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Highlights 

 The field of insect navigation is a good example of the implementation of Marr’s three levels 

of explanation. 

 It illustrates how important it is to consider an intermediary ‘computational’ level between 

neurons and behaviour. 

 Ethological background and computational modelling both have been key to characterize this 

intermediary level. 

 Recent descriptions of neural circuits can be well mapped to such identified computation 

level, rather than directly to behaviour. 

 This led to multi-level understandings of complex insect navigational behaviours, of which we 

provide examples here. 

 

Abstract 

To understand the brain is to understand behaviour. However, understanding behaviour itself 

requires consideration of sensory information, body movements and the animal’s ecology. 

Therefore, understanding the link between neurons and behaviour is a multi-level problem, which 

can be achieved when considering Marr’s three levels of understanding: behaviour, computation, 

and neural implementation. Rather than establishing direct links between neurons and behaviour, 

the matter boils down to understanding two transitions: the link between neurons and brain 

computation on one hand, and the link between brain computations and behaviour on the other 

hand. The field of insect navigation illustrates well the power of such two-sided endeavour. We 

provide here examples revealing that each transition requires its own approach with its own intrinsic 

difficulties, and show how modelling can help us reach the desired multi-level understanding. 

 

Keywords: insects, navigation, modelling, neuroethology 

 

Introduction 

Behaviour, like any natural phenomena, is entwined in the universe. To ‘explain’ behaviour, an 

arbitrary amount of levels (or scales) of explanation may be invoked, from the interactions between 

atoms to long-term influences of the surrounding ecosystems. The choice of levels of course depends 

on one’s question. The typical neuroscience approach tries to establish direct causal links between 

the level of ‘neurons’ and the level of the ‘individual's behaviour’. This endeavour can be quite 
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problematic, as understanding ‘how brain produces behaviour’ cannot be achieved by solely studying 

the neural circuitry [1], but requires first a good understanding of the animal’s behaviour itself, 

which, most of the time, is lacking [2], [3]. In response to this problem, Marr has suggested that one 

should consider a third, intermediate, level between neurons and behaviour: the ‘computational 

level [3], [4]. Considering three levels implies understanding two transitions: from neurons to 

computation, and from computation to behaviour.  

Here, we show that the field of insect navigation, with its strong ethological background, has 

naturally implemented this three-level approach while seeking how brains relate to behaviour. 

Neural mappings in various insect species have been vital in developing recent computational models 

and behavioural data from other species have been vital in linking them to ecologically-relevant 

behaviour. This combination of approaches makes the field of insect navigation an interesting 

example case to help us identifying the possible difficulties and solutions towards a multi-level 

understanding from neurons to behaviour. 

 

Three levels to bridge neurons and behaviour 

The variety of approaches to insect navigation can be mapped to Marr’s proposed three levels [4]. 

Level 3: Behaviour  

The level 3 corresponds to the ecologically relevant behaviour itself. Thanks to its ethological 

background [5]–[7], the field of insect navigation is rich in such examples: the long-range migrating 

prowess of Monarch butterflies; the efficient visit of multiple flower patches by bumblebees; or the 

impressive homing abilities of desert ants after kilometre-long foraging bouts, are few examples. The 

key is here that the behaviour is observed in the field and interpreted in the light of the species 

natural tasks. 

Level 2: Computation 

The ‘computation level’ comprises the relationship between ‘computational modules’, which may (or 

may not) be mapped to brain areas. These functional modules interact together with the body and 

environment to extract information, to store it, and to produce motor outputs. The computation 

level can be used to explain behaviour, without the need to consider the neural implementation 

level. For instance, homing behaviour may result from a process of path integration (reviewed in [8]), 

which requires computational modules such as an internal compass, an odometer, and the 

integration of both into a homing vector to influence the animal’s course. Often, if not always, 

interactions between computational modules, the body and the environment, show emergent 

properties: meaning that behaviour cannot be reduced to the understanding of a single module 

studied in isolation. 

Level 1: Neurons 

The neural implementation level refers to the actual connectivity at the scale of neurons or groups of 

neurons. The aim being to explain ‘computational module’ rather than behaviour. For instance, the 

insects’ internal compass (i.e., a computational module) has been shown to emerge from a subset of 

neurons organised into what is called a ring attractor [9]. Here again, groups of neurons typically 

show emergent properties – which cannot be grasped when looking at single neurons only– that 

allow the above level (‘computation’) to emerge. 

