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The charge relaxation of accumulated charge patches in insulating straight capillaries is inves-
tigated theoretically. The model assumes that charges accumulate only at the inner and outer
insulator-vacuum interface of the capillary but not in the bulk. We give an analytical solution to
the coupled equations that describe the surface charge dynamics at both interfaces. We provide a
tool to calculate easily the characteristic relaxation times in a straight capillary of any dimension,
possibly surrounded by a conducting cylinder. The latter allows for different scenarios found in
experimental setups, and is applicable to both nano and macro-capillaries. We propose an original
experimental technique to monitor the charge relaxation in a straight glass capillary and show how
to use the presented model to extract the bulk and surface conductivity of the insulator from the
measured data. In the supplementary material, we provide a script in ®Mathematica that allows
the reader to compute comfortably the decay rates for all straight insulating capillaries the reader
is interested in.

PACS numbers: 34.80.Dp, 34.80.Pa

I. INTRODUCTION

When low energetic ions hit an insulating surface,
charge carriers are injected at the impact points and
trapped by defects. As a result, charge accumulates in
the dielectric, generating an electric field that, if suf-
ficiently strong, deviates the following beam particles,
preventing them to hit the insulator surface. This ba-
sic property led to the discovery that slow ions can
pass through insulator capillaries (having an aspect ra-
tio, length over diameter, larger than 50) without any
change, neither in the ion charge state nor in the ion
kinetic energy, even when the geometrical conditions do
not allow it. The phenomenon is called charged parti-
cle guiding by insulating capillaries and it has become
an intensively studied field since its discovery by the pio-
niering work by N. Stoltherfoht for polyethylene tereph-
thalate (PET) nano-capillaries [1] and T. Ikeda for glass
macro-capillaries [2], more than 10 years ago.

On the experimental front, charge relaxation in insu-
lating capillaries was recently investigated by several au-
thors. The charge decay of a previously charged conical
glass capillary was monitored by recording the deflection
of a by-passing ion beam on a PSD [3]. The measured
decay time of 2000 min was used to adjust the surface
conductivity in simulations. Dubois et al. monitored the
decay of charge patches in a glass tube [4]. After charg-
ing a glass tube by a tilted 1 keV Ar+ beam, the charge
patch was allowed to discharge for a given time. After
that time, the beam was re-injected, and the initial trans-
mitted fraction was given as a function of the discharge
time. In Nagy et al., a micrometer sized proton beam of 1
MeV, tilted by 1◦, was center injected into a Teflon capil-
lary with macroscopic dimensions [5]. With increasingly
accumulated charge, the patch got sufficiently strong to
deflect the beam out of the capillary on a screen down-
stream. A dynamical equilibrium between the charges

being deposited and flowing away in form of leakage cur-
rent was found. The leakage current was estimated to 10
% of the injected current.

While nowadays the guiding of ions through glass-
capillaries due to charge patches is qualitatively under-
stood, the complex nature of the electric conduction
in such insulators makes quantitative theoretical predic-
tions still a challenging task. Indeed, for a given ion
beam, the guiding is entirely controlled by the dynamics
of the charge patches in the dielectric, which in turn de-
pend on the electrical properties of insulator, on the pos-
sible presence of electrodes that affect the electric field
inside the capillary and on the charge transfer at the in-
terfaces.

In the past, numerous theoretical approaches suc-
ceeded to capture the guiding properties of insulating
capillaries, by using in their simulations appropriate
charge relaxation times (also called decay times) for the
exponential decay of the accumulated charges [6, 7]. Typ-
ically, by varying the decay times, observed trends in
the guiding process of ion beam through capillaries could
be reproduced numerically [8–13]. The success of those
models showed that the charge dynamics in insulators is
already well described by a simple exponential decay of
the accumulated charge distribution. It seems thus that
having an accurate relationship between the charge re-
laxation rate of an accumulated charge distribution and
the geometrical and electrical properties of the capillary,
would be beneficial for (i) making reliable theoretical
predictions, by knowing the electrical properties of the
capillary, or (ii) deducing the electrical properties of the
capillary by measuring the decay rates. Being able to
refine the computing of the relaxation rates would allow
for deeper understanding of the influence of the bulk and
surface conductivity and dimensions of the capillary on
the charge dynamics in capillaries.

An initial guess of the decay rate was usually obtained
by considering the bulk conductivity, diffusion and dielec-
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tric constant of the insulating capillary. For example, in
macro-capillaries, the order of magnitude of the depletion
rate was estimated using the expression 2κb/[ε0(1 + εr)],
with κb being the bulk conductivity and εr the dielectric
constant of the insulator [8, 12, 13]. The screening factor
2/(1 + εr) corresponds to the screening of a charge lying
at the insulator-vacuum interface of an infinite dielectric
plane. Alternatively, the more common bulk relaxation
rate κb/(ε0εr) could be used. In nano-capillaries, the re-
laxation rate was estimated by Schiessl et al. using the
surface diffusion constant [11].

Usually the surface conductivity κs of the insulator-
vacuum interface was not directly used for estimating
the decay rates, supposedly because the surface conduc-
tivity of an insulating surface is mainly due to adsorbed
impurities and is thus not a well-known quantity and be-
cause the relation between the surface conductivity and
the relaxation rates is not easy to establish. That does
not mean that surface currents were not considered in
the simulations. For nano-capillaries, the surface cur-
rents were evaluated by means of a drift model, where
the accumulated charge carriers were field-driven along
the surface, with a velocity proportional to their surface
mobility [14, 15], and surface currents were even shown
to be the dominant relaxation channel. For macroscopic
glass capillaries, the surface currents were taken propor-
tional to the insulator-vacuum surface conductivity [3].
However, for the estimation of the total charge relaxation
rate, the influence of the surface conductivity κs was sys-
tematically ignored.

