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Base change for ramified unitary groups:
The strongly ramified case

By Corinne Blondel at Paris and Geo Kam-Fai Tam at Nijmegen

Abstract. We compute a special case of base change of certain supercuspidal repre-
sentations from a ramified unitary group to a general linear group, both defined over a p-adic
field of odd residual characteristic. In this special case, we require the given supercuspidal
representation to contain a skew maximal simple stratum, and the field datum of this stratum
to be of maximal degree, tamely ramified over the base field, and quadratic ramified over its
subfield fixed by the Galois involution that defines the unitary group. The base change of this
supercuspidal representation is described by a canonical lifting of its underlying simple char-
acter, together with the base change of the level-zero component of its inducing cuspidal type,
modified by a sign attached to a quadratic Gauss sum defined by the internal structure of the
simple character. To obtain this result, we study the reducibility points of a parabolic induc-
tion and the corresponding module over the affine Hecke algebra, defined by the covering type
over the product of types of the given supercuspidal representation and of a candidate of its
base change.

1. Introduction

The local Langlands correspondence for a general linear group over a non-Archimedean
local field F is, roughly speaking, a parametrization of its irreducible admissible representa-
tions in terms of representations of the Weil–Deligne group of F . An extensive study of this
correspondence involves certain important invariants, e.g., L- and epsilon-factors (see [23, 24]
for the characteristic 0 case, [33] for the positive characteristic case, and [45] for a recent
proof). Using moreover the processes of automorphic induction and base change [5, 26], one
obtains an explicit description of the correspondence in the essentially tame case [14–16].
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When F is of characteristic 0, after [4, 28, 38, 42, 44], we know that the local Langlands
correspondence for classical groups is closely related to that for general linear groups, at
least for discrete series representations: their L-packets are parametrized by multiplicity-free
(conjugate-)self-dual representations of the Weil–Deligne group. Therefore, in principle, we
can understand the correspondence for classical groups via general linear groups. For unitary
groups, this theory is explained in the context of base change in [38] (for special orthogonal
groups and symplectic groups, the theory is sometimes called local transfer [6]). More pre-
cisely, the Langlands parameter of an L-packet of a discrete series of a unitary group is the
same as that of its base change, a representation of a general linear group. Hence describing
Langlands parameters for L-packets of discrete series is equivalent to describing their base
changes. This approach was adopted in [1, 2, 7, 8] for supercuspidal representations of small
unitary groups.

In our present paper, we compute a special case of base change for ramified unitary
groups, which complements the previous result in [53] for describing the local Langlands
correspondence for packets of supercuspidal representations of unramified quasi-split unitary
groups. In the previous case, we determined first the inertial class of the base change using the
method developed in [13] (for symplectic groups), and then the exact base change by using
Asai L-functions [22,46]. In the following paragraphs, we will summarize our new results and
the methodology for ramified unitary groups, building on the method in [13] with a new calcu-
lation on modules of Hecke algebras, then we will explain why the previous method involving
Asai L-functions fails.

Let F� be a non-Archimedean local field of residual characteristic p where p is odd, let
F=F� be a quadratic extension, let V be a vector space over F , and QG D GLF .V /. Suppose
that V is equipped with a Hermitian form defined with respect to F=F�, and let G be the
corresponding unitary group, the fixed-point subgroup of the Hermitian involution � of QG.
Take a supercuspidal representation � of G, compactly induced from a cuspidal type which
contains a simple character, or in other words, whose underlying self-dual semisimple stratum s
is indeed simple (see [19, 36, 49] for the related definitions). Suppose that E is the field datum
of the stratum, which is invariant under the Galois involution defined by � , with fixed-point
subfield E�. In our paper, we require that

ŒE W F � D dimF V and E=E� is quadratic ramified.

We call this the strongly ramified case. The latter condition actually forces F=F� to be also
quadratic ramified. For the final computation, we additionally assume that E=F is tamely ram-
ified.

We refer the full detail of constructing supercuspidal representations by cuspidal types
to [19, 50] and only specify that, under the above conditions, a cuspidal type is indeed a char-
acter (a representation of degree 1). Suppose that the cuspidal type of a supercuspidal repre-
sentation � of G is of the form ��0, where �0 is the p-primary beta-extension of a simple
character � , in the sense of [13], and � is a level zero character, which is a character of ¹˙1º
in our situation. We now take Q� the self-dual simple character for QG whose restriction to the
� -fixed-point subgroup is the square of � (see (2.2)), and Q�0 its unique self-dual p-primary
beta-extension (see Proposition 3.2 and the remark after). We also take Q� a self-dual level zero
character ofE� to form a cuspidal type Q� Q�0 and compactly induce it to a supercuspidal Q� of QG.

The following theorem is the main result of our present paper, giving the conditions for
Q� to be the base change of � , which is the only member in its L-packet in our case. To make
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sense of the definition of base change, we have to assume that char.F / D 0. Recall that we
have assumed the “strongly ramified” condition and also that E=F is tamely ramified.

Theorem 1.1. Under the above assumptions, suppose that the simple characters Q� and
� are related as above (or see (2.2)), and the level zero characters Q� and � are related by

Q�j�E D

�
�

�E

�f .E=F /�1
and Q�.$E / D �.�1/�

P
z .$E ; s/;

where

� �E is the subgroup of E� of roots of unity with order coprime to p, and . �
�E
/ is the

quadratic character of �E ,

� $E is a chosen uniformizer ofE, and �Pz .$E ; s/ is a sign attached to a quadratic Gauss
sum (see (4.20)), defined by $E and the simple stratum s associated to � .

Then Q� is the base change of � .

For example, when dimV D 1, then E D F . The sign �Pz .$E ; s/ is 1, and the relation
in Theorem 1.1 becomes

Q�.x/ D �.x�x/ for all x 2 F �;

which is exactly the base change for characters of U1. When dimV > 1, we see that Q� dif-
fers from the base-change of � by a tamely ramified character, or in other words the level-zero
component of the inducing cuspidal type of Q� is not the base change of that of � . The main
idea here is that: when dimV > 1, we have to modify our base change formula by modifying
the level zero component Q� of the cuspidal type, by taking the internal structure of the positive
level component Q�0 into account. An analogous phenomenon was intensively studied in the
essentially tame local Langlands correspondence for general linear groups [14–16]: the induc-
ing type of a supercuspidal has to be modified in order to match with its Langlands parameter.
Similar studies were conducted for quasi-split unramified unitary groups [53], and for symplec-
tic groups [13]. In all these cases, the modifications are incarnated by certain characters (called
rectifiers in the first case and amending characters in the second case) of elliptic tori, defined
by the field data extracted from positive level components and taking effect only on level zero
components, i.e., the modifying characters are all tamely ramified.

We now explain the methodology for the theorem. The first step, following a series of
papers of the first author [9,11,12], is to study the reducibility points of the parabolic induction

Q�jdetjs Ì � WD IndGWP . Q�jdetjs � �/; s 2 C;

where W is the Hermitian space W D V � ˚ V ˚ V C, with each V � and V C just V as
a vector space and V � ˚ V C hyperbolic, and so the unitary group GW contains a parabolic
subgroup P with Levi component M D QG �G. By [47], when this parabolic induction is
reducible at a point s 2 R, then some twist of Q� is self-dual. Assuming that Q� itself is self-
dual, we can use [38] to show that in our case, Q� is the base change of � if and only if jsj D 1.

We apply the theory of covering types [20] to get a preliminary information about the
reducibility: we construct a type �P in GW covering Q�� �, the product of a pair of types Q�
and � for Q� and � , respectively, providing the categorical equivalence

RŒM; Q����.GW /! Mod-H .GW ; �P /
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between the Bernstein component of the inertial class of Q� � � inGW and the module category
of the Hecke algebra H .GW ; �P /. When Q� is self-dual with Q� and � related by (2.2), we single
out two candidates for Q� that are self-dual representations in the inertial class of the base change
of � , the two differing from each other by an unramified character of a certain finite order, such
that Q�jdetjs Ì � is reducible at a point in R�0.

The second step is to further study the structure of the Hecke algebra H .GW ; �P / as
well as its modules. By [20, 36], this Hecke algebra has two generators, denoted by Ty and Tz
in this paper, each satisfying a quadratic relation

T 2w D bwTw C cw ; w 2 ¹y; zº:

When Q�j�E is given as in Theorem 1.1, we can actually normalize Tw by a positive scalar such
that the quadratic relations for Ty and Tz take the similar form

.Tw C �w/.Tw � �wq
f .E=F // D 0; w 2 ¹y; zº;

where each �w is a sign. We then compute the eigenvalues of these two generators, or equiv-
alently the coefficients bw , on the module corresponding to Q�jdetjs Ì � . The product of Ty
and Tz is equal to the image of an infinite order invertible element Z in the Hecke algebra
H .M; Q�� �/ for the Levi subgroup M , whose eigenvalue is computed in a different manner.
We then compare the product of eigenvalues of Ty and Tz with that of Z: when Q�jdetjs Ì �
is reducible at s D 1, the signs �y , �z , and that for Z are respectively �.�1/, �Pz .$E ; s/, and
Q�.$E / (modulo some irrelevant factors which cancel with each other in the comparison), giv-
ing the last condition for base change in Theorem 1.1. The detailed version of this result can
be derived from Theorem 3.4 and Corollary 3.5.

It turns out that the coefficient by is easy to compute, while bz involves some calculations
similar to [29,30] for large p and [9] for Sp4, related to the structure of the simple stratum s. To
keep the computation manageable, we further assume that E=F is tamely ramified. This is the
condition assumed in [27, 43] and the series [14–16] (see also the warning in [19, (2.2.6)]), as
well as in [54] more generally. It also facilitates comparisons, by the second author in [51,52],
between the essentially tame local Langlands correspondence for inner forms of general linear
groups [14–17] with the twisted endoscopy theory [31, 32].

Finally, we show that Q� is indeed the base change of � using a finiteness result from
Mœglin for the possibilities of Q� such that Q�jdetjs Ì � is reducible for some s 2 R�0 (see
[38, 4. Proposition], [39, Theorem 3.2.1] for quasi-split groups, and [40, 8.3.5] for non-quasi-
split groups). The result is obtained from Arthur’s endoscopic character relations [3] and their
generalizations in twisted endoscopy [41, XI.], which require that char(F ) is 0. It is possible
that we could apply an approach analogous to [13, Theorem 2.5] to compute the reducibilities
of Q�jdetjs Ì � for all Q� and obtain a finiteness result similar to Mœglin’s without the charac-
teristic requirement, but in our strongly ramified case we rather take the above shortcut using
Mœglin to simplify the discussion. (See [21] for a result on the local Langlands correspon-
dence in positive characteristic for split classical groups without using reducibilities of induced
representations.)

