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Influence of the viscosity and charge mobility on the shape deformation of critically
charged droplets

E. Giglio, J. Rangama, S. Guillous, and T. Le Cornu
Centre de Recherche sur les Ions, les Matériaux et la Photonique,

Université de Caen Normandie, ENSICAEN, CEA, CNRS, 14000 Caen, France

In this work, we model and simulate the shape evolution of critically charged droplets, from the
initial spherical shape to the charge emission and back to the spherical shape. The shape deforma-
tion is described using the Viscous Correction Viscous Potential Flow (VCVPF) model, which is
a potential flow approximation of the Navier-Stokes equation for incompressible Newtonian fluids.
The simulated shapes are compared to snapshots of experimentally observed drop deformations. We
highlight the influence of the dimensionless viscosity and charge carrier mobility of the liquid on the
shape evolution of droplets and discuss the observed trends. We give an explanation as to why the
observed deformation pathways of positively and negatively charged pure water droplets differ and
give a hint as to why negatively charged water droplets emit more charge during charge break-up
than positively charged ones.

PACS numbers: 47.20.Dr, 47.20.Ma

I. INTRODUCTION

In 1882, Lord Rayleigh predicted that charged droplets
become unstable against an infinitesimal spheroidal de-
formation if the Coulomb pressure at the surface balances
the capillary pressure [1]. In a pioneering work, Duft
et al. [2, 3] confirmed the Rayleigh prediction of the
Coulomb instability of charged droplet by observing the
spontaneous shape evolution of critically charged ethy-
lene glycol droplets. By trapping charged micro-droplets
in a Paul trap, they succeeded in taking snapshots of the
ultra-fast droplet deformation, from the initial spherical
shape to the moment jets are emitted from the tips of the
elongated drop and back to the spherical shape. Later,
the same group also observed the shape evolution of su-
percooled (-5◦ C) pure water droplets [4] and heated glyc-
erin droplets [5]. As was already pointed out in [4] and
in the PhD work of T. Müller [6], liquid droplets having
different viscosities and/or electrical conductivities show
a noticeable different shape evolution. The latter is sup-
ported by our recent observations of the shape evolution
of critically charged de-ionized (pure) water droplets at
room temperature. Surprisingly, we found that positively
and negatively charged pure water droplets show slightly
different shape deformations. That they behave differ-
ently is also corroborated by the data found in [6], where
negatively charged droplets at room temperature were
found to emit almost twice as much charge as positively
charged ones.

In this work, we want to understand in more de-
tail how the viscosity and electrical conductivity influ-
ence the shape deformation of critically charged droplets.
Some simulations of critically charged droplet deforma-
tions have already be performed by several authors. We
may cite the work of Belelú et al. [7] and Gawande et al.
[8] who presented a study of the shape deformation of
a charged viscous perfectly conducting drop suspended
in air. Using the boundary-element method to solve the

Stokes flow equation (creeping flow approximation), they
found that the viscous drop attains an aspect ratio of
3.86 at charge breakup, close to the observed value of
3.85 [2, 3]. However the Stokes flow approximation may
break down for the ultra-fast low-viscosity droplet defor-
mation, for which the advective inertial forces may dom-
inate the viscous forces. The case of an inviscid perfectly
conducting liquid droplets was discussed in [4] where the
simulated pathway was compared to glycol and super-
cooled water droplets. The authors concluded that vis-
cous forces or finite conductivity are necessary in order
to simulate accurately the different experimentally ob-
served droplet deformations. Burton and Taborek [12]
extended the study of inviscid liquid drops by consid-
ering a finite Ohmic bulk and surface conductivity and
showed the influence of both conductivities on the elon-
gation of the drop and on the tip formation. Radcliffe
[10, 11] used finite element methods (FEM) to solve the
Navier-Stokes (NS) equation and to simulate the defor-
mation of perfectly conducting viscous droplets. His pre-
liminary results showed a strong influence of the viscosity
on the elongation of the droplet at the moment pointed
tips are formed. Also related to our study is the work
of Nganguia et al. [13], who studied the inertia effects
on the electrode formation of a viscous drop under a
DC electric field as well the nice work of Collins et al.
[14] who simulated the jet formation of electrified liquids
and discussed the finesse of the jet as a function of the
liquid properties. In a later work, their simulations un-
equivocally show that electrospray daughter droplets are
coulombically stable at the instant they are created and
that there exists a universal scaling law for the daugh-
ter droplets charge [15]. Alternatively, Gañán-Calvo et
al. used the promising Volume of Fluid (VoF) method for
tracking and locating the free surface (fluid-gas interface)
[16]. They succeeded in simulating with high precision
the first drop emitted from the jet of an electrified parent
droplet and give universal scaling laws for the diameter
and electric charge of the first issued daughter droplet,
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which were validated both numerically and experimen-
tally.

