the censored extremes question do not necessarily exhibit a heavy
tail behavior (particularly in survival/lifetimes analysis). Essentially only two research papers proposed so
far solutions for dealing with light tails. Einmahl et al. (2008) considered the double Gumbel case but
with an assumption on the ultimate probability of non-censoring in the tail, and without parametrization of
the tail (only extreme quantiles were estimated, without further exploration of the tail). Worms & Worms
(2019) considered the general two Weibull-tails case, a subset of the double Gumbel case, which allows for
interesting configurations where the utimate probability of non-censoring in the tail can be zero (see its
definition in next Section).

The basement of the present work is the flexible semi-parametric model proposed in Gardes et al. (2011)
(model A;(7,0) described in the next section), which encompasses the Gumbel and the Fréchet maximum
domain of attraction, and therefore provides a more flexible option for modeling various phenomena. In this
paper, estimation of the parameters of this model will be made possible in the presence of censoring, with
very simple expressions for the estimators. In addition, this setup will allow for a more diverse combination
of tails (without prior knowledge of that combination) than the Fréchet versus Fréchet or the Weibull-tail
versus Weibull-tail cases.

The paper is organised as follows. Section 2 formally settles the framework and describes how the
parameters of the observed Z can be deduced from those of X and C, thus explaining what is statistically at
stake. Section 3 explains how the parameters and extreme quantiles of X can be estimated from the observed
censored data, while Section 4 states the main results of this paper, along with the required assumptions on
the number k,, of order statistics retained for the estimation. Section 5 contains simulations to illustrate the
performance of our estimators. Part A to D of the Appendix are devoted to the proofs of our asymptotic
results, while part E contains important technical aspects.

2. Description of the framework and assumptions

Let us now describe more formally the setting. Defining for 7 € [0, 1] the Box-Cox function

7o (z™ — 1)/ if 7 €]0,1],
Kr(x) = L utdu = { log(x) if €= 0,

we consider, for parameters 7 € [0, 1] and § > 0, that a distribution function F' belongs to the semi-parametric
family A, (7, 8) if the following holds (see Gardes et al. (2011) where this model was first introduced):

Ay (7,0) : for some z* > 0 and every = > x,, we have
1= F(z) = exp(— K (log(H(2)))),

where H is an increasing positive function such that H~ is regularly varying
at infinity with index 6 (which will be denoted by H~ € RVjy).
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Let us highlight that the tail heaviness of a distribution belonging to A1 (7, ) is mainly driven by 7, although
in practice both shape parameters 7 and 6 play an important role in the properties and shape of the upper
tail. Tt is easy to see that A;(1,6) corresponds to distributions in the Fréchet domain of attraction with
extreme value index 6, A;(0, ) corresponds to Weibull-tail distributions with Weibull-tail coefficient 6. The
case 7 €]0,1[ corresponds to distributions in the Gumbel domain having tails heavier than Weibull-type
ones : such distributions can be conveniently qualified as having log-Weibull-type tails, and log-normal
distributions belong to this category with 7 = 1/2 (see Gardes et al. (2011) for more examples).

In this work, the main assumption is that both the censored and the censoring variables have their
distribution belonging to the Aj(7,6) family. This assumption covers a quite flexible setting. We thus
assume the following :

Assumption (A1) : there exist 7x € [0,1], 7¢ € [0,1], 8x > 0, Oc > 0 such that
Fx € A1(1x,0x) and F¢ € Ai(1¢,0¢).
This means that there exists positive functions Hy and H¢s such that
Fx(z) =1— Fx(z) = exp(—K_ (log(Hx(z)))) and Fo(z)=1—Fg(x) = exp(—K,_ (log(Hc(x))))
and, for some slowly varying functions [x and lc at infinity,
Hyx(z) = 2%Ix(x) and Hg(z) = 2%¢lc(z).

It is clear that under this condition we also have Hx (z) = 2'/XIx () and Hc(x) = 2'/9¢1c(x) where both
lx and l¢ are slowly varying functions at infinity.

The estimation of the parameters 7x and fx is the main objective of this work. To do so, some relation
must be found between the parameters of X and C, and those of the observed variable Z = min{X, C'}. Under
assumption (A1), we can prove that the distribution of Z also belongs to the same family of distributions as
those of X and C, for some parameters 7z and 6z precised below :

Proposition 1. Under Assumption (A1), the distribution function of Z = min(X,C) satisfies condition
Ay(17,07), where

0x f0<7Tx <170 <1

. J o Oc f0<tTo<7x <1

7z = min(rx,70)  an z = (9;(1/72 + 951/72)*72 f0<tx =7c <1
min(fx,0c) iftx =17¢ =0

Therefore, there exists x4 > 0 such that for any x = x4, we have
P(Z > x) = exp(—K, (log(Hz(x)))),
where H, € RVy,. Consequently, if I denotes a standard exponential distribution, we have
Z = H (exp K-, (E)).
The proof of this Proposition is not very difficult but tedious. It is therefore omitted for brevity.

Remark 1. It is interesting to note that :

— in the two-heavy-tails case Tx = 7c = 1, we recover the well-known fact that 07 = vz = (’y;{l + 751)_1
where vx and Yo are the extreme value indices of X and C (see Beirlant et al. (2007)).

— in the two-Weibull-tails case Tx = 7¢ = 0, we recover the fact that the Weibull-tail parameter of Z is
equal to the minimum of those of X and C (see Worms and Worms (2019)).

— when Tx = T¢, we have 07 < min(fx, 0¢), but otherwise this is not necessarily the case.

— the expression of 0z in the fourth case is continuously coherent with the third one in the sense that
min(0x,0¢) is indeed the limit of (05" + 951/7)77 as T — 0.

In this paper, we will exclude the first two situations evoked in Remark 1 above, which have already been
explored in anterior works, and therefore suppose that (7x,7¢) € [0,1]2\{(0,0), (1,1) }.



Continuing with the probabilistic features of this model, let us now point out that, if p(z) = P(§ = 1|Z =
x) denotes the probability of being non-censored at level z, the following holds true (it is a copy of statement
i) of the much more complete Lemma 2 stated in the Appendix) :

1 if 0 <
lim p(gg):p;: 0 o< 7o <71x

r—+00
07/ (O™ +04™)  if0<7x =70 <1,

In the first situation (the light censoring one), the fact that the ultimate probability p of non-censoring in
the tail is 1 and that the parameters of X are the same as those of Z (see Proposition 1) would suggest that
taking into account the censoring is useless. However, as Worms and Worms (2019) already put forward,
this is not advisable because those settings produce finite size data where censoring is still present and needs
to be taken into account. Similarly, the strong censoring situation where the ultimate probability p is 0
produces, in practice, data which are not completely censored in the tail, and thus the statistical problem
of estimating the tail parameters and extreme quantiles of X should and can be addressed. Finally, one can
note that the particular situation where tails of X and C have the same heaviness (7x = 7¢) is interesting
on its own.

Note that in Einmahl et al. (2008) the double Gumbel case was considered with the assumption p €]0, 1],
which is difficult to check in practice.

Let us close this section by now describing the more technical assumptions required for our results to
hold. This part of the section may be skipped on first reading. In order to achieve asymptotic normality of
the estimators defined in this paper, the slowly varying functions [x and [c associated to Hx and H¢ are
supposed to satisfy a classical second order condition (usually called the SR2 condition) :

Assumption (A2) : there exist some negative constants px and pc, and some rate
functions bx and bc having constant sign at +00 and satisfying
lbx| € RV, and |bc| € RV, such that, as t — +0c0,

Ix(tz)/Ix(t) — 1 le(tz)/lc(t) — 1

b () — K, (x), and 0

— K, (z),Vz > 0.
(1)

According to the last statement of Proposition 1 and to the expression of our estimators (see next Section),
it will be important in the sequel to consider the functions

Hy(z) =2%I(z) and HxoH,(z)=x%(z) with a:= g—z, (2)
X

where both [ and [ are slowly varying. The crucial parameter a = 0z/0x is equal to 1 in "low censoring”
situations (in particular when 7x < 7¢).

Our important technical Lemma 1, stated in Appendix E.1, ensures that functions Hz and H also
satisfy a second order condition SR2. For technical reasons though, we need to consider the following
stronger conditions on [ and [, respectively noted R;(b, p) and R;(b, p), and defined by :

Assumption Ry(B, p) : for some constant p < 0 and a rate function B satisfying
lim, 4o B(x) = 0, such that for all e > 0, we have
L(Ax)/b(x) — 1

sup | ——————— — 1| < ¢, for z sufficiently large .
T BwK,0) T

Note that, according to Lemma 1 in the Appendix, we have p = p, and that this parameter is negative when
either 7x = 0 or 7¢ = 0, but otherwise (i.e. in most cases) it is zero, an unpleasant fact which often implies
some challenge in the proofs.

3. Construction of the estimators

Let us denote by Ax and Ac the cumulative hazard functions associated to Fx and F¢, respectively

Ax(z) = —logFx(z) and Ag(x) = —log Fo(x),



and let A,,x denote the Nelson-Aalen estimator of Ay defined as

X 0;

Rox(@) = S 2 (3)
Zi<s n—t+1

where Z1 , < ... < Z,, are the order statistics of the sample (Z;) and 61 p, ..., d, n are the corresponding

indicators associated to these reordered Z values. Let k, = o(n) be an intermediate sequence of integers

(which will often be simply denoted by k). The estimators of 7x and x that we propose are 7x and 0x 7,

where we define

~ HHk n A Hk n
= d Ox,., = —— 4
™~ Dy 0 o Korx Dyrx )
with
1 &
Hy, = T IOg(anijl,n) - IOg(ankn,n)a
n i1
1 &
HHypn = - > loglog(Zn—j+1.n) — loglog(Zn—r, n),
n i1
1 kn R R
Dk,‘rx kf KTX (AnX(Zn7j+1,n)) - KTX (AnX(ankn,n))-
n i1

Note that the expressions of the estimators defined in (4) do not depend on the relative positions of 7x
and 7¢ (or of x and O¢). They can be calculated whatever the combinations of the tails of X and C are,
with the same formulas. However, we will see in the next Section that the rates of convergence, performances,
and assumptions of these estimators can differ depending on the strength of censoring.

Remark 2. In the case Tx = 7¢ = 0, corresponding to the purely Weibull-tail framework, the estimator
Ox .0 corresponds to the one studied in Worms and Worms (2019), because K., (x) = log(z) in that case. In

the case Tx = T7¢ = 1, corresponding to the purely heavy-tail framework, the estimator 6x 1 corresponds to
the adapted Hill estimator studied in Beirlant et al. (2007), because in that case K., (x) =z — 1 and thus
we have exactly Dy 1 = pr, (see formula (7) below). As said earlier, these two particular cases are excluded
from the scope of the statements of this paper because properties of éX70 and éXJ are already known.