The need for models 
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Three levels imply two transitions (level 3 <-> level 2 <-> level 1), and understanding a transition 

requires a so-called ‘model’ [10]. A model, as we mean here, is not necessarily an algorithm run by a 

computer (computational model), it can simply use words. However, as we will see, computational 

models are key to explore the non-linear dynamics of brain-body-environment interactions. In any 

case, to provide a cross-level ‘understanding’, the model must establish and clearly state rules that 

explain how the desired proprieties at a given level emerge from the assumptions at the level below. 

We next provide examples of how models can help us understand both types of transitions.  

 

Models from ‘Behaviour’ to ’Computation’ (level 3 <-> level 2) 

Understanding behaviour is far from trivial, as it is not merely a consequence of brain activity, but 

emerges from a complex system forming a closed loop involving dynamics between the animals’ 

brain, body and environment, a phenomenon that is crucial yet often overlooked [11], [12]. These 

processes are hard to intuit because the interactions usually happen in parallel and are typically non-

linear. In addition, each element of the system (i.e. the brain, body posture and perceived 

environment) is constantly changing, adding in complexity. Understanding behaviour also requires 

consideration of the individuals’ Umwelts, that is, their personal experience through their specific 

sensory (e.g., polarised light sensing, panoramic vision or chemosensing) and motor (e.g., crawling, 

running or flying) systems, as well as the natural environment in which they have evolved [2], [7], 

[13]. 

The best way to understand how a behaviour is produced is therefore to start with a question 

stemming from the observation of the animal’s behaviour in its natural environment. Once the 

ecological task of the animals defined, one can try to characterise what types of computations can 

explain such a behaviour, with an emphasis on its sensory-motor systems (its specific Umwelt). Such 

an approach has motivated more than 100 years of behavioural experimentation in insect navigation, 

literally decomposing the insects’ impressive navigational feats into ever finer and more powerful 

mechanistic ‘models’. Importantly, because of the endorsement of a naturalistic approach and the 

lack of neural data, the vast majority of these models was not neuroanatomically constrained. We 

believe this was a blessing rather than a problem because it led the field to focus on the level 3 <-> 

level 2 transition without being burdened by too many neural data. As we will see, the level 3 <-> 

level 2 transitions typically invoke explanations and rules that are entirely different from the ones at 

the levels below.   

Various insect navigational behaviour have been investigated with such an approach: path 

integration [14], the use of learnt terrestrial cues [15], wind and olfaction [16], [17], obstacle 

avoidance [18], route optimisation [19], [20], sequence learning [21], [22] or navigation backwards 

[23], [24]. Below, we focus on behavioural models of route following and visual homing in ants and 

bees, because these illustrate well the importance of considering the 'brain-body-environment' 

dynamics at play. 

 

Using views to navigate: modelling the brain-body-environment loop 

Ants and bees are known to use learnt visual cues to follow routes and return to places of interest 

[25]–[27]. Seminal behavioural experiments demonstrated the use of egocentric views in bees and 

ants, and suggested models for how movement towards the goal could be achieved using egocentric 

visual memories [28], [29]. Later on, a key piece of information was brought by studying the natural 

environment through low-resolution panoramic pictures with the attempt to approximate the 
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insect’s point of view (approaching its Umwelt): natural scenes, when compared as a whole through 

the insect eyes’ low-resolution insect, provide remarkably robust directional information, which can 

be obtained by simply rotating on the spot [30]. Subsequent behavioural experiments quickly 

confirmed that ants just do so: they use panoramic visual cues [31]–[34], and display physical 

rotations -such as saccades and scanning- to recover directions [35]–[37]. Computational models 

implementing these ideas revealed that route following would spontaneously emerge in complex 

environments given remarkably simple guidance rules and little memory space [38]. But what about 

pinpointing the nest? Here again, a solution came from observations of the insect’s body rather than 

the brain. Detailed studies of the choreographies displayed by ants, bees and wasps when leaving 

their nest –so called ‘learning walks’ or ‘learning flights’– revealed that insects position their body in 

specific orientations relative to the nest for learning [39]–[44]. Adding these behavioural routines to 

the previously mentioned route-following models was enough for a pinpointed nest search to 

emerge. Additional motor routines, such as the continuous lateral oscillations observed in insects 

[35], [43], [45]–[47], or the fact that ants look regularly away from the nest [40] enabled further 

improvement of the navigational efficiency [48], [49]. The viability of these models was further 

strengthened by the fact that they equally captured a range of insect behavioural signatures, even 

though they were not designed to do so [47], [48], [50]. 