We propose here a numerical model based on the po-
tential flow approximation of the NS equation to simulate
the shape evolution of a critically charged droplet. The
model accounts for the viscosity and electrical properties
of the liquid. In particular, it accounts for the charge
mobility of the excess charge carriers at the interface and
shows how the liquid properties influence the shape de-
formation of a critically charged droplet. In section II
we describe and discuss our model and highlight the di-
mensionless quantities that control the shape deforma-
tion. In section III we show our experimentally observed
snapshots of positively charged pure water droplets and
compare the snapshots to simulated ones. We also re-
call the superellipsoid fit, already introduced in [4], that
is used to define the deformation pathway of critically
charged droplets. We discuss the influence of the viscos-
ity and charge carrier mobility on the deformation path-
way and explain the observed trends. Finally we explain
why positively and negatively charged droplets deform
differently. It should be emphasized that the interest in
charge breakup of droplets is not purely academic as the
production of micro-sized or nano-sized jets is of present
considerable importance in the charge separation in elec-
trified clouds and in modern technologies such as electro-
spray ionization, ink jet printers and fuel injection that
require a fine control of the size of the jets and their decay
droplets [17].

II. DYNAMICS OF THE DROPLET
DEFORMATION

We want to simulate the nonlinear time-evolution of
the droplet shape that develops after the onset of the
Coulomb instability of an initially spherical charged drop
of radius R in a gas g atmosphere. A liquid of dynamic
viscosity µ and density ρ is supposed electrically conduc-
tive. As a result, the charges accumulate at the droplet

surface and the electric field is divergence-free ~∇ · ~E = 0
inside and outside the droplet volume. This corresponds
to the Taylor-Melcher leaky dielectric model [18, 20]. The
droplet deformation is assumed to be axisymmetric and
the liquid of the droplet incompressible. The latter con-
dition implies that the velocity vector field of the fluid is
divergence-free (solenoidal),

~∇ · ~u = 0 (1)

ensuring that the time evolution of the droplet occurs
at constant volume. The Navier-Stokes equation for an
incompressible (Newtonian) fluid in the droplet volume
Ω is expressed by the equation

d~u

dt
=
∂~u

∂t
+ ~u · ~∇~u =

1

ρ
~∇ · T (2)

where T is the stress tensor, defined by

T = −pI + 2µD +M (3)

with I being the identity matrix, p the pressure in the
liquid, D the strain-rate tensor,

D =
1

2

(
~∇~u+ (~∇~u)t

)
(4)

and M the Maxwell stress tensor

Mi,j = ε0εrEiEj −
ε0εr

2
~E2δi,j , (5)

with εr being the dielectric constant of the fluid. Note
that T is symmetric, T = T t. As there are no volume

charges, the electric force per unit volume is zero, ~∇·M =
0. Thus, in the leaky dielectric model, the Maxwell tensor
is divergence-free.

Boundary conditions for viscous charged droplets

In the following sections, the equations are defined at
the droplet interface, if not specified otherwise. The pres-
sure p in the liquid is obtained via the boundary condi-
tion; the jump (||) of the normal stress across the liquid-
gas interface of the droplet is balanced by the capillary
(curvature) force per unit area Pγ ,

Tnn|| = ~n · (T g − T ) · ~n = T gnn − Tnn = Pγ (6)

The latter is due to the phenomenon of surface tension
γ, and is given by the Young-Laplace equation