The present work models the charge dynamics in
straight insulating capillaries and extracts from the equa-
tions the relaxation rates that characterize the charge dy-
namics. It gives the explicit dependency of the relaxation
rates on the geometric dimensions and macroscopic elec-
trical properties of the capillary. Much attention is payed
to the electric field that drives the charges in the insula-
tor, so that reliable relaxation rates can be deduced from
the model. Here, the electric field is evaluated by consid-
ering the appropriated boundary conditions that describe
the capillary and its environment. In other words, the
electric field includes the exact contribution of induced
polarization charges (image charges) that appear at the
interfaces separating two dielectric media and that screen
the accumulated charges in the dielectric. The contribu-
tion of the surface conductivity (at the insulator-vacuum
interface) to the total charge relaxation rate is clearly es-
tablished and can be estimated quantitatively with the
model.

In a preliminary work, Giglio et al. evaluated the
charge relaxation rates of a surface charge distribution
at the inner surface of a straight glass capillary with the
outer surface grounded [16]. The charge dynamics equa-
tion at the inner surface was solved by projecting the
charge distribution onto a multipole expansion. The re-
sults showed that each multipole moment has its own
relaxation rate, with the latter being the weighted sum
of the bulk and surface conductivity. For each moment,

the weights are different and depend only on the dimen-
sions of the capillary. Those findings where then used to
analyze the experimental results given in [4].

In this manuscript we will go a step further and treat
the more general case where the outer surface of the cap-
illary is no longer electrically grounded but simply the
dielectric-vacuum interface where charges can accumu-
late and be injected. We add to the model a third con-
ducting cylindrical interface that surrounds the capillary.
Depending on the radius of the conducting cylindrical in-
terface, the model can describe various setup scenarios
found in the literature. The presented model can be ap-
plied to straight macroscopic glass capillaries as well as
to straight nano-capillaries in membranes and thin insu-
lating foils.

The manuscript is structured as follow. In section II,
we give the the coupled differential equations that de-
scribe the charge dynamics in the capillary. We give an
analytic solution of the differential equations that satis-
fies exactly the boundary conditions, which in turn de-
scribe the capillary and its environment. In section III,
we present a Gedankenexperiment where the analytic so-
lution is used to predict an observable as a function of
the dimensions and electrical properties of a straight cap-
illary. We show how to use the theoretical prediction to
deduce the bulk and surface conductivity of the capil-
lary from the measured observable. In the supplementary
material, the author provides a script for®Mathematica
[18] that calculates the charge relaxation rates for a given
capillary. The script can also evaluate the decay of the
electric field in the capillary, if the initial charge distri-
bution is given.

II. THEORETICAL MODEL

Consider a straight insulating glass capillary of length
H, withR1 andR2 being the inner and outer radius of the
capillary tube, as depicted in Fig.1. The electric proper-
ties of the capillary are given by the relative permittivity
εr > 1, the bulk conductivity κb and surface conductiv-
ity κs, which we consider here all constant. The surface
conductivity of an insulating surface is usually due to ad-
sorbed impurities and expressed in Siemens (S). In the
atmosphere for example, the surface conductivity of glass
samples depends strongly on the humidity in the atmo-
sphere, meaning that the adsorbed water ions are the
main contributors to the anomalous large surface con-
ductivity for glasses in the atmosphere. In near vacuum,
the humidity is clearly low and the surface conductivity
decreases by several orders of magnitude with respect to
the humid atmosphere. It was found by Gruber et al. [19]
that the surface conductivity in Borosilicate glass follows
an Arrhenius type law, with a typical value of κs = 10−16

S at room temperature.
We suppose that the capillary is surrounded by an

electrically conducting (metal) cylinder of radius R3 and
length H, sharing the same symmetry axis than the cap-
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FIG. 1: Cut of the capillary along the xOz plane containing
the symmetry axis. Black fat lines stand for grounded sur-
faces, namely the S3 interface, the entrance and the outlet of
the capillary. Grey rectangles represent the dielectric bulk.
Blue lines stand for vacuum-insulator interfaces of the inner
(S1) and outer (S2) capillary surface, carrying the surface

charge densities σ(1,2).

illary. Let us label S1 the vacuum-insulator interface of
the inner capillary surface and S2 the insulator-vacuum
interface of the outer capillary surface. S3 stands for the
vacuum-conductor interface of the cylindrical surface of
radius R3. The potential V3 of the S3 interface may be
imposed or floating. With respect to the previous model
presented in [16], interface S3 is an important addition,
making the present model quite general. In particular,
it allows us to impose a Dirichlet boundary condition to
the electric potential, defining it uniquely. The latter sug-
gests that in experiments, a conducting cylinder should
surround the capillary if a reliable comparison between
experiments and theory is desired. We study here merely
the case, found in many experimental setups, where the
interface S3 is electrically grounded, V3 = 0 [3, 13, 19–25]
We further suppose that the capillary is mounted behind
a grounded collimator plate with an inlet hole for the ion
beam of radius Rcol < R1, avoiding the charging-up of
the entrance.

In alkali silicate glasses like borosilicate, the mobility of
holes, electrons and anions is usually small compared to
the mobility of alkali ions, so that the charge transport
in ionic glasses at room temperature is entirely due to
mobile alkali ions [26–30]. We further assume that the
rate τ−1h at which the injected holes migrate into the bulk
is negligible compared to the charge relaxation rate due
to the bulk conductivity,

τ−1h � τ−1b =
κb
ε0εr

. (1)

The latter suggests that, as soon as a hole migrates from
the surface into the bulk, the hole is ”quickly” relaxed
by the migration of alkali ions (away from the hole) so

that no charge accumulates in the bulk. As a result, the
charge accumulates only at the interfaces and may be
represented by the surface charge densities σ(1) and σ(2)

at the inner and outer interfaces respectively. The elec-
tric field that drives the alkali ions in the bulk is thus
divergence-free, ~∇ · ~E = 0. Using cylindrical coordi-
nates (r, θ, z), the dynamics of the surface charge densi-
ties σ(1) ≡ σ(R1, θ, z, t) and σ(2) ≡ σ(R2, θ, z, t) are given
by two surface continuity equations, which are coupled by

the electric field ~E that depends on the surface charges
σ(1,2),

∂σ(1)

∂t
= −κbEr −

1

R1

∂

∂θ
[κsEθ]−

∂

∂z
[κsEz] + γ(1) ,

(2)

