NMR Implantable Microcoil FEM Based Comparative Study for Numerical Brain Model Application - Archive ouverte HAL
Communication Dans Un Congrès Année : 2019

NMR Implantable Microcoil FEM Based Comparative Study for Numerical Brain Model Application

Résumé

This work investigates numerically four planar microcoil models (square, circular, rectangular and TLMR (Transmission Line Monolithic Resonator)) in terms of magnetic parameters, quality factor, biocompatibility, and harmlessness. These Planar microcoil models were simulated as the active part of a radio frequency (RF) implantable receiver antenna dedicated to the Nuclear Magnetic Resonance (NMR) Spectroscopy. The novelty provided by this approach is the comparative study of these different shapes by a hybrid method combining EM (Electromagnetic) simulation and RLC equivalent model calculated through implemented FEM (Finite Element Method). The second part of the realized work is the implantation of the best microcoils in a numerical phantom. Then, assuring the harmlessness of the implantation of such microcoils for NMR investigations by predictive simulation in numerical head model.
Fichier non déposé

Dates et versions

hal-03046929 , version 1 (08-12-2020)

Identifiants

Citer

Nasreddine Ben Mansour, Cherif Dridi, Nourdin Yaakoubi, Latifa Fakri-Bouchet. NMR Implantable Microcoil FEM Based Comparative Study for Numerical Brain Model Application. 2019 IEEE International Conference on Design & Test of Integrated Micro & Nano-Systems (DTS), Apr 2019, Gammarth-Tunis, Tunisia. pp.1-6, ⟨10.1109/DTSS.2019.8914833⟩. ⟨hal-03046929⟩
94 Consultations
0 Téléchargements

Altmetric

Partager

More