We now briefly explain why the previous method in [53] fails in the strongly ramified
case. According to [38], there is a notion of parity of a (conjugate-)self-dual supercuspidal rep-
resentation of GLn, either conjugate-orthogonal (+) or conjugate-symplectic (�) but not both.
In the non-strongly ramified case, the two self-dual candidates have opposite parities because
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they differ by an unramified character Q� such that Q� ıNE=F is conjugate-symplectic. In this
case we can determine the correct base change between the two by computing their parities
using Asai L-functions for example [25]. However, in the strongly ramified case, Q� ıNE=F
is then conjugate-orthogonal, and so the two self-dual candidates have the same parity (see
Section 3.4 for a detailed discussion). This explains why the previous method no longer works,
and we have to rely on the complete structure of the modules over the Hecke algebra.

1.1. Notations. Let F� be a non-Archimedean local field, with ring of integers oF� , its
maximal ideal pF� , and residue field kF� D oF�=pF� of cardinality q� and odd characteristic p.
Let F=F� be a quadratic extension, whose residue field kF D oF =pF has q elements, such that
q D q�

2 in the unramified case, and q D q� in the ramified case. Let �F be the subgroup of
roots of unity of F whose orders are coprime to p.

We denote UF WD o�F and U kF WD 1C p�F for k 2 Z�1. If NF=F� W F ! F� is the norm
map, we denote UF=F� WD o�F \ kerNF=F� and U k

F=F�
WD U kF \ kerNF=F� for k 2 Z�1. The

Galois group Gal.F=F�/ is generated by an involutive automorphism c.
If ƒ W Z! S is a sequence into a set S , then we extend ƒ from Z to R by putting

ƒ.r/ D ƒ.dre/ and ƒ.rC/ D ƒ.drCe/, where dre and drCe are the smallest integers � r and
> r , respectively.

2. Review of known results

2.1. Unitary groups. Let V be an F -vector space. We denote QAD QAV D EndF .V / and
QG D QGV D AutF .V /. Suppose that V is equipped with a non-degenerate .F=F�; �/-Hermit-

ian form h D hV , where � D �V D ˙1. If X 7! NX is the conjugate-adjoint on QA defined by h,
we define the adjoint anti-involution ˛X D � NX . Note that

˛.XY / D �˛Y ˛X; X; Y 2 QA:

We also have the corresponding involution � W X 7! NX�1 on QG. The subgroupG D GV D QG�

is a (connected) unitary group that we consider throughout the paper and whose Lie algebra
is A D QA˛.

Given an oF -lattice L in V , we denote by L� its dual ¹v 2 V W h.v; L/ � pF º. We call
an oF -lattice sequenceƒ in V self-dual if there exists d 2 Z such thatƒ.k/� D ƒ.d � k/ for
all k 2 Z. As in [50], we always normalize a self-dual lattice sequence such that

(2.1) d D 1 and its oF -period e.ƒ=oF / is even.

Given an oF -lattice sequence ƒ in V , we define an oF -lattice sequence QPkƒ, for k 2 Z,
in QA by

QPkƒ D ¹x 2
QA W xƒ.m/ � ƒ.mC k/ for all m 2 Zº:

Hence QAƒ WD QP0ƒ is a hereditary order in QA, with Jacobson radical QPƒ WD QP1ƒ. We denote by
vƒ the valuation on QA associated to ƒ. If ƒ is self-dual, then each QPkƒ is ˛-invariant, in which
case we put Pƒ D QP

˛
ƒ.

We also define QUƒ D QU 0ƒ D QA
�
ƒ and QU kƒ D 1C QP

k
ƒ for k 2 Z�1. If ƒ is self-dual,

then each QU kƒ is � -invariant, in which case we put Uƒ D QU �ƒ and U kƒ D . QU
k
ƒ/
� . The quo-

tient Gƒ D Uƒ=U 1ƒ is the group of kF�-points of a reductive group Gƒ defined over kF� ,
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which is disconnected in general. We denote by U 0ƒ the inverse image of G0ƒ in Uƒ, where G0ƒ
is the subgroup of kF�-points of the identity component G0ƒ of Gƒ.

Suppose that ƒ is a self-dual lattice sequence of the form

ƒ.0/ � ƒ.1/ D ƒ.0/� � ƒ.2/ D pFƒ.0/:

Then Uƒ is a maximal compact subgroup, and U 0ƒ is the underlying maximal parahoric sub-
group. When F=F� is unramified, G0ƒ is a product of at most two unitary groups relative to
kF =kF� ; while when F=F� is ramified it is a product of at most one symplectic group and at
most one special orthogonal group, both defined over kF D kF� (see [50, Section 3.3]).

2.2. Cuspidal types. We recall from [19, 50] the constructions of cuspidal types for
general linear groups and unitary groups. The compact inductions of these types are irreducible
supercuspidal representations.

Let s D Œƒ; r; 0; ˇ� be either a simple stratum or the null stratum Œƒ; 0; 0; 0� where, in the
former case, we denote E D F Œˇ�, which is a field contained in QA, such thatƒ is an oE -lattice
chain, while in the latter case, we put E D F and ƒ.k/ D Matn.pkF /. We denote by QAE
and QGE , respectively, the centralizer of ˇ in QA and QG, and for k 2Z, denote QPkƒ;E D QP

k
ƒ\
QAE

and QU kƒ;E D QU
k
ƒ \

QGE . As in [19, Chapter 3], associated to s we construct
� subrings QH D QHƒ;ˇ � QJ D QJƒ;ˇ of QA and the two-sided fractional ideals QHk D QH\ QPkƒ

and QJ k D QJ \ QPkƒ, for all k 2 Z,
� subgroups QHk D QHk

ƒ;ˇ
D QH \ QU kƒ �

QJ k D QJ k
ƒ;ˇ
D QJ \ QU kƒ of QG, for all k 2 Z>0,

� QC.s/ WD QC.ƒ; 0; ˇ/ the set of simple characters of QH 1,
� associated to each simple character Q� 2 QC.s/ the Heisenberg representation Q� D Q� Q� of QJ 1,

an irreducible representation that restricts to a multiple of Q� on QH 1,
� a beta-extension Q� of Q� to the subgroup QJ D QJƒ;ˇ D QUƒ;E QJ 1 (note that among these

extensions there is a unique one Q�0 whose determinant has order a power of p, called the
p-primary beta-extension).

To construct a supercuspidal representation of QG, we require that ƒ is principal, which
is assumed from now on, and also e.ƒ=oE / D 2 (note the convention in (2.1)). We take an
irreducible representation Q� of QJ inflated from a cuspidal representation of

QJ= QJ 1 Š GLn=ŒE WF �.kE /:

The maximal simple type Q� D Q� ˝ Q� extends to an irreducible representation Q� of QJ D E� QJ ,
which is then compactly induced to an irreducible supercuspidal representation Q� D cInd QG

QJ
Q�.

Note that if s is null, then by convention we assume that e.ƒ=oF / D 2, and QC.s/ contains
only the trivial character of QH 1 D QJ 1 D QU 1ƒ. We take Q� of QUƒ to be trivial, and choose Q� to be
inflated from a cuspidal representation of QUƒ= QU 1ƒ Š GLn.kF /. The extension Q� on QJ D F � QJ
of Q� D Q� can be chosen by fixing a central character, and so Q� D cInd QG

QJ
Q� is a level zero

supercuspidal representation.
Every supercuspidal representation of QG is obtained by the way above. Moreover, the

maximal simple type Q� is determined by Q� up to conjugacy, and so is the extended type Q�
containing Q�.

If V is a Hermitian space, as in Section 2.1, we call a simple stratum s skew if ƒ is
self-dual and ˇ 2 A. In this case, all subgroups QH 1, QJ 1, QJ , and QJ are � -invariant. If we choose
Q� , Q�, Q�, and the extension of Q� to be self-dual, i.e., � -invariant, then so is Q� . Note that the
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p-primary beta-extension Q�0 of Q� is self-dual because of its uniqueness. If ˇ ¤ 0, then �˛
restricts to a Galois involution onE. We denote the fixed field byE�. Since QAE and QPkƒ;E , resp.
QGE , QUƒ;E , and QU kƒ;E , are invariant under ˛, resp. � , we define AE=E� D QA

˛
E , GE=E� D QG

�
E ,

and Pk
ƒ;E=E�

, Uƒ;E=E� , U
k
ƒ;E=E�

similarly.
When s is skew and semisimple, following [50], we construct

� subgroups H 1 WD . QH 1/� � J 1 WD . QJ 1/� � J WD QJ � ,

� a set C.s/ WD C.ƒ; 0; ˇ/ of semisimple characters of H 1, defined as follows: denote the
subset of QC.s/ of self-dual semisimple characters by QC.s/� , and define C.s/ to be the
image set of the following map (well-defined since the group H 1 is a pro-p subgroup
where p is odd):

(2.2) QC.s/� ! C.s/; Q� 7! . Q� jH1/1=2;

which turns out to be bijective since the restriction operation satisfies the properties of
Glauberman correspondence (see [50, Section 5.3] for details),

� associated to each semisimple character � 2 C.s/ the Heisenberg representation � D ��
of J 1, an irreducible representation that restricts to a multiple of � on H 1,

� a beta-extension � of � to the subgroup J D Uƒ;E=E�J
1 (note that among these exten-

sions there is a unique one �0 whose determinant has order a power of p, called the
p-primary beta-extension).

To construct a supercuspidal representation of G, from now on we suppose that GE=E�
has a compact center and the parahoric subgroup U 0

ƒ;E=E�
is maximal in GE=E� . We take

an irreducible representation � of J inflated from a cuspidal representation N� of G D J=J 1,
a (possibly non-connected) classical group over the finite field kF� . (A cuspidal representa-
tion of a disconnected G means that its restriction to G0 is a sum of conjugates of a cuspidal
representation.) The product � D � ˝ � is then a cuspidal type, and is compactly induced to
an irreducible supercuspidal representation � D cIndGJ �. If s is null, then by definition C.s/
contains only the trivial character of U 1ƒ. We again take � to be trivial, and so � D cIndGJ � is
a level zero supercuspidal representation.

Remark 2.1. Note that GE=E� has a compact center except precisely when it has a fac-
tor isomorphic to the split SO2, (which is just a GL1), which does not happen in our case.
Also, for the parahoric subgroup U 0

ƒ;E=E�
to be maximal, it is not enough to just assume that

the order P0ƒ;E is maximal, since there exists such a maximal order whose corresponding
parahoric subgroup is not maximal. See [36, Appendix] for details.