Taken together these various models led to an understanding of behaviour that arose from the study 

of the animals’ movements and environment, rather than from looking at the brain. The simple rules 

identified lead to the emergence of impressive navigational feats only when embedded in an agent in 

closed loop with its environment and displaying the appropriate motor routines during learning 

(which is absolutely not trivial without computer simulations) [51]. Whether one could have reached 

such an understanding by focusing on the brain’s circuitry –or by identifying direct causal links 

between brain activity and behaviour– is very unlikely, if not fundamentally impossible [1], [51]. In 

any case, we are now left with clear computational requirements for the brain. How can neurons 

achieve these requirements has not much to do with the above understanding, and requires an 

entirely different explanation at the level below.  

 

Models from neurons to computational modules (level 2 <-> level 1) 

An alternative – but complementary path to the one mentioned above can be followed, one that 

takes an opposite stance and is constrained by the lower levels: one may wonder how the identified 

‘computational modules’ are implemented within the brain, being less concerned with behaviour. 

This is actually a quite different question from the daunting “How do neurons drive behaviour?”. 

Understanding this transition, from neurons to computational modules, also requires models, 

especially when one considers the overwhelming amount of connectivity data available [box 1]. 

How to obtain the current view’s familiarity? 

Let us pursue with the example of route following and homing. One of the computational modules 

identified at the above level require to enable to memorise visual information from the scene 

experienced, as well as to output the familiarity of a current view.  A solution at the neural level 

came from a model of the flies and honeybees’ brain structure called Mushroom Bodies (MB). This 

model was originally designed to explain how neurons in this structure could support the learning 

and memories of odours [52], [53], but researchers in insect navigation realised that this neural 

model, provided with visual input, could equally explain the learning and memories of panoramic 

visual scenes, as well as how memorised and currently perceived scenes are compared to output a 

familiarity signal [54], [55]. In other words, the circuitry of the MB naturally achieves the desired 
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computational function identified by behavioural research on route following and homing. 

Establishing a direct link between MB and route following, without prior knowledge that such 

computational functions are sufficient for the navigational behaviour to emerge could have probably 

been achieved by direct neurobiological manipulation, however, in no case the knowledge of such a 

causal link would have brought understanding of the mechanism at play.  

Together, this provides us with a truly multi-level understanding, from neurons to computation, and 

from computation to behaviour. Whether this understanding is correct regarding insects can be 

tested. Then comes the time for an experimental demonstration of a causal link from neurons to 

behavior (this being only achieved post-hoc and based on a prediction drawn from this 

understanding of the intermediary computational level, [box 3]). It turned out, while we wrote this 

review, two studies did indeed test and support these models’ predictions by using pharmaceutical 

injections in ant's MB to demonstrate the expected roles of this brain area in ant visual navigation 

[56], [57].  

 

How to build a good internal compass? 

The behavioural approach has demonstrated that multiple behaviours such as path integration in 
ants and bees [14], [58] – or walking in a straight direction as observed when dung beetles try to run 
away with their ball of dung [59] –  result from the integration of multiple directional cues, such as 
terrestrial, celestial, wind-based and self-motion cues, into a single but remarkably robust sense of 
direction [60]–[63]. Now that the need for such a computational feat has been behaviorally 
demonstrated, the question of how it can be implemented in an insect brain arises. 

The insects Central Complex (CX), a central neuropil well conserved across arthropods species, had 

long been known for being implicated in navigation, but it is only recently that details on the 

compass implementation have been revealed [64]. Seelig and Jayaraman [65] showed with 

neuroimagery that a bump of neural activity shifting around a toroidal structure (the Ellipsoid Body 

of the CX) could encode and track the individual’s current direction, not without recalling older 

theoretical models of ‘ring-attractor’ networks [66]–[69]. We now understand how a stable heading 

emerges in this brain structure from multi-modal neural signals [70, p. 201], [71]–[75]. 