In the following lines, we derive the approximations that inspired the definitions in (4). Under Assumption
(Al), Hx is regularly varying with index 1/0x and K., (Ax(x)) = log(Hx (z)), hence, for u large, we have

1 _
Koy (u) ~ 5—log(Ax (u)).
X
Moreover, for s large and any u > 1
K, (su) (su)™ —1
1 X ) =1 ——— | ~7x logu.
o8 ( K. (s) ) o8 < ()x —1 ) = TR

Combining these two results, we obtain a first approximation, for u and s large, relating 7x to Ax :

Tx log u ~ loglog(Ay (su)) — loglog(Ax (s)). (5)
The second approximation comes from the fact that, for ¢ large and any given x > 1, we have
Hx (tz
X( ) = eXp(K‘I’X (AX (t.’]?)) - K‘rx (AX (t))) = ml/QX’
Hx(t)
hence 0x is related to 7x and Ax via the formula :
1
glogaz ~ Ko (Ax(tz)) — Koy (Ax (2)). (6)
Therefore, the two definitions in relation (4) come by applying approximation (5) to s = Ax(Zn—k,.n)
and v = Ax(Zn—j+1,n)/Ax(Zp—k, n) on one hand, and approximation (6) to t = Z,_j, , and =z =

Zn—j+1,n/Zn—k, n on the other hand, and then by plugging in the Nelson-Aalen estimator of Ax and sum-
ming for 1 < j < k.

The two estimators above are thus ratios involving on one hand the mean of either the log-spacings (i.e.
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the Hill statistic) or the log-log-spacings, and on the other hand a denominator involving the Nelson-Aalen
estimator at the k upper values of the observed Z sequence.

The main issue in the proofs lies in the treatment of the denominators Dy -, and Dy . In fact, the
statistic Dy, -, defined below (4) turns out to be related to the proportion of uncensored data in the tail via
the relation (see Lemma 3 in the Appendix for the details)

R =1 R 1
Dy ry ~ (AnX(Zn—k,n)) Pr. where py = Ezan—j+l,n
j=1

because of the nature of the Box-Cox transformation K., Taylor’s formula, and of the fact that

k k
%Z (AnX(anjJrl,n) - AnX( n—k,n ) k Z Z n l+1 L= %Zan*j+l,’ﬂ' (7)
j=1 j=11=j j=1

Therefore, the properties of our estimators will rely on a careful study of two sequences. The first one
is /A\nX(Zn,k,n) (in particular, how it can be approximated by Ax(Z,—k ) and written as an increasing
function of logn/k ; see Lemma 4 in the Appendix). The second one is the sequence py, which converges to
0, 1 or a value p €]0, 1] depending on the position of 7x with respect to 7¢ (Proposition 2 provides the full
details about this, and relies on sharp second order developments of the different regularly varying functions
that appear in this framework, cf the important technical Lemmas 1 and 2 in the Appendix).

Finally, let us deal with the estimation of an extreme quantile z,, := Fx (p,) of the distribution of X,
with p, — 0, as n — +00. Applying the approximation (6) now to t = Z,_x,, and & =z, /Zp_kn, We can
propose the following estimator of x,,, (with both #x and 7x being unknown) :

&y 1= Znkon XD {éxfx (K+X (—log(pn)) — Kz, (Anx(zn,k’n)))} : (8)

Note that if we know that 7x = 0 and set 7x = 0, then this estimator is the same as the one proposed
in Worms and Worms (2019).

4. Asymptotic results

The main assumptions on the model and the different notations have been stated in the previous sections.
In order to obtain the asymptotic normality of our estimators, we naturally need the sequence (k;,) (number
of top order statistics to use) to satisfy some conditions (we will note k = k,, from now on). The first one is
standard in the literature on Weibull-tail models :

lek—>+oo,%—>0, iggﬁ—»o,asn—»—koo.

Moreover, introducing the important notation
Lnk = IOg(n/k)v

let v, be a factor which will contribute to the rates of convergence of our estimators, it depends on the
censoring strength in the tail :
1 f0<7x <7¢ <1l or O<7x=7c<1or 0=7x <70 <1,
1cZc 4
Uy 1= L:LIETX ) f0<7te<7x <1,
—1/2 i L—l)
L, “(log L, )2 f0=7mc<7x <1.
We also consider the following conditions
GVELZY ™ S0 L — L >
(i) VkL, ;X — 0 if X —%<—1

(I)Vkv, — 40
(i1)Vkv, L TC/TXI Olf——iz—l

TC

(zzz)fanng —0if = %<—1
Hy:0<7x =7¢c<1 and \/>L77X—>0
Hs:0=7x <7c <1 and 36 > 0,VEkL?° -0

Hy:0<71yx <7c <1 and {

H;:0<7mc<7x <1 and



(I)Vkv, — 400

(43)Vkvp (log Lpg) ™' — 0

(in assumption Hs above, p denotes the second order parameter associated to the slowly varying function l,
which is negative in this case ; see formula (2) in Section 2 as well as Lemma 1 in Appendix E.1)

Hg: 0=7170c<7x <1 and {

The following four theorems respectively state the convergence in distribution of the estimators 7y, 0 X rx
(with 7x known), Ox +,, and &, , all of them being defined in the previous section.

Theorem 1. Let assumptions (A1) and (A2) hold, as well as R;(b, p) and R[(l;7 p). If (k) satisfies Hy and
one of the conditions Hs, ..., Hg, then we have, as n — o0,

if mx # 0, VEkon(ix —7x) -5 N (0,7%02),
if x =0, #x = Op(1/log(Lny)) — 0,

where a = 07/0x and

1 if0<7x <7170 <1,

1-1/7x
o2 — a~ VX (:—)c‘) if0 <710 <7x <1,
a=/Tx if0<tx =70 <1,
a_l/TXT)l(_l/TX f0=710c <7x < 1.

Theorem 2. Under the same assumptions as Theorem 1, we have, as n — o0,

\/gvn(éxﬂ—x — Gx) —d> N (0,9%0’2) .

Remark 3. When 7x < 7¢, the ultimate probability p of non-censoring is 1, this is the light-censoring
situation. When 7x = T¢, it is easy to see that 0z < 0x and thus the asymptotic variance is larger than
in the case Tx < T¢ (i.e. we have 0% > 1). When 0 < 7c < Tx (strong censoring setting), the ultimate
probability of non-censoring p is zero, and the factor o2 is < 1 when 0c > Ox, but otherwise this is not
necessarily the case.

Theorem 3. Under the same assumptions as Theorem 1, if Tx > 0 and if we further assume that

\/E'Un . \/E'Un
Iog Lus -+ (if ¢ #0) or Toglog Lx —

+oo (if 7o = 0), 9)

we then have, as n — o0,

Vv,

) s d

if e #0 1OgLn}g(0Xﬁ—X *ex)HN(O,Gio%%),
N - d

fro=0 ——" (Ox+ —0x)—> N (0,0%5?%).

if 7 loglogLnk( X,7x X) ( X9 )

Remark 4. Note that the rate of convergence and asymptotic variance of HAXjX are altered and different
from that of Ox . due to the plug-in of Tx.

Theorem 4. Under the same assumptions as Theorem 8, if moreover

Vv,

Tog 108(1/p,)(— 10g(p,) )™ 10)
and log L log log L
0g Link . 0g log Link .
_08Lmk 0808 Lk, _ 11
log log(1/pn) 0 fre#0) or log log(1/pn) 0 [Fre=0) )

we then have, as n — o0,

Vkun <5%pn

_ N 2 ;2)
log log(1/pn)(— log(pn)) ™ 1> N (0,6%0%)

'rpn



Remark 5. There is some sort of phase transition phenomenon in the above results. As a matter of fact,
not only the rate of convergence of our estimators vary whether Tx is < 7¢ or not, but the closeness of the
parameters Tx and Tc also play a role (see assumptions Ho and Hs) : the assumptions vary whether Tx is
lower than ¢ but not too close to it (i.e. 1 < i - %), lower than ¢ but close to it (i.e. 0 < i - % <1),

equal to 1o, larger than and close to 7¢ (i.e. 0 < % - i < 1), or sufficiently larger than 1¢ (i.e.
1 < X — L) However, in practice, for finite and moderate values of n, visualizing these findings on

TC TX
stmulations s not easy, because other factors (than just the tail parameters) play a non-negligible role in the

estimation quality.

Let us finish this section by providing a hint of the consistency of our estimators. Let us note féc) and

é(ZC) the following estimators of 7 and 6z

_Hrn g 20 2 HHen e ) = JOO(KT(x+t)—KT(t)))eIdx. (12)
1,75 (L) p1,0(Lnk) 0

The first one was introduced in Gardes et al. (2011). The second one is similar to the estimator proposed

0y -

in Albert et al. (2020) (in a slightly different setting) ; by the way, note that %éc) is a new estimator of 7
in the A;(7,6) model without censoring, and thus a competitor of the estimator which was proposed in El
Methni et al. (2012) (which required the delicate choice of two intermediate sequences k,, and k).

Using the material of Gardes et al. (2011) and Albert et al. (2020), one can prove that é(ZC) and %éc)
are consistent estimators of 8z and 7z, and we have

N ~(c) ,U/I,O(Lnk) l,ul,Tz (Lnk>
and Tx =7, X X
Xz Lty (L) Dy o

where Iy - (t) := SSO (log(K,(z +t)) — log(K,(t))) e~ dz. The consistency of fx r, will thus come from the
convergence of the ratio p1 -, (Lnk)/Di,rx to 1/a = 0x /07, which is deduced from Corollary 1 (stated in
Appendix A of this paper). The consistency of 7x comes from the convergence of 11 r, (Lnk)/Dr,o to Tx
(which is deduced from Corollary 2 in Appendix B), and the fact that py o(t)/lu1,+,(t) converges to 1/7z as
t — oo (which is deduced from relations (A.3) and (B.3) in the Appendix).

It is noteworthy that equation (13) describes a way of adapting to the censoring context any estimators
of @ or 7 which are known in the complete data setting, by simply dividing by the appropriate expression
involving Dy, -, or Dy .