∂σ(2)

∂t
= κbEr −

1

R2

∂

∂θ
[κsEθ]−

∂

∂z
[κsEz] + γ(2) ,

(3)

where (2) is evaluated at r = R1 and (3) at r = R2.
The first right hand terms in equations (2-3) are pro-
portional to the bulk conductivity κb and stand for the
mobile charge carriers that are field driven from the inner
to the outer surface (or vice-verso) by the radial compo-
nent Er of the electric field. The second and third right
hand terms account for surface currents along the ~uz and
~uθ directions and are proportional to the surface conduc-
tivity κs. The source terms γ(1,2)(θ, z, t) represent the
deposited charge per unit time and area at the interfaces
S1 and S2, respectively. If the capillary is well screened
from stray electrons [21], no charges are injected at the
outer surface and γ(2) = 0. Such fully screened glass
capillaries were used for example in [3] in order to mea-
sure the discharge rates of pre-charged capillaries and to
put into evidence the self-organized focusing by conical
glass capillaries. The source term γ(1) stands for the in-
jected holes at the inner interface by impacting beam ions
and is thus proportional to the difference between the in-
jected current Iin and the transmitted current Iout(t),
γ(1)(θ, z, t) ∝ (Iin − Iout(t)). Note that γ(1) can also in-
clude secondary electrons generated at the impact point
and absorbed elsewhere at the inner surface. The an-
alytic solution of coupled continuity equations (2-3) is
obtained using a multipole expansion technique, already
used in [16].

A. Multipole expansion

We assume that the beam axis and capillary axis lie
in the xOy plane so that the accumulated charge in the
straight capillary has xOy plane symmetry. The inter-
faces S1 and S2 are in contact with the grounded colli-
mator at z = 0 and grounded exit at z = H. Hence, no
charges accumulate at the grounded entrance and exit
so that the free surface densities are zero at z = 0 and
z = H. We may then expand the surface densities σ(1,2)
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on the following basis which accounts for the xOy plane
symmetry and zero density at the capillary entrance,

σ(1)(θ, z, t) =
∑
m,n

σ(1)
mn(t) cos(mθ) sin(knz) , (4)

σ(2)(θ, z, t) =
∑
m,n

σ(2)
mn(t) cos(mθ) sin(knz) . (5)

where m ≥ 0 stands for the angular moment of the dis-
tribution. Choosing the wave number kn of index n ≥ 1
to be defined as

kn =
nπ

H
, (6)

ensures that the surface densities are zero at the exit
of the capillary. We further assume that the grounded
entrance and exit hinder charges to be injected at z = 0
and z = H, so that the injection cross-sections γ(1) and
γ(2) are expanded similarly,

γ(1)(θ, z, t) =
∑
m,n

γ(1)mn(t) cos(mθ) sin(knz) ,

γ(2)(θ, z, t) =
∑
m,n

γ(2)mn(t) cos(mθ) sin(knz) .

The electric field being divergence-free in the bulk and
outside the bulk, the electric potential V satisfies the

Laplace equation everywhere, ~∇2V = 0. We distinguish
3 regions in space, bound by the three interfaces S1, S2

and S3. We further assume that the potential is zero
(grounded) at the entrance z = 0 and exit z = H of the
capillary. Within the above assumptions, a general so-
lution of the Laplace equation in cylindrical coordinates
for all three regions of space is eventually given by,

V (1)(r, θ, z, t) =
∑
m,n

Amn(t)Im(knr) cos(mθ) sin(knz),

0 ≤ r ≤ R1 (7)

V (2)(r, θ, z, t) =
∑
m,n

[Bmn(t)Im(knr) + Cmn(t)Km(knr)]

× cos(mθ) sin(knz) , R1 ≤ r ≤ R2 (8)

V (3)(r, θ, z, t) =
∑
m,n

[Dmn(t)Im(knr) + Emn(t)Km(knr)]

× cos(mθ) sin(knz) , R2 ≤ r ≤ R3 (9)

where Im() and Km() are modified Bessel functions of
order m ≥ 0. Note that a zero potential condition at
the exit of the capillary is not strictly required here, but
it simplifies the mathematical expressions without loos-
ing much of the general scope. We also note that for
r < Rcol, the potential V (1) is obviously not imposed
at the entrance and V (1) is thus not rigorously zero for
z = 0. However, for r < Rcol the potential V (1) at the
entrance can be assumed sufficiently close to zero so that

the V (1)(z = 0) = 0 conditions can nevertheless be im-
posed without introducing a significant bias in the final
results The five terms Amn(t), Bmn(t) . . .Emn(t) found
in (7-9) are defined by the boundary and kinematic con-
ditions given below.

B. Boundary Conditions

In order to define unambiguously the potentials in the
three domains, we need to add 5 boundary conditions.
The electric potential is continues at the three interfaces.
Consequently, the potentials V (1,2,3) defined in the three
domains must satisfy the boundary conditions,

(S1) : V (1)(R1, θ, z, t) = V (2)(R1, θ, z, t) (10)

(S2) : V (2)(R2, θ, z, t) = V (3)(R2, θ, z, t) (11)

(S3) : V (3)(R3, θ, z, t) = V3 = 0 , (12)

with V3 = 0 standing for the grounded potential of the
conducting interface S3. At the interface separating two
dielectric media, the electric field normal to the interface
is discontinues. In the presence of free surface charges
one has,

(S1) : −εr
∂V (2)

∂r

∣∣∣∣
r=R1

+
∂V (1)

∂r

∣∣∣∣
r=R1

=
σ(1)(t)

ε0
(13)

(S2) : − ∂V (3)

∂r

∣∣∣∣
r=R2

+ εr
∂V (2)

∂r

∣∣∣∣
r=R2

=
σ(2)(t)

ε0
.(14)

From the above boundary conditions, we deduce that
the terms Amn(t), Bmn(t) . . .Emn(t) found in (7-9)
can be written as a linear combination of both time-
dependent surface charge densities moments σ

(1,2)
mn (t) in

the form,

Amn(t) = a(1)mnσ
(1)
mn(t) + a(2)mnσ

(2)
mn(t) (15)

...