2.3. Covering types. To proceed, we require a larger unitary group GW defined on the
space W D V ? Z. Here Z D Z� ˚ZC is an �-Hermitian space, with ZC being a finite-
dimensional vector space over F , and Z� is the dual space of ZC with respect to the form

hZ..z�; zC/; .w�; wC// D .z�; wC/C � �
c.w�; zC/;

for z�; w� 2 Z� and zC; wC 2 ZC. The �-Hermitian form onW is hW D h ? hZ . We denote
the Lie algebra of GW by AW , the subspace of fixed points of QAW D EndF .W / by the adjoint
anti-involution defined by hW .
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We denote by M the Levi subgroup of block diagonal matrices in GW , isomorphic to
QGZ� �GV . We denote by P the subgroup of block upper triangular matrices leaving invar-

iant the flag Z� � V � W , with unipotent radical U and the opposite U�. We denote by
iM WM ! GW the embedding .g; h/ 7! diag.g; h; �g/ for g 2 QG, h 2 G, and abbreviate

.X; Y /C D

264I X Y

I ˛X

I

375 2 U; .X; Y /� D

264 I
˛X I

Y X I

375 2 U�:
We can check that these matrices satisfy the relation

(2.3) X˛X D Y � ˛Y:

If ƒC is an oF -lattice chain in ZC, we define

ƒ�.k/ D ¹z� 2 Z� W .z�; ƒC.1 � k// � pF º; k 2 Z:

If ˇC 2 QAZC , we define ˇ� 2 QAZ� by

.ˇ�z�; zC/ D �
c.z�; ˇCzC/; z� 2 Z�; zC 2 ZC:

In this general setting, let �V be a cuspidal type in GV and let Q�Z� be a cuspidal type
in QGZ� as in Section 2.2. A covering type in GW for the cuspidal type Q�Z� � �V in M is
constructed in [36], providing a type for the Bernstein component of the smooth dual of GW
that contains a representation whose cuspidal support comes from a supercuspidal representa-
tion ofM containing Q�Z� � �V . The use of covering types in the study of parabolic induction
is briefly recalled in the next subsection. In the context of base change or of the description of
L-packets, most covering types are irrelevant; the relevant ones are those in which the cuspi-
dal type Q�Z� bears a strong relation with �V . In the present work we focus on the case when
the stratum s underlying �V is skew simple. In this case, and when studying base change, the
relevant covering types are those for which the space Z� has the same dimension as V and
the cuspidal type Q�Z� is built from a simple character that transfers in V to the square of the
simple character underlying �V (or see (2.4) for the precise relation).

So we proceed to construct covering types for GW precisely in that case.

Assumptions 2.2. Let us assume the following from now on.

� Z� is identified to V as a vector space, and we identify ZC with Z� by h D hV .
� ˇ� D ˇ D ˇC; in particular, it means that ˇ is self-dual: ˛ˇ D ˇ.
� ƒ� D ƒ, which is an oE -lattice chain, with E D F Œˇ�. We moreover assume thatƒV is

principal and its oE -period is 2 (hence its oF -period is 2e.E=F /).

We define a self-dual oE -lattice sequence m in W D V ? Z of oE -period 6 (hence of
oF -period 6e.E=F /) by

m.k/ D ƒ�

�
k � 1

3

�
˚ƒ

�
k

3

�
˚ƒC

�
k C 1

3

�
; k 2 Z;

and two maximal self-dual oE -lattice sequences Mw in W , where w 2 ¹y; zº and both of
oE -period 2, such that the set of lattices in the sequence My is

¹ƒ�.k/˚ƒ.k/˚ƒC.k/ W k 2 Zº;
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while those in Mz is

¹ƒ�.k/˚ƒ.k/˚ƒC.k C 1/; ƒ�.k/˚ƒ.k C 1/˚ƒC.k C 1/ W k 2 Zº:

Given a skew simple or null stratum s D Œƒ; r; 0; ˇ�, we hence have corresponding skew
semisimple strata sm D Œm; rm; 0; ˇ� and sw D ŒMw ; rw ; 0; ˇ�, with w 2 ¹y; zº, where ˇ is
embedded into QAW as the block-diagonal matrix with diagonal blocks .ˇ; ˇ; ˇ/. We now follow
[19, 50] to define, for L D m or Mw , with w 2 ¹y; zº,

� subgroups H 1
L
� J 1

L
� JL in GW ,

� semisimple characters �L onH 1
L

, such that they satisfy a transfer relation with each other,
as in [19, (3.6)], [49, Section 3.5],

� beta-extensions �Mw of �Mw on JMw , and �wm of �m on Jm, such that �Mw and �wm are
compatible in the sense of [50, Lemma 4.3],

� unique p-primary beta extension .JMw ; �Mw;0/, and the one .Jm; �
w
m;0/ compatible with

�Mw;0 (note that �wm;0 is in general not the p-primary beta extension �m;0 of �m).

Since the decompositionW D V ? .Z�˚ZC/ is properly subordinate to the stratum sm,
the subgroups H 1

m, J 1m, and Jm admit an Iwahori decomposition of the form

K D K�KMK
C; where KM D K \M; KC D K \ U , and K� D K \ U�;

for K being one of the compact subgroups just mentioned, and the product can be taken in any
order. We can then show from [50, Corollary 5.11 and Proposition 5.5] that H 1

M WD
QH 1 �H 1

and
�mjH1

M
D Q�ƒ� � �ƒ;

where Q�ƒ� and �ƒ are simple characters related under the correspondence (2.2), i.e.,

(2.4) �ƒ D . Q�ƒ� jH1/1=2:

To construct a covering type, we define

� the following subgroups:

H 1
P D

QH 1
m.
QJ 1m \ U/ \GW D H

1
m.J

1
m \ U/;

J 1P D
QH 1

m.
QJ 1m \ P / \GW D H

1
m.J

1
m \ P /;

JP D QH
1
m.
QJm \ P / \GW D H

1
m.Jm \ P /;

and also denote J˙P D JP \ U
˙,

� a simple character �P on H 1
P by extending �m trivially to J 1m \ U , and the unique rep-

resentation �P on J 1P containing �P (by [50, Lemma 5.12]),

� for w 2 ¹y; zº, an extension �wP of �P to J 1P that is the restriction of �wm to the sub-
space of .J 1m \ U/-fixed vectors of �m (which can be also characterized by the relation
�wm Š IndJm

JP
�wP ).

With our construction of m, the decompositionW D V ? .Z�˚ZC/ is moreover exactly
subordinate to sm. By [50, Proposition 6.3], if we write �wP jJM D Q�

w � �w , then Q�w and
�w are beta-extensions of Q� and � , respectively, and Q�w is self-dual (with respect to � ), see
[50, Corollary 6.10].
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We then choose a (product of) cuspidal representation �M D Q�� � of JP , inflated from
JP =J

1
P Š JM=J

1
M . (At this moment, there is no relation between Q� and �.) Define

�wP D �
w
P ˝ �M

which is a covering type over �wM WD �
w
P jJM by [36]. Finally, we denote by

�wM D Q�
w � �w

a supercuspidal representation of M D QGZ �GV containing the maximal type

�wM D
Q�w � �w ;

where Q�w D Q�w ˝ Q� and �w D �w ˝ �.

2.4. Covers and Hecke algebras. At the beginning of this subsection, we use G to
denote the F -points of a connected reductive group over F , and will later switch back to
denote a unitary group as in previous subsections. We recall the following notions from [20].

� Suppose that G contains a parabolic subgroup P with Levi component M . If �M is
a supercuspidal representation of M , we denote by s D ŒM; �M �G the inertial class
of �M , and by Rs.G/ the full subcategory of representations ofG whose irreducible sub-
quotients are those of the normalized parabolic induction �GP � WD IndGP .��

1=2
P /, where �

ranges over representations in s and �P is the modulus character of P .

� Suppose that K is a compact open subgroup of G. We fix a Haar measure on G such
that K has volume 1. Given a representation � of K on a finite-dimensional C-vector
space W , we denote by H .G; �/ the associated Hecke algebra, which is the space of
compactly supported functions f W G ! EndC.W / satisfying

f .k1gk2/ D �.k1/ ı f .g/ ı �.k2/ for all k1; k2 2 K and g 2 G;

with an associative C-algebra structure under the convolution

f1 � f2.g/ D

Z
G

f1.x/f2.x
�1g/ dx for all g 2 G:

The support of every element in H .G; �/ lies in the intertwining set

IG.�/ WD ¹g 2 G W HomK\gKg�1.�;
g�/ ¤ 0º:

We call .K; �/ an s-type if, for an irreducible representation � of G,

� jK contains � ” the inertial class of the cuspidal support of � is s;

in which case we have an equivalence of categories

M W Rs.G/! Mod-H .G; �/; � 7! HomK.�; �/:

We now return to our notations in the previous subsection, suppose that �M contains
a type .JM ; �M /, and .JP ; �P / is a GW -cover of .JM ; �M / (e.g., �P D �wP , for w 2 ¹y; zº).
In particular, we have

�P jJM D �M :
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Since .JM ; �M / is an ŒM; �M �-type, we obtain:

� that .JP ; �P / is a ŒM; �M �GW -type, i.e., we have an equivalence of categories

M W RŒM;�M �.GW /! Mod-H .GW ; �P /; � 7! HomJP .�P ; �/;

� an injective morphism of algebras [20, (8.3), (8.4)]

tP W H .M; �M /! H .GW ; �P /

giving rise to the natural functor

.tP /� W Mod-H .M; �M /! Mod-H .GW ; �P /;

D 7! HomH.M;�M /.H .GW ; �P /;D/;

such that the following diagram commutes:

(2.5) RŒM;�M �.GW /
MGW // Mod-H .GW ; �P /

RŒM;�M �.M/

�
GW
P

OO

MM // Mod-H .M; �P jJM /.

.tP /�

OO

We will be interested in when the parabolic induction

(2.6) Q�jdetjs Ì � WD �GWP . Q�jdetjs � �/; s 2 C;

is reducible, where Q� is a supercuspidal representation of QGZ and � is a supercuspidal repre-
sentation of GV . We stress that in the theory of covers one thinks in terms of inertial classes,
hence the parameter s is complex, whereas in classical references about such reducibilities, the
parameter s is real. In particular, by [47], if (2.6) is reducible for some s, which can be assumed
to be real by twisting Q� by a unitary character, then there is a real a such that Q�jdetja is self-
dual and, assuming Q� itself is self-dual, there is a unique real s Q�;� � 0, indeed a half integer,
such that (2.6) is reducible at s D ˙s Q�;� . We keep assuming Q� self-dual. Let f Q� be the order
of the stabilizer of Q� in the group of unramified characters of QGZ . By [19, Lemma 6.2.5] there
are exactly two self-dual representations in the inertial class of Q� , namely Q� and Q� 0, the twist
of Q� by the unramified character jdetj

�i
f Q� logq . The complex points of reducibility for Q� are of

the form

(2.7)
²
˙ s1;˙s2 C

�i

f Q� log q

³
for some s1; s2 2

1

2
Z�0;

and those for Q� 0 take the same form, with s1 and s2 exchanged. To obtain more information
about these values, we will study the structures of Hecke algebras and their modules in the next
section. We will also recall results of Mœglin about them in Section 2.7.

2.5. Structure of the Hecke algebras. We continue from the constructions in Sec-
tion 2.4, and briefly recall the structure of the above Hecke algebras, referring the detail to
[20, 36, 50].
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For QG, ifE DF Œˇ� is the field datum of s, then I QG.
Q�/D QJ with QJ= QJ ŠE�=UE Š h$E i,

where $E is a uniformizer of E. The Hecke algebra H . QG; Q�/ is isomorphic to CŒZ;Z�1�,
where Z, chosen up to a scalar, is supported on the single coset $E QJƒ (note that this coset is
independent of the choice of $E ). For G, since IG.�/ D Jƒ, we have H .G; �/ Š C. There-
fore, H .M; Q�� �/ Š CŒZ;Z�1�.