K17y (Lnk)

13
Drms (13)

éX,‘rX = é(ZC) X

5. Finite sample comparisons

In this section, we illustrate, using few simulations, the finite sample performances of our estimators of
Tx, Ox and z,, (for small p,), in terms of observed bias and mean squared error (MSE). Note that numerous
different situations could be considered with our flexible framework : a thorough and extensive simulation
study is however not possible within the limits of the present paper. We generate N = 1000 samples of size
n = 500.

We consider three classes of distributions of Log-Weibull-tail type, for the target variable X and the
censoring variable C' :

e Log-Weibull() distribution such that its logarithm has c.d.f. 1 — exp(—2'?) (z > 0). It satisfies
assumption A;(6,6).

e Log-Normal distribution LN (p,0?), which satisfies assumption Al(%, ‘77‘/5), according to Proposition
3 in Gardes et al. (2011).

e Model .Z with c.d.f. F, satisfying A;(7,1/5), with H~(z) = 2/°(1 + 2= /2) (Vz).

We then consider three cases : a Log-Weibull(fx ) distribution censored by the Log-Normal(1,1/2) distribu-
tion (Figure 1), the Log-Normal(1,1/2) distribution censored by a Log-Weibull(f¢) distribution (Figure 2),
and then a distribution in the .# model censored by another distribution in the .# model (Figure 3). In each
case, we consider three situations with 7x < 7¢, 7x = 7¢ or 7x > 7¢, corresponding to different (ultimate)
intensities of censoring in the tail.

In parts (a),(b),(c) of Figures 1, 2 and 3, we present the bias and the MSE of our estimators 7x and x .
as a function of k. In parts (d),(e),(f) of Figures 1, 2 and 3, we present the relative bias and the relative
8
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Figure 1: Simulation with X log-Weibull censored by C log-Normal, where 7x = 0.4 < 7¢ = 0.5 in first line (figures (a)-(b)),
7x = 0.5 = 7¢ in second line (figures (c)-(d)), and 7x = 0.6 > 7¢ = 0.5 in third line (figures (e)-(f)). The graphs represent
observed bias and MSE of estimators 7x (blue) and GAX,;X (dashed red) in figures (a)-(c)-(e), and relative bias and MSE of
estimators &p,, (black) and fcanG (dashed green) in figures (b)-(d)-(f).



MSE of our estimator £, for the value p, = 0.01, compared with those of the existing estimator defined, in
a more general censored setting, by equation (8) in Einmahl et al. (2008) :

~ ~c,Mom

. . (1= F(Zn- n)” -1
E50 - 2yt oy O ol |

Pn (14)
where 4M°™ ig the moment estimator of the extreme value index vyx of F' adapted to censoring and F,
stands for the Kaplan-Meier estimator of the c.d.f. F. We refer to Einmahl et al. (2008) for the expression

of ai. Note that no formal asymptotic result is currently available for ian G,

Concerning the performance of the estimators 0 x,+x and Tx, we observe that when X has a Log-Weibull
tail, the bias and the MSE for both estimators are very small. When one deviates from this situation, though,
they are not very satisfactory on the situations presented here. Note however that these estimators are the
first to be proposed in this context, which is why no comparison to competitors is presented . Another
remark is that the quality of the estimators do not systematically deteriorate when censoring gets stronger.

Concerning the performance of the high quantile estimator, the figures show very good performances when
X has a Log-Weibull tail. When one deviates from this situation, things may become worse. It is particularly
true here in the Log-Normal versus Log-Weibull case. However, our estimator remains competitive in terms
of bias and MSE in a number of other situations, for instance in Figure 3.
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Figure 2: Simulation with X log-Normal censored by C log-Weibull, where 7x = 0.5 < 7¢ = 0.6 in first line (figures (a)-(b)),
7x = 0.5 = 7¢ in second line (figures (c)-(d)), and 7x = 0.5 > 7¢ = 0.4 in third line (figures (e)-(f)). The graphs represent
observed bias and MSE of estimators 7x (blue) and 0x 3, (dashed red) in figures (a)-(c)-(e), and relative bias and MSE of

estimators &p,, (black) and J%EWFG (dashed green) in figures (b)-(d)-(f).
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Figure 3: Simulation with X and C in the F model, where 7x = 0.4 < 7¢ = 0.6 in first line (figures (a)-(b)), 7x = 0.5 = 7¢

in second line (figures (c)-(d)), and 7x = 0.6 > 7 = 0.4 in third line (figures (e)-(f)). The graphs represent observed bias
and MSE of estimators 7x (blue) and éx,+x (dashed red) in figures (a)-(c)-(e), and relative bias and MSE of estimators &,
(black) and iEnFG (dashed green) in figures (b)-(d)-(f).
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6. Conclusion

In this paper we proposed a solution for dealing with tail and extreme quantile estimation of data which
are randomly right censored, within a rather large family of distributions encompassing power tail distribu-
tions, Weibull-tail distributions, and intermediary situations such as (for instance) log-normal distributions.
This family was first introduced in a complete data context in Gardes et al. (2011). Our asymptotic nor-
mality results support all possible amounts of censoring in the tail, even very strong ones where the ultimate
probability of being censored in the tail is equal to one.

The main two contributions of this work are that very diverse combinations of tails of the censored and
censoring distributions are dealt with (not just a combination of tails from the same category), and that tail
estimation of log-Weibull-type distributions (not heavier than Pareto tails though) are dealt with as well.
The fact that one can estimate the tail parameters of this flexible model, and not just the extreme quantiles,
means that the user may consider estimating more elaborated parameters than the extreme quantiles (for
instance, expected tail losses E(X|X > Fy (1 — p)) for small p).

Concerning the performances, the bias of our estimators of # and 7 remains a problem, as soon as one
moves away from the pure log-Weibull situation. However our opinion is that this bias problem was already
present for the original estimators of 7 and 6 (which inspired ours) in the non-censoring context. This topic
of bias reduction still needs to be explored for this family of distributions, even in the non-censored situation.
In this paper, we did not try to detail the asymptotic bias, mainly because of the great diversity of situations
that our model handled, which already made the exposition quite complicated. This would require further
work.

Finally, a continuation of this work could be to look for estimators of 7 and 6 which are weighted
modifications of their non-censored versions (the estimators in equation (12)), but with varying weights, not
the constant weights Dy, ¢ and Dy, -, , with in mind a possible improvement in terms of bias and mean-squared
error.
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Appendix
Let us first summarize the contents of the Appendix. It is composed of 4 main parts.
Part A is devoted to the proof of Theorem 2.
Part B is devoted to the proof of Theorem 1.
Part C is devoted to the proof of Theorem 3
Part D is devoted to the proof of Theorem 4.
Part E contains different technical aspects.

Remind that L,y is the notation for log(n/k). Let us introduce the following notations :

Ak = AF(Zn—k,n) and Ak = AnX(Zn—k,n)-

Appendix A. Proof of Theorem 2

This section details how the asymptotic normality of 0 x,rx Stems from the combination of properties
of the Hill estimator Hy, , (relations (A.1), (A.2) and (A.4) below) and of the proportion pj of uncensored
data in the tail (Proposition 2 stated next page), via the important decomposition (A.6). Some details are
postponed to other sections, in particular the crucial technical Lemma 2 (stated in Appendix E.1) which
states the second order properties of the function p(z) = P(§ = 1|Z = x). The behavior of the (numerous)
remainder terms is detailed in Proposition 3.

Hk,n

First, remind that GAXJX = —— with
Dk,‘l’x
1 k 1 k N
%Z n 7+1, n) log(Zn—k,n) and Dk TX EZ ’n j+1,n)) - KTX (ATLX(ZTI—]%”I))'
j=1 j=
According to Proposition 1, we have Z; = H, (exp(K,, (E;))), where Ey,... B, aren independent standard
exponential random variables and (see relation (2)) H (z) = 2%7i(z), | being RV;. Hence
=0;M, + R (Al)
where
li i1m) — Ky (En_gn) and R i (~ Koy (En—yirn))) |
k P n i+1,n Tz n n n, . l eXp(K (En_k,n)))
By the Renyi representation, we have E,_; 1, — Ep_j 4 Fy_j+1,x , where Fy, ..., Fj, are k independent

standard exponential random variables. As was done in Gardes et al. (2011) (and borrowing their notations),
we have

k
M, L6, 1(E,_y) where 6,( Z L(Fi+ 1) — K (1) (A.2)

??'M—‘

Introducing, for ¢ € N*, (see Lemma 2 of Gardes et al. (2011))

figrz (1) := E(bh 4(t)) = LOO(KTZ (@ +1) = Krp (8)7 e do = (¢!) 1177V (1 +0(1)) (ast — +0) (A.3)

and o7 () := pi2,r, (t) — p3 ,, (t), it is proved in Lemma 5 of Gardes et al. (2011) that
en,l(Enfk) — H1,75 (Enfk)

VEAL 4N 0,1 where Ay, := A4
o > N01) . T1.r2 (Bot) (A4

Moreover, we prove in Lemma 3 (stated in Appendix E.4) that
Diry = AP+ Rum (A.5)

where py denotes the proportion of uncensored data among the k upper data values (see Lemma 3 for the
definition of the remainder term R; ,,). Formulas (A.1) and (A.5) thus easily entail the following important
intermediate relation :

R Oy M, —O0xATX"p 3
O,y —0x £ 72 e PN T,
=1

Dk:,TX
13



where

n,l
Tl,n =
Dk,TX
. 0 Rl,n
T2,n = —UX
Di ey
ATx*l ’TX71
T = —f Ak _Ak ~
3n = X Pk
Dk:TX

Concerning now py, reminding that a := 0z/0x, we prove in Lemma 5 (stated in Appendix E.4) that,
when 7x > 0 and 7¢ > 0,

Tz

1 n arx \ 'YX 72(1 1)
Ak P = | — E kTt R2 n

(note that the first term is equal to En xPr when 0 = 7x < 7¢ < 1, since then 7z = 7x and a = 1), and
when 7x > 0 and 7¢ = 0,

1. 1-1 1-1
AT i = (arx)' Y (log Byk)' Y™ i + Ram,
where the remainder term Rj ,, is detailed for each case in the statement of Lemma 5.