Emn(t) = e(1)mnσ
(1)
mn(t) + e(2)mnσ

(2)
mn(t) (16)

The constant coefficients a
(i)
mn . . . e

(i)
mn, i = 1, 2 are known

quantities that depend on the parameter R1, R2, H, εr of
the capillary as well as on R3. This means that the in-
fluence of the dimensions of the capillary, its dielectric
constant and the dimensions of the surrounding metal
cylinder are hidden in those constant coefficients. De-

tails about how to evaluate the coefficients a
(i)
mn . . . e

(i)
mn,

i = 1, 2 are given in the Appendix A. Eventually, the
expression of the electric potentials V (2)(r, θ, z, t), which
will be needed in the next section, reads

V (2) =
∑
mn

[(
b(1)mnIm(knr) + c(1)mnKm(knr)

)
σ(1)
mn(t)

+
(
b(2)mnIm(knr) + c(2)mnKm(knr)

)
σ(2)
mn(t)

]
× cos(mθ) sin(knz) , (17)
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where the dependence on time is explicitly given by the
time-evolution of the surface charge densities at the in-
ner and outer capillary interfaces. Note that, as V (2)

satisfies the required boundary conditions (10-14), it au-
tomatically includes the contributions from the induced
image charges at the interfaces S1, S2, and S3.

C. General Solution of the time evolution of the
surface charges

The expressions of the electric field that appear in the
equations (2-3) can all be deduced from the potential
V (2) (Eq. 17), which is defined for R1 ≤ r ≤ R2, so that
we may re-write the equations (2-3) in the form,

∂σ(1)

∂t
= κb

∂V (2)

∂r

∣∣∣∣
r=R1

− κs
(
m2

R2
1

+ k2n

)
V (2)

∣∣∣
r=R1

+ γ(1)

∂σ(2)

∂t
= −κb

∂V (2)

∂r

∣∣∣∣
r=R2

− κs
(
m2

R2
2

+ k2n

)
V (2)

∣∣∣
r=R2

+ γ(2)

(18)

Injecting the multipole expansions of σ(1,2) (4) , γ(1,2)

(5) and V (2) (17) into (18) and projecting the latter onto
the basis elements cos(mθ) sin(knz) yields for each set of
indices (m,n) a linear matrix equation of the form,

σ̇(1)
mn

σ̇
(2)
mn

 = −

f (11)mn f
(12)
mn

f
(21)
mn f

(22)
mn

σ(1)
mn

σ
(2)
mn

+

γ(1)mn

γ
(2)
mn

 (19)

where all the dependencies on the geometry and electric
properties of the insulating capillary are now hidden in
the time-independent coefficients

f (1j)mn =

(
−κbI ′m(knR1) + κs

(
m2

R2
1

+ k2n

)
Im(knR1)

)
b(j)mn

+

(
−κbK ′m(knR1) + κs

(
m2

R2
1

+ k2n

)
Km(knR1)

)
c(j)mn

(20)

f (2j)mn =

(
κbI
′
m(knR2) + κs

(
m2

R2
2

+ k2n

)
Im(knR2)

)
b(j)mn

+

(
κbK

′
m(knR2) + κs

(
m2

R2
2

+ k2n

)
Km(knR2)

)
c(j)mn

(21)

where the prime symbol stands for the derivative with re-
spect to the radial component and j = 1, 2. Remarkably,
there is no coupling between the modes in (19), neither
for the angular mode m nor for the axial mode n. As a
result, (19) can be solved independently for each mode
(m,n). This however is the case only for straight capil-
lary tubes. In the case of tapered capillaries, at least the
axial modes n would be coupled to other axial modes n′.
For convenience, a ®Mathematica script that evaluates

the matrix elements f
(i,j)
mn is given in appendix B.

D. Homogeneous solution

In this work we consider only the homogeneous solu-
tion of (19), that is, the solution in the absence of source

terms, γ
(1,2)
mn (t) = 0. Such a solution describes the charge

relaxation of a previously accumulated charge distribu-
tion in the case where no beam is further injected into
the capillary. The homogeneous solution of (19) is eas-

ily found if the matrix Fmn = {f (ij)mn } is non-defective
(diagonalizable) so that(

1/τ (i)mn

)
δij = T−1mnFmnTmn (22)

where the characteristic relaxation rates 1/τ
(1)
mn and

1/τ
(2)
mn are the two eigenvalues of the matrix Fmn and

where Tmn is the change of basis matrix. The relax-

ation rates 1/τ
(1)
mn are thus functions of the dimensions

(R1, R2, H) and electric properties (εr, κs, κb) of the cap-
illary as well as the radius R3 of the grounded cylinder
surrounding the capillary. Note that because the relax-

ation rates 1/τ
(1,2)
mn are obtained by diagonalizing the Fmn

matrices, they are in general non-linear functions of the
bulk and surface conductivity of the capillary. In the par-
ticular case where the outer surface S2 is grounded, the

elements f
(21)
mn and f

(22)
mn are zero. The matrix Fmn has

then only one non-zero eigenvalue, namely τ
(1)
mn = f

(11)
mn ,

which is a linear functions of κs and κb . The latter
finding was already discussed in [16].

A solution of the homogeneous case is eventually given
by

σ(1)
mn(t)

σ
(2)
mn(t)

 = Tmn

e−t/τ(1)
mn 0

0 e−t/τ
(2)
mn

T−1mn

σ(1)
mn(0)

σ
(2)
mn(0)


(23)

where the σ
(i)
mn(0) are the initial (previously accumulated)

surface charge distributions at the interfaces Si. Intro-
ducing the auxiliary projector Pmn defined by

Pmn = Tmn

1 0

0 0

T−1mn , (24)

and noting ~σmn(t) =

(
σ
(1)
mn(t)

σ
(2)
mn(t)

)
, one can express the

solution (23) in the following compact form

~σmn(t) =
(
e−t/τ

(1)
mnPmn + e−t/τ

(2)
mn(I − Pmn)

)
·~σmn(0) ,

(25)
where I is the identity matrix. Equation (25) yields that,
in the absence of source terms, each moment ~σmn(t) re-

laxes exponentially in time with two time constants τ
(1)
mn
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and τ
(2)
mn. Eventually injecting (25) into the multipole

expansion (4) and (5) gives the explicit time evolution
of the surface charge densities σ(1,2)(θ, z, t) that satisfy
the surface charge equations (2) and (3) without source
terms. Similarly, injecting (25) into (17) yields the elec-
tric potential that drives the charge carriers in the insu-
lator bulk. Finally, injecting (25) into (A14) yields the
electric potential inside the capillary that guides the ion
beam.

