Dima Grigoriev 
email: dmitry.grigoryev@math.univ-lille1.fr
  
Analogue of Newton-Puiseux series for non-holonomic D-modules and factoring
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We introduce a concept of a fractional-derivatives series and prove that any linear partial differential equation in two independent variables has a fractional-derivatives series solution with coefficients from a differentially closed field of zero characteristic. The obtained results are extended from a single equation to D-modules having infinite-dimensional space of solutions (i. e. non-holonomic D-modules). As applications we design algorithms for treating first-order factors of a linear partial differential operator, in particular for finding all (right or left) first-order factors.

Introduction

It is well-known that any polynomial equation t(x, y) = 0 has deg y (t) (counting with multiplicities) zeroes being Newton-Puiseux series (see e. g. [START_REF] Walker | Algebraic curves[END_REF])

y(x) = i 0 ≤i<∞ y i x -i/q
(1)

for suitable integers q ≥ 1, i 0 and the coefficients y i from an algebraically closed field.

In this paper an analogue of Newton-Puiseux series for partial linear differential equations T = 0 is proposed, and we prove that T = 0 has a solution of this form. Whereas a Newton-Puiseux series is developed for a (plane) curve, we restrict ourselves with linear partial differential operators T in two derivatives d x , d y (in case of 3 or more derivatives there are no solutions of this form in general, see Remark 4.10).

One of the principal features of Newton-Puiseux series is the appearance of fractional exponents. Thus, a question arises, what could be an analogue of fractional powers, so to say "fractional derivatives"? An evident observation shows that in the derivative y (x) = i (-i/q + 1)y i-q x -i/q the i-th coefficient depends on the (i -q)-th coefficient of y(x) itself.

That is why as a differential analogue of Newton-Puiseux series we suggest a fractionalderivatives series of the form 0≤i<∞ h i G (-i/q) where h i being elements of a differentially closed (or universal in terms of [START_REF] Kolchin | Differential algebra and algebraic groups[END_REF]) field F and G (-i/q) is called (-i/q)-th fractional derivative of G. The symbol G = G (0) = G (s 2 ,...,s k ) (f 1 , f 2 , . . . , f k ) is defined by rational numbers 1 > s 2 > • • • > s k > 0 and f 1 , . . . , f k ∈ F (if to continue the analogy with curves, G plays a role of a uniformizing element). For any rational s the s-th fractional derivative G (s) fulfills the identity

dG (s) = (df 1 )G (1+s) + (df 2 )G (s 2 +s) + • • • + (df k )G (s k +s)
where either a derivative d = d x or d = d y . The common denominator q of s 2 , . . . , s k plays a role similar to one of the common denominator of the exponents in a Newton-Puiseux series [START_REF] Aroca | Formal solutions of linear PDEs and convex polyhedra[END_REF]. The inequality k ≤ q holds. In a particular case k = 1 we have q = 1 and as G one can take g(f 1 ) for any univariate ("undetermined") function g, provided that the composition makes sense, the fractional derivatives G (s) = g (s) (f 1 ) for integers s. We note that finite sums i 0 ≤i≤i 1 h i G (-i) (so, for k = q = 1) appear in the Laplace method as solutions of some second-order equations T = 0 (see e. g. [START_REF] Goursat | Leçon sur l'intégration des équations aux dérivées partielles[END_REF][START_REF] Tsarev | Factorization of linear partial differential operators and the Darboux method for integrating nonlinear partial differential equations[END_REF]).

One can find necessary in the sequel information on D-modules in [START_REF] Björk | Rings of differential operators[END_REF], [START_REF]D-modules cohérents et holonomes[END_REF], a survey on their algorithmical aspects in [START_REF] Quadrat | An introduction to the algebraic theory of linear systems of partial differential equations[END_REF]. We mention that there are also applications of Newton polygons over the Weyl algebra C[x, d x ]: in [START_REF]D-modules cohérents et holonomes[END_REF] to meromorphic connections, in [START_REF] Malgrange | Réduction d'un système microdifférentiel au point générique[END_REF] to microdifferential operators and in [START_REF] Malgrange | Equations différentielles à coefficients polynomiaux[END_REF] to the Fourier transform. In case of linear ordinary differential operators Newton polygons are employed to produce the canonical form basis of the space of solutions (see e. g. [START_REF] Wasow | Asymptotic expansions for ordinary differential equations[END_REF], also [START_REF] Grigoriev | Complexity of factoring and calculating the GCD of linear ordinary differential operators[END_REF] where an algorithm for this problem with a better complexity bound was designed). A similar form of solutions for linear partial differential operators were studied in [START_REF] Aroca | Formal solutions of linear PDEs and convex polyhedra[END_REF] where, nevertheless, also examples are exhibited of operators without solutions of this form. On the problem of factoring a linear ordinary differential operator one can look in [START_REF] Van Der Put | Galois theory of linear differential equations[END_REF], see also [START_REF] Grigoriev | Complexity of factoring and calculating the GCD of linear ordinary differential operators[END_REF].

In Section 1 we introduce the principal concept of fractional-derivatives series and give some their basic properties.

In the sequel the crucial role plays the multiplicity m of a linear factor of the symbol of the linear partial differential operator T (with coefficients in F ) of an order n: the symbol is a homogeneous polynomial in two variables d x f 1 , d y f 1 of the degree n which corresponds to the highest derivatives of T . In Section 2 we develop a method for constructing fractionalderivatives solutions of T = 0 and prove the existence of such a solution with q ≤ m. The method is similar to the Newton-Puiseux expansion, it produces a relevant convex polygon similar to the Newton one, but differs in several aspects. The main of the latter is that the leading equation corresponding to a certain (leading) edge of the polygon is not a univariate polynomial unlike the Newton-Puiseux expansion, but rather a non-linear first-order partial differential equation. This creates difficulties in defining a multiplicity of a solution of the leading equation. Also it is unclear, what could be a differential analogue of the statement (cf. above) that an algebraic equation t = 0 has precisely deg y (t) Newton-Puiseux series solutions of the form (1)? Partially these questions are answered for the introduced in Section 3 generic fractional-derivatives series solutions.

In Section 4 the result of Section 2 is extended from a single partial linear differential equation to a system of equations in several unknown functions having an infinite-dimensional space of solutions (or in other words, to a D-module of a non-zero differential type, one can call it a non-holonomic D-module). To this end for any left ideal J ⊂ F [d x , d y ] of the differential type 1 we yield an operator p ∈ F [d x , d y ] and show that any fractional-derivatives series solution of the equation p = 0 which corresponds to a linear factor (different from d y f 1 ) of the symbol of p, is a solution of the ideal J as well. In Section 5 we exploit the relation of equivalence of ideals introduced in [START_REF] Grigoriev | Loewy-and primary-decompositions of D-modules[END_REF] and establish a kind of duality between equivalence classes of non-holonomic ideals and their sets of fractional-derivatives series solutions. Namely, it is proved that two non-holonomic left ideals J, J 1 ⊂ F [d x , d y ] are equivalent if and only if their respective sets of fractional-derivatives series solutions coincide. Also we express the quotient of the spaces of fractional-derivatives series solutions of non-holonomic ideals J ⊂ J 1 via the module of relative syzygies [START_REF] Grigoriev | Loewy-and primary-decompositions of D-modules[END_REF] of this pair of ideals.

In Section 6 it is shown that in case of a separable operator T any its power series solution can be obtained as a sum of specifications of its suitable fractional-derivatives series solutions, thereby establishing completeness of the latter. In Section 7 we provide applications of fractional-derivatives series to studying first-order factors of an operator, exploiting that in case of a first-order operator T = d y + ad x + b its fractional-derivatives series solutions turn to a single term of the form hG(f ) where (d y + ad x )f = 0 and h being a particular solution of T = 0. In Subsection 7.1 an algorithm is designed which finds first-order factors of a given operator, and in Subsection 7.3 an algorithm which constructs the intersection of all the principal ideals generated by the first-order factors of the operator. In Section 8 the possible fractional-derivatives series solutions of a second-order operator obtained by the algorithm from Section 2 are described. This description can help to imagine the shape of fractional-derivatives series solutions and the difficulties which appear while their developing.

Fractional-derivatives series

Let F be a differential field of the characteristic 0 with the derivatives {d j } and a subfield of constants C ⊂ F [START_REF] Kolchin | Differential algebra and algebraic groups[END_REF].

Definition 1.1 Let f 1 , . . . , f k 0 ∈ F and rational numbers 1 > s 2 > • • • s k 0 > 0. We introduce a symbol G = G (0) = G s 2 ,...,s k 0 (f 1 , f 2 , . . . , f k 0 ) together a set {G (s)
} s∈Q of its fractional s-th derivatives satisfying the following rule of differentiation for any derivative d = d j :

dG (s) = (df 1 )G (1+s) + (df 2 )G (s 2 +s) + • • • + (df k 0 )G (s k 0 +s)
Clearly, these differentiations commute with each other and one can consider the free F -module with the basis {G (s) } s∈Q as a D-module. Definition 1.2 Let q be the common denominator of s 2 , . . . , s k 0 and

h i ∈ F, i ≥ 0, s 0 q ∈ Z. Then H = 0≤i<∞ h i G (s 0 -i/q) (2)
we call a fractional-derivatives series.

For a given G all the fractional-derivatives series (with added 0) constitute a D-module (we study it below in Section 4). Obviously, k 0 ≤ q.

It is easy to see that G satisfies a suitable linear partial differential equation with coefficients in F .

Remark 1.3

The symbol G plays a role in H similar to the role of the parameter x in a Newton-Puiseux series [START_REF] Aroca | Formal solutions of linear PDEs and convex polyhedra[END_REF]. In particular, specifying the values of x in a certain field one gets points of (a branch of ) the curve given by [START_REF] Aroca | Formal solutions of linear PDEs and convex polyhedra[END_REF]. Here one can also provide some specifications of G. Indeed, for an arbitrary family {c i/q } i∈Z where c i/q ∈ C the following set

G (s) = j 1 ≥0,...,j k 0 ≥0 c -s-j 1 -j 2 s 2 -•••-j k 0 s k 0 f j 1 1 j 1 ! • • • f j k 0 k 0 j k 0 ! satisfies Definition 1.1.
For example, in case when F is the ring of functions analytic in a certain neighborhood of a given point in the multidimensional complex space and the absolute values |c i/q | are bounded, the latter series also converges in a suitable neighborhood.

From now on let F have two derivatives {d x , d y }. Consider a linear operator

T = T 0 + • • • + T n (3) 
of the order n where T p = 0≤j≤p b j,p d j x d p-j y contains the derivatives of the order p and the coefficients b j,p ∈ F . The following lemma holds, in fact, for an arbitrary number of derivatives, nevertheless, the assumption that F has two derivatives simplifies the notations and in the sequel we deal just with operators in two derivatives (one can verify lemma by a direct calculation).