Pγ = γ(~∇ · ~n) = −2γH , (7)

where H is the mean curvature at a surface point and γ
is considered constant. Having defined the normal vector
~n at the drop interface pointing outward, the mean cur-
vature of a sphere of radius R is negative, H = −1/R,
so that Pγ > 0. This definition ensures that the pressure
in the liquid is higher than the pressure of the atmo-
sphere. We suppose that the viscosity of the outer gas
atmosphere is negligible µg � µ and that the pressure of
the outer atmosphere pg is constant (and set to zero), so
at the drop interface ∂Ω one has

Pγ = T gnn − Tnn
= −(pg − p) + 2(µg − µ)Dnn +Mg

nn −Mnn

' p− 2µDnn +Mg
nn −Mnn (8)

We introduce the Coulomb pressure Pc, defined as the
jump of the normal component of the Maxwell tensor
across the interface

Pc = Mg
nn −Mnn

=
ε0
2

(
(Egn)2 − εrE2

n + (εr − 1)E2
τ

)
(9)

where ~τ stands for the tangential vector at the surface
along the polar angle. Injecting the surface charge den-
sity σ = ε0(Egn − εrEn) into (9) allows expressing the
Coulomb pressure as a function of σ and the electric field



3

(En, Eτ ), evaluated at the liquid side of the liquid-gas in-
terface of the droplet.

Pc =
ε0
2

((
σ

ε0
+ εrEn

)2

− εrE2
n + (εr − 1)E2

τ

)
(10)

Finally rearranging (8) we obtain an equation for the
liquid pressure at the interface,

p = Pγ − Pc + 2µDnn . (11)

The shear stress Tτn, in contrast, is continuous across the
free interface,

Tτn|| = ~τ · (T g − T ) · ~n = 0 (12)

= 2µgDg
τn +Mg

τn − (2µDτn +Mτn) = 0 .(13)

We deduce from (13), by considering the viscous shear
stress at the gas side of the interface to be negligible,
that the viscous shear stress in the liquid must be equal
to the Maxwell shear stress across the interface,

µ2Dτn = Mg
τ −Mτn = σEτ , (14)

where the latter equality is deduced from (5). Note that
for a perfectly conducting liquid, Eτ = 0, yields the more
usual condition that the viscous shear stress is zero at
the free liquid-gas interface. Finally the prohibition of
mass transfer across the interface is guaranteed by the
kinematic boundary condition,(

d~s

dt
− ~u(~s)

)
· ~n = 0 . (15)

where ~u(~s) is the fluid velocity at the boundary rep-
resented by ~s and d~s/dt the velocity of the boundary.
Equation (15) describes thus the shape deformation of
the droplet.

Charge dynamics at the interface

We suppose that all excess charges are located within
a thin layer (skin) at the interface so that the surface
charge approximation holds. The charge dynamics at the
interface is thus governed by the surface charge transport
equation on a closed deforming surface. The latter is
moving with the fluid velocity evaluated at the surface
(15). The surface charges are dragged by the liquid flow
and pushed by the electric field along the surface. The
surface current

~js = σ(uτ + λEτ )~τ (16)

has thus two contributions. The first is the velocity field
of the fluid tangent to the surface uτ and the second is
the tangent component of the electric field Eτ times the
charge mobility λ. We may safely neglect the diffusion
term which is usually 2 orders of magnitude smaller than

the two former terms. The surface charge evolution even-
tually reads [19–21],

Dσ

Dt
− 2Hσun + ~∇s · (~τσ(uτ + λEτ )) = κEn (17)

where the convective time derivative means the derivative
when we follow the surface along a direction normal to

itself, that is
Dσ

Dt
=
∂σ

∂t
+ un

∂σ

∂n
. The second left hand

term (LHT), 2Hσun, accounts for the deforming surface.
The third LHT involves the surface divergence operator
~∇s· which is defined in the supplementary material (36)
and accounts for the charge transport along the surface.
The last term, proportional to the bulk conductivity κ,
plays the role of a source term, which moves charges from
the bulk to the surface or moves charges from the surface
into the bulk. Eventually, the divergence-free electric

field inside, ~E, and outside , ~E(g), the droplet are deduced

by requiring that ~τ ·( ~E(g)− ~E) = 0 and ~n ·( ~E(g)−εr ~E) =
σ/ε0 at the interface. Note that (17) differs from the
one used in [12], where the drag of charges by the fluid
velocity uτ was omitted and where a constant surface
conductivity was used instead of λσ.