E. Stationary source terms

Consider the case where the source term ~γmn(t) =(
γ
(1)
mn(t)

γ
(2)
mn(t)

)
is time independent, so that ∂t~γmn(t) = 0 for

all m,n. Such a situation may correspond to a station-
ary beam that injects charge at constant rate at the inner
surface of a (tilted) capillary. We further assume that the
capillary is initially electrically neutral, ~σmn(0) = 0. The
time evolution of the surface charge distributions is then
given by

~σmn(t) =
(

1− e−t/τ
(1)
mn

)
τ (1)mnPmn~γmn

+
(

1− e−t/τ
(2)
mn

)
τ (2)mn(I − Pmn) · ~γmn . (26)

Relationship (26) is handy if one wants to estimate the
charge distribution of a patch in the capillary after a
given charging time t. The relationship holds in the case
of a constant or slowly (adiabatically) evolving source
term.

III. DEFLECTION OF THE BEAM BY A
CHARGE PATCH

The above model is quite general and useful to deter-
mine the charge relaxation rates in many different scenar-
ios, and is not limited to macroscopic glass-capillaries.
For instance the model can also be applied to nano-
capillaries in insulating foils. The inner radius R1, length
H, dielectric constant εr and bulk conductivity κb of the
nano-capillaries are usually given. Caution must be paid
to the choice of R2 and R3 for the model to represent
reliably the nano-capillaries in question as they are not
so clearly defined as in glass macro-capillaries. We give
here two examples. For nano-capillaries in PET foils,
like the one used in [1], we suggest to set the radius R2

to half of the inter-capillary distance, which in [1] was
about R2 ' 2.5 µm. As no grounded S3 interface sur-
rounds the nano-capillaries in PET foils, R3 should be
set to an arbitrary large value so that R3 � R2. The
nano-capillaries in n-doped silicon membrane found in
[24], have an insulating SiO2 thickness of 100 nm. The
radius R2 may then be set to R2 = R1+100 nm. Because
the n-doped silicon is a semi-conducting media, we can

100µm 

PSD 

PSD 

∆x 

Glass 

Glass 

+ + + + 

Glass 

Glass 

+ + + + 

30 mm 

3.8 mm 

FIG. 2: Scheme of the experimental technique to monitor the
relaxation of a previously injected charge patch in the case
(a) where the outer surface of the capillary is not grounded.
Glass bulk is represented by glue-gray rectangles and is sur-
rounded by grounded layer (black full lines). The yellow parts
stand for insulator rings keeping the glass tube in place. Up-
per panel: a tilted beam injects a charge patch at the inner
surface. Lower panel: transmitted beam is deflected by the
charge patch and its position ∆x(t) is recorded on the PSD
located downstream.

assume that the potential of the silicon media in between
the nano-capillaries is grounded so that R3 = R2. The
remaining unknown in both examples is then the surface
conductivity. A detailed study of the charge relaxation
in nano-capillaries and the analyses of the experimental
data with this model will be presented elsewhere. In the
present work, we will merely focus on straight glass cap-
illaries and show how to use the model to estimate the
surface and bulk conductivity of a given insulating glass
capillary that was previously charged by an ion beam.

A. Modeling a Gedankenexperiment

In the previous section, we saw how to calculate the re-
laxation rates, knowing the bulk and surface conductivity
for a given capillary. In the following Gedankenexperi-
ment, we will show how to estimate the bulk and surface
conductivity of the capillary unambiguously, by moni-
toring the charge relaxation rate of a previously injected
charge patch.

We consider here a straight glass capillary, with the
dimensions H = 30 mm , R1 = 0.43 mm, R2 = 0.75 mm.
The capillary is made out of Borosilicate glass, charac-
terized by a dielectric constant εr = 4.6. Glass tubes
like the one supposed in this Gedankenexperiment are
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commercially available, for example, by Warner Instru-
ments. We consider two different configurations. In the
first configuration, labeled (a), the conducting interface
S3 has a much larger inner radius than the outer sur-
face of the capillary, R2 � R3 = 5 mm. In the second
configuration, labeled (b), the outer surface is grounded,
R3 = R2. Both configurations are easily set up in a ded-
icated experiment like the one presented in [3]. The idea
is to use the different charge relaxation rates that yield
case (a) and (b) in order to estimate the surface and bulk
conductivity of the capillary.

The experimental methodology is the following. In a
first step, the axis of the capillary is tilted by 1.5◦ with
respect to the beam axis. A charge patch, centered at
θ = 0, zc = R1/ tan(1.5◦) ' 16 mm, is injected at the
inner surface by a uniform ion beam collimated to a di-
ameter of b = 0.1 mm. The intensity Iin of the injected
current must be adjusted so as to produce a single patch
which is strong enough to deflect a part of the injected
beam through the capillary outlet. The charge patch has
a characteristic length of d = b/ tan(1.5◦) ' 3.8 mm in
the z-direction, see upper panel of Fig.2. As soon as the
charge patch is sufficiently strong to deflect a part of the
beam thought the capillary outlet, the injected intensity
is reduced to several fA. Reducing the beam intensity
is important in order to avoid that the charge patch is
neutralized by secondary electrons generated by beam
ions hitting the border of the collimator hole at the en-
trance. At the same time, the capillary axis is aligned
with the beam axis (zero tilt angle). The previously ac-
cumulated charge patch deflects now the injected beam
ions of charge q and momentum pz~uz by an angle α,
which can be monitored on a position sensitive detector
(PSD) downstream, see lower panel of Fig.2. In a second
step, the time evolution of the deflection angle α(t) of
the transmitted beam is recorded. The methodology is
repeated for setup (a) and (b).