Lemma 1.4 d j

x d p-j y (hG) equals the sum of the terms of the form

1 w 1 ! • • • w N ! j l 1,1 , . . . , l 1,m 1 , . . . , l k 0 ,1 , . . . , l k 0 ,m k 0 , l p -j r 1,1 , . . . , r 1,m 1 , . . . , r k 0 ,1 , . . . , r k 0 ,m k 0 , r 1≤i≤m 1 (d l 1,i x d r 1,i y f 1 ) • • • 1≤i≤m k 0 (d l k 0 ,i x d r k 0 ,i y f k 0 )(d l x d r y h) • G (m 1 +s 2 m 2 +•••+s k 0 m k 0 ) for all partitions l 1,1 + • • • + l 1,m 1 + • • • + l k 0 ,1 + • • • + l k 0 ,m k 0 + l = j of j and r 1,1 + • • • + r 1,m 1 + • • • + r k 0 ,1 + • • • + r k 0 ,m k 0 + r = p -j of p -j such that l κ,i + r κ,i ≥ 1 for ev- ery 1 ≤ κ ≤ k 0 , 1 ≤ i ≤ m κ ,
where w 1 , . . . , w N denote the cardinalities of the partition of the triples

(l 1,1 , r 1,1 , 1), . . . , (l 1,m 1 , r 1,m 1 , 1), . . . , (l k 0 ,1 , r k 0 ,1 , k 0 ), . . . , (l k 0 ,m k 0 , r k 0 ,m k 0 , k 0 ) into equal ones, in particular, w 1 + • • • + w N = m 1 + • • • + m k 0 .

Constructing fractional-derivatives series solutions

From now on we suppose that the field F is differentially closed (or universal in terms of [START_REF] Kolchin | Differential algebra and algebraic groups[END_REF]).

The main purpose of this section is to prove that a linear partial differential equation T = 0, see [START_REF] Cassidy | Differential Algebraic Groups[END_REF], has a solution of the form (2). To simplify the notations we put s 0 = 0 and h = h 0 = 0 in [START_REF] Björk | Rings of differential operators[END_REF].

Denote by Tp (d

x f 1 , d y f 2 ) = 0≤j≤p b j,p (d x f 1 ) j (d y f 1 ) p-j a homogeneous form of the degree p in d x f 1 , d y f 1 . Sometimes, Tn = symb(T ) is called the symbol of T . Fix a linear factor a 1 d x f 1 + a 2 d y f 1 of Tn having a multiplicity m, the coefficients a 1 , a 2 ∈ F .
Expanding T (H) with respect to the fractional derivatives {G (s) } s for k = 1 (in other words, assuming for the time being that dG (s) = (df 1 )G (1+s) , see Definition 1.1), we get that the coefficient at G (n) vanishes, i. e. h • symb(T ) = 0. Thus, we can suppose that (a 1 d x + a 2 d y )f 1 = 0. Choose any such f 1 with grad(f 1 ) = 0.

For k ≥ 2 we introduce an auxiliary polygon P k playing the role similar to the Newton polygon. Now let k = 2, in other words, we assume (for the time being) that dG (s) = (df 1 )G (1+s) + (df 2 )G (s 2 +s) . The next purpose is to construct s 2 and f 2 . It suffices to consider the expansion of the first term T (hG) of T (H) (we'll come back to this issue at the end of the present section). When we talk about the expansion of T (hG) we always refer to Lemma 1.4. If a term b( 1≤i≤t (d l i x d r i y f 2 ))G (s+s 2 t) occurs in T (hG), where b is a differential polynomial in f 1 and in h (being linear in h), then we place the point (s, t) in P 2 (observe that s, t ≥ 0 in P 2 are always integral). As P 2 we take the convex hull of these points with the origin (0, 0). If to assign the weight 1 to every derivative d l x d r y f 1 then any term in b gets the weight s due to Lemma 1.4.

One can observe that P 2 lies to the left from the line L1 = {s + t = n} with the slope 1 (under the slope of the line {s + jt = const} we mean j) again due to Lemma 1.4. Moreover, the point (n -m, m) ∈ L1 belongs to P 2 because the non-zero term Tn ((a

1 d x + a 2 d y )f 1 ) m • ((a 1 d x + a 2 d y )f 2 ) m • G (n-m+s 2 m)
occurs in the expansion of T (hG), taking into account that the factor (a 1 d x + a 2 d y )f 1 has the multiplicity m in Tn , and no other term from this expansion gives a contribution in the coefficient at the point (n -m, m). Similarly, one verifies that the points (n -t, t) with 0 ≤ t ≤ m -1 do not belong to P 2 . Now we assign a (yet unknown) weight s 2 to every derivative d l x d r y f 2 . Therefore, to find s 2 < 1 we consider the edges of P 2 with the positive slopes less than 1. Choose any such edge L 2 (we call it leading) with the endpoints (j 1 , t 1 ), (j 2 , t 2 ), t 1 > t 2 ; we have seen already that t 1 ≤ m. Then the slope of L 2 provides s 2 = (j 1 -j 2 )/(t 1 -t 2 ).

To find f 2 we consider the leading differential polynomial Q 2 (f 2 ) which equals the sum of the coefficients at all the points of P 2 which lie on L 2 . Then Q 2 (f 2 ) coincides with the coefficient at G (j 1 +s 2 t 1 ) in the expansion of T (hG). As f 2 ∈ F we take a solution of the leading equation Q 2 (f 2 ) = 0. Evidently, j 1 + s 2 t 1 < n since the point of intersection of the line L2 (which contains the edge L 2 ) with j-axis {t = 0} is located to the left of the intersection of L1 with j-axis.

Thus, we are able to formulate the recursive hypothesis of the procedure under description which constructs 1 > s 2 > s 3 > • • • and f 1 , f 2 , f 3 , . . .. Suppose that s 2 , . . . , s k and f 1 , f 2 , . . . , f k are already constructed. In addition, a polygon P k is constructed being a convex hull of the points (j, t) (together with the origin (0, 0)) such that a term b( 1≤i≤t

d l i x d r i y f k )G (j+s k t) (4) 
occurs in the expansion of T (hG) under the assumption dG = (df 1 )G (1) 

+ (df 2 )G (s 2 ) + • • • + (df k )G (s k )
, see Definition 1.1 (observe that for k ≥ 3 a rational coordinate j ≥ 0 can be non-integral, while t ≥ 0 is always integral). A certain leading edge L k of P k is chosen with a slope s k > 0 and with the endpoints (j 3 , t 3 ), (j 4 , t 4 ), t 3 > t 4 . We name (j 3 , t 3 ) the pivot of L k and t 3 the multiplicity of L k . The leading differential polynomial Q k (f k ) equals the sum of the coefficients at all the points of P k which lie on L k . Then Q k (f k ) coincides with the coefficient at G (j 3 +s k t 3 ) in the expansion of T (hG). As f k ∈ F a solution of the leading equation Q k (f k ) = 0 is taken. The points of intersections of the lines L1 , L2 , . . . with j-axis decrease. Denote by q k the common denominator of s 2 , . . . , s k , obviously q 1 = 1.

To carry out the recursive step, we make the assumption dG = (df 1 )G (1) 

+ (df 2 )G (s 2 ) + • • • + (df k )G (s k ) + (df k+1 )G (s k+1
) . The boundary of the polygon P k+1 above the pivot of L k (including the pivot itself) is the same as of P k .

Let us calculate the points of P k+1 located on the line Lk . Denote by B t (t 4 ≤ t ≤ t 3 ) the coefficient of P k at the point (j 3 +s k (t 3 -t), t) ∈ L k . Then Q k = t 3 ≤t≤t 4 B t . One can observe that B t contains no higher derivative d l x d r y f k with l+r ≥ 2. Indeed, if otherwise B t contained a term of the form (4) then the coefficient of P k at the point (j 3 +s k (t 3 -t), t+ 1≤i≤t (l i +r i -1)) would contain the term

b(d x f k ) 1≤i≤t l i (d y f k ) 1≤i≤t r i G (j 3 +s k (t 3 + 1≤i≤t (l i +r i -1)))
due to Lemma 1.4, hence the point (j 3 + s k (t 3 -t), t + 1≤i≤t (l i + r i -1)) should belong to P k which leads to a contradiction when 1≤i≤t (l i + r i -1) ≥ 1.

Besides, B t is a linear form in the derivatives of h. We claim that B t = h Bt for an appropriate differential polynomial Bt in f 1 , . . . , f k . Indeed, if B t contained a term (d l x d r y h) bG (j 3 +s k t 3 ) with l+r ≥ 1 for a certain b being a differential polynomial in f 1 , . . . , f k , then the coefficient of P k at the point (j 3 +s k (t 3 -t), t+l+r) would contain the term h b(d x f k ) l (d y f k ) r G (j 3 +s k (t 3 +l+r)) due to Lemma 1.4, therefore, the point (j 3 + s k (t 3 -t), t + l + r) should belong to P k , the achieved contradiction proves the claim.

Thus, B t will be treated as a homogeneous (of the degree t) polynomial in d x f k , d y f k . For more generality of the auxiliary results below we deem that B t is a homogeneous polynomial in the variables v 1 , . . . , v p , thereby p = 2 and v 1 = d x f k , v 2 = d y f k . We denote the corresponding derivatives v1 = d x f k+1 , v2 = d y f k+1 .

Remark 2.1 Since the main purpose of the present section is to prove the existence of solutions of the form (2) of an equation T = 0 (see [START_REF] Cassidy | Differential Algebraic Groups[END_REF]) it suffices to study only the canonical solutions, namely, when each s k is the slope of a certain edge of P k and f k satisfies a leading equation. Alternatively, one could take s k to be the slope of some line passing through a single vertex, say (j 3 , t 3 ) of P k . In this case

B t 3 (f k ) = 0, because B t 3 is a homogeneous polynomial in d x f k , d y f k , we get that f k fulfills a certain first-order linear equation b 1 d x f k + b 2 d y f k = 0.
There is no way to bound the denominators s k for non-canonical solutions (2), the number of steps k 0 , moreover, the procedure of constructing 1 > s 2 > s 3 > • • • and f 1 , f 2 , f 3 , . . . could last infinitely. One might even choose real exponents s k (cf. [START_REF] Grigoriev | Solving ordinary differential equations in the series with real exponents[END_REF] where an analogue of Newton-Puiseux series solutions with real exponents was studied for non-linear ordinary differential equations).