We now fix w to be either one of ¹y; zº and abbreviate �P D �wP and �P D �P ˝ �M ,
such that �P jJM D Q�� �. Consider the Hecke algebra H .GW ; �P /. If Q� is not self-dual, then

H .GW ; �P / Š H .M; Q�� �/ Š CŒZ;Z�1�:

The interesting case happens when Q� is self-dual, in which case it is known (see [50, Corol-
lary 6.16] and [12, Proposition 3.3]) that

rank
H.M;Q���/

.H .GW ; �P // D #.NGW .ŒM; Q� � ��/=M/ D 2:

The Hecke algebra H .GW ; �P / has two invertible generators Tw , for w 2 ¹y; zº. To describe
them precisely, we choose two elements sy and sz (for example, we may choose s1 and s$1
in [50] or [12]), each of which is a generator for the normalizer group NGW .ŒM; Q� � ��/
mod M such that

syJ
�
P sy � J

C

P and szJ
C

P s
�1
z � J

�
P ;

and moreover � WD sysz D iM .$EI; I / which is a P -positive element in the sense that

�JCP �
�1
� JCP and ��1J�P � � J

�
P :

(If we have chosen P� instead of P to define our covering type, then we have to switch y
and z.) Each of the two generators Tw , for w 2 ¹y; zº, is supported on the single double coset
JP swJP and is defined up to a scalar. We choose the scalars so that they satisfy

(2.8) Ty � Tz D tP .Z/; in particular tP .Z/.�/ D Ty.sy/Tz.sz/:

They also satisfy quadratic relations

(2.9) Tw � Tw D bwTw C cw1

for certain real numbers bw and cw . Here 1 is the unit in H .GW ; �P /, which is the function
supported on JP with 1.1/ D I�P , the identity operator on the representation space of �P .

For direct formulas for the coefficients, we follow [9, Section 1] and obtain

cy D .dim�P /
�1ŒJCP W syJ

�
P sy � tr.Ty.sy/Ty.s

�1
y //;(2.10a)

by D .dim�P /
�1

X
u2

syJ
C
P
sy\JP syJP
J�
P

trTy.u/;(2.10b)

and similarly

cz D .dim�P /
�1ŒszJ

�
P s
�1
z W J

C

P � tr.Tz.sz/Tz.s
�1
z //;(2.11a)

bz D .dim�P /
�1

X
u2

szJ
�
P
s�1z \JP szJP

J
C
P

trTz.u/:(2.11b)
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Later in (2.17) we will choose sw such that s2w 2 JM , so that we may normalize each Tw , up
to a sign, such that

(2.12) Tw.sw/
2
D �P .s

2
w/

which is equivalent to requiring that

Tw.sw/Tw.s
�1
w / D I�P

and so that cy D ŒJCP W syJ
�
P sy � and cz D ŒszJ�P s

�1
z W J

C

P � are both positive.
Indeed, by [50, Section 7.1], each Tw comes from the generator of H .UMw;E ; Q�� �/

which is then reduced to a Hecke algebra for the finite reductive quotient (not necessarily
connected)

Gw D UMw;E=U
1
Mw;E :

By Lusztig, under a suitable normalization of the generator that we will denote by Tw to avoid
confusion, the quadratic relation can be written as

(2.13) .Tw C 1/ � .Tw � q
rw
E 1/ D 0

for certain integers rw � 0. The values of rw can be determined by the method in [13, 34]
combined with Lusztig’s classification [35]. In our present situation, we can also compute
these values by comparing the coefficients, or more precisely the eigenvalues, between (2.13)
and (2.9), which will be done in Section 4.

2.6. Modules over Hecke algebras. It is worthwhile to mention a result, in (2.19)
below, from [12] about the real parts of the points of reducibility, i.e., the values of s1 and s2
in (2.7), which are enough to determine the inertial Jordan blocks (cf. [13]) of a supercuspidal
� ofG with type �. The result will be recalled after some prerequisites on modules over Hecke
algebras.

Suppose that Q� D cInd QG
QJ
Q�, where Q� extends to QJ the representation Q� of QJ . We abbrevi-

ate H QG D H . QG; Q�/ and recall the equivalence of categories

M QG
W RŒ QG; Q��. QG/! Mod-H . QG; Q�/; Q� 7! OQ� WD Hom QJ .

Q�; Q�/;

where the H QG-action on OQ� is given by

.� � f /.w/ D

Z
QG

Q�.g�1/ ı � ı f .g/.w/ dg; � 2 OQ�; f 2 H QG ; w 2 VQ�:

(Here VQ� is the representation space of Q�, and recall that we fixed the Haar measure on QG such
that the measure of QJƒ is 1.) In particular, we have

(2.14) � �Z D Q�.$�1E / ı � ıZ.$E /:

The group of unramified characters of QG acts on RŒ QG; Q��. QG/ by

Q� � Q� D Q� ˝ Q�:

and on H QG by
. Q� � f /.x/ D Q�.x/f .x/; f 2 H QG ; x 2

QG;

which induces an action on Mod-H QG naturally. The equivalence map M QG
is hence equivariant

under this action.
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We now turn to our constructed type �P in GW and abbreviate HM D H .M; �P jJM /

and HGW D H .GW ; �P /. For s 2 C, we denote by Ds the simple right HM -module

MM . Q�jdetjs � �/ D HomJM .�M ; Q�jdetjs � �/;

necessarily one-dimensional. We then denote by Xs the right HG-module

M. Q�jdetjs Ì �/ D HomJP .�P ; Q�jdetjs Ì �/ Š HomHM .HG ;Ds/;

where the last isomorphism is given by the commutative diagram (2.5).
On the other hand, the morphism tP that renders diagram (2.5) commutative satisfies

(2.15) tP .Z/.�/ D �P .�/
�1=2Z.$E /;

where �P is the modular character of P and � D sysz D iM .$EI; I / as in the previous
subsection.

By (2.14), the scalar action of Z on Ds is given by qsE Q�.$
�1
E /Z.$E /. Since (2.15)

relates Z.$E / and tP .Z/.�/, and the latter is given by (2.8), we get the scalar of the action
of Z on Ds as

(2.16) qsE�P .�/
1=2 Q�.$�1E /Ty.sy/Tz.sz/:

We now impose an assumption that

� the operators Q�.$E /, Ty.sy/, and Tz.sz/ on VQ� have finite orders.

This assumption can be easily satisfied when Q� is self-dual and sy and sz are chosen to be
simple enough; for example, we can and do pick

(2.17) sy D

264 I

I

I

375 and sz D

264 �$�1E I

I

$EI

375 ;
which by (2.12) means that Ty.sy/2 D 1 and Tz.sz/2 D Q�.�1/� �.1/. (The I s at the anti-
diagonal corners of sy and sz are the identity matrix under the identification of Z� and ZC in
Assumptions 2.2) We also use the fact

�P .�/ D ŒJ
C

P W �J
C

P �
�1� D ŒsyJ

C

P sy W J
�
P �ŒszJ

�
P s
�1
z W J

C

P �;

which is just cycz with our normalization which, we point out, is only up to sign so far. We write
c
1=2
w for the positive square root of cw .

We now compare the quadratic relations (2.9) for Tw and (2.13) for Tw , a scalar multiple
of Tw , and obtain, for w 2 ¹y; zº:

bw D �wc
1=2
w .q

rw=2
E � q

�rw=2
E /;

where �w is a sign. Hence the eigenvalues of Tw are

�wc
1=2
w q

rw=2
E and � �wc

1=2
w q

�rw=2
E

and the possible products of eigenvalues of Ty and Tz are

(2.18) �y�zc
1=2
y c1=2z q

˙.ryCrz/=2

E and � �y�zc
1=2
y c1=2z q

˙.ry�rz/=2

E :
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When Q�jdetjs Ì � , and hence Xs , is reducible, the eigenvalue of tP .Z/ on a one-dimensional
submodule is a product of one of those of Ty and one of those of Tz . By comparing the absolute
values of (2.16) and (2.18), we obtain

(2.19) ¹s1; s2º D

²
ry C rz

2
;
jry � rzj

2

³
:

In Section 4, we will provide more detail about the products of eigenvalues, and obtain the con-
ditions on the cuspidal types for which reducibilities happen. In particular, we will determine
the signs �y and �z under the above setup, deriving them from (2.10) and (2.11).

2.7. Mœglin’s results. In this subsection, we provide two results due to Mœglin, for
which we require the characteristic of F to be 0. The first one is called a finiteness result in
[38, 4. Proposition], and is improved in [39, Theorem 3.2.1]. The second one is a parity result
on Langlands parameters [38, 5.6. Proposition]. See also [40, 8.3.5] for non-quasi-split groups.

Given a supercuspidal representation � of a unitary group G D GV , then

(2.20)
X
Q�

X
b�0

b�2s Q��1 mod 2

b dimV Q� D dimV;

where the sum
P
Q� ranges over all supercuspidal representations Q� , each of which is a super-

cuspidal representation of a general linear group QGV Q� for some space V Q� , such that Q�jdetjs Ì �
is reducible at s Q� 2 1

2
Z with s Q� � 1. In particular, in the extreme case (which is studied in this

paper), if there exists such a Q� with dimV Q� D dimV , then it is the unique such representa-
tion that gives rise to the reducibility above with s Q� D 1, in which case Q� is the base change
of � .

We now switch to the Galois side and look at Langlands parameters. We recall that c
is the generator of Gal.F=F�/. We call an (semisimple, smooth) irreducible representation Q'
of WF (conjugate-)self-dual if Q' Š � Q' WD c Q'_, where

c
Q'.w/ D Q'.c�1wc/ for all w 2 WF ;

and Q'_ is the contragredient of Q'. Hence an irreducible representation Q' is self-dual if there
exists a non-degenerate bilinear form B on V WD Cdeg Q' such that

B.c Q'.w/u; Q'.w/v/ D B.u; v/ for all u; v 2 V and w 2 WF :

We also define a parity on Q': call Q' conjugate-orthogonal (resp. conjugate-symplectic) if,
furthermore,

(2.21) B.u; v/ D sgn. Q'/B. Q'.c2/v; u/ for all u; v 2 V;

where sgn. Q'/ D 1 (resp. �1). The parity of Q', as an irreducible representation of WF , can also
be defined using Asai L-functions: if rA is the Asai representation of GL.V/ (see [37, A.2.1]),
then Q' is conjugate-orthogonal if and only if

(2.22) L.s; Q'; rA/ WD L.s; rA ı Q'/; s 2 C;

has a pole at s D 0.
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3. Ramified unitary groups

In this section, we will impose a condition on our inducing types (see Definition 3.3),
the “strongly ramified” condition. The reason of imposing this condition was explained at the
end of the introduction section. We will see that this condition forces our unitary group to
be ramified, i.e., F=F� is ramified, and our inducing types take a simple form. With these
types, we will state our results on the values of the coefficients bw for w 2 ¹y; zº, the points of
reducibility in Section 3.2, and the base change of supercuspidal representations in Section 3.3.
The calculations will be postponed to Section 4.