We will now model the time evolution of the measured
deflection angle of the Gedankenexperiment and give an
analytic expression of the deflection angle α(t) using the
findings of section II. The x-component of the electric
field evaluated at the symmetry axis is given by

Ex(0, 0, z, t) = − ∂V (1)(r, θ = 0, z, t)

∂r

∣∣∣∣
r=0

= −
∑
n=1

nπ

2H

a(1)1n σ
(1)
1n (t) + a

(2)
1n σ

(2)
1n (t)︸ ︷︷ ︸

~amn·~σmn(t)


× sin(knz) (27)

with the constant coefficients a
(1)
1,n and a

(2)
1,n being defined

in the Appendix A. Note that only dipole angular mo-
ments, m = 1, give a non-zero contribution to the electric
field evaluated at the symmetry axis. Injecting (25) into

(27) allows expressing the time-evolution of Ex(0, 0, z, t),

Ex(0, 0, z, t) =−
∑
n=1

nπ

2H

e−t/τ(1)
1n ~a1n · P1n · ~σ1n(0)︸ ︷︷ ︸

g
(1)
n

+e−t/τ
(2)
1n ~a1n · (I − P1n) · ~σ1n(0)︸ ︷︷ ︸

g
(2)
n


× sin(knz) . (28)

The scalars g
(1)
n and g

(2)
n give the amplitudes of the two

exponential decay functions for each n and depend ex-
plicitly on the initial charge distributions ~σ1n(0) at the
inner and outer surface of the capillary.

In the next step, the capillary axis is aligned with the
beam axis (zero tilt angle). The injected intensity is re-
duced to several fA, in order to avoid that the charge
patch is neutralized by secondary electrons generated by
beam ions hitting the border of the collimator hole at the
entrance. The charge patch deflects now the beam ions
of charge q and momentum pz~uz by an angle α, which
can be monitored on a position sensitive detector (PSD)
downstream, see lower panel of Fig.2. The time evolution
of the deflection angle α(t) is given by

tan(α(t)) =
px(t)

pz
=

q

2Ek

∫ H

0

Ex(0, 0, z, t)dz

=
1

2Vs

∑
n=1,odd

[
e−t/τ

(1)
1n g(1)n + e−t/τ

(2)
1n g(2)n

]
(29)

where Ek = qVs is the kinetic energy of the ion beam.

The constant amplitudes g
(1)
n and g

(2)
n can be evaluated

if the initial surface charge moments ~σ1,n(0) are known.

B. Numerical application

Borosilicate glass has typically a bulk conductivity of
κb = 10−13 S/m at room temperature, which yields a
bulk relaxation time of,

τb =
εrεr
κb
' 400 s . (30)

We will later compare this value to the decay times ob-
tained for α(t) in configurations (a) and (b). We further
suppose a surface conductivity of κs = 10−16 S, close to
the value measured by [19] at room temperature. Both
κb and κs may be regarded as initial guesses.

In order to evaluate α(t) numerically, using (29), we
need to provide a spatial profile of the accumulated
charge distribution at the interfaces after the initial
charging step. To avoid unnecessary complexity, we as-
sume that a single patch has been injected in the capil-
lary. Note that the time evolution of the deflection an-
gle α(t) in not very sensitive to the exact profile of the

https://www.warneronline.com/clark-borosilicate-standard-wall
https://www.warneronline.com/clark-borosilicate-standard-wall
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R3 � R2 (a) R3 = R2 (b)

n τ
(1)
1,n τ

(2)
1,n g

(1)
n g

(2)
n τ

(1)
n τ

(2)
1,n g

(1)
n g

(2)
n

(s) (s) (V) (V) (s) (s) (V) (V)
1 94 295 83.5 4.5 204 ≥ 104 35.4 0
3 94 293 -53.9 -3.0 204 ” -23.4 ”
5 94 287 22.1 1.4 201 ” 11.9 ”
7 93 280 -5.6 -0.4 197 ” -3.9 ”
9 92 270 0.6 0. 192 ” 0.3 ”

G1(V ) 48 19.7

TABLE I: Characteristic times τ1,n and amplitudes gn for
m = 1 and n < 10. Left part of the table gives the values
for setup (a) and right part of the table for setup (b). For
n ≥ 10, the amplitudes gn are negligible and thus omitted.

Last line gives the total amplitude G1 =
∑

n g
(1)
n .

injected charge patch as the profile controls mainly the
initial amplitude of the deflection angle. For the sake
simplicity, we assume that the charge patch at the inter-
face S1 has a Gaussian profile of the form

σ(1)(θ, z, t = 0) =
Q

bπd
exp

(
− (z − zc)2

d2

)
exp

(
− (R1θ)

2

b2

)
,

(31)
where Q = 50 pC is the total charge of the patch. The
value of Q will be justified later. The lengths d and
b are related to the beam size and tilt angle and were
already defined in section III A. The Gaussian profile is
already a good approximation of the charge distribution
generated by the thin ion beam at the inner surface of
the capillary, as we could check with our simulations. At
the interface S2, the charge distribution is assumed zero,
σ2(θ, z, 0) = 0.

In a first step, we take the multipole expansion (4) of
the surface charge density σ(1)(θ, z, t = 0). We retain

only the dipole angular moments σ
(1)
1,n(0), which enter

Eq. 28 . The Gaussian charge patch has a typical length
along the Oz axis of d = 3.8 mm and is thus already well
approached by an expansion limited to the first n ≤ N =
(H/d) + 1 ' 9 modes. In a second step, we evaluate for

both cases (a) and (b), the characteristic times 1/τ
(1,2)
1,n ,

for all n ≤ N using, for example, the Mathematica script
found in the supplementary material and described in
Appendix B. In a third step, we calculate for both setups

the amplitudes g
(1)
n and g

(2)
n defined in (28). An option

in the provided Mathematica script allows computing all
the required amplitudes.