Denote by Bt (0 ≤ t ≤ t 3 ) the coefficient at the point (j 3 + s k (t 3 -t), t) ∈ Lk of P k+1 . Taking into account the assumption on dG and Lemma 1.4, we have

Bt = i 1 +•••+ip=t 1 i 1 ! • • • i p ! ∂ t Q k ∂v i 1 1 • • • ∂v ip p vi 1 1 • • • vip p (5) 
Therefore, Bt = h Bt where Bt can be treated as a homogeneous polynomial in v1 , . . . , vp of the degree t with the coefficients being differential polynomials in f 1 , . . . , f k . Let t 0 be the minimal t such that Bt = 0. Then t 0 ≥ 1 because Q k (f k ) = 0, and t 0 ≤ t 3 because Bt 3 is obtained from B t 3 by means of replacing v i for vi , 1 ≤ i ≤ p. One can view t 0 as a kind of multiplicity of the solution

f k in Q k . Lemma 2.2 t 0 ≤ t 4 + (t 3 -t 4 )q k-1 q k .
Proof. Suppose the contrary. First we observe that the gap between the ordinates of any pair of consecutive points on L k is at least q k /q k-1 and that e = (t 3 -t 4 )q k-1 /q k is an integer (cf. [START_REF] Walker | Algebraic curves[END_REF]). Hence L k contains at most e + 1 points. Without loss of generality for the sake of conveniency of notations we assume that L k contains exactly e + 1 points (some among them, perhaps, with zero coefficients B t ).

Due to the supposition and the choice of t 0 we have Bt = 0 for t 4 ≤ t ≤ t 4 + e, i. e. all the derivatives

∂ t Q k ∂v i 1 1 • • • ∂v ip p
of the order t vanish. Fix for the time being non-negative integers j 1 , . . . , j p with the sum

j 1 + • • • + j p = t 4 . Then 0 = i 1 ≥j 1 ,...,ip≥jp;i 1 +...+ip=t (t -t 4 )! (i 1 -j 1 )! • • • (i p -j p )! ∂ t Q k ∂v i 1 1 • • • ∂v ip p v i 1 -j 1 1 • • • v ip-jp p = l≥t (l -t 4 )! (l -t)! ∂ t 4 B l ∂v j 1 1 • • • ∂v jp p
due to the Euler's formula. The latter equalities can be treated as a linear (e + 1) × (e + 1) system with a non-singular matrix. Its non-singularity is justified by the following result [START_REF] Lakshman | Sparse polynomial interpolation in nonstandard bases[END_REF]:

if n 1 > • • • > n r ≥ 0; m 1 > • • • > m r ≥ 0; n 1 ≥ m 1 , .
. . , n r ≥ m r then the r × r matrix with the entries n i m j is non-singular. Therefore,

∂ t 4 B l ∂v j 1 1 • • • ∂v jp p = 0
for any l and any j 1 , . . . , j p with j 1 + • • • + j p = t 4 , in particular B t 4 vanishes identically, the obtained contradiction proves the lemma.

Corollary 2.3 If t 0 = t 3 then the denominator q k-1 = q k does not change.

Now we are in position to continue the recursive step of the procedure constructing s k+1 , f k+1 . The polygon P k+1 either contains the edge with the slope s k and with the ordinates t 0 < t 3 , respectively, of its endpoints, or the edge of P k+1 with its above endpoint (j 3 , t 3 ) has the slope less than s k . In the first case as a leading edge L k+1 one takes an edge of P k+1 having a positive slope s k+1 with the ordinate t 5 of its upper endpoint (j 5 , t 5 ) less or equal to t 0 . In this case (j 5 , t 5 ) plays the role of a new pivot with t 5 being the multiplicity of L k+1 . As above one produces the leading differential polynomial Q k+1 (f k+1 ) and as f k+1 chooses a solution of the equation Q k+1 (f k+1 ) = 0. In the second case the denominator q k = q k-1 does not increase due to Corollary 2.3, and as L k+1 one takes an edge of P k+1 having a positive slope s k+1 with the ordinate t 5 of its upper endpoint (the pivot) (j 5 , t 5 ) less or equal to t 3 . The rest is similar to the first case. Thus, we have described a recursive procedure constructing 1 > s 2 > s 3 > • • • and f 1 , f 2 , f 3 , . . . which one can view as a tree.

Lemma 2.4 i) The common denominator q of s 2 , s 3 , . . . does not exceed 2 m-1 ;

ii) there exists a branch of the tree in which the common denominator q is less or equal to m;

iii) every branch of the tree after at most of q steps arrives to a leading edge with a non-positive slope.

Proof. First we recall that the multiplicity of any leading edge in P 2 is less or equal to m. Therefore, i) follows from Lemma 2.2: if at a certain step the common denominator q k-1 is multiplied by q k /q k-1 then the multiplicity decreases at least by q k /q k-1 -1. After the multiplicity reaches 1, the denominator does not change anymore.

ii) Let us take at each step of the described recursive procedure the leading edge with the least possible slope, while the latter is positive. The ordinate of the lower endpoint of this edge t 4 = 0. Therefore, Lemma 2.2 entails that t 0 ≤ t 3 q k-1 /q k , this implies ii).

iii) follows from Definition 1.1 because k 0 ≤ q. Assume now that P k+1 in the described procedure contains an edge having a non-positive slope (see Lemma 2.4 ii)). Take such edge L = L k+1 with the largest possible non-positive slope in P k+1 . We have shown above that the coefficient Bt 5 at the pivot (j 5 , t 5 ) of L k+1 equals to h B where B is a suitable homogeneous polynomial of the degree t 5 in d x f k+1 , d y f k+1 with the coefficients being differential polynomials in f 1 , . . . , f k . Denote by B the coefficient at the point (j 5 , 0) of P k+1 , being a linear homogeneous operator in h (one can show that the order of B does not exceed t 5 in the same manner as it was shown that Bt 5 has the order 0 in h). If B contains a term b(d x f k+1 ) l (d y f k+1 ) t 5 -l for some l and b being a differential polynomial in f 1 , . . . , f k , then B contains the term b((d x ) l (d y ) t 5 -l h) due to Lemma 1.4. Hence the order of B is greater or equal to t 5 (actually, equals t 5 as we have seen, although we use below only that the order of B is positive). In particular, the slope of L equals 0, and P k+1 contains no edges with negative slopes. In the construction under description f k+1 does not appear and as h ∈ F we take a solution of the linear homogeneous differential equation B(h) = 0 (which can be viewed as a leading equation on h).

This completes the construction of the first summand hG of the solution H of the form (2). To obtain the next coefficient h 1 of H we observe that in the expansion of T (h 1 G (-1/q) ) in the fractional derivatives {G (i/q) } -∞<i<∞ the highest non-zero term equals B(h 1 )G (j 5 -1/q) , taking into account that this expansion is obtained by means of the shift by -1/q of the expansion of T (hG) while replacing h for h 1 . Therefore, for h 1 ∈ F we get a linear partial differential equation (not necessary, homogeneous) of the form B(h 1 ) = f (so, of the same order t 5 ) for an appropriate f ∈ F being a differential polynomial in h, f 1 , . . . , f k 0 (in the above notations k 0 = k). In a similar way one obtains consecutively h 2 , h 3 , . . .. Summarizing, the following theorem is proved.

Theorem 2.5 Any linear partial differential equation T = 0 of an order n (see ( 3)) for each linear factor (a 1 d x f 1 + a 2 d y f 1 ) of a multiplicity m of its symbol symb(T ) has a non-zero fractional-derivatives series solution of the form (2) with the denominator q ≤ m.

One can continue every branch of the tree of the described procedure constructing 1 > s 2 > s 3 > • • • and f 1 , f 2 , . . . to a solution of the form (2) of T = 0, and every solution of the form (2) constructed by a described procedure has the denominator q ≤ 2 m-1 . Corollary 2.6 If an LPDO T of an order n has no fractional-derivatives series solutions with the denominator q < n then T is irreducible in

F [d x , d y ].
Remark 2.7 The bound q ≤ m is sharp as shows the following example. Take T (see [START_REF] Cassidy | Differential Algebraic Groups[END_REF]) such that (a 1 d x f 1 + a 2 d y f 1 ) has the multiplicity m in Tn , the multiplicity greater or equal to m -i in Tn-i for every 1 ≤ i ≤ m -2 and the multiplicity 0 in Tn-m+1 ,respectively. Then the polygon P 2 has the edge with the endpoints (n -m, m) and (n -m + 1, 0) which being taken as a leading one (actually, there is no other choice for a leading edge), provides the slope s 2 = 1/m. Remark 2.8 Theorem 2.5 states the bound q ≤ m for a particular solution. It is unclear how sharp is the bound q ≤ 2 m-1 for all constructed solutions. The natural question is whether one can improve it by m (one can verify it for m ≤ 7 by the direct calculations)? This would be similar to the algebraic situation in which such a bound on the common denominator in all Puiseux series (1) is well known (see e. g. [START_REF] Walker | Algebraic curves[END_REF]). We also mention that for solutions in the canonical form basis [START_REF] Wasow | Asymptotic expansions for ordinary differential equations[END_REF] of linear ordinary differential equations a similar to the algebraic situation bound on the common denominator (of the rational exponents) was established in [START_REF] Grigoriev | Complexity of factoring and calculating the GCD of linear ordinary differential operators[END_REF].

Multiplicity of generic fractional-derivatives series solutions

In the described recursive construction f k was chosen as a solution of the equation Q k (f k ) = 0. Different choices of f k could yield different polygons P k+1 . Therefore, the set of (even canonical fractional-derivatives series, see Remark 2.1) solutions of the equation T = 0 is quite vast. An interesting open question is whether it is possible to introduce a concept of a multiplicity of a set of fractional-derivatives series solutions and relate it to m? In the present section we give a partial answer to this question for the so-called generic solutions.

We view Q k as a polynomial in two variables

v 1 = d x f k , v 2 = d y f k . Note that this polynomial is not homogeneous, consider its factorization Q k = β m 1 1 • • • β m l l β
over F where β is homogeneous and β 1 , . . . , β l are irreducible non-homogeneous. In the recursive construction from Section 2 we distinguish a case which we call generic, namely, when

β i (d x f k , d y f k ) = 0 for a certain 1 ≤ i ≤ l such that m i = min{m 1 , . . . , m l }, and the point (d x f k , d y f k ) is a non-singular one of the plane curve Q k = 0.
In the generic case for the multiplicity of f k we have t 0 = m i due to [START_REF] Grigoriev | Computational complexity in polynomial algebra[END_REF]. One can assign the multiplicity t 0 to the set of all f k satisfying the generic case. We call a solution (2) generic if for each of f 2 , . . . , f k 0 the generic case happens in the construction of (2). When k 0 = 1 we call (2) generic as well. At the end of developing any generic solution we arrive to a polygon P k+1 having a leading edge L k+1 with the slope 0. Let the upper endpoint (pivot) of L k+1 be (j 5 , t 5 ), then to this generic solution we assign the multiplicity t 5 . Observe that we have assigned the multiplicity to the set of all the generic solutions (2) which follow the same branch in the tree of the construction from Section 2. Proposition 3.1 Any linear partial differential equation T = 0 of an order n i) has a generic solution of the form (2);

ii) the sum of multiplicities of the generic solutions does not exceed n; iii) the denominator of every generic solution is less than n O(log n) .