3.1. The strongly ramified case. We first return to the setup in Section 2.2. To proceed,
let s D Œƒ; r; 0; ˇ� be a simple stratum, and denote E D F Œˇ�. Together with s is a sequence of
approximating simple strata sj WD Œ QA; r; rj ; 
jC1�, for j D 0; : : : ; d , satisfying the conditions
in [19, (2.4.2)]; in particular,

(i) the simple stratum sj is equivalent to Œ QA; r; rj ; 
j �,

(ii) if we denote by

� QBj the centralizer of 
j in QA,
� QBj D QBj \ QA, and
� sj the tame corestriction of A relative to F Œ
j �=F ,

then the derived stratum Œ QBjC1; rj ; rj � 1; sjC1.
j � 
jC1/� is equivalent to a simple
stratum, say Œ QBjC1; rj ; rj � 1; ıj �.

The numbers ¹rj ºdjD0 are the critical exponents of s. For the moment we do not require the
definition, but the simplicity of Œ QBjC1; rj ; rj � 1; ıj � implies that v QBjC1.ıj / D �rj .

We now assume that s is skew, we can apply [48, (1.10)] and do choose all sj to be also
skew. If we also choose the tame corestriction sj to be ˛-equivariant, then we can also assume
Œ QBjC1; rj ; rj � 1; ıj � to be skew. LetE� be the subfield ofE fixed by c D �˛. We now impose
the following condition on the field extension E=E�:

(3.1) E=E� is a quadratic ramified extension.

This condition implies that e D e.E=F / is odd. If K is an intermediate subfield between E
and F , and K� is the fixed-field of K by the involution �˛, then K=K� is also quadratic
ramified. In particular, our unitary group is forced to be ramified.

Proposition 3.1. When E=E� is ramified, all ¹rj ºdjD1 are odd.

Proof. Let Œ QBjC1; rj ; rj � 1; ıj � be the simple stratum equivalent to the derived stra-
tum Œ QBjC1; rj ; rj � 1; sjC1.
j � 
jC1/�, which is assumed to be skew; in particular, we have
ıj D

˛ıj . Hence �˛ defines an involution on the field F Œıj � whose restriction to F is c, the
Galois conjugation of F=F�. We denote its fixed field by F Œıj ��. By [19, (2.2.8)] and since
e.E=F / is odd, e.F Œıj �=F �/ is also odd. This implies that F Œıj �=F Œıj �� is ramified. The
˛-invariance of ıj implies that vF Œıj �.ıj / is odd, and so is

rj D �vF Œıj �.ıj /e.E=F /=e.F Œıj �=F /:
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This proposition facilitates our calculations remarkably. First of all, we immediately see
that QJ 1 D QH 1 from their constructions [19, Section 3.1]. We also have QJ 1

My D
QH 1

My since
My is a dilation and shift of a lattice sequence equivalent to ƒ, and as for QJ 1m D QH

1
m we

just note that the critical exponents of .ˇ; ˇ; ˇ/ are ¹3rj ºdjD1. The Heisenberg representation
containing a simple character Q� is just Q� itself, and so any beta-extension of Q� is a character.
If moreover Q� is self-dual, which is assumed from now on, then the p-primary beta extension
Q�0 admits further self-dual extensions to QJ. We can list them by first fixing uniformizers $F
and $E for F and E respectively, whose squares belong to F� and E�.

Proposition 3.2. There are two choices of self-dual extensions Q� of Q�0, given by

Q�.$F / D ˙1 and Q�.$F / D Q�.$E /:

Proof. The p-primary condition on Q�0 implies that it is self-dual and Q�j�E� D 1. With
the choice of$F , we have c$F D �$F , and so Q�.$F /2 D Q�.�1/ D 1. Also c$E D �$E ,
so a similar argument shows Q�.$E /2D 1. To show the last equality, we write $e

E D $F zu

for some z 2 �E D �E� and u 2 U 1E . The facts that c$E D �$E and e is odd imply that
u 2 U 1E� . Since Q� is self-dual and has order a power of p, we have Q�.u/ D Q�.u/ D 1. We now
have Q�.$E /e D Q�.$F /. Since e is odd, combining with Q�.$F /2 D Q�.$E /2 D 1, we have
Q�.$F / D Q�.$E /. This completes the proof.

For convenience, we pick the extension Q� D Q�0 such that Q�0.$E / D 1 from now on.
Finally, we choose our covering type �P D �P ˝ �M such that

�P D �
y
P ;

since in this case �P jJM D Q�0 � �0, i.e., it is p-primary.
We also take a self-dual level-zero type Q� of QJ D E� QJ , i.e., it is an extension of a rep-

resentation Q� of QJ inflated from an irreducible cuspidal representation of QJ= QJ 1 Š GLf0.kE /,
where f0 D n=ŒE W F �. Denote by E 0 the unramified extension of E of degree f0 in QA, so that
E 0� is embedded into QG accordingly. Associated to Q� is a level-zero character Q� WD Q� Q� of E 0�

which is Gal.E 0=E/-regular (which is equivalent to say that Q�jU�
E0

is Gal.E 0=E/-regular), such
that Q� is self-dual if and only if Q� is, in which case it implies that either f0 D 1 or else, by
[43, Lemmas 2.1 and 5.1], the conjugation �˛ on E extends to E 0 which is unramified over
the fixed field E 0� D .E

0/�˛, and in particular f0 is even.
We postpone the discussion of the case f0 > 1 to Section 3.4 and proceed to our main

results under the condition f0 D 1. The reason of imposing this condition is accounted for
in Proposition 3.13: if f0 > 1, the two candidates for the base change do not have the same
parity, therefore the decision between them can be made by computing Asai L-functions, as
was briefly explained in the last paragraph of the introduction.

We hence look at the case when

(3.2) f0 D dimF V=ŒE W F � D 1;

so that Q� D Q� Q�, i.e., Q� is a self-dual character. In this case,

Q� D Q�j�E is at most quadratic and Q�.$E /
2
D Q�.�1/;

so that Q�.$E / is a fourth root of unity.
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Let Q� be an extended maximal simple type of the form Q�0 ˝ Q�, where Q�0 is the unique
extension of a self-dual simple character given by Proposition 3.2 with Q�0.$E / D 1, and Q� is
a self-dual level-zero type. We summarize the above conditions in the following terminology.

Definition 3.3. We call the extended type Q� for QG, as well as its induced supercuspidal
representation Q� , strongly ramified when both (3.1) and (3.2) are satisfied, and similarly for �
and � for G.

Finally, we recall from [35, Section 5] (or see [34, Section 7.6]) the values of the inte-
gers rw , with w 2 ¹y; zº, that appear in the quadratic relations in (2.13) at the end of Sec-
tion 2.5. From our construction we have

Gy Š O3;kE ; so that ry D 1;

and also

Gz Š Sp2;kE � O1;kE ; so that rz D

´
1 if Q� is trivial,

0 otherwise.

From (2.19) the positive real parts of the points of reducibility are

¹0; 1º if Q� is trivial, and ¹1=2; 1=2º otherwise.

There is a support-preserving algebra morphism from [50, (7.3)],

H .UMw;E ; Q�� �/ ,! H .GW ; �P / for each w 2 ¹y; zº:

Hence if we view each generator Tw as an endomorphism of the module Xs corresponding
to the parabolic induction Q�jdetjs Ì � , then the above results, combining with the quadratic
relation (2.9), imply that

(3.3) bw D �w.qE � 1/.cw=qE /
1=2;

where �w is a sign. We will provide the precise value for the sign �w in the next subsection,
with calculation given in Section 4.

3.2. Reducibility results. To state the main result on the eigenvalues for the quadratic
relations, we impose the following assumptions which are used in Section 4.
� We take a strongly ramified supercuspidal representation � of G, i.e., if .�; �/ is a pair

consisting of a simple character and a level zero cuspidal representation defining � , then
that E=E� is ramified and dimV=ŒE W F � D 1.

� The extension E=F is tamely ramified, which allows us to assume that Ej D F Œ
j �
is contained in Ej�1 D F Œ
j�1� for all j , forming a tower of intermediate extensions
between E and F .

We also take a supercuspidal representation Q� of QG constructed by . Q�; Q�/, with � D . Q� jH1/1=2,
satisfying the same conditions above, i.e., Q� is strongly ramified, and E=F is tamely ramified.
The following theorem will be proven in Section 4:

Theorem 3.4. Suppose that Q� and � satisfy the above conditions.

(i) The coefficient by of the quadratic relation of Ty is

by D Q�.�2/�.�1/Ty.sy/.qE � 1/.cy=qE /
1=2:
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(ii) The coefficient bz of the quadratic relation of Tz is given as follows.

(a) When Q�j�E D .
�
�E
/f .E=F /, then bz D 0.

(b) When Q�j�E D .
�
�E
/f .E=F /�1, then

bz D Q�.�2/�
P
z .$E ; s/Tz.sz/.qE � 1/.cz=qE /

1=2;

where �Pz .$E ; s/ is a sign, associated to a quadratic Gauss sum and determined by
the choice of $E and the simple stratum s.

(The exact value of �Pz .$E ; s/ is given in (4.20).)

For the purpose of base change, the case when Q�j�E D .
�
�E
/f .E=F / is unimportant.

Corollary 3.5. The following statements hold.

(i) The two eigenvalues of Ty are

� Q�.�2/�.�1/Ty.sy/.cy=qE /
1=2 and Q�.�2/�.�1/Ty.sy/.cy=qE /

1=2qE :

(ii) When Q�j�E D .
�
�E
/f .E=F /�1, the two eigenvalues of Tz are

� Q�.�2/�Pz .$E ; s/Tz.sz/.cz=qE /
1=2 and Q�.�2/�Pz .$E ; s/Tz.sz/.cz=qE /

1=2qE :

We now choose Q� D Q�. Q�; Q�/ with

Q�j�E D

�
�

�E

�f .E=F /�1
and Q�.$E / D �.�1/�

P
z .$E ; s/:

This leads to the following desired result (see the next remark for the other choice of Q�j�E ).

Corollary 3.6. The points of reducibility of Q�jdetjs Ì � are

˙1 and
�i

log qE
:

Proof. Since the eigenvalue of tP .Z/ is the product of eigenvalues of Ty and Tz , the
comparison in (2.16) gives

(3.4) Q�.$�1E /qsE D �
P
z .$E ; s/�.�1/ � .�1 or q˙1E /:

The corollary follows by solving s.

Remark 3.7. If Q�j�E D .
�
�E
/f .E=F /, then we put Q�.$�1E / D ˙�.�1/ Q�.�2/ Q�.�1/1=2

and use similar arguments as above to show that points of reducibility are

˙
1

2
and ˙

1

2
C

�i

log qE
:

The choice of the square root Q�.�1/1=2 for Q�.$E / does not matter as we will discard this case
for base change anyway.