In table I we give, for the first n ≤ 9 the rates 1/τ
(1,2)
1,n

and amplitudes the g
(1,2)
n that contribute to the deflection

angle in (29). First we note that for case (a), g
(2)
n is

systematically one order of magnitude smaller than g
(1)
n .

For case (b), the terms g
(2)
n are zero. For both cases,

we neglect thus the contributions of g
(2)
n to the deflection

angle α. Second, we note that for both configurations

(a) and (b), the rates 1/τ
(1)
1,n vary by less than 10% over

the range n ∈ [1, 9]. We may thus approach τ
(1)
1,n ' τ

(1)
1,1 ,

∀n ≤ N , so that the expression of the deflection angle
(29) simplifies, for both cases (a) and (b), to

tan(α(t)) ' 1

2Vs
e−t/τ

(1)
1,1

N∑
n=1,odd

g(1)n︸ ︷︷ ︸
G1

(32)

=
1

2Vs
G1e

−t/τ(1)
1,1 (33)

The model eventually predicts that the deflection ampli-
tude α(t) of the transmitted beam decays exponentially
in time with a decay time equal to the relaxation time

τ
(1)
1,1 obtained by diagonalizing the matrix F1,1, see (22)

The constant G1 has the dimension of an electric poten-
tial and controls the amplitude of the deflection angle α.
In the last line of table I, we give G1 for both configura-
tions (a) and (b). Assuming for the extraction potential
Vs of the ion source a value of Vs = 1.5 kV, we get for the
case (a) the time evolution of the deflection angle, which
in the small angle approximation reads (in radians),

α(t) ' 1

60
exp (−t/94) R3 � R2 . (34)

In setup (b) where the outer surface of the capillary is
grounded, the deflection amplitude is reduced by more
than a factor 2 and evolves with a time constant of 133
s, about three times larger than for case (a),

α(t) ' 1

150
exp (−t/204) . R3 = R2 . (35)

Comparing the decay times of setup (a), 94 s and (b),
204 s to the significantly larger bulk relaxation time
τb = 400 s, highlights the non-negligible influence of the
surface conductivity on the decay rates, in the case where
κs = 10−16 S and κb = 10−13 S/m. We note that it is
important not to overcharge the patch. In configuration
(a), a total charge patch of Q = 50 pC yields a deflec-
tion amplitude of 1/60 rad, which is sufficiently low so
that the deflected beam will not hit the opposite capil-
lary wall before exiting the capillary, while the deflection
is sufficiently large to be measured on a PSD some 300
mm downstream.

C. Deducing κb and κs from the decay
measurements of setups (a) and(b)

In the previous section, we showed that the model can
predict the decay rate of the deviation angle α(t), know-
ing the bulk and surface conductivities of a glass tube. In

Fig.3, we give the dependency of 1/τ
(1)
1,1 as a function of κs

for two different bulk conductivities, namely κb = 10−13

S/m and κb = 5×10−13 S/m and for both configurations

(a) and (b). For setup (b), the decay rate 1/τ
(1)
1,1 depends

linearly on both surface and bulk conductivity, as can
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FIG. 3: Decay rate 1/τ
(1)
1,1 as a function of the surface con-

ductivity κs for both configurations (a) and (b). Full and
empty circles are obtained using a bulk conductivity κb =
10−13 S/m; full and empty squares were calculated using
κb = 5 × 10−13 S/m.

be deduced from the curves with filled circles and filled
squares. The linear relationship was already pointed out
in [16]. For setup (a) however, the relation is nonlinear
as is shown by the curve with the empty squares close
to the origin. This is not surprising as the rates are the
zeros of the characteristic polynomial of order two of the
matrix Fmn, see (22).

In this paragraph we want to show how to deduce the
bulk and surface conductivity from the decay measure-
ments. As we have two unknowns, (κb, κs), we need two

independent measurements of 1/τ
(1)
1,1 . The latter require-

ment is fulfilled by configurations (a) and (b) as can be
seen by the different slopes they yield in Fig.3. Monitor-
ing the decay of the deflection angle α(t) of the transmit-
ted beam on a PSD and then fitting its time-evolution
using expression (33) allows to deduce the experimen-

tal relaxation rate τ
(1)
1,1 of the dipole angular moment of

the charge distribution. The rates measured in case (a)
and (b) should permit us to uniquely estimate the sur-
face conductivity κs and bulk conductivity κb of the glass
tube.

In the particular case where the measured decay rates
of both configurations are the same, the model predicts
that the charge relaxation rate is dominated by the bulk
conductivity and the surface conductivity may be ne-
glected in the model (2,3). On the contrary, if the mea-
sured rates (a) and (b) differ sensibly, then the surface
conductivity has a non-negligible influence on the charge
dynamics. In the latter case, using the provided Math-
ematica script and a Newton type search technique, a

pair of (κb, κs) that yields the measured 1/τ
(1)
1,1 for case

(a) and (b) should eventually be found. If no such pair of
bulk and surface conductivities can be found, that would

involve that the model does not describe realistically the
the charge dynamics in the capillary. The experiment
should thus provide a stringent test for the model.

IV. CONCLUSION

We proposed a simple model that describes the charge
dynamics in straight insulating capillaries. The model
is based on the assumption that the charges accumulate
only at the inner and outer interface of the capillary. The
current density through the bulk is proportional to the
bulk conductivity. The surface currents along the inter-
face are proportional to the surface conductivity. Within
theses assumptions, the model is solved using a multipole
expansion of the electric potential that satisfies the given
boundary conditions. The model predicts the time evolu-
tion of the accumulated surface charge distribution in the
presence of electrons and holes injected at the inner and
outer surface. The model is applicable to a large num-
ber of systems, including nano-capillaries. It yields the
charge relaxation rates that characterize the dynamics of
charge patches as a function of the geometric dimensions
and electric properties of the capillary. In the case of
time independent source terms, it also allows to calcu-
late the surface charge distributions that accumulate at
the interfaces obtained after a given charging time.