Proof. Each Q k , k ≥ 2 is non-homogeneous, that is why i) is justified taking into account Theorem 2.5.

ii) follows (similar to the algebraic Newton-Puiseux series [START_REF] Walker | Algebraic curves[END_REF]) by inverse induction along the tree of the procedure described in Section 2 due to the inequality

m 1 + • • • + m l ≤ t 3 -t 4 .
The latter inequality together with Lemma 2.2 imply that t 0 ≤ t 3 q k 2q k -q k-1 . Therefore, in developing a generic solution by means of the procedure from Section 2 there are at most log 3/2 n steps at which the denominator augments. At each such step the denominator grows less than in n times (cf. the proof of Lemma 2.2), this entails iii).

Remark 3.2 In a particular case m = 1 we have q = k 0 = 1, all the solutions of the form (2) are canonical, the polygon P 2 contains a single edge with a slope less than 1, namely, the edge with the endpoints (n -1, 1) and (n -1, 0) having the slope 0. It provides the leading linear equation on h of the first order, the leading equation (a 1 d x + a 2 d y )f 1 = 0 on f 1 is linear and of the first order as well, thus, the multiplicity 1 is assigned to the set of (generic) solutions in case m = 1.

Remark 3.3 While in (2) we consider series with decreasing orders of derivatives of G, one can easily verify that an equation T = 0 for an arbitrary f ∈ F has a solution of the form

0≤i<∞ h i G (i)
where G = G(f ), with increasing orders of derivatives of G. Thus, continuing the analogy with plane curves, the latter series could be viewed as corresponding to expanding at finite points all being regular (so, without proper fractional derivatives, i. e. k 0 = 1 in Definition 1.1), while (2) corresponds to expanding at the infinity.

Fractional-derivatives series solutions of non-holonomic D-modules

First let J = p 1 , . . . , p l ⊂ F [d x , d y ] be a differential (non-holonomic) left ideal of the differential type 1 [START_REF] Kolchin | Differential algebra and algebraic groups[END_REF][START_REF] Kondratieva | Differential and difference dimension polynomials[END_REF]. This means that the Hilbert-Kolchin polynomial K J (z) = ez + e 0 of J has the degree 1. Denote by symb(J) ⊂ F [d x f 1 , d y f 1 ] a homogeneous ideal generated by the symbols of elements of J (cf. Section 2). Then K J coincides with the Hilbert polynomial K symb(J) [START_REF] Björk | Rings of differential operators[END_REF][START_REF] Saito | Gröbner deformations of hypergeometric differential equations[END_REF] (one can also deduce this from the Janet base of J [START_REF] Schwarz | Janet bases for symmetry groups, Groebner bases and applications[END_REF][START_REF] Grigoriev | Loewy-and primary-decompositions of D-modules[END_REF], we mention that the concept of Janet bases was a differential historical predecessor of the one of Groebner bases). Denote g = GCD(symb(J)

) ∈ F [d x f 1 , d y f 1 ]. Lemma 4.1
The degree e of the ideal symb(J) coincides with deg(g).

Proof. Since symb(J) ⊂ g it suffices to verify that dim F ( g /symb(J)) < ∞. Nullstellensatz entails that (symb(J)/g) ⊃ (d x f 1 , d y f 1 ) s for a suitable s, therefore, the homogeneous component

g deg(g)+s = g • (d x f 1 , d y f 1 ) s ⊂ g • (symb(J)/g) = symb(J) Remark 4.2 If ideal J ⊂ F [d x , d y ] is holonomic (so, with differential type 0) then GCD(symb(J)) = 1.
The degree e (being the leading coefficient of the Hilbert-Kolchin polynomial) is called the typical differential dimension of J [START_REF] Kolchin | Differential algebra and algebraic groups[END_REF][START_REF] Kondratieva | Differential and difference dimension polynomials[END_REF].

For any homogeneous polynomial g 0 ∈ F [d x f 1 , d y f 1 ] and a ∈ F denote by mult a (g 0 ) the multiplicity of the linear form d x f 1 + ad y f 1 in g 0 . Also for any p ∈ F [d x f 1 , d y f 1 ] we denote for brevity mult a (p) = mult a (symb(p)). W.l.o.g. assume that d y f 1 does not divide g (otherwise, one can perform a suitable C-linear transformation of d x , d y ). We have mult a (symb(J)) = mult a (g) and e = a mult a (g) (cf. Lemma 4.1). For the time being fix a ∈ F such that mult a (g) ≥ 1.

Now we introduce the ring

R = F [d x , d y ](F [d y ]
) -1 of partial-fractional differential operators [START_REF] Grigoriev | Weak Bézout inequality for D-modules[END_REF]. Its elements has the form p 0 b -1 where

p 0 ∈ F [d x , d y ], b ∈ F [d y ]
. One can verify (see [START_REF] Grigoriev | Weak Bézout inequality for D-modules[END_REF]) that R is an Ore ring [START_REF] Björk | Rings of differential operators[END_REF], any element of R can be written in a form b-1 p for appropriate

p ∈ F [d x , d y ], b ∈ F [d y ]. Thereby R = (F [d y ]) -1 F [d x , d y ]
and p 0 b -1 = b-1 p if and only if bp 0 = pb. Also in [START_REF] Grigoriev | Weak Bézout inequality for D-modules[END_REF] one can find the algorithms for addition and multiplication of elements in R. Any element from R can be written in the form b -1

0≤i≤w b i d i x for suitable b, b i ∈ F [d y ]
(because a finite family of elements from R has a common denominator which belongs to F [d y ], see [START_REF] Grigoriev | Weak Bézout inequality for D-modules[END_REF]).

For the time being fix 

G = G (s 2 ,...,s k ) (f 1 , . . . , f k ) such that (d x + ad y )f 1 = 0, d y f 1 = 0 (cf. Section 1). Denote by V = V G the F [d x ,
H = hG (s) + i≥1 h i G (s-i/q) , h = 0; b = t n d n y + 0≤i≤n-1 t i d i y , t n = 0, then bH = ht n (d y f 1 ) n G [s+n) + i≥1 ĥi G (s+n-i/q) = 0 For any H 1 ∈ V we need to prove the existence of H ∈ V such that b -1 H 1 = H, i. e. H 1 = b H (the claim above implies that H is unique). Let H 1 = h 1,0 G (s) +h 1,1 G (s-1/q) +• • • ; h 1,0 = 0. Then we look for H = hG (s-n) + h1 G (s-n-1/q) + • • •.
Comparing the coefficients of H 1 and b H at G (s) , we get h 1,0 = ht n (d y f 1 ) n which yields h. Comparing the coefficients at G (s-1/q) yields h1 and so on. On the other hand, from ( 6) we get

mult a (p) = mult a (b) + mult a (p) = mult a ( 1≤j≤l p j p j ) ≥ mult a (J)
Thus, the following lemma is proved.

Lemma 4.5 For any a ∈ F we have mult a (p) = mult a (J).

Proposition 4.6 A fractional-derivatives series H with d y f 1 = 0 (see ( 2)) is a solution of the linear partial differential equation p = 0 if and only if H is a solution of the ideal J.

Proof. If pH = 0 then from ( 6) we have 0 = p 0 pH = b 0 p 0 H. Hence p 0 H = 0 due to Lemma 4.3. The inverse statement follows again from ( 6) and Lemma 4.3.

Corollary 4.7 For any a 1 , a 2 ∈ F such that mult (a 1 dxf 1 +a 2 dyf 1 ) (symb(J)) ≥ 1, the ideal J ⊂ F [d x , d y ] has a solution of the form (2) with a denominator q ≤ mult (a 1 dxf 1 +a 2 dyf 1 ) (symb(J)) and a 1 d x f 1 + a 2 d y f 1 = 0, grad(f 1 ) = 0.

Proof. It follows from Lemma 4.5, Proposition 4.6, Lemma 2.4 and Theorem 2.5.

Remark 4.8 If for every a ∈ F the ideal J has the multiplicity mult a (J) ≤ 1 then all the solutions of J of the form (2) are canonical, and J has precisely e = a∈F mult a (J) (which equals the typical differential dimension of J, cf. Lemma 4.1) families of fractional-derivatives series solutions. Moreover, to each of these families a multiplicity 1 can be naturally assigned (cf. Remark 3.2).

Finally, let U ⊂ (F [d x , d y ]) l be a (non-holonomic) F [d x , d y ]-module of the differential type at least 1, obviously, the differential type does not exceed 2 (recall that the differential type equals the degree of the Hilbert-Kolchin polynomial of U [START_REF] Kolchin | Differential algebra and algebraic groups[END_REF][START_REF] Kondratieva | Differential and difference dimension polynomials[END_REF]). Denote by u 1 , . . . , u l a free base of (

F [d x , d y ]) l . For any 1 ≤ r ≤ l consider the submodule U r = { r≤i≤l p i u i ∈ U } where p i ∈ F [d x , d y ]. Denote by J r = {p r } ⊂ F [d x , d y ]
the left ideal being the projection of U r on the r-th component. Then the differential type of U coincides with the maximum of the differential types of {J r } 1≤r≤l (one can verify this, e. g. using the Janet bases of {J r } 1≤r≤l which provide a triangular Janet base of U ). Take the minimal r 0 such that J r 0 has the differential type at least 1.

One has the natural action U × V l → V on the free

F [d x , d y ]-module V l = { 1≤i≤l H i v i } where H i ∈ V (cf. Lemma 4.
3) and v 1 , . . . , v l is a free base of V l . If 1≤i≤l p i H i = 0 then we call 1≤i≤l H i v i a solution of 1≤i≤l p i u i (we shall choose G and thereby, V = V G later). We are looking for a solution of the form 1≤i≤l H i v i of the module U .