>0and 7¢ >0

Consequently, defining Ty ,, := —0x D
1-1/7x p7z(1-1/7x)
5 d 017 (En_k) p1,ry (En—t) (afx> E. "% R
0  — 0 £ LTz\VTnRTRJ 0, A - 0 LTz \ TR A _n-k _ 2“4 Tl "
Xorx X Dk,TX ( 74 X 01,74 (Enfk) TZ ,U/l,'rz (Enfk) Pk Z

and, when 7x > 0 and 7¢ = 0,

; vy (B s (En Ciyry (log Bg)' Vg 4
Gmn —x & M(ezm_g M<<W)1 e Iy
i=1

Dk,TX 01,7z (Enfk) M1,y (Enfk)

Then, reminding that p; ., (t) ~ 727! as t — o0, we define the following remainder term as (note again that

atx/7z =1and 72(1 —1/7x) = —1 when 7x = 0 < 7¢)
171/7’){ T7(1—1/Tx)
roo ] () e (B ) when T =0, 70 = 0
3,n = - /T
(amx)' 7y (Ut =5 — L (log Lu)'™72/7 ) when 0 = 70 < 7.

p1,7, (En—k) P

Finally, using the additional fact that, thanks to (A.3), T 1, we can state the main relation of
g (B

the proof of Theorem 2 :

TZ E >
9X X — Ox = 4 M (ezALn — exAg’n(l + Op(l))) + 2 Ti}n; (AG)

i=1

where the second important term A, ,, is defined as

ar 1 l/Tx
<TX> L}I;TZ/TX Dp —a if x >0and 7¢ >0,
7z

(a’Tx)lil/TX Lnk(log Lnk)lfTZ/TX ﬁk —a if0= Tc < TX,

A2n:=

)

and the last remainder term to be introduced is T5 ,, := 0z R3 (1 + op(1)).

We deal with the asymptotic normality of A, , and the reminder terms 7 ,, in the following two proposi-
tions, which are proved, respectively, in Appendix E.2 and Appendix E.3. Remind that the rate v,, is defined
as

1 fOo<rtryx<mc<lorO0<7tyx=7m7c<lorO0O=7x <710 <1
(751
Up 1= L.~ fo<me<tx <1

L 1/2(1ogLnk)%(i71) f0=1c<1x <1

14



Proposition 2. Under the conditions of Theorem 1,
@f 0 < Tx <TC < ]-7 \/E'UnAZn = \/Evn(ﬁk - a) = \/%(ﬁk - ]-) i’ 07
1-X 1-1/7
i 0<ro<rtx<l, \/EUnAQ,n \/>/Un ((Mx) X quszZ/Tka _ a) _d> N (O,a2—1/rx (fo) X) ,

T, TC
if 0<7x=71c<1, Vkv,As, = Vk(a'"V™p) —a) 4N (0,a?7Vmx (1 — a¥/™x)) ,
Zf O0=7c<7x <1, \/EUnAQm = \/Evn <(a7-X)17i Ly (log Lnk)17i ﬁk - a) _d) N (07&2_1/7—}( Tj{il/TX) )

Proposition 3. Under the conditions of Theorem 1, for all 1 < i <5, \/EvnTi’n LN 0, as n tends to
nfinity.

Let us now explain how the combination of relations (A.6) and (A.4) and Propositions 2 and 3 imply
that Vv, (Ox - — 0x) 4, N(0,v) where v = 63 0% and ends the proof of Theorem 2.
When 0 < 7x < 7¢ < 1, Proposition 2 states that \/EA277L converges to 0. Hence, the leading term

in (A.6) is VkA; ,, which converges in distribution to N(0,1) (see (A.4)), and we thus obtain as desired
v = (263 = 5.

When 0 < 7x = 7¢ < 1, Proposition 2 states that v/kAs,, 4N (0, a?~ Y (1 - al/TX)). Moreover VkAj ,
converges in distribution to N(0,1). Since A; ,, and Az, are independent, we obtain as desired

2
_% 5+ 0X a? V(1 — aV/™) = 0% + 0% (a7V™x — 1) = 0%aV7x.

In the other two cases, since v, — 0, \/EvnALn converges to 0, and on the other hand Proposition 2 states
that vk kvp A ,, converges in distribution to N (0, D) with variances described above, and it is easy to check
that ( )20% D equals to 6302 as stated. This ends the proof of Theorem 2.

Let us end this section with the following corollary of Propositions 2 and 3.

Dk:,Tx P

Corollary 1. Under the conditions of Theorem 1, we have —> a, as n tends to infinity.
M7y (En—k)

Indeed, according to (A.5), and since pq -, (t) ~ 721 as t — o0 (see relation (A.3)),
Dy rx
H1,7 (Enfk)

Of course, the conditions of Theorem 1 are too strong for Corollary 1 to hold.

= LTI AT 5 (14 0(1)) L (Ag + a)(1 + 0(1)) - a

Appendix B. Proof of Theorem 1

HHpyn .
b, - Concerning the numerator,

The proof is very similar to the previous one. First, remind that 7x =

we have by Proposition 1 that Z; = H, (exp(K,,(E;))), where Eq,...,E, are standard exponential, and

thus
En

1
HHy,, = — 2 log1og(Zn—j11,n) —loglog(Zn—k,.n) = LM, + RR, ; (B.1)
noj=1
where
IOg(i(eXp(KT (En—j+1,n))))
k k 1+ A Jj+1,
1 1 02K+, (Bn—j11,n)
EZ n i+1 n))*log(K-rz(En—k,n)) and RRn, %Z 1 log([(exp(KTZ(Enfk,n))))
= = + GZKTZ(En—kJL)
By the Renyi representation, for some independent standard exponential random variables Fy,..., Fy we
have
LM, 216, 1(E,_;) where 16,4(t) Z log(Kr, (F; + 1)) — log(K-, (t)). (B.2)
j 1
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Introducing, for ¢ € N*|
o0

Utgurs () 1= E(16,,4(1)) = j (log(K+, (2 + 1)) — log(K, (1)) e~ da

and lo? . (t) = lpa7, (t) —1p3 ,,(t), we have
l (t) = (g)T2t79(1 + o(1)) if 77 #0,
Harzl0 = (g a(log(8)~9(1 + 0(1)) i 77 = 0.
We can then prove that (the proof is similar to that of Lemma 5 in Gardes et al. (2011))

VELAy , -5 N(0,1)  where LA;, = 1 (Bnt) = lin.ry (Bnr) (B.4)
’ l lal,Tz(En—k)

Concerning now the denominator, we prove in Lemma 3 (stated in Appendix E.4) that

k
] A L
Dy o := . 2 log(Anx (Zn—ji1.n)) —log(Mnx (Zn—t, n)) = Ay Pr + Rins (B.5)
n iy

k A A
RLn:lZ log 1+% —%
kj:l Ak Ak

and py denotes the proportion of uncensored data in the tail. From now on we consider that 7x # 0 (see
Remark 6 below for the 7x = 0 case). Formulas (B.1) and (B.5) easily entail the following important
intermediary relation :

where

1 3
iy 7y & T D:ZAk Pk +;T:ri,n,
where
o RRn,f
T = 5
Ry
T, = -—-Tx Dro
TTsn = —7mx(A" = ALY (Dro) ™ Pr-

Moreover, we prove in Lemma 6 (stated in Appendix E.4) that, when 7x > 0 and 7¢ > 0 (the case 7x > 0
and 7¢ = 0 is omitted for brevity),

—1/TX

1~ aTx — ~

Ay = <) E. 7™ b + RRy
Tz

the expression for the remainder term RRj , being detailed for each case in the statement of Lemma 6.

Consequently, defining 77}, = —Tx R[i 2;)”, we obtain the following decomposition : when 7x > 0 and

Tc >0

—1/7x E—TZ/TX 4
Px—Tx 2 101,75 (Bnte) (LAl,n - TXilul’Tz (En—) ((aTX> ek ] Pk — 1)) + Z Tin.
X i=1

Dk70 lULTZ (En—k:) Tz l,ul,TZ (En—k

But lu1 +,(t) ~ 72t71, so we define the following remainder term as

—1/7x —Tz/TXx
aTx “ (Enfk) 1 1-77/7x
RRy, = (X Wnok) 2 .
> ( Tz ) P (lm,rz (Bn—i) 712 ™

l:“‘l,‘rZ (Enfk)

Wrg Fnk) P, 1, we can state the main relation of the proof of
lo1,7, (En—k)

Finally, using the additional fact that
Theorem 1 :

. d Lz, (Bneg) —1 :

Tx —TX = T (LAl,n —a Agyn(l + Op(l))) + ZlTTi’n, (BG)
where LA, is defined in (B.4), the second main term Aj ,, is defined in section Appendix A and the last
remainder term to be introduced is 775, := —Tx RR3,(1 + op(1)). The asymptotic normality of A, , is

dealt with in Proposition 2. Concerning the remainder terms 17T} ,,, we prove the following proposition :
16



Proposition 4. Under the conditions of Theorem 1, for all 1 < i < 5, \/EvnTTim 2, 0, as n tends to
infinity.

The proof of this Proposition is very similar to the proof of Proposition 3. It is omitted. The proof of
Theorem 1 can be concluded in the same way as was that of Theorem 2 , details are also omitted. |

Finally the following statement is a Corollary of Propositions 2 and 4, in the same way that Corollary 1
was deduced from Propositions 2 and 3.

Corollary 2. Under the conditions of Theorem 1, when Tx # 0 we have
_ Drko kT
1,7y (En—k) TX

and, when 0 = 7x < 7¢, we have as n — ®©

Dy o

o (Bn )~ UogLax)(1+op(1)).

Remark 6. In the case 0 = 7x < 7¢, we have Dy o/lp1.0(En—k.n) S log Lk, and thus the estimator

Tx 4 10n1(En—r)/Dro + TThn is contiguous to luy o(En—r)/ Dro + TThn, which is itself equivalent in
probability to 1/1og Ly,. Thus only the consistency and rate of convergence of Tx 1is obtained in this case.

Appendix C. Proof of Theorem 3

Remind that éxﬁ—x = Hy /Dy 7 where

k
ZKi’X (AnX(ZWL—j+1,n)) - K‘? (AnX (Zn—k,n))-
j=1

T =

k
1
Hk,n = %Z log(Zn—j+1,n) - log(Zn—k,n) and Dkﬁ—x =

j=1
éx 7 éX T éX T
lo X ) =log | =X | +1o X C.1

Theorem 2 and the delta-method yields that the second term of the right-hand side in (C.1) satisfies

Moreover

Vv, log (9)9(’”() 4N (0,6%). (C.2)

X
Now let us treat the first term. Since Dy ., = (Ak)rx_l;ﬁk + Ry, (see Lemma 3) and, similarly, Dy +, =
(Ar)™> 1Py + Ry ,,, where Ry, is obtained by replacing 7x by 7x in the expression for R, we obtain

éx T N 1 Rl n 1%1 n
log [ = | = (7x —7x)log(Ag) —log [ 1+ ——=— | +log | 1 + ———— | .
<9X,+X ) AP pr A e

Let us study separately the first two terms in the expression above (the third one being similar to the second
one). The starting point is

(7x — ) log(Ax) = (7x — 7x)log(Ax) + (7x — ) log (ﬁ:> .