We present a Gedankenexperiment that measures the
relaxation rates of the dipole part of the accumulated
charge at the capillary interfaces. We showed how to use
the model in order to extract from the measurements the
surface and bulk conductivity of the capillary. Upcom-
ing experimental measurements, based on the proposed
Gedankenexperiment should clarify if the surface conduc-
tivity can be omitted in the simulations and if the surface
charge approximation is applicable in glass capillaries.
Preliminary experimental work has already started.

For the readers interested in developing numerical
codes for the charge transport through insulating cap-
illaries, the model proposes a CPU efficient technique for
the evaluation of the electric field, knowing the charge
distribution at the capillary interfaces. We provide a
script in ®Mathematica that calculates the quantities
presented in the manuscript and which may be easily
modified to calculate those quantities for various setups
the reader imagines. Finally, the present model may be
easily extended to account also for tapered capillaries.
Work in this direction is underway.

Appendix A: Expression of the potential as a
function of the surface charge densities

This appendix details the evaluation of the time inde-

pendent coefficient a
(i)
mn, b

(i)
mn and c

(i)
mn, i = 1, 2 which are

needed in order to express the potentials V (1) and V (2)

as functions of the surface charge densities σ(1) and σ(2).
In the following, we drop the indexes m and n in the
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Bessel functions in order to simplify the notations,

Im(knRi) ≡ Ii (A1)

Km(knRi) ≡ Ki (A2)

∂

∂r
Im(knr)

∣∣∣∣
r=Ri

≡ I ′i (A3)

∂

∂r
Km(knr)

∣∣∣∣
r=Ri

≡ K ′i , (A4)

From the boundary conditions (10-14) we deduce the re-
lations

Amn(t)I1 = Bmn(t)I1 + Cmn(t)K1 (A5)

Bmn(t)I2 + Cmn(t)K2 = DmnI2 + Emn(t)K2 (A6)

Dmn(t)I3 + Emn(t)K3 = 0 (A7)

and

−εr [Bmn(t)I ′1 + Cmn(t)K ′1] +Amn(t)I ′1 =
σ
(1)
mn(t)

ε0
(A8)

− [DmnI
′
2 + EmnK

′
2] + εr [BmnI

′
2 + CmnK

′
2] =

σ
(2)
mn(t)

ε0
(A9)

The above system of equations (A5 - A9) has 5 unknowns
Amn, Bmn, . . . , Emn and 5 independent linear equations,
so that the unknowns are uniquely determined. It is con-
venient to put the above system of equations into a ma-
trix form,



I1 −I1 −K1 0 0

0 I2 K2 −I2 −K2

0 0 0 I3 K3

I ′1 −εrI ′1 −εrK ′1 0 0

0 εrI
′
2 εrK

′
2 −I ′2 −K ′2





Amn

Bmn

Cmn

Dmn

Emn


=



0

0

0

σ
(1)
mn/ε0

σ
(2)
mn/ε0


(A10)

Solving the system of equations (A10) by a matrix inver-
sion technique may be achieved comfortably using a tech-
nical computation software, like®Mathematica. We re-
mind the reader that the matrix elements depend on the
indexes m,n, even if not explicitly stated. All the depen-
dency on the dimensions (R1, R2, R3, H) of the straight
capillary and surrounding electrode as well as the dielec-
tric constant εr of the insulator is captured by the matrix
elements. The latter are thus time-independent and can
be evaluated once for all for each mode (m,n). We will
need in this work the explicit dependence of the electric
potentials V (2)(t) on both time-dependent surface charge

densities σ
(1,2)
mn (t). From the structure of (A10), we de-

duce that the terms Amn(t), Bmn(t) and Cmn(t) can be

written as a linear combination of both surface charge

densities σ
(1)
mn(t) and σ

(2)
mn(t), namely,

Amn(t) = a(1)mnσ
(1)
mn(t) + a(2)mnσ

(2)
mn(t) (A11)

Bmn(t) = b(1)mnσ
(1)
mn(t) + b(2)mnσ

(2)
mn(t) (A12)

Cmn(t) = c(1)mnσ
(1)
mn(t) + c(2)mnσ

(2)
mn(t) (A13)

where the constant coefficients a
(i)
mn, b

(i)
mn and c

(i)
mn, i =

1, 2 are known quantities obtained by inverting the ma-
trix (A10) for each set of indexes (m,n). Eventually the
potential V (1)(r, θ, z, t) and V (2)(r, θ, z, t) are expressed
using explicitly the surface charge densities,

V (1) =
∑
mn

Im(knr)
[
a(1)mnσ

(1)
mn(t) + a(2)mnσ

(2)
mn(t)

]
× cos(mθ) sin(knz) (A14)

and

V (2) =
∑
mn

[(
b(1)mnIm(knr) + c(1)mnKm(knr)

)
σ(1)
mn(t)

+
(
b(2)mnIm(knr) + c(2)mnKm(knr)

)
σ(2)
mn(t)

]
× cos(mθ) sin(knz) (A15)

The potential V (3)(r, θ, z, t) can be obtained similarly.

Appendix B: Script for evaluating numerically the

characteristic times τ
(i)
mn

We provide a script for®Mathematica 5 or above that

calculates the characteristic times τ
(1)
mn and τ

(2)
mn for all

m ∈ [0,Mmax] and n ∈ [1, Nmax]. The script named
”rates.nb” takes as input the dimensions R1, R2, H, di-
electric constant εr and conductivities κb and κs of the
straight capillary as well as the radius R3 of the conduct-
ing interface S3. If there is no conducting S3 interface, R3

can be set to an arbitrary large value, typically R3 � H.
Lengths are given in mm, surface conductivity in Siemens
(S) and bulk conductivity is S/m. Finally, the routine
needs the highest angular Mmax and axial Nmax mode
for which it should perform the calculations. It outputs

the matrix elements f
(ij)
mn (20-21) and associated char-

acteristic times τ
(i)
mn for the requested modes (m,n). It

also includes the time independent coefficients a
(i)
mn, b

(i)
mn

. . . e
(i)
mn, i = 1, 2, necessary to express the potential V (1)

and V (2) in the form (A14) and (A15) respectively. The
script is available as a separate file in the supplementary
material.
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