The following remark explains Corollaries 3.5 and 3.6 are independent of the various
choices made throughout the progress.
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Remark 3.8. Note that both Tw.sw/, for w 2 ¹y; zº, have been cancelled out in (3.4).
Indeed the reducibility points, as well as the base change result in Theorem 3.9 below, are
independent of the normalizations of Tw (and also that of Z) and the choices of sw . Moreover,
as explained in Section 2.5, if we have chosenP� instead ofP , then we need to switch the roles
of y and z. In this case, �Pz .$E ; s/ should then be denoted by �P

�

y .$E ; s/. Our corollaries are
clearly independent of choosing P or P�.

3.3. The main result for base change. Let us first look at a simple case when the
representations are characters, in which case E D F . The base change Q� of a character � from
U1.F=F�/ to GL1.F / is

Q�.x/ D �.x�x/ for x 2 F �

or more explicitly,

(3.5) �j.U 1F /�
D . Q�j.U 1F /�

/1=2; Q�j�F � 1; and Q�.$F / D �.�1/:

Note that the restriction Q�j�F has no relation with the level-zero part of �, i.e., the character of
the finite reductive quotient of U1, which is O1 D ¹˙1º. However, if we change Q� by twisting
a quadratic unramified character, then �.�1/ is changed to another sign.

We now consider the strongly ramified supercuspidal representations � D �.�; �/ and
Q� D Q�. Q�; Q�/ as in Definition 3.3. The following theorem, the main result of our paper, provides
the relations between .�; �/ and . Q�; Q�/ for which Q� is the base change of � .

Theorem 3.9. Suppose that char.F / D 0, and the simple characters � and Q� and the
tamely ramified characters Q� and � are related as follows.

(i) � D . Q� jH1/1=2,

(ii) Q�j�E D .
�
�E
/f .E=F /�1, and

(iii) Q�.$E / D �.�1/�Pz .$E ; s/, where �Pz .$E ; s/ is the sign appearing in Theorem 3.4.

Then Q� is the base change of � .

This can easily be deduced from the reducibility result in the previous subsection,
together with the finiteness result of Mœglin (2.20). One may notice that (3.5) is a special
case of the theorem.

Remark 3.10. We will prove in Proposition 4.8 that relation (iii) in Theorem 3.9 is
independent of the choice of the uniformizer $E .

Remark 3.11. By [38, 7.1], if in general a discrete series parameter, when viewed as
a representation of the Weil–Deligne group, has k irreducible components, then its correspond-
ing L-packet contains 2k�1 members. In our case when the base change representation is super-
cuspidal, then its parameter is an irreducible representation, and the L-packet is a singleton.

3.4. Appendix: The strongly ramified case and parity. This appendix is a sequel to
Section 3.1, and does not intervene with our main results. We do not assume that F=F� is
ramified.
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We provide a result on the parity of a (conjugate-)self-dual supercuspidal representa-
tion. To this end, we have to switch to the Galois side via the local Langlands correspondence
for GLn, and assume that char.F / D 0. We call a self-dual supercuspidal representation Q� of
a general linear group conjugate-orthogonal (resp. conjugate-symplectic) if the Asai L-function
[46] for Q� ,

L.s; Q�; rA/; s 2 C;

has a pole at s D 0. By [25], we know that Q� is conjugate-orthogonal (resp. conjugate-symplec-
tic) if its Langlands parameter is so (see (2.21) and (2.22)).

Remark 3.12. A (conjugate-)self-dual character Q� of GL1.F / (i.e., � Q� D Q�) is conju-
gate-orthogonal (resp. conjugate-symplectic) if and only if Q�jF�� is trivial (resp. is equal
to ıF=F� , the character on F�� with kernel the norm group NF=F�.F

�/). In particular, the
quadratic unramified character j � j�i= logq is conjugate-orthogonal (resp. conjugate-symplectic)
when F=F� is ramified (resp. unramified).

Let Q� be a supercuspidal representation of the group QGV Š GLn.F /, containing a simple
character with underlying stratum s D Œƒ; r; 0; ˇ�. Denote the field datum E D F Œˇ� and put
f0 D n=ŒE W F �. Then f Q� in (2.7) is equal to f0f .E=F /. Similar to the construction discussed
in Section 3.1, let E 0=E be an unramified extension of degree f0, such that the associated
level-zero component corresponds to a Gal.E 0=E/-regular character of E 0�. Suppose now Q�
is self-dual, and �˛ restricts to a conjugation on E extending c on F . The conjugation then
further extends to E 0 with fixed field E 0� ¨ E 0 (see [43, Lemmas 2.1]). If E=E� is unramified,
then of course E 0=E 0� is unramified and f0 is odd. If E=E� is ramified then, again as discussed
in Section 3.1, either f0 D 1 and so E D E 0, or else f0 is even and E 0=E 0� is unramified.

Proposition 3.13. A self-dual supercuspidal representation Q� is of the same parity as
its twist Q� 0 WD Q�jdetj�i=f0 logqE if and only if Q� is strongly ramified, i.e., f0 D 1 and E=E� is
ramified.

Proof. Let T=F be the maximal tamely ramified sub-extension of E=F , and T 0 be the
unramified extension of T of degree f0 with fixed field T 0� D T

0 \E 0�. Since E 0=T 0 is totally
ramified of degree a power of p which is odd, we have T 0=T 0� is ramified if and only if E 0=E 0�
is ramified. The discussion prior to the proposition then implies that

T 0=T 0� is ramified if and only if Q� is strongly ramified:

From [18, Chapter 1], suppose the Langlands parameter of Q� takes the form

IndT=F . Q̨ ˝ IndT 0=T Q�/ Š IndT 0=F .ResT 0=T Q̨ ˝ Q�/;

where Q̨ is an irreducible representation of WT , and Q�, as a character of T 0�, is viewed as
a character of WT 0 . Denote by j � jWT 0

the unramified character of WT 0 . The Langlands param-
eter of Q� 0 is therefore

IndT 0=F .ResT 0=T Q̨ ˝ Q�/˝ j � j
�i= logqT 0
WF

Š IndT 0=F .ResT 0=T Q̨ ˝ Q�j � j
�i= logqT 0
WT 0

/:

Since the parity of a representation is preserved under induction, the proof is done by the
remark before the proposition, that j � j�i= logqT 0

T 0 is conjugate-orthogonal if and only if T 0=T 0�
is ramified.
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4. The coefficients

The whole section is devoted to proving Theorem 3.4. It suffices to compute the values
of bw for w 2 ¹y; zº. We do not require that char.F / D 0.

We begin by recalling the explicit form of J 1P . First of all, we recall and expand the
subrings QH and QJ in Section 2.2,

QH D QHƒ;ˇ D QAƒ;E C QP
.r0=2/C
ƒ;E1

C � � � C QP
.rd�1=2/C
ƒ;Ed

C QP
.rd=2/C
ƒ ;

QJ D QJƒ;ˇ D QAƒ;E C QP
r0=2
ƒ;E1

C � � � C QP
rd�1=2
ƒ;Ed

C QP
rd=2
ƒ :

By [10, Proposition 1],

(4.1) J 1m D

264 QJ 1 QJ 0 $�1E
QH1

QH1 QJ 1 QJ 0

$E QJ
0 QH1 QJ 1

375 \ AW :
In the strongly ramified case, since all exponents ri D 2si C 1, for i D 0; : : : ; d , are odd, we
have QJƒ D QHƒ. We can show that J 1m D H1m and J 1m D H

1
m D J

1
P .

Note that we have chosen certain convenient normalizations of Tw , forw 2 ¹y; zº, andZ
in the relation tP .Z/ D Ty � Tz to simplify our calculations. Following [9], we may choose Tw
such that

Tw.sw/Tw.s
�1
w / D 1;

which can easily be shown to be equivalent to requiring that Tw.sw/2 D �P .s2w/.

4.1. Computation of by . We use formula (2.10b) to compute by . Recall that it is

by D .dim�P /
�1

X
u2

syJ
C
P
sy\JP syJP
J�
P

trTy.u/:

The condition J 1m D H
1
m implies that dim�P D 1, so that the sum becomes

by D
X

u2.syJ
C

P sy\JP syJP /=J
�
P

Ty.u/:

With the matrix presentation, we put u D .X; Y /� with notation in Section 2.3, we hence com-
pute Ty..X; Y /�/ for each .X; Y /� 2 .syJCP sy \ JP syJP /=J

�
P . We also recall (2.3) which we

use repeatedly

(4.2) X˛X D Y � ˛Y:

We take

sy D

264 I

I

I

375 :
If

.X; Y /� D

264 I
˛X I

Y X I

375 2 syJCP sy=J�P ;
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then from (4.1) we have

X 2 QJ 0= QH1 and Y 2 $�1E
QH1=$E QJ

0:

Also, we write
supp.Ty/ D JP syJP D JCP syJMJ

C

P ;

so that .X; Y /� 2 syJCP sy \ JP syJP can be written as264 I
˛X I

Y X I

375 D
264I

�YX Y �1

I ˛.�YX/

I

375
264 I

I

I

375

�

264Y I � ˛XY �1X
�Y

375
2641 Y �1X Y �1

1 ˛.Y �1X/

1

375 ;
or in simplified symbols,

(4.3) .X; Y /� D .�YX; Y �1/C � sy � iM .Y; I �
˛XY �1X/ � .Y �1X; Y �1/C:

Lemma 4.1. Each coset in .syJCP sy \ JP syJP /=J
�
P has a representative of the form

.X; Y0.I C Y
0//� with Y0 2 �E andX 2 .oE npE / mod pE such that 2Y0 � �X2 mod pE ,

and I C Y 0 2 QJ 1.

Proof. The coset space QJ 0= QH1 containing X , when viewed as a kF -vector space, takes
the form .oE=pE /˚ . QJ

1= QH1/. If rj D 2sj C 1 are odd, then QJ 1 D QH1, and so we can choose
X 2 oE mod pE . If furthermore .X; Y /� 2 JP syJP , then Y is forced to belong to QJ by (4.3),
which allows us to choose Y0 2 �E . The relation (4.2) implies that 2Y0 � �X2 mod pE , so
that X … pE , and Y0 is uniquely determined by X . Hence the lemma follows.

From (4.3) we obtain

Ty..X; Y /
�/ D Ty.sy/ Q�.Y /�.I �

˛XY �1X/:

The following lemma shows that it is indeed a constant.

Lemma 4.2. For all .X; Y /� 2 .syJCP sy \ JP syJP /=J
�
P ,

Ty..X; Y /
�/ D Q�.�2/�.�1/Ty.sy/:

Proof. Since now X 2 QJ is invertible, we have

I � ˛XY �1X D �˛XY �1�Y �1˛X�1

and so

�.I � ˛XY �1X/ D �.�1/�.Y �Y /�1 D �.�1/�..I C Y 0/� .I C Y 0//�1:

On the other hand, that 2Y0 � �X2 mod pE implies that

Q�.Y / D Q�.Y0/ Q�.I C Y
0/ D Q�.�2/ Q�.I C Y 0/:
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Since Q� and � are related by (2.2), we have

Q�.I C Y 0/ D �..I C Y 0/� .I C Y 0//;

and the lemma follows.