Let us continue with the case 7x # 0 and 7¢ # 0 (the case 0 = 7¢ < 7Tx being similar and the case
0 = 7x < 7¢ being excluded, see Remark 7 below).

Since Vv, (7x —7x) 4N (0,0%7%) (Theorem 1), and, according to Lemma 7, log(A;) = 2z (log Lk ) (1 +
op(1)), we obtain that
Vv,

IOg L

(Tx — 7x) log(Ag) 4N (0,0°7%)

and l(:ff:k (fx — 7x)log (ﬁi) = op(1) (because %2 = Op(1)).
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Rin o Rin . e Rin _
Now, log (1 + ([\k)TX*lﬁk) = Ao T (1 + op(1)), and we prove in Proposition 3 that \/Evni(i\kyx*lﬁk
Vv, Rin _ ;
op(1). Hence 27 log (1 + m) = op(1). This ensures that
kv, Ox .,
Vhv log | —=2IX 4N (0,0%7%) .
log Ly Ox 7y

Finally, (C.1) and (C.2) yield

Vv Ox.+ d
] "X ) 5 N (0,0°77) .
log Loe 8\ Thy (0.0°7%)

This entails the announced asymptotic normality, via the delta-method. |

Remark 7. In the case Tx = 0, log(Ay) = a(log Lk ) (14 op(1)), according to Lemma 7. Hence, 7x log(Ag)
does not converge to 0, in this case. This is why Tx = 0 is excluded from the asymptotic result of Ox + .

Appendix D. Proof of Theorem 4
Remind that x,, = F(pn) = Hy (exp(K,y (—logp,))) and

Tp, = Zn—k,n €xXp (éX,‘Fx (K+ (—log(pn)) — K3y (Ak)))

where Hy () = 29%ix(x), and Iy is slowly varying at infinity. Moreover, since Z,_.,, = Fx (exp(—Ag)), it
is easy to prove that

log (227:> - éX,-i'x {(K%X(_ IOg(pn)) - K"A'X (Ak)) - (K'rx(_ log(pn)) - K'rx (Ak))}
+(0x.7x = 0x)Kry (= log(pn)) + Ox 7 (fo (Ap) — Ksy (Ak))
—(Ox.5x — Ox)Kry (Ag) + log< Lx (exp(Kry (Ak))) )

Ix (exp(Kry (—1og(pn)))
=1 Q1+ Q2+ Q3+ Qs+ Qs.

Let us treat separately these five terms, in the case 7x # 0 and 7¢ # 0, the case 0 = 7x < 7¢ being similar.
Remind that

o { (arx /72)"™ (Lnk) ™™ if 7x # 0 and ¢ # 0,

B 1/TX( Lrx ifoiOandTC:O.

(G‘TX) log Lnk)
Consider the temporary notations

—1 _log(pn)
oy 1= (\/Evn) and  w, = f u™ togu du.
Ly,

By integration by parts, and under assumption (11) (which implies that Ly = o(—log(p,))), we can prove
that

wn = ——log(l0g(1/p,) (~ og(p))™ 1+ o(1) (0.1)
and similarly @, := S;klog(p”) u™ log® u du = i(log(log(l/pn)))2 (—log(pn))™ (1 + o(1)).

e Let us prove that o, 'w, 1Q; converges in distribution to .#°(0,60%7%0?), which (via (D.1)) will imply

that
Vv,
loglog(1/pn)(—log pn)™

According to Theorem 1, 7x = 7x + 0,&,, where &, converges in distribution to .4#(0,7%0?). Hence,
Q = éX,f'X <SXk10an WX tonEn =1y, Sxklogpn U:TX_ldu)

éX,%X (S;klogpn uTX*l(uUn&n _ 1)du _ S/L\: uTX*l(uUnEn _ 1)du) .

Q1 -5 #(0,0%02). (D.2)
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Let us introduce ¢(z) = e* — 1 — z. Consequently,

4
@ =>0,
=1
where 1 R 1
Q) = b 5, 0 (ot log u)du
QP = xs0nén S;:ng" u™ logu du
~ A _

Q¥ = by Soru™ (0,8 logu)du

W = s ontn S/L\: u™XLlogu du

Now, there exists 7 > 0, such that x < logn implies that |¢(x)| < (n/2)z2. As a consequence, since
onloglog(1/p,) — 0 and o0, log Ly, — 0 (according to (10) and (11)),

(1) N ,2¢2 —logpn ]
|Q |<0XTX2 nn | *L(logu)? du = n0p(1) o21,,.
k

Hence, via (10) and the previous approximations of w,, and w,,
a;lwgl\len < nOp(1) 0pWp/w, =1n0p(1) oy loglog(1/pr) 0.
Concerning Q§2)7 we have
o, w_lQ(z) = 0x .;an -4, N(0,0%7%0%).
Let us now consider Q1 Y. We proceed as for Q to obtain

Lk u™X “L(logu)? du

S IOspn u™X ~logu du

_ _ 3 A
o w QY| < O B0,E2

Sﬁk "X 1logu du

ns logpn ux~llogu du’

< Ox; ix 50, max(log A, log L;)&2

Since o, log Ag 0 (this is an easy consequence of assumption (11) and Lemma 7), the right hand-side
tends to 0, according to Lemma 8 and assumption (11).

Concerning QYL), Lemma 8 and assumption (11) entails that o, tw,; 1Q54) tends to 0. This completes
the proof of (D.2).

Let us prove that o, 'w, Qs = op(1) : according to Theorem 3,

Q2 = 0n(log L) Ky (—10g(pn))on,
where §,, converges to a gaussian distribution. Hence,

(log L) er(—log(pn))(;
*IOE(pn) o
SL;C

-1, -1
Opn Wy Q2 =
u™~1logu du

and assumption (11) yields the result.

In order to prove that o, 1w, Q3 = op(1), we obtain via a Taylor expansion that

P
K. (T,)-2
e ( k)w

n

o w | Qs| = Ox .2 VE|Ar — Al

where T}, is a value between Ay and Aj. The fact that \/E|Ak - Ak| = Op(1) (see Lemma 7 in Worms
and Worms (2019)) and assumption (11) yields the result.

Let us prove that o, w;1Q4 = op(1) : as above (see treatment of Q)
Q4 =0n log LnkKTx (Ak:)(sn;

where §,, converges to a gaussian distribution. Moreover K, (Ag) 4 aK;, (Lnk)(1+0p(1)) (see Lemma
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4 (i)). Hence

KTZ (Lnk) IOg Lnk:
—log(pn)
SLk

o wlQ L 6,(1 + 0p(1)).

uT~1logu du

Assumption (11) yields the result.

Let us finally prove that o, 'w, Qs = op(1) : remind that
- Ix (exp(K7y (Ar)))
@ = log(Zx(expmf}((flog(pn))))

B Ix (exp(Kr y (L)) Ix (exp(Kry (Ax))
= log (Zx (exp(KTXélog(pn)))) +log (ZX(EXP(KT; <Lk>>>>

- ool

Concerning Q(sl), we know that [y satisfies the SR2 condition (see Remark 8). Hence

QP = log (Lylum)
= bx(zn) Koy px (M) (1 + 0p(1)),

exp(Kry (—log(pn)))
exp(KTX (Lk))

+00, as n tends to infinity (because + K(T fIE)Lg’EI))
TX n

Koy px (M) tends to —1/(0xpx). Moreover, v/kv,bx (exp(K ., (Ly))) tends to 0 under the appropriate
assumption among Hs, ..., Hs. Hence,

where |bx| € RVyypxs Ao = and x, = exp(K,, (Lg)). Moreover, since A, tends to

7 tends to 0 under assumption (11)), we obtain that

= oz Ky (An)
Vi e Clogmy ~ Y Fenbx 0 (e (L) 25000

tends to 0. Then,
& Koy (—logpn)

o, wilQ(l) Vv, ,
K-\ (—log(pn)) Szklog(p“’) uT—1logu du

which tends to 0 thanks to (D.1).

Similarly, we have

éz) _ log(z{(x xn))

lX(In)
= bx(2n)Koxpx (An) (1 + 0p(1)),
where z,, = exp(K,, (L)) and

exp(K‘f‘X (Ak)) —1 T T Tz —
An = ——5 =exp(ry (A — LX) = exp(est. L7~ “(1 4+ o(1))),
eXp(KTX(Lk)) ( X ( k k )) ( k ( ( )))
where, according to Lemma 4, the constant above is negative and
| o1z when either 7x = 7¢, or 7x # 7¢ and r < 0,
Y= 72(1=r) when 7x # 7¢ and r €]0, 1.

In the case where oo = 7z, Ko, p, (An) converges to a constant. Hence we obtain, for the term Qél),

that
(2)

WU"K < (= log(pn))ﬂo'

Therefore U,jlwng?) -2, 0, thanks to (D.1).

In the case where av = 77(1 — 1), we have Ky, (An) = O(1) exp(cst.L]}7 (1 + o(1))), where here the
constant is positive. Moreover, for some small § > 0,

bx (zn) = exp((Oxpx + 8)Kry (Li))o(1) = exp ((0x px + 8).cst.L7%(1 + o(1))) o(1),

where the constant above is positive. Consequently, vkv,bx (,,) Koy px (A\n) tends to 0 according to
the appropriate assumption among Hs, ..., H5. To conclude, we proceed as in the previous case. []
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Appendix E. Technical aspects

Appendixz E.1. Details about second order conditions and censoring probabilities
Remind that

Fx(x) = exp(—K7, (log(Hx(x)))) and Fo(x) = exp(—K, (log(Hc(2))))

where
Hy(x) = 2%%Ix (), H; () = 2%¢lo(z) , Hx(z) = 2% ix(2) , Ho(z) = /% 1o ().

Moreover (see Proposition 1),
P(Z > 2) = exp(— K, (log(Hz(2))),

where H, (z) = 2%21(x) and [ is slowly varying. This implies that Hy o H,(z) = x®/(z), with [ a slowly
varying function and a = 07 /0x.