A. Viscous Corrected Viscous Potential Flow
approximation (VCVPF)

The VPF approach

We assume in the following that the droplet deforma-
tion is well described using the potential flow approxima-
tion. The latter implies that the velocity field ~u of the
fluid can be written as the gradient of the scalar velocity
potential Ψ,

~u = ~∇Ψ in Ω . (18)

Because of (1), Ψ satisfies the Laplace equation in the

droplet volume Ω, ~∇2Ψ = 0. Within these assumptions,
the axisymmetric NS equation simplifies to the 1D Euler
equation, giving the time-evolution of the velocity poten-
tial Ψ on the interface as a function of the liquid pressure
p.

∂Ψ

∂t
+
~u2

2
+
p

ρ
= 0 , (19)

where the liquid pressure at the interface reads (11) ,

p = Pγ − Pc + 2µDnn , (20)

with the difference that here the strain rate tensor D is
computed using only the irrotational velocity field ~∇Ψ.
Equations (19) and (20) yield the viscous potential flow
model (VPF). Compared to the inviscid liquid model
used in [4], the pressure has now an additional term which
is proportional to the viscosity µ. Note that, while for
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an irrotational flow the viscous force per unit volume is

zero inside the drop, ~∇ · D = 0, its contribution to the
surface pressure is generally non-zero

Dnn 6= 0 and Dτn 6= 0 . (21)

As a result, the jump of the shear stress Tτn across the in-
terface violates the zero shear stress boundary condition
at a free surface,

Tτn −Mτn = µ2Dτn 6= σEτ . (22)

Indeed, VPF does not have enough degrees of freedom to
enforce that the shear strain rate Dτn equals the shear
stress of the Maxwell tensor. The rotational part of the
velocity field is missing here to fulfill the condition (22).
In the particular case of a perfectly conducting liquid,
where the shear stress of the Maxwell tensor is zero,
the shear strain rate Dτn should vanish at the interface,
which is in contradiction with (21). Compared to a ro-
tational flow where the condition (22) can be enforced,
VPF results in an incorrect dispersion relationship for
small surface oscillations, i.e. the damping of surface
modes is underestimated for low viscosities [22].

The VCVPF model

In order to compensate for the non-zero shear stress
boundary condition in VPF, Wang and co-workers [23–
25] derived a viscous correction formulation for the irro-
tational pressure. They assumed that a viscous correc-
tion of the pressure at the gas-liquid interface is required
to compensate for the non-vanishing irrotational shear
stress. The idea is that the pressure correction is a real
viscous pressure which varies from the pressure in the ir-
rotational flow outside a narrow vorticity layer near the
gas-liquid surface, to the required value at the interface.
They called this solution the viscous correction of the
VPF model. They proposed thus to add a viscous pres-
sure pµ to the liquid pressure p of the VPF model,

p = Pγ − Pc + 2µDnn − pµ . (23)

The viscous pressure pµ satisfies the Laplace equation in
the drop volume Ω and is defined such as the power of
the viscous pressure balances the power of the non-zero
shear stress across the boundary for each surface element
ds2,

un(−pµ)ds2 + uτ (−2µDτn + σEτ )ds2 = 0 . (24)

The viscous pressure being assumed harmonic, Eq. (24)
defines uniquely the viscous potential pµ in the droplet
volume. Combining (19), (23) and (24) yields the time
evolution of the velocity potential in the viscous correc-
tion for VPF (VCVPF) model. The viscous pressure pµ
adds dissipation at the interface, that originates from
the shear stress boundary condition. However, energy
dissipation within the bulk is still absent. In the case of

finite conductivity, the tangential component of the elec-
tric field may be non-zero, and pµ accounts also for the
traction originating from the non-vanishing shear stress
of the Maxwell tensor σEτ at the interface. The techni-
calities for the evaluation of the viscous pressure pµ are
detailed in the Appendix Sec. 2. We want to empha-
size that the VCVPF model can also be derived from
the dissipation model, where no ad hoc viscous pressure
is introduced, but where the zero shear stress boundary
condition is implicitly satisfied [22].