First we put H r 0 +1 = • • • = H l = 0 and as H r 0 = 0 take a fractional-derivatives series being a solution of the ideal J r 0 according to Corollary 4.7 in case when the differential type of J r 0 equals 1. When the differential type of J r 0 equals 2, in other words, J r 0 = 0, we take as H r 0 = 0 an arbitrary fractional-derivatives series. In both cases H r 0 v r 0 is a solution of the submodule U r 0 . Thus, we have chosen G = G (s 2 ,...,s k ) (f 1 , . . . , f k ) and thereby, V = V G . As above we can assume w.l.o.g. that in the equation (a 1 d x + a 2 d y )f 1 = 0 we have a 1 = 0, so (d x + ad y )f 1 = 0 (performing if necessary a suitable C-linear transformation of d x , d y ). Now we construct H r by recursion on r 0 -r ≥ 0. Suppose that we have already constructed an element r+1≤i≤l H i v i being a solution of U r+1 for some r +1 ≤ r 0 . Since J r has the differential type 0 (due to the choice of r 0 ), J r contains a certain element 0 = b ∈ F [d y ]. Consider a corresponding element u = bu r + r+1≤i≤l p i u i ∈ U r . According to Lemma 4.3 one can find H r ∈ V such that bH r + r+1≤i≤l p i H i = 0. For any element ū = r≤i≤l pi u i ∈ U r applying the left euclidean division in R one can represent ū = pr b -1 u + û for an appropriate û ∈ U r+1 . Then û( r≤i≤l H i v i ) = 0 by the recursive hypothesis. Besides, pr b -1 u( r≤i≤l H i v i ) = 0 because of Lemma 4.3. Hence ū( r≤i≤l H i v i ) = 0 which completes the recursive step.

Summarizing, the following main theorem of the paper is proved.

Theorem 4.9 Any (non-holonomic) module in (F [d x , d y ]) l of the differential type at least 1 has a fractional-derivatives series non-zero solution.

Remark 4.10 One could consider an ideal J ⊂ F [d x 1 , . . . , d xt ] still of the differential type 1 with a number of derivatives t ≥ 3 and ask whether J has always a fractional-derivatives series solution? The answer to this question is negative already for t = 3 and an ideal

J = p 1 , p 2 ⊂ F [d x 1 , d x 2 , d x 3 ]
(being generic of the differential type 1) generated by an operator p 1 of the first order and p 2 of the second order.

Duality between non-holonomic ideals and fractionalderivatives series solutions

There is a well-known duality [START_REF] Kolchin | Differential algebra and algebraic groups[END_REF] between (left) differential ideals and their spaces of solutions (being an analogue of the duality between radical ideals and varieties in algebraic geometry).

To establish a similar duality for non-holonomic ideals in F [d x , d y ] (so, of the differential type 1) we need to make use of the equivalence relation on ideals introduced in [START_REF] Grigoriev | Loewy-and primary-decompositions of D-modules[END_REF]. We say that non-holonomic ideals 0 = J, J 0 ⊂ F [d x , d y ] are equivalent if the leading coefficients of degree 1 (see Section 4) Hilbert-Kolchin polynomials of three ideals J, J 0 , J ∩ J 0 coincide (denote these leading coefficients by e), then moreover, GCD(symb(J)) = GCD(symb(J 0 )) = GCD(symb(J ∩J 0 )) and the degree of the latter polynomial equals e (see Lemma 4.1). In this case ideal J, J 0 is also non-holonomic and GCD(symb( J, J 0 )) = GCD(symb(J)) as well [START_REF] Grigoriev | Loewy-and primary-decompositions of D-modules[END_REF][START_REF] Cassidy | Differential Algebraic Groups[END_REF][START_REF] Yu | Typical differential dimension of the intersection of linear differential algebraic groups[END_REF] and moreover, clearly four ideals J, J 0 , J ∩ J 0 , J, J 0 are equivalent. Equivalence classes of ideals play a similar role to classes (in algebraic geometry) of plane curves with the same sets of 1-dimensional components. In this Section we prove that the sets of fractionalderivatives series solutions of equivalent non-holonomic ideals coincide and that there is a duality between the equivalence classes of ideals and their respective sets (which basically means that to distinct classes correspond distinct sets).

In this Section we keep the notations from Section 4. The next lemma states that the multiplication by 0 = p ∈ F [d x , d y ] on D-module V = V G is an epimorphism (the conditions on its injectivity follow from Theorem 2.5, cf. also Remark 4.4). [START_REF] Björk | Rings of differential operators[END_REF]). We search for H = hG (s) + i≥1 h i G (s-i/q) ∈ V such that pH = H 1 . Treating h, s as indeterminates we get from Lemma 1.4 that p(hG (s) ) = ηG (s+κ/q) + 1≤i≤κ η i G (s+κ/q-i/q) (7)

Lemma 5.1 For any

0 = p ∈ F [d x , d y ] we have pV = V . Proof. Let 0 = H 1 = hG (s 0 ) + i≥1 h i G (s 0 -i/q) ∈ V (see
for certain integer κ ≥ 0 and linear ordinary differential operators η = 0, η i in h (with coefficients being differential polynomials in f 1 , . . . , f k which we recall are assumed to be fixed). Indeed, such κ with non-zero η exists since in the expansion of p(hG (s) ) the coefficient at G (s) in ( 7) equals p(h), so is a non-zero linear ordinary differential operator. Therefore, we put s = s 0 -κ/q, and there exists h ∈ F for which η(h) = h (because F is differentially closed). At the next step comparing the coefficients of pH and H 1 at G (s+κ/q-1/q) one can find h 1 from an equation of the form η(h 1 ) = h for certain h ∈ F , and so on one can find h 2 , h 3 , . . . consecutively.

First consider two equivalent non-holonomic ideals J, J 0 ⊂ F [d x , d y ]. We claim that four sets of all fractional-derivatives series solutions of J, J 0 , J ∩ J 0 , J, J 0 , respectively, coincide.

As in Section 4 one can suppose w.l.o.g. that d y f 1 does not divide g = GCD(symb(J)) and consider left ideals J, J 0 ⊂ R being principal. Let J = p , J ∩ J 0 = p 0 for suitable generators p,

p 0 ∈ F [d x , d y ]. Then bp 0 = p 2 p for appropriate p 2 ∈ F [d x , d y ], 0 = b ∈ F [d y ].
Lemma 4.5 implies that symb(p 0 ) coincides with symb(p) up to a power of d y f 1 , whence symb(p 2 ) is a power of d y f 1 . Therefore, Proposition 4.6 and Remark 4.4 entail the required claim on coincidence of the sets of fractional-derivatives series solutions of ideals J, J ∩ J 0 (and in a similar way also of J 0 , J, J 0 ). Now let non-holonomic ideals J J 1 ⊂ F [d x , d y ] be non-equivalent. Our purpose is to find a fractional-derivatives series solution of J being not a solution of J 1 . Denote g 1 = GCD(symb(J 1 )), clearly g 1 |g. Again we suppose w.l.o.g. that d y f 1 does not divide g.

Let J = p , J 1 = p 1 ⊂ R. Then b 1 p = p 3 p 1 for suitable p 3 ∈ F [d x , d y ], 0 = b 1 ∈ F [d y ]. Since J, J 1
are not equivalent we have deg(g 1 ) < deg(g) (see Lemma 4.1) and because of that Lemma 4.5 implies that symb(p 3 ) has a divisor of the form d x f 1 + a 3 d y f 1 for a certain a 3 ∈ F . Due to Theorem 2.5 there exists a fractional-derivatives series solution

H 1 = i≥i 0 h i G (-i/q) (see (2)) of equation p 3 H = 0 for appropriate G = G s 2 ,...,s k (f 1 , f 2 , . . . , f k ) where d x f 1 +a 3 d y f 1 = 0.
Now we apply Lemma 5.1 to p 1 and obtain a fractional-derivatives series H ∈ V G such that p 1 H = H 1 . Therefore, b 1 pH = 0 and hence pH = 0 in view of Lemma 4.3. Thus, H is a desired solution of J being not a solution of J 1 .

Finally, consider non-equivalent non-holonomic ideals J, J 1 ⊂ F [d x , d y ] and assume that their respective sets of fractional-derivatives series solutions coincide. Then ideal J, J 1 has also the same set of fractional-derivatives series solutions, in particular J, J 1 is nonholonomic by virtue of Remark 4.2 and of Theorem 2.5. Therefore, due to the proved above three ideals J, J, J 1 , J 1 are equivalent which contradicts to the assumption.

We summarize the proved duality in the following Proposition 5.2 Non-holonomic left ideals J, J 0 ⊂ F [d x , d y ] are equivalent if and only if they have the same sets of all fractional-derivatives series solutions.

For a non-holonomic ideal I ⊂ F [d x , d y ] denote by [I] the equivalence class of nonholonomic ideals which contains I and by V (I) the set of all fractional-derivatives series solutions of I. In [START_REF] Grigoriev | Loewy-and primary-decompositions of D-modules[END_REF] we define the following partial ordering on the classes:

[J] is subordi- nated to [I] if there exist ideals J 1 ∈ [J], I 1 ∈ [I] such that J 1 ⊂ I 1 . Corollary 5.3 [J] is subordinated to [I] if and only if V (I) ⊂ V (J). Proof. Let V (I) ⊂ V (J), then V ( I, J ) = V (I). Proposition 5.2 entails that I, J is equivalent to I, hence [J] is subordinated to [I].
The inverse implication is evident.

Now we connect the subordination relation with localizations of ideals in the ring

R = F [d x , d y ](F [d y ]) -1 (see Section 4). Proposition 5.4 If V (I) ⊂ V (J) then J ⊂ I ⊂ R (provided that d y f 1 does not divide GCD(symb(I))).
Proof. Let J = p , I = q for suitable p, q ∈ F [d x , d y ] (cf. above). Then p = p 0 q for appropriate p 0 ∈ R. Whence V (I) ⊂ V (J) relying on Proposition 4.6.

For a pair of left ideals J ⊂ J 1 ⊂ F [d x 1 , . . . , d xm ] we have introduced in [10] a concept of relative syzygies. Namely, let J 1 = p 1 , . . . , p t , then we define the left module of relative syzygies Syz(J, J 1 ) = {(q 1 , . . . , q t ) :

1≤i≤t q i p i ∈ J; q i ∈ F [d x 1 , . . . , d xm ], 1 ≤ i ≤ t}.
Making use of [START_REF] Quadrat | An introduction to the algebraic theory of linear systems of partial differential equations[END_REF] one can verify [START_REF] Grigoriev | Loewy-and primary-decompositions of D-modules[END_REF] that module Syz(J, J 1 ) is independent of a choice of generators p 1 , . . . , p t . Let us denote by U (J) ⊂ F the space of solutions of J which can be treated as a C-vector space. It was proved in [START_REF] Grigoriev | Loewy-and primary-decompositions of D-modules[END_REF] that the quotient U (J)/U (J 1 ) is isomorphic to U (Syz(J, J 1 )) ⊂ F t .

Here we establish a similar result for non-holonomic ideals J ⊂ J 1 ⊂ F [d x , d y ] and their spaces of fractional-derivatives series solutions V G (J) ⊂ V G of the form (2) for any G fixed for the time being (see Section 4), again we treat V G (J) as a C-vector space. As in Section 4 one can assume w.l.o.g. that d y f 1 = 0.