Lemma 1 stated below provides details about the second order properties of the functions H, and
Hy o H, (and therefore, on the behavior of the variables Z; and Ax (Z;)). These properties not only depend
on the position of the parameters 7x and 7¢ with respect to each other, but on their proximity through the

parameter r defined by
1

€[—o0,1
TC TX [ ,]

ri=1-—

(if either 7x = 0 or 7¢ = 0, indeed consider that r = —o0). The proof of the lemma is based on Theorem
B.2.2 in de Haan and Ferreira (2006) as well as the concept of de Bruyn conjugate (see Proposition 2.5 in
Beirlant et al. (2004)). Its demonstration is tedious, details are omitted for brevity.

Lemma 1. Let conditions (A1) and (Az) hold.
(i) For different slowly varying functions generically noted v, we have
Ix(z) = cx(1 — xPXv(x)) and  lo(x) = co(l — xPCu(x))
Ix(z) = X (1 —2%Pxp(z))  and lo(z) = caec(l — glorey(x)).

(i1) The slowly varying functions [ and 1 associated to H, and Hx o H, satisfy a second order condition
SR2 : ast — 400,

where
max(&xpx,fl) ’ifOZTX <7'c<1
p=p=+ max(fopc,—1) if0=717c<71x <1
0 in the other cases ,

and |b| € RV} and |b| € RV,. When p = 0, both b(t) and b(t) are (ast — +x0) of the order O((logt)" 1)
when r # 0, and of the order O((logt)™2) when r = 0.
(#i1) The function Hy satisfies

lim Hz(z)=cz

r—40

€]0,+o[ if Tx =710 orr <0,
=+ if x # 7c and r €]0,1]

where in particular cz = cx if Tx < T7c andr <0, and cz = cc if Toc < Tx and r < 0. Moreover we
have (with the convention (+0)~% =0 when 6 > 0)

I(t) > é:=c,% and I(t) - c:=cx/% ast— to.
When 7x = 7¢ or v < 0, both ¢ and ¢ are positive and the following relations hold:
I(t) = é(1 —2Pu(z)) and 1(t) = (1 — zPv(x)),

where v is a generic slowly varying function.
When 7x # 7¢ and r €]0,1[, both é and ¢ are zero and the following relation holds for some v > 0, as
T — o0

log! log [
logllexp@) _ | r-1(1 4 o(1) —> 0 and 2BHEPD)
X X
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Remark 8. A consequence of this Lemma is that Ix andlc also satisfy the SR2 condition with rate functions
lbx| € RVyypx and |bc| € RVy, . respectively.

Remind now that the function p(-) is defined by
p(z) =P =1|Z = z).
The following lemma provides useful developments of functions p(-) and r(-)
r(t) = po Hy (exp(K, (—logt))),

which are crucial to derive the properties of the random proportion pp (and therefore the statements of
Proposition 2). Its proof is based on the fact that

() = = Fo(x)fx (@) _ (1 | () (log Ho (x)) Hé;(x)/Hc(x))l
Fo(z)fe(z) + Fx(2)G(z) (Kry ) (log Hx (z)) H ()/Hx (x)

(where fx and fo are the respective probability density functions of X and C'), as well as on the results of
Lemma 1. It is omitted for brevity.

Lemma 2. Let us define the constants

Ax = Ox(rx" = (75! +1logex) , Ac = 0c(rg' — D)(75" +logco)

9X Tx 1-1/7x o 1/7c—1
A=Ap— A d B=X(IX uel .
o Ax o an e <9X) 0o

Let assumptions (A1) and (As) hold (the asymptotics below are x — +00 and t | 0).

and

(i) We have
ZfO <Tx <Tc <1,
0 Zf0< <1a
p(z) > p:= pl/7x
X =CL1/TX if0<Tx=Tc<1,

(91/7‘){ + 91/7’){)

and, more precisely,

D (log z)" 1 [1 + g(r)(logx)max(*l”"*l)(l + 0(1))] f0<71xy #7170 <1,
p(z) —p = Dz~ 1/%x (log SE)Til_l [1 + Ac(logz)~1(1 + 0(1))] if0=71x <70 <1,
Dz~ Y% (logz)™> ~1[1+ Ax(logz) "} (1 +0(1))] if0=1c <7x <1,
D (logz)~*(1 + O(1/log z)) if 0 <7c =7x <1,
where
—-B if0<tx <70 <1,
B! if0 <70 <Tx <1,
D = —(Tc/ec)Talil(gx/QcCX) ifOITX <70 <1,
(mx/0x)™ "V (0c/0xcc) if0=1c <7x <1,
—AB(1+ B)~2 ifO <70 =1y <1,
and
g(r) = { Al <o + (A = B)L—0 + (=B)Lejo,11 l:f() <7x <Tc <1,
(7A)]IT<0 + (*A — Bil)HT:O + (7371)]1“;]0’1[ if0<1o<71x <1.

(i1) When 77 >0 and 7x # 7¢, ast | 0 we have
’(t) ~ p = D(O2/72)" ™ (~1og1) 7207 (14 0 (- logt)y~=mn11=))
in particular, when 0 < 7¢ < 7x < 1,
r(t) = all™x (TX/TC)T;_I(—logt)%Cf_l (1 +0 ((—logt)max{_m’m/”‘_l})) )
When 77 > 0 and Tx = 7¢, we have

r(t) —p = —AB[(1+ B)*(62/r2)] " (~logt)"™ (140 ((~logt)"™)).
92



When 77 = 0, if 7+ = max(7x,7c) we have

r(t) — p = cst(— logt)_l(loglog(l/t))ifl (14 O ((loglog(1/t))™1)).
L1
with the constant being equal to T° a'/™ when 0 = 7¢ < Tx < 1.

Appendiz E.2. Proof of Proposition 2
The function p(-) being defined in the previous subsection, and proceeding as in Einmahl et al. (2008),
we carry on the proof by considering now that J; is related to Z; by
0; = HUi<P(Zi)’

where (U;);<n denotes an independent sequence of standard uniform variables, independent of the sequence
(Zi)i<n. We denote by Uy ], ..., Uppn,n) the (unordered) values of the uniform sample pertaining to the
order statistics Z1, < ... < Z,,,, of the observed sample Z1,..., Z,.

Remind that Z; = H, (exp(K;,(E;))), where Ey, ..., E, are independent standard exponential random
variables (Proposition 1). We introduce, for every 1 < i < n, the standard uniform random variables
Vi; =1 — exp(—E;) such that

Zi = Hy (exp(Kr, (= log(1 = V;)))) = r(1 = Vi)

where the function r(-) was defined before the statement of Lemma 2, which provides valuable information
about it. Let us provide a detailed proof of Proposition 2 in the case 0 < 7¢ < 7x < 1 (the non-Weibull-tail
strong censoring case) ; all the other cases are treated similarly. We start by writing

1-1/7
\/%UnAQ,n = \/EUTL <(GTX> : (Lnk)liTC/TX ﬁk - a)

TC
1-1/7x k
aTx l1—7¢/7 1
= Vv, (TC) (Lng) "% EZ (HU[n—jH,n]Sr(lanfjﬂ,n) - HU[n—J+1="]<T(j/n)>
j=1
Kk 1-1/7x
1 atx 1-7c/T
+\/EU"EZ ((m) (L) 797 I[U[n—jﬂvn]g(-j/") -
j=1
= T+ Top.

We will prove below that the term 7} ; above converges to 0 in probability. Let us, first, treat the term 715 .
We write

—Tc/T k .
(L) TS (T ner(m) — (/1))

) B T )~ )

1 a 171/7’){
T = o (%)
1 k
+\/E”"Zj=1<(a:é(
= T3, + 17,

d 2-1 I=tmx P
Let us prove that T3 , — N(0, D) where D = a*~ /7x (T—X) , while T3/, — 0.

TC

We deduce from Lemma 2 that
- 1/7x—1
r(t) = at/™ (X> (— logtf)TC/”‘*1 (1+o0(1)) — 0.
TC
Hence,
—27¢/T k . .
(Lpg)? 7270/ 1 i=17(i/m)(1 = r(j/n))
)Tc/Txfl

2—2/Tx
/ _ 2 [ ar
V(T2,k) = U, ( TCX)

1—7¢/T k Ly
= 2D (L) T (1 o)X, (£

Lu; To/Tx —1
Lnk

)

denoting L,; = log(n/j). We have %Z?:l (
to 1. Consequently,

Ly, if
converges to 1, because 7"/ converges uniformly
ok

V(T34) = Dv2 (Loi)' /™ (1 + o(1)) — D.

We conclude, for this term, using Lyapunov’s Theorem (details are omitted).
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1-1/7x
Concerning T3, we see that (%) (Lnk)l_TC/TX r(j/n) = a+o(1). Hence, we need a second order

development for r(j/n). According to Lemma 2 (part (ii)), we have

«\' ; L S Lo\~ “
TX S\ TX :
(aT ) L:L;TC/TXr(j/n) —a=a (nj> -1|+O0ML,; (nJ> .
TC Ly, Ly

where a = max{—7¢,7¢/7x — 1}. Hence,

k —a
TC - 1
Ty, = avku, (—1) L1+ o(1) Elog k/j) + O(1)Vkv, L 2(1 + o(1 k;( ) :

TX

But ng 1 log(k/j) and ng 1 ( nd )7 both tend to 1 . Hence, according to assumption Hs ((i¢) or (4i7),

depending on the closeness of 7x w.r.t. 7¢), Ty, indeed tends to 0. This concludes the proof for T5 .

It remains to prove that 77 j above converges to 0 in probability. Following the same lines as in the proof
of Lemma 2 (Subsection C.3) in Worms and Worms (2019), it turns out that this amounts to proving that,
for some positive sequence s,, = k=% /n (§ > 0) and some constant ¢ > 0,

n— 1 k
VEv,Snr =50 where S, := sup{ Ir(s)—r(t)]; = <t< =, |s—t|<cVk/n, s> n} (E.2)

n n
In the case considered here, 0 < 7¢ < 7x < 1, 7(t) = cst(—logt) /™~ 1y(—logt), where v is a slowly
varying function such that v(—logt) tends to 1 when t — 0. Let h(t) = (—logt)™/™x 1. Applying the mean

value theorem, we obtain
log u)v logu
Ir(t) —r(s)] < cstlt — s|supyefs,y ‘h’(u)v(—logu) ( + W)’
< estlt — s|supyeps 4 [B ()],

since t:j/(g) tends to 1, as ¢ tends to infinity. This entails that

—2
Snk < cst kl/“‘sL;i/TX )

Lire/rx—
=Lfﬂi e/ Hence

Remind that in this case v,

\/Evnsmk cst (\/>L°‘+5> (1+6),

for some &' > 0 and o = (Tc/TX — 1) — 2. We easily prove that, if we choose 0 < §' < 5, fLO"L‘S — 0,
under assumption Hs(it) or Hs(iii). 0

Appendixz E.3. Proof of Proposition 3
The proofs for the terms T4 ,, ..., T5 . are respectively detailed in parts (1),...,(5) of this Section.