Here again, this example shows how multi-level understanding arises from entirely different research 

approaches united by the identification of the intermediate computation module: how various 

natural behaviours emerge from an internal compass (in interaction with other computational 

modules) on one hand, and how such an internal compass representation emerges from a neural 

population on the other hand. 

 

Closing the loop: Models from neurons to behaviour (level 3 <-> level 2 <-> level 1) 

Considering nowadays’ computing power, the idea of a fully functional simulation of a whole brain is 

considered as a next step for many [76]. However, we argue that this view is still far from realistic 

[box 3]. In many situations one should restrain a given model to the transition between two levels 

only. Indeed, adding levels complexifies the modelling effort, while not necessarily bringing 

additional insights, and may also result in a ‘black box’ effect [boxes 1, 2 and 3]. If not for additional 

insights, is it useful to design computational models from neurons to behaviour? 

So long as one has acquired a multi-level understanding through models at both transitions 1 <-> 2 

and 2 <-> 3, it can be useful to try and see if the neuron-to-behaviour model (1-2-3) works, as a proof 
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of concept. For instance, Stone et al. [77] successfully modelled path integration by embedding a 

biologically constrained neural model combining compass and distance information in a navigating 

agent. This proof of concept is important, as unexpected phenomena may emerge when complex 

neural dynamics are integrated to the complex brain-body-environment dynamics. Sometimes this is 

good news. In the case of this Path integration model, the authors were surprised to see that path 

integration worked irrespectively of the relation between the insect body orientation and direction 

of movement; a phenomenon that was actually reported in insects [78], [79]. 

Another advantage of such integrative models is that, if the model does work, it can then be used to 

make predictions about the neural activity in relation to specific behavioural situations [77], 

something which would be difficult to obtain without an integrative model. Similarly, it becomes 

possible to predict the emergence of specific behaviours given specific neural signatures. Both types 

of predictions can then be tested by respectively recording and stimulating neurons of navigating 

animals.  

Multi-level models can also be of interest for predicting how differences in neural connectivity 

between species may explain respective behavioural optimisations to their ecological needs [55]. For 

example [80] show how slight differences in the Central Complex connectivity between locusts and 

fruit flies, and may gift the first with a compass more resilient to noise (i.e. suitable for long-distance 

migration) and the second with a compass that is faster in responding to changes in direction (i.e. 

allowing fast body saccades). 

Finally, combination of behavioural, computational and neural models enables to understand how 

same brain structures can be implicated in drastically different navigational behaviours and as a 

corollary, how the stunning variety of behaviours observed across species can arise from very similar 

brains [9], [55], [81]. The fact that neural data from different insect species converges makes sense in 

this light: switching from one behaviour to another can be achieved by changing the body, the 

sensory system or how brain modules interact, and does not necessarily requires additional 

computational modules. 

 

Conclusion 

The current tools of neurobiology are undeniably useful, but their usefulness appears sublimed when 

exploited as a second step, after one has achieved a good understanding of how computational 

modules might interact to produce a given behaviour. We think that the study of navigation in 

insects still benefits from the advantage of its rich naturalistic background which pervades today’s 

behavioural, computational and neuroscience research, and we hope that this ecological relevance 

will survive the modern upsurge of neurobiological data.  
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[BOX 1: ‘Why we cannot be purely bottom up’] 

One might expect to be able to extrapolate a fully functional model from full-brain connectomics 

only, ‘ideally’ by feeding all the lower level data to a computer, press ‘play’, and being able to 

observe the emerging behaviour. This kind of approach may appear as the perfectly objective, purely 

bottom-up model, but it turns out not to be that practical, and perhaps fundamentally impossible. 

First, we still lack key information about neurons (synapse gain, plasticity rules, etc.); and to model 

neurons perfectly accurately, we would need equally accurate models of the underlying molecular 

interactions, and so on, leading an impossible reduction. Second, for behaviours to emerge one 

would also need to model the body and the environment experienced, although this can be bypassed 

by embedding the model in a robot exposed to the real environment. But let us imagine our 

description of a given bee’s body and brain circuits is exhaustive and perfectly accurate and our 

robotic technology advanced enough to make this approach possible. A robot-bee based on these 

data is constructed, the experimenter presses ‘play’ and it works, navigating and reacting just as well 

as a bee would… Now, question about the usefulness of such an approach arise: what understanding 

did we actually gain? Not much. We could then tweak the robot using diverse interventionist 

approaches in order to understand it better, but we would find ourselves basically right back where 

we were initially with the real bee. “The best material model for a cat is another, or preferably the 

same cat” [82] but then the model, because it does not bring any simplification of the object, brings 

no understanding. We thus need to concentrate our efforts towards achieving models that are 

simple enough to allow us to understand the rules at play. But if the model is a simplification, it 

should concern only a ‘subset of the animal’, a specific function, at a specific level of explanation. We 

therefore should always have an a-priori idea of the specific function we want to explain. In other 

words, a pinch of top-down thinking will always be necessary. 