Mapping

ψ : v → (p 1 , . . . , p t ) T v assures a monomorphism V G (J)/V G (J 1 ) → V G (Syz(J, J 1 )).
To show that it is an epimorphism take an arbitrary vector (w 1 , . . . , w

t ) ∈ V G (Syz(J, J 1 )) ⊂ V t G .
The following property holds: for any q 1 , . . . , q t ∈ F [d x , d y ] such that 1≤i≤t q i p i = 0 (moreover, one can suppose that 1≤i≤t q i p i ∈ J) we have 1≤i≤t q i w i = 0. Clearly, this property holds also for any q 1 . . . , q t ∈ R (see Section 4). Consider principal ideal

J 1 = p 1 , . . . , p t = p ⊂ R for suitable p ∈ F [d x , d y ]. Then p = b -1 1≤i≤t η i p i for appropri- ate 0 = b ∈ F [d y ], η 1 , . . . , η t ∈ F [d x , d y ]. Denote w = 1≤i≤t η i w i ∈ V G . Due to Lemma 5.1 there exists v ∈ V G such that ( 1≤i≤t η i p i )v = w.
For each 1 ≤ i 0 ≤ t one can find λ i 0 ∈ R for which p i 0 = λ i 0 p, the mentioned above property implies that w i 0 = λ i 0 b -1 ( 1≤i≤t η i w i ), hence w i 0 = p i 0 v, i. e. ψ(v) = (w 1 , . . . , w t ). Finally, we check that v ∈ V G (J). Indeed, an arbitrary q ∈ J can be represented as q = 1≤i≤t q i p i for certain q 1 , . . . , q t ∈ F [d x , d y ], then (q 1 , . . . , q t ) ∈ Syz(J, J 1 ), whence qv = 1≤i≤t q i w i = 0. Thus, in the introduced notations we have proved the following Proposition 5.5 For any non-holonomic ideals J ⊂ J 1 ⊂ F [d x , d y ] and G there is an isomorphism of C-vector spaces V G (J)/V G (J 1 ) and V G (Syz(J, J 1 )).

One can deduce Proposition 5.2 from the latter Proposition invoking Theorem 4.9. It would be interesting to clarify, whether for non-holonomic ideals I, J ⊂ F [d x , d y ] the equality GCD(symb(I)) • GCD(symb(J)) = GCD(symb( I, J )) • GCD(symb(I ∩ J)) holds? Observe that the degrees of the polynomials in both sides of the latter equality coincide in view of [START_REF] Cassidy | Differential Algebraic Groups[END_REF][START_REF] Yu | Typical differential dimension of the intersection of linear differential algebraic groups[END_REF] taking into account Lemma 4.1. A more subtle question is whether for any

G the equality V G (I ∩ J) = V G (I) + V G (J) is true?
6 Completeness of fractional-derivatives solutions for separable linear partial differential operators

Let T = T n + • • • + T 0 ∈ F [d x , d y ] be a separable LPDO, i.e. its symbol symb(T ) = T n = 1≤i≤n (d x f -a i d y f
) is the product of n pairwise distinct homogeneous linear forms in d x f, d y f . One can always bring symb(T ) to this form monic with respect to d x f making, if necessary, a C-linear transformation of d x , d y in case when symb(T ) has a divisor d y f .

For each 1 ≤ i ≤ n the equation T = 0 has a fractional-derivatives series solution of the form (due to Theorem 2.5)

h 0,i G (0) (f i ) + h 1,i G (-1) (f i ) + • • • (8) 
where d x f i -a i d y f i = 0 and h = h 0,i satisfies the first-order LPDE

T n (f i ) (d x f i -a i d y f i ) (d x h -a i d y h) + T n-1 (f i )h = 0 (9) 
We observe that h j,i ; j = 1, 2, . . . satisfy similar to [START_REF] Grigoriev | Factoring and solving linear partial differential equations[END_REF] equations with the highest (first-order) form

Tn(f i ) (dxf i -a i dyf i ) (d x h j,i -a i d y h j,i
), being not necessary homogeneous. From now on throughout this section we assume that F is the field of meromorphic functions in a certain domain M ⊂ C 2 , thus the coefficients of T belong to F . For a suitable point (x 0 , y 0 ) ∈ M the series (8) can be rewritten as a formal power series in x-x 0 , y-y 0 . Our goal is to find a point (x 0 , y 0 ) and look for solutions of T = 0 as power series in x -x 0 , y -y 0 .

We choose a point (x 0 , y 0 ) ∈ M such that all the coefficients of T at this point are defined and in addition, the values a i (x 0 , y 0 ) are pairwise distinct for 1 ≤ i ≤ n. The latter is equivalent to that the discriminant of symb(T ) does not vanish at this point. Therefore, all the points of M out of an appropriate analytic subvariety of M of the dimension 1 satisfy these requirements.

One takes a solution f i (being a power series in x-x 0 , y-y 0 ) of the equation d x f i -a i d y f i = 0 with a vanishing free coefficient (which we denote by f i (x 0 , y 0 ) = 0) and with a nonvanishing vector of coefficients at the first powers of x -x 0 , y -y 0 (which we denote by (d x f i , d y f i )(x 0 , y 0 ), thereby d y f i (x 0 , y 0 ) = 0). We observe that this LPDE has always a solution with arbitrary chosen free coefficient and non-vanishing vector of the coefficients at the first powers of x -x 0 , y -y 0 since the vector of the coefficients (1, -a i ) at its highest (first) derivatives does not vanish at the point (x 0 , y 0 ). Hence the free coefficient of the power series d x f i -a j d y f i does not vanish when j = i due to the requirement on the discriminant. Therefore, by the same token one can find a solution h of the equation ( 9) with a non-zero free coefficient which we denote by h(x 0 , y 0 ) = 0.

We take an arbitrary solution of T = 0, being a power series in x -x 0 , y -y 0 and intend to represent it as a sum of n solutions of the form (8) (for 1

≤ i ≤ n) in which G (0) (f i ) is replaced by its specialization (see Remark 1.3) j≥0 c j,i f j i j! with indeterminate coefficients c j,i ∈ C. Then G (-l) = j≥0 c j,i f j+l i (j + l)! .
Suppose that by recursion on k the coefficients c j,i for j ≤ k -1, 1 ≤ i ≤ n are already produced. Our purpose is to produce c k,i , 1 ≤ i ≤ n. Clearly, any solution of T = 0 being a power series of the form p,q≥0 b p,q (x -x 0 ) p (y -y 0 ) q is determined by the coefficients b p,q with 0 ≤ p ≤ n -1.

For each 0 ≤ p ≤ n -1 the contribution of the term at c k,i (see ( 8)) into b p,k-p equals to

h(x 0 , y 0 )(d p x d k-p y f k i k! )(x 0 , y 0 ) = h(x 0 , y 0 )(a p i (d y f i ) k )(x 0 , y 0 )
taking into account that f i (x 0 , y 0 ) = 0, d y f i (x 0 , y 0 ) = 0, h(x 0 , y 0 ) = 0. Therefore, we obtain a linear (algebraic) system (in general, not necessary homogeneous) on c k,i ; 0 ≤ i ≤ n -1 with the matrix being of the van-der-Monde type (a p i (x 0 , y 0 )). This allows one to find uniquely c k,i ; 0 ≤ i ≤ n -1 and thereby, carry out the recursive step. Theorem 6.1 For a separable LPDO T of the order n with the coefficients being meromorphic in a certain complex domain M the sum of n spaces of specialisations of fractional-derivatives series solutions of T = 0 of the form (8) (for fixed f i and h j,i ) coincides with the space of all the solutions of T = 0 as formal power series in x -x 0 , y -y 0 for any point (x 0 , y 0 ) from M out of a suitable analytic subvariety of the dimension 1.

It would be interesting to extend this theorem to a non-separable LPDO. Let us also mention that in [START_REF] Grigoriev | Factoring and solving linear partial differential equations[END_REF] an algorithm for factoring a separable LPDO was produced.

7 Applications to studying first-order factors of a linear partial differential operator 7.1 Finding first-order factors of a linear partial differential operator

Let T = T n + . . . + T 0 be a LPDO of an order n in 2 independent variables, where T j = i a i,j-i d i x d j-i y is a sum of the derivatives of the order j. We assume that the coefficients a i,j are taken from the field Q(x, y) in order to design algorithms, while f is taken from a universal field F (cf. Section 6).

As we are looking for the first-order factors of T of the form

L = d x + ad y + b ∈ F [d x , d y ]
we need to study the solutions of L = 0 (w.l.o.g. one can assume that the coefficient at d x of L does not vanish, otherwise one can change the roles of x and y). Take any solution f of the symbol (d x + ad y )f = 0 of L such that d y f = 0 and consider G = G (0) (f ) (cf. Section 6). For any h ∈ F being a "particular" solution of L = 0, we have that hG is a fractional-derivatives series solution of L = 0. Thus, we are looking for a solution of T = 0 of the form hG. Expanding T (hG

) = A 0 G (0) + • • • + A n G (n)
, we get first that A n = symb(T ). Therefore, we fix for the time being a linear divisor of the form d x f + ad y f of symb(T ) and assume that this divisor vanishes. Thereby, the calculations below (arthmetic manipulations and polynomial factoring) will be carried out over the field Q(x, y)[a]. This can be fulfilled representing Q(x, y)[a] Q(x, y)[z]/(g) where g ∈ Q(x, y)[z] is the minimal polynomial of a (see [START_REF] Grigoriev | Computational complexity in polynomial algebra[END_REF]). So, we obtain n equations A 0 = • • • = A n-1 = 0 treated as LPDO in h with the coefficients being non-linear differential polynomials in f . We denote the ring of all these polynomials by P = Q(x, y)[a]{d x f, d y f }. Applying to A 0 = • • • = A n-1 = 0 the procedure of constructing a Janet base [START_REF] Schwarz | Janet bases for symmetry groups, Groebner bases and applications[END_REF] one gets the conditions of solvability in h of A 0 = • • • = A n-1 = 0 expressed as a disjunction of systems of the form p 1 = • • • = p l = 0, p 0 = 0 [START_REF] Grigoriev | Loewy-and primary-decompositions of D-modules[END_REF] where p i ∈ P . Using the relation d x f + ad y f = 0 one can reduce each p i to an (ordinary) differential polynomial pi in d y f . Denote the ring of ordinary differential polynomials by R = Q(x, y)[a]{d y f }.