(1) Remind that T ,, = %, where R, ;= %Z?zl log (l;::éigz (J(E;:J;lnv;)))))> According to assumption

Ri(l;, p), we have log (iﬁg))) ~ b(t)K (), uniformly for # > 1, as t — +00. The Renyi representation

yields that Ey_jy1n — Ep_k 4 Fy_iy1% , where Fy,..., Fy are k independent standard exponential
random variables. Consequently, taking ¢ = exp(K,, (En—kn)) — +00 and z = exp(K,, (Ep_it1,n) —
K., (En—kn)) =1, we obtain

k
i 2 b(exp(K 1, (Bnpn)))(1 + 0p(1 Z 5(exp(Kr, (Fi + En—in) — Kry (En_pn)))-

k‘\»—l

But vkv,b(exp(Kr, (En_k.n))) tends to 0, under conditions Ha-Hg. Since % tends to 1
TZ

(thanks to (A.3)), Corollary 1 yields that o1, (En—k)/Dk.ry SN 1/a. Tt thus remains to prove that
k
%Zj:lKﬁ(eXp(KTz (Fs + En—kn) — Koy (En—.n)))
O’l,‘l’z (Eﬁ—k')
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) —ul < Ipls

is bounded in probability. In the cases where p is equal to 0,
1 &
]{?Z TZ F+En kn) KTZ(En kn))—enl( n k)a

k‘ ZK eXp(KTZ(F +En k n) K‘rz( n—~k, n
—> 1 (see (A.4)). In the cases where g < 0, we use the fact that |K5(

j=1
9n,,1(En7k)
and 01,75 (En—k)
and we easily prove that
k 2
%Zj:l (KTZ (Fz + Enfk,n) - K'rz (En k n)) i, 0
01,74 (Enfkr) '

This concludes the proof for T3 ,,.
where Rj ,, is defined in Lemma 3 and we have (also in Lemma 3)

Remind that 75, = —0x Dlil,n 7
STX

Dk,TX = A;X—lpk + Rl,n

— 0. Let us consider the case where 7x # 0 and 7¢ # 0, and

Rin
TX 1;Dk
A ( n—j+1, n)

and A =A,

It suffices to prove that vkuv,

- 0),

introduce the notations
A' = AX<Zn7j+1,n)

In this case (except when 7x = 1, since in that case R;
k . 2
A
> <]k> (L+Tj)™ 2

Rl,n =
with Aj, = A; — Ay and 10, A[\k [. Since Tx —2 < 0, we are led to prove that
At & (A
Vo, 21 ( k) N
j=1 Ay
and, introducing )
A Ay A;
E',kZZfJA/fl and d',k 4717
J ; Ak J A
< 2((A;/A1)? +d?%,). We thus need to prove that
a2, >0 (E.3)

we have ( 3, k/Ak) = (%Sj,k + dj7k)2
A TG (AN A
Vi, =E = <j> 2,0 and Vkuv, Akf
Pr k; Ay ) S0F Dr k];
E,, be ii.d. standard exponential random variables. We have (see Lemma 4 (i))
A
1L (1) -1,

Let El,... n
Ag
—1

where
T _ 1xaKr ) (Bn_jt1,n)+7x logl(exp(Kry (En—jt+1,n)))+1
k= TxaK ., (En—kn)+7x logl(exp(Kr, (En—k,n)))+1
= (L+op(1))(Ajk + Bj)
1 (l(exp(KTZ (En—j-t-l,n))))
Uexp(Kry (En—jt+1,n)))

with
1<7Z(En_j+1 ”) q
: an B’,k) =
J (IK.,-Z (En—j+],n)

Aip=1-—
K‘rz (En—k,n)
Hence, djr = 75 (A1 + Bji)(1+ op(1)). Moreover, the Renyi representation yields that E, 11,5 —
Fj, are k independent standard exponential random variables

-1

d
Eyn—kn = Fr—it1x , where Fp,
Consequently,
EJZ .,
o 1 EZiaa
Ajp =1 B
i
SEltbk (1 4 gp(1)).

4 T.
- 4 E,— k,n
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Concerning Bj i, we use the second order condition R;(b, p) for [ to write

b(exp(Kry (En—k,n)))) K

Bj i = aK+, (En_in)) p (exp(Kry (En—ji1,n) — Koy (En—gn))) (14 0p(1)).

Since (Ajx + Bjx)® < 2(A7, + B?k) we only have to prove that fvnA’“ 1Z] A2 £, 0 and

Vkv A" 12 B2, L 0. Moreover A arx M (E )TZ/TX(1+ (1)), wh Bonokn P 4
np j=1""3,k k = T7 n—k,n op , where Ton —
and AT ., 1. Hence
d L"Z/"X*2
\/“vnAk 12j 1A§k A CSt@(l-‘rO]P’(l))\/E'UnnkT%Z?:leZ.

1—-L
But (‘”X) X (L) 2 By -2, @, according to Proposition 2. Consequently, \fvn Ay 123 lAf P =
Op(1)Vk an;,i, which, using assumptions Hs, ... Hy, goes to 0 in probability.

Now, according to Lemma 5 in Gardes et al. (2011), we have

1 1 .
sz K2 (@xp(Kry (B 1) = Koy (Facn)) 5 st
sTZ —1
Hence,
AL k d ;Z/TX b(ex (KT (En— ,n)))) 2
\/E’Un 215 %ZﬂﬁlBik = CSt(l + O]P’( ))\f?}n ;k ( apKTZfEbek,:)) ) H2,77 (En—k)

L est(1+ op(1)Vkvn L7 102 (exp(Kry (En—kn)))),

since pa,r, (En—i) ~ QLZ(,CTZ*D, according to Lemma 2 in Gardes et al. (2011). The second part of
relation (E.3) is thus proved.

Let us now deal with the first part of relation (E.3). We have

Aj Ay (Ak> ( Ay )
R ASE A ,
f],k Aj Ak Ak ]AJ k+1

where A; := Aj —Aj and Apyq = Ar — Aj. Lemmas 6 and 7 in Worms and Worms (2019) en-
sure that |A;] = Op(1/4/7 —1) for all j = 2,....k+ 1, |Aq] = Op(1) and "f’;" 2, 1. Since in
addition both Az and 2% tend to 1 in probablhty7 and the latter is < 1, we thus obtain [£,]| <

Aj
(14 02(1) (01 + 0w (1/¥B) A and
[€50] < (L4 02(1)) (Op(1/3/7 = 1) + O (1/VR)) A, for j =2,k

Therefore,
k

Aok 2
\/E’Ung:% (ﬁi) Er<(1+op(l ))\/E(Akpk ( Z p(1/(j—1) >

But Ay < est(1 + OP(I))LTi/TX and, according to Proposition 2, L} TZ/TXﬁk = cst(1 + op(1)). Conse-
quently

J%&¢Z< ) s < s Ll R,

k
due to ka 1] logk. If 7 = 7x (thus v, = 1), then the right-hand side above becomes
Op(1 )\/7L;,i 1°§k7 which tends to 0 in probability, under assumption Hs or Hy. If 77 = 7¢ < 7x

(thus v, = L(TC/TX_l)/Q) let 0 < € < 3 and write

T T 1 k T T :C_l — — —
Vhoa Ly 2™ 222 = Vo L™ ke o(1) = L™ Tk 20(1) = (VEL)>o(1),

37¢ 1

where —b > %:—C — = It remains to ensure that vk L2 7% % tends to infinity : this is the case under

assumption Hz(7).

3
2
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3) Remind that T, = —0x(ATX ™1 — ATX 1) (Dy —1$.. Since Dy, ., = ATX_lﬁk + Ry ., according to
; k k X X k ;
Lemma 3 (stated in Appendix E.4 below) and Rj ,,/Dy -, = op(1) (term T3, in Proposition 3), we

obtain that
Ak Tx —1
ront (1- (277,

But |Ay — Ag| = Op(k~/?) (see Lemma 7 in Worms and Worms (2019)). Hence
| Tsnl < Op(k™12)AL

But Ay = K (aK;,(En_k) + logl(exp(K,,(E,_x)))) (see statement (i) of Lemma 4). In the case
where both 7x and 7¢ are not equal to 0 (the other cases are treated similarly), this yields that

Ay = Olp(l)L;i/TX. Since an;gZ/TX = op(1), this concludes the proof for T5 ,.

Ro

(4) Remind that Ty, = —0x o

=~ where Ry, is defined in Lemma 5.
TX

Let us consider the case where 7x > 0 and 7¢ > 0. If 7x = 1, then Ry, = 0 and there is nothing to
prove, so we suppose T7x €]0,1[. We then have

1— L 1— L
Rop = (22) ™ (Buopn) ™) ((1 o A R ) B 1)

P n—k,n atx K., (En—k,n)

According to Lemma 3 (stated in Appendix E.4 below) and the fact that ﬁ—’; LN 1, since

1/7‘)(

ar. TZ[TX

Ap = <X> (Ep—ien) 2™ (1 + 0p(1)),
TZ

it remains to prove that vkv,R,,, where

1— L
Ry, := ((1 N O b3 (1 17 IOgI@XP(KTz(Enk,n)))) * 1) :

n—kn aTXKTZ (En—k,n)

But [(x) tends to a constant ¢ that can be 0, as = tends to +00. Hence,

log I(exp(K ., (Enfkn)))
K‘rz (En—k,n)

where b = (1/7x —1)(1—a~'77/7x —77/alogc). According to Lemma 1 (part (ii7)), in the cases when

% = cst.z" " (14 o(1)) as * — +o0. Consequently,

R,=bE "% (14+o0p(1)) if ¢c#0 and R, =cst

n—k,n

(I1+o0p(1)) if c=0,

c =0, we have
Ry, = est. L7271+ 0p(1)).

Hence, Vkv, Ry, LN 0, under assumption Hy or H3. The cases when ¢ # 0 are treated similarly. This
concludes the proof for T, when 7x > 0 and 7¢ > 0. The other cases (7x = 0 or 7¢ = 0) can be
treated similarly, details are ommited.