By combining the above two lemmas with (3.3), we obtain

by D Q�.�2/�.�1/Ty.sy/.qE � 1/.cy=qE /
1=2:

This proves Theorem 3.4 (i).

4.2. Computation of bz. We use formula (2.11b) to compute bz . Recall that it is

bz D .dim�P /
�1

X
u2

szJ
�
P
s�1z \JP szJP

J
C
P

trTz.u/ D
X

u2
szJ
�
P
s�1z \JP szJP

J
C
P

Tz.u/

as dim�P D 1. We put u D .X; Y /C with notation in Section 2.3, and compute Tz..X; Y /C/
for each .X; Y /C 2 .s�1z J�P sz \ JP szJP /=J

C

P . We take

sz D

264 �$�1E I

I

$EI

375 :
If

.X; Y /C D

264I X Y

I ˛X

I

375 2 s�1z J�P sz=J
C

P ;

then we have
X 2 $�1E

QH1= QJ 0 and Y 2 $�1E
QJ 0=$�1E

QH1:

We also write
supp.Tz/ D JP szJP D J�P JM szJ

�
P ;

so that .X; Y /C 2 JP szJP \ szJ�P sz can be written as264I X Y

I ˛X

I

375 D
264 I
˛XY �1 I

Y �1 ˛.˛XY �1/ I

375
264�Y$E I � ˛XY �1X

�Y$�1E

375

�

264 �$�1E I

I

$EI

375
264 I
˛X�Y I

Y �1 ˛.˛X�Y / I

375 ;
or in simplified symbols,

(4.4) .X; Y /C D .�YX; Y �1/� � iM .�Y$E ; I �
˛XY �1X/ � sz � .Y

�1X; Y �1/�:

If we write Y D y$�1E .I C Y 0/ with y 2 oE mod pE and I C Y 0 2 QJ 1 D QH 1, then from
(4.4) we can assume that y 2 �E . We hence obtain

(4.5) Tz..X; Y /
C/ D Q�.�y/ Q�.I C Y 0/�.I � ˛XY �1X/Tz.sz/:

In the following subsections, we will expand and simplify Q�.I C Y 0/ and �.I � ˛XY �1X/.
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4.2.1. Expanding simple characters. We fix an additive character  of F of conduc-
tor 1, which means that it is trivial on pF but not oF . If c 2 A with vƒ.c/ D �r , then

 c W I CX 7!  F ı trA=F .cX/

defines a character on the compact subgroup QU .r=2/Cƒ which looks additive, in the sense that

 c..I CX/.I C Y // D  c.I CX C Y /:

Recall from Section 3.1 that, given the skew simple stratum s D Œƒ; r; 0; ˇ�, we have an
approximation by skew simple strata Œƒ; r; rj ; 
jC1�, j D 0; : : : ; d , equivalent to Œƒ; r; rj ; 
j �.
We denote cj D 
j �
jC1 (where we take 
dC1D 0) andEj DF Œ
j �. We have vƒ.cj / D �rj .
Since rj D 2sj C 1 is odd, .rj =2/C D sj C 1.

The compact subgroup QH 1 factorizes as (by [19, (3.1.15)] inductively)

(4.6) QU 1E
QU
s0C1
ƒ;E1

� � � QU
sd�1C1
ƒ;Ed

QU
sdC1
ƒ :

Denote QH t D QH 1 \ QU tƒ for all t � 1. A simple character Q� D Q�0 2 QC.ƒ; 0; ˇ/ takes the fol-
lowing inductive form: for j D 0; : : : ; d C 1,

Q�j j QU
sj�1C1

ƒ;Ej

D Q�j ı det QBj

for some character Q�j of U sj�1C1Ej
, and for j D 0; : : : ; d ,

Q�j j QH sjC1 D
Q�jC1 cj

for some simple character Q�jC1 2 QC.ƒ; sj ; 
j /.
Similarly, � is defined on

(4.7) H 1
D U 1E=E�U

s0C1
ƒ;E1=E�1

� � �U
sd�1C1
ƒ;Ed=E�d

U
sdC1
ƒ;F=F�

and takes the form
�j j

U
sj�1C1

ƒ;Ej =E�j

D �j ı det QBj

for some character �j of U sj�1C1
Ej =E�j

and j D 0; : : : ; d C 1, and

�j jH sjC1 D �jC1 cj =2

for some simple character �jC1 2 C.ƒ; sj ; 
j / and j D 0; : : : ; d .
Since Q� and � are related by (2.2), we can and do assume similar relations between Q�j

and �j , and also between Q�j and �j , i.e.,

�j D . Q�j j
U
sj�1C1

Ej =E�j

/1=2:

In the following subsections, we call the factors of Q� involving Q�j the multiplicative parts
of Q� , and those involving  cj the additive parts, and similarly for � .

4.2.2. Cancellation of multiplicative parts. We recall that we have written

Y D y$�1E .I C Y 0/;

with y 2 �E and I C Y 0 2 QH 1. We first compare the multiplicative parts of Q�.I C Y 0/ and
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�.I � ˛XY �1X/ by rewriting

Q�.I C Y 0/ D �..I C Y 0/� .I C Y 0// D �.�1/�.I �X˛XY �1/�1;

and so we are actually comparing

�.I � ˛XY �1X/ and �.I �X˛XY �1/:

Starting from the proposition below, we have to assume that

E=F is tamely ramified.

This condition allows us to assume that each field Ej D F Œ
j �, is contained in Ej�1 for all j ,
forming a tower of intermediate extensions between E and F .

Lemma 4.3. The multiplicative parts of �.I � ˛XY �1X/ and Q�.I C Y 0/ cancel with
each other.

Proof. Let us temporarily write W D ˛XY �1. We have to compare �.I �WX/ and
�.I �XW /. Let us first expand

X D X0 C � � � CXdC1;

and similarly forW . For each i D 0; : : : ; d C 1, we writeX�i D X0 C � � � CXi , and similarly
for W�i . The part of the character �.I �WX/ involving �i is

�i ı detEi ..I �W�i�1X�i�1/
�1.I �W�iX�i //

and similarly for the part of �.I �X˛XY �1/ involving �i , with W and X exchanged. Due to
the identity

det .I �WX/ D det .I �XW /

these two parts are the same.

4.2.3. Choosing representatives. Here we will expand X and Y D y$�1E .I C Y 0/

such that the additive parts of Q�.I C Y 0/ and of �.I � ˛XY �1X/ admit many simplifications.
The coset spaces $�1E QH

1= QJ 0 and $�1E QJ
0=$�1E

QH1 respectively containing X and Y ,
when viewed as kF -vector spaces, take the form

(4.8) $�1E
QH1= QJ 0 Š

dM
jD0

Wz;j ;

where
Wz;j D

QP
�1C.rj =2/C
ƒ;EjC1

=. QP
�1C.rj =2/C
ƒ;Ej

C QP
rj =2

ƒ;EjC1
/;

and

$�1E
QJ 0=$�1E

QH1 Š k0E ˚
dM
jD0

W0z;j ;

where

k0E Š p�1E =oE and W0z;j D
QP
�1C.rj =2/

ƒ;EjC1
=. QP
�1C.rj =2/

ƒ;Ej
C QP

�1C.rj =2/C
ƒ;EjC1

/:

Since each rj D 2sj C 1 is odd, the summand W0z;j is trivial. We expand X D
PdC1
jD0 Xj and
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Y 0 D
PdC1
jD0 Y

0
j accordingly, first requiring that

Y0 D y$
�1
E where y 2 �E ; and Xj 2 QP

sj�1
ƒ;Ej

mod QPsj�1C1ƒ;Ej
C QP

sj�1
ƒ;Ej�1

for j > 0:

With these fixed, we choose auxiliary data

(4.9) X0 2 oE and Yj 2 QP
sj�1
ƒ;Ej

for j > 0

such that X˛X D Y � ˛Y still holds. Eventually our main results are independent of these
auxiliary choices, see (4.18) for example.

We require some notations. Let Ei D F Œ
i � and QBi the centralizer of 
i in QA. For i � 1,
we denote by

QB?i�1 the orthogonal complement of QBi�1 in QBi

relative to the non-degenerate symmetric form

.X; Y / 7! tr QBi=Ei .XY /:

We also write 1 � ˛ W QA! QA for the map x 7! x � ˛x, whose image is denoted by QA�˛.

Lemma 4.4. Each coset in .s�1z J�P sz \ JP szJP /=J
C

P has a representative

.X; y$�1E .I C Y 0//C

with expansions X D
PdC1
jD0 Xj and Y 0 D

PdC1
jD0 Y

0
j such that

(i) X0 2 oE andXj 2 QP
sj�1
ƒ;Ej

mod QPsj�1ƒ;Ej�1
C QP

sj�1C1

ƒ;Ej
, j � 1, that lies in QPsj�1ƒ;Ej

\ QB?j�1,

(ii) Y 00 2 pE and Y 0j 2 QP
sj�1C1

ƒ;Ej
for j � 1, with a decomposition

Y 0j D Pj CQj ;

where Pj 2 QP
sj�1C1

ƒ;Ej
\ QB?j�1 and Qj 2 QP

rj�1
ƒ;Ej

, satisfying the equations

(4.10)
X

max.k;l/Dj
k¤l

Xk
˛Xl D .1 � ˛/.y$

�1
E Pj /

and

(4.11) Xj
˛Xj D .1 � ˛/.y$

�1
E Qj /:

(Note that P0 D 0.)

Proof. We can choose Xj , for j � 1, as stated using the commutative diagram

QB?j�1
� � // QBj // QBj = QBj�1

QPkƒ;Ej \
QB?j�1

?�

OO

� � // QPkƒ;Ej

?�

OO

// QPkƒ;Ej =
QPkƒ;Ej�1 .
?�

OO

We see that the top row is an ˛-equivariant isomorphism of Ej -spaces, which induces at the
bottom row an ˛-equivariant isomorphism QPkƒ;Ej \

QB?j�1 Š
QPkƒ;Ej =

QPkƒ;Ej�1 of oEj -lattices
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for all k 2 Z. For choosing Pj , we notice that the left-hand side of (4.10) lies in QB?j�1 by (4.12)
as well as in the .�˛/-fixed point subspaces QB�˛j WD QBj \ QA

�˛, and the restriction

1 � ˛ W QPkƒ;Ej \
QB?j�1 !

QPkƒ;Ej \
QB?j�1 \

QB�˛j

is surjective. We can also choose Qj similarly. Now by putting Y 0j D Pj CQj , we obtainX
max.k;l/Dj

Xk
˛Xl D .1 � ˛/.y$

�1
E Y 0j /;

and summing it up for all j yields X˛X D Y � ˛Y .

Here is a very simple consequence which will be frequently used later on: suppose that T
is either Xj or Pj , for j � 1, as in Lemma 4.4, and U is a product of elements in Bi for i < j ,
then

(4.12) tr QBj =Ej .T U / D 0:

4.2.4. Simplifying the additive parts. We will simplify the additive parts of Q�.I C Y 0/
and �.I�˛XY �1X/. Since each factor of the additive parts is a value of the character ıtrA=F ,
we will show that some of the inputs either lie in QPƒ or have trace 0 by (4.12), so that their
character values are 1.