Numerical approach

As Ψ satisfies the Laplace equation in the droplet vol-

ume, ~∇2Ψ = 0, Ψ can be written as a linear combina-
tion of harmonic basis functions, having the symmetry of
the problem and the correct behavior close to the origin.
We choose to solve the Laplace equation in the prolate
spheroidal coordinate system as it is well adapted to our
boundary problem, while the harmonic basis functions
are still separable. Knowing Ψ on the boundary, the ex-
pansion coefficients are readily obtained [4]. This is the
same technique we used for evaluating the viscous pres-
sure (see the Appendix Sec. 2). We expand Ψ typically
on the first ≤ 100 harmonic basis functions fm and the
boundary ~si is discretized using i = 300 grid points dis-
tributed so as to cluster close to the tips. The jet for-
mation and emission are not simulated here, as the un-
derlying numerical spectral method, based on harmonic
function expansion in prolate coordinate system, is not
well suited to solve the Laplace equation for shapes with

almost singular tips. Noting that we have also ~∇2V = 0,
the harmonic basis expansion technique is also used to
evaluate the electric field inside and outside the droplet.

Validity of VCVPF

We note that VCVPF only approaches the power of
dissipation of the NS equation [23], mainly because the
rotational part of the velocity field is missing, which is
also necessary to satisfy explicitly the shear stress condi-
tion (13) at the free surface. Padrino et al. [22] studied
the dispersion relationships, giving the damping of small
amplitude surface oscillations as a function of the surface
mode, for both models, VPF and VCVPF and compared
them to the exact NS solution. They conclude that, while
VPF underestimates the damping of the surface oscilla-
tions, VCVPF tends to overestimate the damping with
respect to the exact NS solution. However, for low vis-
cous liquids, µ < 10−2

√
ργR (cf. 27), VCVPF does re-

cover the exact dispersion relationship, while VPF under-
estimated the damping by at least a factor 2 compared to
VCVPF. We prefer thus VCVPF over VPF for the study
of shape deformation of low viscous liquid drops. We
also want to highlight that unlike the Stokes equation,
which was used in [7, 8] to study the shape deformation
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of critically charged droplets, the VPF and VCVPF mod-

els include both the advective term ρ~u
2

2 , accounting thus
also for inertial effects.

B. Dimensionless quantities

We introduce the characteristic time τ0, giving the
timescale of the deformation, and the characteristic cap-
illary pressure P ◦

γ of the spherical drop,

τ0 =

√
ρR3

γ
, P ◦

γ = 2γ/R . (25)

Defining the dimensionless time t̃ = t/τ0, velocity po-

tential Ψ̃ = Ψ
τ0
R2

, capillary pressure −H̃ = Pγ/P
◦
γ and

viscous pressure p̃µ = pµ/P
◦
γ , allows putting the time

evolution of the velocity potential Ψ in VCVPF into a
dimensionless from

∂Ψ̃

∂t̃
+
~̃u2

2
+ 2

(
−H̃ −XP̃c + OhD̃nn − p̃µ

)
= 0 , (26)

where the quantities with a tilde are dimensionless. We
introduced in (26) the dimensionless viscosity Oh (Ohne-
sorge number),

Oh =
µ√
ργR

(27)

which relates the viscous forces to inertial and surface
tension forces. Larger Oh indicate a greater influence of
the viscosity. Note that p̃µ depends on Oh via (24). We
further introduced the fissility parameter

X =
P ◦
c

P ◦
γ

=
Q2

64π2ε0γR3
, (28)

defined as the ratio of the Coulomb pressure over the
surface pressure for the spherical droplet shape. If X < 1
the spherical shape of droplet is stable. If X = 1, the
spherical droplet is unstable and deforms spontaneously.
The dimensionless Coulomb pressure P̃c found in (26) is

defined by Pc = P̃cP
◦
c = XP̃c P

◦
γ , yielding

P̃c =
(
σ̃ + εrẼn

)2
− εrẼ2

n + (εr − 1)Ẽτ , (29)

where σ̃ and Ẽ are given by the relations σ =
σ̃
√

4Xε0γ/R and E = Ẽ
√

4Xγ/(ε0R).