(5) Remind that T5 ,, = 6z(1 + op(1))R3,», and that, in the case 7x # 0 and 7¢ # 0,

1-1/7x T7z(1-1/7x)

aTx ~ (En—k) 1—72/)T

Ry = [ 2 —(L z/7x | |
> ( Tz ) b < 1,77 (En—rk) (L)

But, according to Proposition 2, Rz, = a(1 + op(1))R,,, where

Z

-1
LIX (B %)

R, := —nk ~1=RY +R® + R®),
,Ull,‘rZ(Enfk) " " "
and
72 (1--1)
(1) . L. Tz(1-7) Tz ™
Bn” o= #1,TzlEEn7k) <(Enk) ’ x _Lnk * > ’
(2) ._ yrz—1 1 _ 1
Rn T Lni (/—Ll,rz(Enfk) l"l,TZ (Lnk)>
@) ._ Lz
Ry’ = Ml,er(Lnk) — 1.
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Let us prove that vkv, Ry @) tend to 0,fori=1,2,3.

Concerning Rn1 , we use Lemma 4 of Gardes et al. (2011) to prove that Vk times the large brackets in
T7(1—-1)—1 Tz—1

the definition of R is Op(1)L,,, X" Moreover, % tends to 1, in probability, according
TZ
to see (A.3). Consequently, Vv, RY = Op(1)v, L}, which tends to 0.

Concerning Rn , we also use Lemma 4 of Gardes et al. (2011) to prove that vk times the large

brackets in the definition of R is Op (1 )l : TZEET;SEEEB;; Since —Lak _

—=nk_— tends to 1, we obtain that
1,77 K175 (Lnk)

o (Lnk (1 + op(1 oo (L
\/E’URR%Q) _ Op(l)vnul’ Z( nk( op(1))) M1, Z( k) ’
pi1,ry (L (1 + 08(1))) p1,7; (Lnk (1 + 08(1)))
which tends to 0, according to Lemma 2 (iii) of Gardes et al. (2011).
g

Concerning R, remind that, if 7 # 0, w1 (t) = ;w(KT(a: +t) — K. (t))e™® dz and 7! = K. (t).
This entails that

. R

- RO e e el 1)
Hence RS) _ %Lgé(l + op(1)) and \/Evan = Op(1)v,L,, nk, which tends to 0 under assumptions
H,, Hs, Hy. D

Appendiz E./4. Technical Lemmas

Lemma 3. The denominator of the estimator éx,TX satisfies the relation

Dk,"’x = k‘ ZK"'X Ly Jj+1, n)) - KTX (ATLX(Zn—k,n)) = [\;X_lpk + Rl,na
where )
B A R ( Ajkk) L+ )2 f0<7x <1,
Bun=1 15k (log (1+522) - 2a2) if x =0,
0 Zf T = 1
with, for each j=1,...,k, Aj,k = AnX(Zn_j+1,n) —[\nX(Zn_k,n) and the random variable T i, lies between

Proof : straightforward via Taylor’s formula and the definition of function K, (the negligibility of Ry ,, is
another story, it is dealt with in Appendix E.3, part (2)). O

For the following lemma, remind that (E;) denote the i.i.d. standard exponential variable (F;) satisfying
Z; = H; (exp(K,,(E;)), and that [(-) denotes the slowly varying function which properties are described in
Lemma 1 and which is such that Hx o H, (x) = 2*l(z). Note that in part (i¢) of this lemma, the results
also hold when one replaces E,,_j n by Lng, or replaces Z,,_j », and E,_p n by Z,_j11,n and E,_j i1, (this
will occasionally prove useful).

Lemma 4. (i) For everyi=1,...,n, and whether 77 > 0 or is equal to 0, we have

AX(ZZ) = K;x (G’KTZ (El) + 1ogl(exp KTZ (EZ)))

(it) When 77 > 0, we have
TX Lrx Tz /T TX trx Tz /T
Ax (o) = (e22) R0 oo) = (a2) B (15 8B (4 0el1) (B)

Tz when either Tx = 7¢, or Tx # 7¢ and r < 0,
T7(1 —7r) when 7x # T7¢ and r €]0,1].
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When 0 = 7x < TC, We have AX(Zn—k,n) = En—k,nl(En—k,n) = En—k,n(l + 0]1»(1)).
When 0 = 1¢ < Tx, we have

Ax (Zn—tn) = (a7x)"™ (log Bp_jon) "™ (1 4 Blog Ep_j.n) " (1 + 0p(1))) .

Note that the constant S is negative in the case 7x # 7¢ and r €]0, 1[.
Proof of Lemma 4 :
The first statement (i) holds because on one hand, since Fx € A1 (rx,0x), we have Ax (z) = K-, (log Hx (z)),

and on the other hand, Z; = H, (exp(K, Z(El))) where Hx o H, (x) = z*I(x) (see beginning of Appendix
E.1).

The second statement is essentially a consequence of the first one and of some of the second order results
contained in Lemma 1. Suppose for the moment that 7z > 0, i.e. 7x > 0 and 7¢ > 0. We thus have
K- (x) = (txz + 1)Y/7x. Hence, noting temporarily ¢(z) = logl(expx)/z, it is easy to see that (i) implies

TX

Ax(Zn—rn) = {(a7xK+r,(En_pn) + 7x logl(exp(Kyr, (En_p.n))) + 1}/
= (arx)V"™> (K,, (En—k,n))l/TX {1+ (arxKry(Epepn) '+ a ' $(Kry (Enegon))}
But K‘FZ (En—k,n) £ ( — En p n)/TZ =E"% ( + Op(l)), SO

n—k,n n—k,n

1/7’x

Ax (Zn—kn) = (a7 /72) /™ EJZNX (1 - 7En T (L OP(l))) X Ba
where B,, denotes the quantity in curly brackets above. Thanks to part (iii) of Lemma 1, we have

B, =1+ TE" Pn(l+op(l) +est.E % (14 0p(1))
X

where either a = 77 and cst = (loge)Tz/a (when 7x = 7¢ or 7x # 7¢ and r < 0) or @ = 77 and
cst = —va~lr, " < 0 (when Ty # 7¢ and r €]0,1[). The proof is thus over when 77 > 0.

The cases 7x = 0 and 7¢ > 0, or 7¢ = 0 and 7x > 0, can be proved similarly. When 0 = 7x < 7¢,
we have 77 = 0 and @ = 1 so it immediately comes Ax(Zn—kn) = En—knl(Bnkn) = En—ipn(l + op(l))
(because ¢ = 1 in that case, see Lemma 1). When 0 = 7¢ < 7x, we have 7z = 0 and thus

Ax(Zn—ton) = {ax 108(En_g.n) + 7x 1og l(En_g.n) + 1}7/7%
The end of the proof is then very similar to the first case covered in details above.

The fact that relation E.4 also holds when E,_j , is replaced by L,y is due to Lemma 4 in Gardes et
al. (2011), which states that \/E(En,k,n — Lpy) converges in distribution to a standard normal variable. [

Lemma 5. Let Fy, ..., E, be i.i.d. standard exponential random variables.
1-1/7
(%) i E;Z(klnl/TX) + Ra p, iftx #0 and 7¢ # 0
Tx—1.4
Akx Pk = nkn+R2n’ if0=1x <710 <1

(arx) ™ (log(En—n)) "™ pr+ Rom  if0 =10 <7x <1,

where
atx 1_$ ETZ( *) E7Z 1—% 1+7x log l(exp(K+, (En—k,n))) l_i
(=) n—k.n (=BT, (1 PR B e ) )
if0<tx <landtc #0
Ry ={ 72— (71(&1_“) - 1) Cif0=T1y <70 <1

1— L
(amx) "7 (10g(En—rn)) " 7% b ((1 N %@)) = 1)  f0— o<y <1

atx log(En_k,n)

0, ifTXZI

Proof : Using part (i) of Lemma 4, we have

Ay = KT_X (aK,, (Enfk,n) + log I(exp(K, (Enfkm))))a
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which yields, in the case 7x # 0 and 7¢ # 0,

1—-L 1— L
AP = <”X) T oy ) (1 4 L loslexp(Ky, <En-kv"))>) -
Tz ’ ’ aTXK‘I‘Z (Enfk,n)
The expression of Ry, follows in this case. The other cases are similar. OJ
Lemma 6. Let Ey,...,E, bei.i.d. standard exponential random variables.
aTx 71/TX *TZ/TX A~ -
(?) Enfk’n D + RR2 p, iftx #0 and 7¢ # 0
—1 A .
A Pr=19 52— 4+ RRy,, if0=rx <70 <1

(aTX>_1/TX (10g(En7k:,n))_1/TX ]319 + RRz,n ZfO =Tc < Tx < 1,

where
wrx \ "X I Lrx log Uexp(Kry (Bn_pn)))\ ™ 7X
(42) ™ B (- B0 (14 e e ) ),
if0<7tx <landtc #0
RRyp = { 52— <71<En1,k,n> — 1) L if0=Ty <70 <1

1
(a:TX)ii (log(En—k,n))iiﬁk ((1 + %m_kn)) - 1) ’ Zf() =70 <7Tx <1

atx log(En—k,n)

O7 Zf T — 1

The proof of the previous lemma is very similar to the one of Lemma 5, it is therefore omitted. The following
one is an easy consequence of Lemma 4.

Lemma 7. Under the same assumptions in Theorem 1, we have, as n — 00,

if x #0 and 7¢ #0, log(Ay) = :—)Z( log Lk (1 + op(1))

if Tx =0, log(Ag) = alog Lk (1 + op(1))

if tx #0, and 7c =0 log(Ag) = i loglog Ly (1 + op(1))

Lemma 8. Under the assumptions of Theorem 4, we have, as n tends to infinity,

Op(log Lyk) if x #0,7¢ # 0 and (7x = 7¢ orr <0),
A = Op(L)3Z1og Lyk)  if Tx # 0,7¢ # 0,7x # 7¢ and r €]0,1],
f uwX " logudu = ;
Li Op(loglog L) if Tx # 0 and 7¢ = 0,
o]p(log Lnk) Zf T = 0.

Proof : We only treat the case where both 7x and 7¢ are positive. In this case, remind that L, =

(atx/72)"™ (Lnk) ™™ and, according to Lemma 4, /L\—Z 2, 1. We have (with v = u/Ly)

S?:‘ u™x"togu du = Li¥ f’“/L’“ v™*~Y(logv + log Ly) dv

LTX A A TX LTX A TX LfX A TX
= aels(a) (3) o () ) pesnie ((3) 1)

2
X
An immediate consequence of Lemma 4 is that both log (%) and <%:) ¥ ~1are Op ((Lnk) ™) if tx = 7¢

or r <0, and are Op ((Lnk)*TZ(Tfl)) if 7x # 7¢ and r €]0, 1[. The result follows easily. OJ
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