 

[BOX 2: ‘What about Artificial Neural Networks?'] 

Models taking biological constraints at both the higher level and the lower level are best exemplified 

by ANNs: the goal function (the behaviour) is constrained at one end, the cells activity is constrained 

at the other, but the connectivity in between is not; these provide a sort of direct neuron-to-

behaviour links (levels 1-3). The work is then to understand the type of computation (level 2) that 

might have emerged from various learning rules. Even though machine learning can be thought 

unsuited to study network structure of biological systems (only the cell-level response properties are 

similar to biology), such explorations have proven insightful. First, the emergence of computational 

modules can still bring insights on how the original complex behaviour may be decomposed into sub-

components. Second, one can observe the emergence of elements otherwise observed in real 

biological systems such as ring-like organization and existence of shifter neurons for compass 

orientation [83], or neurons reminiscent of grid cells for navigation tasks [84]. 

Why does it work? Is it on the idea that both evolution and the ANNs should converge on the best 

connectivity? If that is so, one should keep in mind the constraints that are at play with evolution and 

not with ANN: the historical constraints. Evolution does not start from scratch, but modifies 

previously existing brains. Also, contrary to ANN, animals need to maintain a vast amount of 

functions simultaneously, and the resulting solution for the animal may well be different than the 

simple pooling of several functions optimised independently.     
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[BOX 3: ‘About modelling multiple levels…'] 

If one should stick to model transitions between two levels only, should we ever model how full-

fledged behaviours in the world emerge from neurons? Modelling through multiple levels at once 

can drastically increase the number of parameters. Such increased complexity, on top of exposing to 

a higher risk of biases and errors, bears one fundamental pitfall: it makes the modelling effort drift 

away from the possible insights it should bring. What good is a model that is as complex as the 

organism it is supposed to explain? [box 1]. To our opinion, modelling through multiple levels at once 

should be achieved only ‘when needed’. For example, when modelling the transition from neurons to 

‘brain computation’, lower levels such as ions movement that generate action potentials might 

preferably be abstracted if simpler ‘spiking rates’ values are good enough for the desired brain 

computation to emerge. However, there might be a ‘need’ to model single spikes if for instance, 

spike-timing dependant processes are key for the brain computation to emerge. This simplification 

step enables to identify the key elements for the desired process to emerge, that is, to understand 

well the transition. To sum up, if the lower level can be approximated by an existing assumption, this 

assumption should be preferred: the lower-level axioms of one field are the upper-level research 

goals of others. 

 

[BOX 4: ‘Integrating multiple cues’] 

 

Some models have focused on the integration of multiple cues or multiple navigation strategies such 

as path integration and learnt views into a single motor output. Behavioural experiments have shown 

that this integration is achieved continuously and optimally based on the relative certainty of the 

cues [85]–[90], and subsequent mathematical formalisation of the suggested computation have 

demonstrated that it could indeed fit the various observed data [91]–[94], as well as suggested how 

this type of computation could be implemented in the insect’s brain [95]. Within Marr’s 3 level 

framework, this endeavour stands clearly as an attempt to explain behaviour from the interaction 

between computational modules, that is, the transition between level 3 and 2. However, while other 

work aimed at identifying the computational modules underlying the emergence of a given 

navigational strategy (i.e., path integration or the use learnt view), here the computational modules 

are the navigational strategies per se (i.e., path integration and learn view). Therefore, the 

explanatory framework of this line of work can be viewed as standing one hierarchical level above. 

Even though biological relevance of the implementation (level 1 <-> level 2) is disregarded, these 

models, taken together, provide a good example of the complexity of the transition from 

computation to behaviour, and explain how behaviours can be decomposed into several levels of 

computations. 
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