The surface charge dynamics at the interface is gov-
erned by equation (17). Introducing the surface and bulk
relaxation rates

τ−1
s = λ

√
Xγ

R3ε0
, τ−1

b =
κ

ε0εr
(30)

allows to define the dimensionless charge carrier mobility
λ̃ and bulk conductivity κ̃

λ̃ =
τ0
τs

= λ

√
4Xρ

ε0
(31)

κ̃ =
τ0
τb

= κ

√
ρR3

γε20ε
2
r

(32)

Note that λ̃ is proportional to
√
X and thus to the charge

|Q| carried by the droplet. Equation (17) can now be put
into the dimensionless form

Dσ̃

Dt̃
− 2H̃σ̃ũn + ~∇s̃ · (~τ σ̃(ũτ + λ̃Ẽτ )) = κ̃εrẼn . (33)

Note that the factor εr, found in the last term, simply
originates from the definition of the bulk relaxation time
τb (30). The charge dynamics at the interface is con-

trolled by two parameters namely λ̃ and κ̃. If λ̃ � 1 or
κ̃� 1, then the charge relaxation dominates the rate of
motion of the fluid and the surface charge distribution is
close to equilibrium, meaning that the electric potential
at the surface is an equipotential. We recover thus the
case of a perfectly conducting liquid, where the surface
charge distribution is always at equilibrium during the
droplet deformation, σ̃ = σ̃eq, so that P̃c = σ̃2

eq depends
merely on the droplet shape ~s. From equation (26) we
deduce that, in the particular case of a perfectly con-
ducting liquid, the shape deformation depends only on
the dimensionless viscosity Oh and on the fissility X. If
the droplet is critically charged, X = 1, the shape defor-
mation depends only on the dimensionless viscosity Oh.

However, for liquid drops with sufficiently low charge
relaxation rates, so that λ̃ . 1 and bulk conductivity
κ̃ . 1, the surface charge distribution may not be at
equilibrium during the ultra-fast droplet deformation (in
the sense that the potential at the surface is no longer an
equipotential). This is because the surface charges can
now be dragged by the liquid flow out of equilibrium. As
a result, the inner electric field is non-zero at the interface
and the dimensionless Coulomb pressure P̃c deviates from
the Coulomb pressure of a perfect conductor. Hence, in
the case of low conducting liquids, the shape deformation
of the droplet depends not only on Oh and X but also
indirectly on the parameters λ̃ and κ̃.

III. SHAPE DEFORMATION OF CRITICALLY
CHARGED DROPLETS

We took snapshots of the ultrafast shape deformation
of pure water droplets at the Rayleigh limit. The ex-
perimental setup used for trapping and taking snapshots
of the droplet is similar to the one presented in [3–5].
A charged droplet is injected into a Paul trap, where
it evaporates until it reaches the critical fissiliy X = 1.
The onset of the Coulomb instability is monitored by a
photo-diode which triggers the flash lamp and the CCD
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FIG. 1: Comparison between simulated (top) and observed
(bottom) snapshots of � = 52µm deionized water droplets
at room temperature. Initially, the red droplets are charged
at the Rayleigh limit X = 1. At charge breakup, 20 % of
the charge is removed and the fissility for the green droplet is
X = 0.64. Shape labels: (a) lemon, (b) peanut, (c) diamond.

camera. Delaying the trigger allows taking snapshots of
the time evolution of the shape deformation. At the on-
set of the instability, the trapped water droplets have a
� = 52µm. Assuming that water at room temperature
has a viscosity of 1 cP, a density of 1000 kg/m3 and a sur-
face tension of 0.072 N/m, the droplets are characterized
by a low dimensionless viscosity of Oh=0.023 (see ta-
ble I), and are thus particularly good candidates for the
simulation with our VCVPF code. Surprisingly no jets
were detected on the snapshots, neither for positively nor
for negatively charged water droplets at room tempera-
ture. We took more than 30 snapshots of the moment
where the elongated droplet shapes have pointed ends,
but found no trace of small daughter droplets or jets on
the snapshots, unlike for glycol and supercooled water
[3, 4]. We concluded that the jet was too thin to be ob-
served and estimated that the jet radius, if any, must be
smaller than the resolution of the snapshots of 0.36 µm.
These observations are corroborated by the experimental
results presented in the Ph.D work of R. Müller [6]. The
lack of observed jets made us assume that the kinetic
energy loss during charge emission should be negligible.
We also assumed that the charge is emitted in an amount
of time short enough to consider the droplet deformation
frozen during charge emission. In our numerical code,
the charge emission is simulated thus by simply remov-
ing instantaneously a fraction of the charge as soon as
pointed tips are formed. The kinetic energy accumulated
during the first part of the deformation is conserved dur-
ing the charge emission. In the example showed in Fig.
1 the deionized water droplets were positively charged.
The measurements in [6] indicate that positively charged
pure water droplets emit at room temperature about 20