Applying to the formula p1 = • • • = pl = 0, p0 = 0 the subroutine of the elimination procedure in the theory of ordinary differentially closed fields from [START_REF] Seidenberg | An elimination theory for differential algebra[END_REF] (see also [START_REF] Grigoriev | Complexity of quantifier elimination in the theory of ordinary differential equations[END_REF] where its improvement with a better complexity bound was designed) one obtains an equivalent disjunction of systems of the form r = 0, r 0 = 0 [START_REF] Grigoriev | Solving ordinary differential equations in the series with real exponents[END_REF] for suitable differential polynomials r, r 0 ∈ R. Briefly, this subroutine consists in alternative executing 2 types of steps while there are more than one equality of (ordinary) differential polynomials. The first type of steps is executed when all the highest derivatives occurring in these polynomials are equal, in this case the algorithm calculates their GCD viewing them as (algebraic) polynomials in this highest derivative (and branching depending on vanishing the leading coefficients). Else, if not all the highest derivatives are equal, as the second type of steps one can diminish the highest derivative. Moreover, if r contains the d k y f as its highest derivative then r considered as an (algebraic) polynomial in the ring K = Q(x, y)[a][f, d y f, . . . , d k y f ] is irreducible. In addition, r 0 is less than r with respect to the term ordering, i. e. if r 0 contains d k 0 y f as its highest derivative then either k 0 < k or k 0 = k and the degree of r 0 with respect to d k y f is less than the similar degree of r.

Replace d x f by -ad y f in d x r. This yields a differential polynomial r ∈ R of the order at most k + 1 (its role is similar to an S-pair in Janet type algorithm [START_REF] Schwarz | Janet bases for symmetry groups, Groebner bases and applications[END_REF]). If r does not belong to the differential ideal r ⊂ R, we again apply to the system r = r = 0, r 0 = 0 the used above subroutine from the elimination procedure and get an equivalent disjunction of systems of the form [START_REF] Grigoriev | Solving ordinary differential equations in the series with real exponents[END_REF] with less term ordering than of r and continue as above.

Now assume that r belongs to r . Then we claim that any solution of (11) provides a solution of [START_REF] Grigoriev | Loewy-and primary-decompositions of D-modules[END_REF]. Indeed, otherwise, the ideal r, d x f +ad y f ⊂ P would contain an appropriate power r s 0 [START_REF] Kolchin | Differential algebra and algebraic groups[END_REF], p.146-148. This yields a relation of the form

r s 0 = i,j A i,j d i x d j y r + i,j B i.j d i x d j y (d x f + ad y f )
for suitable A i,j , B i,j ∈ P . Replacing in this relation d x f for -ad y f and taking into account that r belongs to r , we deduce that

r s 0 = j Âj d j y r (12) 
for certain Âj ∈ R. From the equation d y r = 0 we express

d k+1 y f = Bk+1 / ∂r ∂(d k y f )
for an appropriate Bk+1 ∈ K. After that express successively [START_REF] Janet | Les modules de formes algébriques et la théorie générale des systèmes différentiels[END_REF], this results in the equality

d k+2 y f = Bk+2 / ∂r ∂(d k y f ) , d k+3 y f = Bk+3 / ∂r ∂(d k y f ) , . . . .

Substitute these expressions in

r s 0 ( ∂r ∂(d k y f ) ) t = Ar
for some t and A ∈ K. But r is irreducible in K and r 0 is less than r with respect to the term ordering. The obtained contradiction proves the claim and the following theorem.

Theorem 7.2 There is an algorithm which tests whether an operator T ∈ Q(x, y)[d x , d y ] has a first-order factor with the coefficients in a universal field F . The algorithm invokes two subroutines: the elimination of an unknown function in a system of LPDO's (in other words, a parametric Janet base), and a subroutine from the elimination procedure in the theory of ordinary differentially closed fields.

Remark 7.3 If one uses a direct method of finding the coefficients of a first-order operator L and of an (n -1)-th order Q such that T = QL, then one has to apply an elimination in the theory of partial differentially closed fields whose complexity is unclear how to estimate in a reasonable way (cf. [START_REF] Seidenberg | An elimination theory for differential algebra[END_REF][START_REF] Grigoriev | Complexity of quantifier elimination in the theory of ordinary differential equations[END_REF]).

Remark 7.4 One can also search for left first-order factors of an LPDO (by means of considering an adjoint operator).

Corollary 7.5 There is an algorithm to factor LPDO's of the orders at most 3.

Intersection of principal first-order ideals

In this subsection by F we denote a differential field with derivatives d x , d y . First consider the ideals I i = d x + ad y + b i with the same highest (first-order) forms where a, b

i ∈ F, 1 ≤ i ≤ n. Proposition 7.6 The ideal I 1 ∩ • • • ∩ I n is principal Proof. Denote E = d x + ad y . The ring F [E] is left-euclidean, therefore, the intersection Î1 ∩ . . . ∩ În = Q ⊂ F [E] is principal where we denote Îi = d x + ad y + b i ⊂ F [E] and Q = q s E s + • • • + q 0 for
certain q 0 , . . . , q s ∈ F, q s = 0 and s ≤ n.

Our aim is to prove by induction on n that

I 1 ∩ • • • ∩ I n = Q ⊂ F [d x , d y ]
. Assume that it is already proved and consider the intersection 

I 1 ∩ • • • ∩ I n ∩ I n+1 . There can occur two cases. Either Î1 ∩ . . . ∩ În ∩ În+1 = Î1 ∩ . . . ∩ În , in this case Q = N (d x + ad y + b n+1 ) for a suitable N ∈ F [E], therefore, I n+1 ⊃ Q and I 1 ∩ • • • ∩ I n ∩ I n+1 = Q . Or else Î1 ∩ . . . ∩ În Î1 ∩ . . . ∩ În ∩ În+1 = M for an appropriate M = m s+1 E s+1 + • • • + m 0 ∈ F [E] with m 0 , . . . , m s+1 ∈ F . Clearly, M ∈ I 1 ∩ • • • ∩ I n ∩ I n+1 . It is necessary to show that for any V ∈ I 1 ∩ • • • ∩ I n ∩ I n+1 we have V ∈ M .
V = W M + U where W, U ∈ F [d x , d y ] for a certain U ∈ I 1 ∩ • • • ∩ I n ∩ I n+1 such that s 0 = ord dx (U ) ≤ s.
If U = 0 we are done, so suppose that U = 0. We have

U = ZQ = T (d x + ad y + b n+1 ) (13) 
for suitable Z, T ∈ F [d x , d y ], hence s 0 = s and ord dx (Z) = 0, ord dx (T ) = s -1. One can expand T = t s-1 E s-1 + • • • + t 0 for appropriate t 0 , . . . , t s-1 ∈ F [d y ]. Thus, the equation ( 13) one rewrite with respect to the powers of E:

Z(q s E s + • • • + q 0 ) = (t s-1 E s-1 + • • • + t 0 )(E + b n+1 )
which is equivalent to a system of the following s + 1 equalities:

Zq j = t j-1 + t j b j,j + t j+1 b j,j+1 + • • • + t s-1 b j,s-1 (14) 
for suitable b j,j , . . . , b j,s-1 ∈ F ; 1 ≤ j ≤ s and

Zq 0 = t 0 b n+1 + t 1 b 0,1 + t 2 b 0,2 + • • • + t s-1 b 0,s-1 (15) 
Viewing the right-hand sides of the equations ( 14), ( 15) as a linear system in t 0 , . . . , t s-1 we get that there is a unique linear combination (from the right) of s expressions in the righthand sides of ( 14) which equals [START_REF] Lakshman | Sparse polynomial interpolation in nonstandard bases[END_REF], the coefficients f 1 , . . . , f s of this combination belong to F . Therefore, the solvability of ( 14), ( 15) in Z = 0, t 0 , . . . , t s-1 entails the equality

q 1 f 1 + • • • + q s f s = q 0 (16) 
Thus ( 13) implies [START_REF]D-modules cohérents et holonomes[END_REF]. Hence as a solution of the system ( 14), [START_REF] Lakshman | Sparse polynomial interpolation in nonstandard bases[END_REF] one can take Z = 1 and consecutively express t s-1 ∈ F from the equation ( 14) with j = s, after that express t s-2 ∈ F from the equation ( 14) with j = s -1 and so on, finally express t 0 ∈ F from ( 14) with j = 1. The last equation (15) of the system is fulfilled due to [START_REF]D-modules cohérents et holonomes[END_REF]. As a result we obtain (cf. (

)) Q = (t s-1 E s-1 + • • • + t 0 )(E + b n+1 ) with t i ∈ F , in other words Î1 ∩ . . . ∩ În = Q ⊂ În+1 ⊂ F [E]. 13 
This leads to contradiction with the assumption Î1 ∩ . . . ∩ În Î1 ∩ . . . ∩ În ∩ În+1 , which shows that the supposition U = 0 was wrong, thus I 1 ∩ . . . ∩ I n ∩ I n+1 = M . The proposition is proved. Proof. Obviously, the typical differential dimension dim( Z i ) = s i ; 1 ≤ i ≤ l [START_REF] Kolchin | Differential algebra and algebraic groups[END_REF] and dim(I) ≤ s due to [START_REF] Cassidy | Differential Algebraic Groups[END_REF][START_REF] Yu | Typical differential dimension of the intersection of linear differential algebraic groups[END_REF]. Hence if I = L is principal then ord(L) = dim(I) ≤ s.

Conversely, let Q ∈ I and ord(Q) ≤ s, by virtue of Lemma 7.8 we have ord(Q) = s and the derivative d s

x occurs in Q. Our purpose is to show that I = Q . Indeed, take any V ∈ I and divide V by Q with remainder, we get V = W Q + U where ord dx (U ) < s, therefore, U = 0 due to Lemma 7.8. Thus, I = Q . Corollary 7.10 Let the differential field F = Q(x, y). There is a polynomial-time algorithm which tests whether I is principal.

Proof. First the algorithm produces Z i ; 1 ≤ i ≤ l by finding a non-zero solution of a linear (algebraic) homogeneous system on the coefficients from F of T 1 , . . . , T n ∈ F [E i ] such that T Thereupon the algorithm looks for V 1 , . . . , V l ∈ F [d x , d y ] with ord(V i ) ≤ s -

s i ; 1 ≤ i ≤ l such that V 1 Z 1 = • • • = V l Z l .
The latter we treat as a linear (algebraic) homogeneous system in the coefficients from F of V 1 , . . . , V l . Theorem 7.9 entails that this system has a non-zero solution if and only if I is principal. Remark 7.11 Observe that the usual method of finding the intersection of ideals invoking Groebner bases, runs in double-exponential time. d x + ad y + b of T for varying b. Finally, the algorithm finds the intersection U = ∩ a Q a over all the divisors d x f + ad y f of symb(T ) making use of Janet bases (cf. [START_REF] Grigoriev | Loewy-and primary-decompositions of D-modules[END_REF]). Thus, the following theorem is proved. Theorem 7.12 For any LPDO T ∈ Q(x, y)[d x , d y ] one can construct the intersection of all the principal ideals generated by the first-order factors of T .