Lemma 4.5. The additive part of Q�.I C Y 0/ is

dY
jD0

 ı trA=F
�
.cjy

�1$E=2/XjC1
˛XjC1

�
:

Proof. In our calculation below, we have to switch between the additive expansion of
Y 0 2 QH1ƒ given by Y 0 D

PdC1
iD0 Y

0
i and the multiplicative expansion according to (4.6). Let us

shorthand write

.I C Y�/
k
0 D .I C Y0/ � � � .I C Yk/ and .I C Y�/

0
k D .I C Yk/ � � � .I C Y0/

for k D 0; : : : ; d C 1, so that Y D y$�1E .I C Y�/
dC1
0 . We have also written

Y D y$�1E .I C Y 0/;

where Y 0 D
PdC1
iD0 Y

0
i , such that

(4.13) Y 0i D .I C Y�/
i�1
0 Yi :

The additive part of Q�.I C Y 0/ is therefore equal to

(4.14)
dC1Y
i;jD0
j<i

 cj .I C Yi /:

Note that each factor above can be rewritten as

(4.15)  cj .I C Yi / D  ı trA=F .
cj

2
.Yi C

˛Yi //:
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We write bY i 2 QPsi�1C1ƒ;Ei
such that .I C Yi /.I C bY i / D 1. We fix j and rewrite the factors on

the right-hand side of (4.15) as

 ı trA=F

�
cj

2
..I C bY �/0i�1Y 0i C ˛Y 0i .I �

˛bY �/i�10 /

�
:

This expression admits a lot of simplification by writing Y 0i D Pi CQi as in Lemma 4.4. First
of all, we have

 ı trA=F

�
cj

2
.I C bY �/0i�1Pi� D 1

since each summand has trace 0 by (4.12), and similarly

 ı trA=F

�
cj

2
˛Pi .I �

˛bY �/i�10

�
D 1:

Moreover,

 ı trA=F

�
cj

2
.I C bY �/0i�1Qi� D  ı trA=F

�
cj

2
Qi

�
;

since cj
2
Qi 2 QAƒ and all other summands (involving bY �) lie in QPƒ. By the same reason, this

term is non-trivial only when i D j C 1. We have similarly

 ı trA=F

�
cj

2
˛Qi .I �

˛bY �/i�10

�
D

´
 ı trA=F .

cj
2
˛QjC1/ if i D j C 1;

1 otherwise:

Therefore, (4.14) is equal to

dY
jD0

 ı trA=F

�
cj

2
.QjC1 C

˛QjC1/

�
and the lemma follows using (4.11).

Lemma 4.6. The additive part of �.I � ˛XY �1X/ is

dY
kD0

 ı trA=F

�
�

�
ck

2

�
˛XkC1y

�1$EXkC1

�
:

Proof. If we expand

I � ˛XY �1X D .I CW�/
dC1
0

using (4.7) for some Wk 2 QP
sk�1C1
ƒ;Ek

, then the additive part of �.I � ˛XY �1X/ can be written
as

(4.16)
dC1Y
k;lD0
k<l

 ck=2.I CWl/;

To express I � ˛XY �1X additively, we first denote, for every subset S � ¹0; : : : ; d C 1º,
a shorthand notation

.bY �/S D bY i1 � � �bY i#S if S D ¹i1; : : : ; i#Sº listed in descending order.
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We can expand I � ˛XY �1X as

I � ˛XY �1X D I �

dC1X
i;jD0

X
S

˛Xi .bY �/Sy�1$EXj ;
so that we can write I � ˛XY �1X D I C

PdC1
kD0 W

0
k

according to the additive expansion
of H1ƒ, where

(4.17) W 0k D �
X

max¹i;j;SºDk

˛Xi .bY �/Sy�1$EXj 2 QPsk�1C1ƒ;Ek
;

We hence have
W 0k D .I CW�/

k�1
0 Wk :

We now fix k and simplify a sub-product from (4.16):Y
k<l

 ck=2.I CWl/

by first expressing each of its factors as

 ck=2.I CWl/ D  ı trA=F

�
ck

2
.I C bW �/0l�1W 0l �

and using (4.17) to further expand the input for  ı trA=F into summands of the form

�
ck

2
.I C bW �/0l�1˛Xi .bY �/Sy�1$EXj :

The indices for this summand are .i; j; S/ such that max¹i; j; Sº D l > k. In the following
cases, this .i; j; S/-summand has zero trace.

(i) If maxS < l and i ¤ j , then since one of i and j is l , the summand has trace 0 by (4.12).

(ii) If maxS D l and exactly one of i and j is also l , then the summand lies in QPƒ.

(iii) If both i; j < l , then maxS D l . We write the summand as

�
ck

2
.I C bW �/0l�1˛XibY l.bY �/S�¹lºy�1$EXj

and further expand bY l DP1mD1.�Yl/m. Any summand involving .�Yl/m with m � 2
lies in QPƒ, i.e., we remain to consider summands of the form

ck

2
.I C bW �/0l�1˛XiYl.bY �/S�¹lºy�1$EXj :

We then change Yl into .I C bY �/0l�1Y 0l using (4.13) and decompose Y 0
l
D Pl CQl . We

then see that any summand involving Pl has trace 0, and any of those involving Ql lies
in QPƒ.

(iv) The remaining case is i D j D l . The summand lies in QPƒ except when l D k C 1 and
S D ;, which is

�
ck

2
˛XkC1y

�1$EXkC1:



Blondel and Tam, Base change for ramified unitary groups 157

Therefore, we obtainY
l>k

 ck=2.I CWl/ D  ı trA=F

�
�
ck

2
˛XkC1y

�1$EXkC1

�
and the lemma follows by multiplying the above equalities for all k together.

By Lemmas 4.5 and 4.6, the additive part of Q�.I C Y 0/�.I � ˛XY �1X/ is equal to

(4.18)
dY
jD0

 ı trA=F
�
.y�1$E=2/.cjXjC1 �XjC1cj /

˛XjC1
�
:

Note that it is independent of the auxiliary X0, as expected from (4.9).

4.2.5. Non-degeneracy of a quadratic form. Define, for j D 0; : : : ; d , a bilinear form
on Wz;j defined in (4.8) by

Dj .X; Y / D trA=F .y
�1$E .Xcj � cjX/

˛Y // mod pF for X; Y 2Wz;j

and put
D D D0 ? � � � ? Dd ;

which defines a bilinear form on Wz D
Ld
jD0Wz;j such that the decomposition (4.8) is ortho-

gonal.

Proposition 4.7. The quadratic form D is non-degenerate.

Proof. It suffices to show that each Dj is non-degenerate. Hence we reduce to the situ-
ation where

� E=F is a tamely ramified extension in QA, generated by an element c 2 QA with valuation
�r D �2s � 1,

� D.X; Y / D trA=F .$Eac.X/Y / mod pF , where ac W X 7! Xc � cX , is a bilinear form
on W WD QPsƒ=.

QPsƒ;E C
QPsC1ƒ /.

We want to show that D is non-degenerate, which is equivalent to showing that

ac.X/ 2 QP
�s
ƒ H) X 2 QPsƒ;E C

QPsC1ƒ :

This is implied by the definition of the critical exponent [19, (1.4.5)]

k0.c;ƒ/ D max¹k 2 Z W a�1c QP
k
ƒ \

QAƒ 6� QAƒ;E C QPƒº

and the minimality of c, i.e., k0.c;ƒ/ D vƒ.c/ D �r (see [19, (1.4.15)]).

4.2.6. A quadratic Gauss sum. By putting together (2.11), (4.5), Lemmas 4.3, 4.5,
and 4.6, we obtain bz , which is

Q�.�1/Tz.sz/
X
y2�E

Q�.y/(4.19)

�

X
X2Wz

dY
jD0

 ı trA=F
�
.y�1$E=2/.cjXjC1 �XjC1cj /

˛XjC1
�
:
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For a fixed y 2 �E , the above inner sum over X 2Wz is a quadratic Gauss sum, defined on
the kF -space Wz equipped with the quadratic form in Proposition 4.7 which is non-degenerate.
Note that, since ƒ is an oE -lattice chain, Wz is a kE -space as well. From basic properties of
quadratic Gauss sums (cf. [15, Proposition 4.5]), the scalar y�1=2 can be factored out under
the quadratic character as �

y�1=2

�E

�dimkE Wz

D

�
2y

�E

�dimkE Wz

;

so we can express (4.19) as

Q�.�1/Tz.sz/
X
y2�E

Q�.y/

�
2y

�E

�dimkE Wz

�

X
X2Wz

dY
jD0

 ı trA=F .$E .cjXjC1 �XjC1cj /
˛XjC1/:

Note that dimkE Wz D fe � 1, where e D e.E=F /, f D f .E=F /. In our situation that e is
odd, the sum over y 2 �E is 0 when Q�j�E D .

�
�E
/f . Therefore

bz D 0 when Q�j�E D
�
�

�E

�f
:

We henceforth assume Q�j�E D .
�
�E
/f �1. The inner sum

(4.20)
X
X2Wz

dY
jD0

 ı trA=F .$E .cjXjC1 �XjC1cj /
˛XjC1/

equals a fourth root of unity, denoted by �Pz .$E ; s;  /, times the positive number .#Wz/
1=2.

In our situation that q is odd, since

�Pz .$E ; s;  /
2
D

�
�1

�E

�dimkE Wz

D

�
�1

�E

�f �1
D .�1/.q

f �1/.f �1/=2
D 1;

the normalized sum �Pz .$E ; s;  / is actually a sign. Therefore,

bz D Q�.�2/�
P
z .$E ; s;  /Tz.sz/#.Wz/

1=2.qE � 1/ when Q�j�E D
�
�

�E

�f �1
:

By noting that #.Wz/ D cz=qE , we finish the proof of Theorem 3.4 (ii).
Finally, we show that our main results are independent of the choices of the additive

character  and the uniformizer $E , as they should be.

Proposition 4.8. The following statements hold.

(i) The sign �Pz .$E ; s;  / is independent of the additive character  , hence we denote it
by �Pz .$E ; s/.

(ii) The relation Q�.$E / D �Pz .$E ; s/�.�1/ in Theorem 3.9 is independent of the choice
of $E .
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Proof. For (i), we show that the sign �Pz .$E ; s;  / is independent of the chosen additive
character  of F . Indeed if we replace  by  a W F ! C�; x 7!  .ax/ for some a 2 F �,
then the Gauss sum is multiplied by . a

�E
/f �1. Note that the character . �

�E
/f �1 is non-trivial

only when f is even, so that Œ�E W �F � D .q
f � 1/=.q � 1/ is also even and . �

�E
/f �1 is

always trivial on �F .
To prove (ii), suppose that $E is replaced by u$E for some u 2 UE . It is easy to see

that �Pz .u$E ; s/ D Q�.u/�Pz .$E ; s/ from the expression (4.19).
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