TABLE I: Parameters of deionized (pure) water droplets at
room temperature.

R (µm) µ (cP) ρ (kg/m3) γ (mN/m) Oh τ0 (µs)
26 1 1000 72 0.023 16

% of the initial charge at charge breakup.
We simulated with our numerical code, based on the

VCVPF model, the complete shape deformation of an
initially critically charged droplet, including the charge
breakup and the ”return” to the stable sub-critically
charged spherical drop. We used in our simulations a
bulk conductivity of κb = 5.5 × 10−6 S/m and a charge
mobility of λ = 37 × 10−8 m2/s/V (see table II). We
compare in Fig. 1 the simulated shapes to the observed
ones. The red simulated shapes in Fig.1 are critically
charged droplets (X = 1) and show the ultra-fast shape
deformation after the onset of the instability. Once the
pointed tips are formed, we removed, as suggested by
[6], 20% of the charge and the fissility reduces instan-
taneously to X = 0.64. At that moment, the shape fits
remarkably well the experimentally found lemon-like
shape. But even more remarkably is the agreement
between simulated and observed shapes during the sub-
critical shape deformation (green shapes). Especially,
the peanut and diamond shape have been found by
the simulation. The general agreement validates our
approach for describing low-viscous liquid droplets.

Superellipsoid: In order to compare easily the defor-
mation pathways of different droplets, the shapes are fit-
ted with the mathematical expression of a superellipsoid
of the form [30]

∣∣∣z
a

∣∣∣n +

∣∣∣∣∣
√
x2 + y2

b

∣∣∣∣∣
n

= 1 . (34)

The shapes are fitted with the constraint of constant vol-
ume so that the fit had only two independent parame-
ters, namely a/b and n. Expression (34) can fit either
capsules, spheroids or pointed shapes, depending on n.
The aspect ratio a/b gives the elongation of the droplet.
Adjusting (a/b, n) for the droplet shape for each snap-
shot yields a number of points that can be plotted on a
graph with a/b as the abscissa and n as the ordinate, so
that the complete droplet deformation path can be repre-
sented reasonably well on a 2D graph. Fitting the shapes
by a superellipsoid allows us to compare the deformation
pathway of droplets having different liquid properties.
Such a graphical representation of the deformation path-
way has already been used in [4] to highlight the differ-
ences in the shape deformation of glycol and supercooled
water droplets or in [10, 11] to show the influence of the
viscosity on the deformation pathway. Below, we give
examples of the fit parameters (a/b, n) found for various
observed shapes. We took ∼ 270 snapshots of the fast de-
forming water droplet and fitted the shapes on the snap-
shots by the superellipsoid function. The resulting set of
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(2.9 , 1.53)(2.1 , 2.0) (0.65, 1.9) (1.1, 1.5)(2.7 , 2.9)

FIG. 2: Fit parameters (a/b, n) found for various observed
shapes using the superellipsoid equation (34). Red contours
show the corresponding superellipsoid shape.

(a/b, n) was reported on a graph, yielding the pathway of
the droplet deformation, see Fig. 3. The arrows give the
direction of the time evolution of the path. It should be
noted that the scattering in the experimental data shown
in the (a/b,n) graphs results mainly from the qualitative
fit of the snapshots by the superellipsoid equation. The
fit was done by software and then the values (a/b,n) were
verified for consistency by the authors. Similar shapes
can give some dispersion in the fitted parameters espe-
cially for n > 2.5 and n < 1.7. In the following, we will
use the deformation pathway as an analysis tool to study
the influence of the liquid properties on the droplet shape
deformation.

a/b

n

FIG. 3: Graph (a/b, n) showing the deformation pathway of a
critically charged deionized water droplet. Starting with the
spherical shape (1, 2), arrows give the time evolution of the
path.