8 Fractional-derivatives series solutions of a second-order operator and factoring

In this section we study a particular case of a second-order LPDO T = T 0 + T 1 + T 2 and describe its possible fractional-derivatives series solutions being outputs of the algorithm from Section 2. First, if the symbol symb(T ) is separable then for each of its two different linear divisors d x f 1 + ad y f 1 the algorithm provides a fractional-derivatives series solution of T of the form (cf. ( 8))

0≤i<∞ h i G (-i)
where G = G(f 1 ) and d x f 1 + ad y f 1 = 0, f 1 = const. The vertices of the Newton polygon P 2 are (0, 2), (0, 0), (1, 1), (1, 0) and its only edge with a slope less than 1 is the edge with endpoints (1, 1), (1, 0) having slope 0. Thus, the construction of G terminates after the first step of the algorithm. From now on let us assume that symb(T ) is non-separable and write T = d If Disc = 0 we take any f 2 which satisfies the following (non-homogeneous) first-order LPDE:

d x f 2 + ad y f 2 = Disc • (d y f 1 )
and G = G 1/2 (f 1 , f 2 ) (see Definition 1.1), then the algorithm constructs a fractionalderivatives series

0≤i<∞ h i G (-i/2)
being a solution of T = 0. Each of two values of the sign of the square root provides a generic solution of the multiplicity 1 (see Section 3). It corresponds to the leading edge of the Newton polygon P 2 (whose vertices are (0, 2), (0, 0), (1, 0)) with endpoints (0, 2), (1, 0) having the slope 1/2 at the second step of the algorithm. After the second step the vertices of the Newton polygon P 3 are (0, 2), (0, 0), (1/2, 1), (1/2, 0) and its only edge with a slope less than 1/2 is the edge with endpoints (1/2, 1), (1/2, 0) having slope 0. Thus, the construction of G terminates after the second step of the algorithm. When Disc = 0 the algorithm yields a (fractional-derivatives series) solution hG(f 1 ) of T = 0 for an arbitrary particular h such that T (h) = 0. It corresponds to the leading edge with endpoints (0, 2), (0, 0) having the slope 0 at the second step of the construction (the Newton polygon P 2 coincides with the same edge), thus the construction of G terminates after the first step and the algorithm provides a generic solution of the multiplicity 2. Relying on Lemma 7.1 one obtains the following corollary (cf. [START_REF] Grigoriev | Factoring and solving linear partial differential equations[END_REF]).

  d y ]-module which consists of all fractional-derivatives series of the form (2) added by 0. Lemma 4.3 V is an R-module Proof. For any 0 = H ∈ V and 0 = b ∈ F [d y ] we claim that bH = 0. Indeed, let

Remark 4 . 4

 44 By the same token multiplying by 0 = p ∈ F [d x , d y ] on V is an isomorphism, provided that (d x + ad y )f 1 does not divide symb(p).The ring R is left-euclidean (as well as right-euclidean) with respect to d x over the skewfieldF [d y ](F [d y ]) -1 , cf. Lemma 1.3 [8]. Hence the ideal J = p 1 , . . . , p l ⊂ R is principal, let J = p for an appropriate p ∈ J ⊂ F [d x ,d y ]. Then for any p 0 ∈ J (actually, moreover for p 0 ∈ J) the equalities p 0 p = b 0 p 0 , bp = 1≤j≤l p j p j (6) hold for suitable p j ∈ F [d x , d y ]; 0 = b, b 0 ∈ F [d y ]. According to (6) we have symb(p 0 )symb(p) = symb(b 0 )symb(p 0 ), whence mult a (p 0 ) = mult a (b 0 ) + mult a (p 0 ) = mult a (p 0 ) + mult a (p) ≥ mult a (p), therefore, mult a (p) ≤ mult a (J) since mult a (J) = mult a (g) = min p 0 ∈J mult a (p 0 ).

Lemma 7 . 1

 71 An operator T has a right first-order factor L if and only if the equation T = 0 has a solution of the form hG. Proof. If T has a right factor L then T has a solution hG. Conversely, assume that T = 0 has a solution hG. Dividing T with remainder by L one can represent T = SL + 0≤i≤n b i d i y for a suitable operator Consider the largest k such that b k = 0. Then in the expansion of ( 0≤i≤k b i d i y )hG in {G (s) } the coefficient at G (k) equals b k h(d y f ) k = 0. The obtained contradiction shows that T = SL.

Corollary 7 . 7

 77 The ideal I 1 ∩ . . . ∩ I n is generated by an element from F [E].Now let the idealsI i = d x + a i d y + b i ⊂ F [d x , d y ] be given, where a i , b i ∈ F, 1 ≤ i ≤ k.Our goal is to study their intersection I = I 1 ∩ . . . ∩ I k . Combining together all the classes of the ideals with the same a i and making use of Corollary 7.7 we replace the intersection from one class by Z i for a certainZ i ∈ F [E i ] where E i = d x + a i d y . Then I = I 1 ∩ . . . ∩ I k = Z 1 ∩ • • • ∩ Z l for some l. Denote s i = ord(Z i ); 1 ≤ i ≤ l and s = s 1 + • • • + s l . Lemma 7.8 For any Q ∈ I we have ord dx (Q) ≥ s.Proof. Observe that symb(Q) is divided by 1≤i≤l (d x f + a i d y f ) s i treated as a homogeneous polynomial in d x f, d y f . Theorem 7.9 a) The ideal I is principal if and only if I contains Q with the order ord(Q) ≤ s;b) in this case ord(Q) = s and I = Q .

  1 (d x + a i d y + b 1 ) = • • • = T n (d x + a i d y + b n ) with the minimal possible order ord(T 1 ) = • • • = ord(T n ) (trying consecutively the orders 1,2...). Denote Z i = T 1 (d x + a i d y + b 1 ), s i = ord(Z i ), then Z i is a generator of the ideal d x + a i d y + b 1 ∩ • • • ∩ d x + a i d y + b n , see Corollary 7.7.

2 x + 2ad x d y + a 2 d 2 y

 2 + b 0,1 d x + b 1,0 d y + b 0,0 . The first step of the algorithm from Section 2 yields f 1 such that d x f 1 + ad y f 1 = 0. Introduce the discriminant of T as follows: (-T + b 0,0 )f 1 = (d x a + 2ad y a + ab 0,1 -b 1,0 )(d y f 1 ) =: Disc • (d y f 1 ).

  Since the highest derivative with respect to d x which occurs in M is d s+1x , one can divide V by M with remainder and get
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Constructing intersection of all first-order factors

In this subsection F denotes a universal field [START_REF] Kolchin | Differential algebra and algebraic groups[END_REF] with two derivatives d x , d y .

The purpose of this subsection is to construct the intersection U ⊂ F [d x , d y ] of all the principal ideals L for the first-order factors L ∈ F [d x , d y ] of T ∈ Q(x, y)[d x , d y ]. Evidently, U ⊃ T . We mention that in [START_REF] Grigoriev | Loewy-and primary-decompositions of D-modules[END_REF] a radical of a module of a differential type τ was defined as the intersection of the maximal classes of τ -equivalent modules, and a question was posed whether one can calculate the radical. Here U (which could be called a first-order radical) is defined as an ideal (rather than a class of equivalent ideals) and moreover, we calculate U .

Observe that the construction from the Subsection 7.1 represents the family V of all the solutions of the form hG (and which correspond to first-order factors of T due to Lemma 7.1) as follows (we use the notations from Subsections 7.1, 7.2). We assume that a is fixed, while f just satisfies the equality d x f + ad y f = 0. The family V is a union of subfamilies of the form V 0 where V 0 is given by means of a Janet base

for h where v i 1 ,i 2 ,l ∈ R together with a system (11) for f . For each element hG ∈ V consider the first-order LPDO L hG = d x + ad y + b hG such that L hG (hG) = 0 (see Lemma 7.1). We claim that one can extend Proposition 7.6 from a finite to an infinite number of principal ideals and conclude that the ideal ∩ hG∈V L hG is principal and moreover, is generated by a suitable element Q = 0≤i≤s q i E i ∈ F [E] (see Corollary 7.7). Indeed, one add consecutively the ideals

the proof of Proposition 7.6). Then Î1 ∩ • • • ∩ Îj = Q j = 0≤i≤j q i,j E i for appropriate q i,j ∈ F (cf. the proof of Proposition 7.6). Hence T ⊂ I 1 ∩ • • • ∩ I j = Q j due to Corollary 7.7. Thus, j ≤ n and ∩ hG∈V L hG = I 1 ∩ • • • ∩ I j which proves the claim.

To produce Q = Q j = 0≤i≤j q i E i the algorithm successively tries j = 0, 1, . . ., treating q i as indeterminates. The aim is to find Q such that Q(hG) = 0 for any hG ∈ V 0 (for each subfamily V 0 of V ). The algorithm expands Q(hG) = A 0 G (0) + • • • + A j G (j) (cf. Subsection 7.1). One can view each A i as an LPDO in h with the coefficients being linear forms in q 0 , . . . , q j over R. The algorithm divides every A i , 0 ≤ i ≤ j with the remainder by the Janet base [START_REF] Malgrange | Réduction d'un système microdifférentiel au point générique[END_REF], as a result we obtain LPDO Āi = i 1 ,i 2 a i,i 1 ,i 2 d i 1

x d i 2 y . Thus, Q vanishes at any hG ∈ V 0 if and only if a i,i 1 ,i 2 = 0 for all 0 ≤ i ≤ j; i 1 , i 2 under condition [START_REF] Grigoriev | Solving ordinary differential equations in the series with real exponents[END_REF].

Denote by S the conjunction of the systems a i,i 1 ,i 2 = 0 for all 0 ≤ i ≤ j; i 1 , i 2 and for all subfamilies of the form V 0 of V . One can treat S as a homogeneous linear over q 0 , . . . , q j system with parameters being derivatives f, d y f, . . . , d l y f for a certain l. Solving this parametric linear system (see e.g. [START_REF] Grigoriev | Complexity of factoring and calculating the GCD of linear ordinary differential operators[END_REF]) the algorithm finds the (algebraic) conditions on f, d y f, . . . , d l y f under which the system is solvable and in addition, finds the expressions for solutions (being rational functions in the parameters). After that the algorithm tests whether these conditions are compatible with [START_REF] Grigoriev | Solving ordinary differential equations in the series with real exponents[END_REF], applying the subroutine from the elimination procedure which yields formula [START_REF] Grigoriev | Solving ordinary differential equations in the series with real exponents[END_REF] in Subsection 7.1. If yes then the algorithm produces a solution q 0 , . . . , q j ∈ R of the parametric linear system. Else, the algorithm proceeds from the current value j to the next value j + 1.

Thus, the algorithm for each a such that d x f + ad y f is a (linear) divisor of symb(T ), produces applying the described above construction a generator Q a ∈ F [d x , d y ] of the (principal) ideal being the intersection of all the principal ideals generated by the divisors of the form Corollary 8.1 A second-order LPDO with a non-separable symbol is irreducible if and only if Disc = 0.