A. Influence of the viscosity

In a first step, we focus on the influence of the dimen-
sionless viscosity Oh on the deformation pathway. We
assume here that the fluid is perfectly conducting, so that
Oh is the only free parameter controlling the deformation

pathway. We simulated for different Ohnesorge numbers
Oh, ranging from 0.001 to 0.8, the shape deformation of
critically charged droplets (X = 1). The pathways for
several values of Oh are shown in Fig. 4. In all simu-
lations, the initial shape was a spheroid n = 2 with a
ratio a/b = 1.03 (almost spherical). First, we note that
the general deformation pathway is similar for all cases:
the instability starts with a/b = 1.03 and n = 2. Then
a/b increases, while n remains nearly constant at ' 2,
meaning that the initial deformation remains mainly pro-
late spheroidal. With ongoing elongation of the drop, n
starts to decrease and the shape becomes lemon-like with
pointed tips.

	1.4

	1.6

	1.8

	2

	2.2

	2.4

	2.6

	2.8

	3

	0.5 	1 	1.5 	2 	2.5 	3 	3.5 	4

n

a/b

OH=0.03
OH=0.1
OH=0.2
OH=0.4

FIG. 4: Deformation pathway of a critically charged droplet
as a function of the Ohnesorge number Oh. At the pointed
tip appearance (n = 1.5), the fissility is reduced from X = 1
to X = 0.64.

	3

	3.5

	4

	4.5

	5

	0 	0.2 	0.4 	0.6 	0.8 	1 	1.2 	1.4

a/
b

Oh

VCVPF
VPF

FIG. 5: Elongation a/b of the droplet at charge breakup,
(taken at n = 1.5) as a function of the dimensionless viscosity
Oh. Purple squares stand for the VCVPF model and green
empty circles for the VPF model. The horizontal dotted black
line is a/b = 3.86 and gives the elongation of the droplet in
the case of the Stokes flow approximation [7, 8].

When looking in more detail, we find that with in-
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creasing Oh and thus with increasing viscosity of the
liquid, the droplet adopts a more and more elongated
shape before pointed tips appear at the ends, typically
when n ∼ 1.5. Indeed, the viscous forces at the inter-
face are stronger for fast moving/deforming boundaries,
or alternatively, higher surface modes are more damped
than lower modes. As a result, for larger Oh, the tip
formation is retarded during the droplet elongation and
consequently, tips appear for shapes with higher aspect
ratios. For Oh=10−3, the maximal elongation is charac-
terized by the ratio a/b = 2.66, close to the value of 2.65
found for inviscid fluids [4]. At the other extremity, for
Oh=0.4, the aspect ratio a/b is 3.72, close to the factor
3.86 found by [7, 8] in the case of Stokes flow (creeping
flow with vanishing inertia forces) corresponding to large
Oh� 1. The trend is shown in Fig. 5, where we give the
aspect ratio a/b of the droplet at the moment n = 1.5 as
a function of Oh ∈ [0, 1.4]. For comparison, we also add
the results obtained for the VPF model. In the low vis-
cosity domain Oh< 0.01, when the dimensionless viscous
pressures OhD̃nn and p̃µ are negligible compared to the
difference between the capillary and the Coulomb pres-
sure, VPF and VCPPF give similar pathways and final
aspect ratios. However because VCVPF recovers in that
domain the correct dispersion relationship, as discussed
in a previous section, VCVPF is preferable over VPF also
for low viscous liquids. For larger dimensionless viscosi-
ties Oh> 0.8, the aspect ratio in VCVPF tends to the one
obtained in the Stokes flow approximation, while VPF
clearly overestimates the elongation of high viscous drops
confirming that VCVPF may be better suited for a larger
range of viscosities. For water droplets, characterized by
Oh=0.023, the differences in the pathways between VPF
and VCVPF are indeed small but nevertheless notable.
Typically, a VCVPF calculation with Oh=0.023 is simi-
lar to a VPF calculation with Oh=0.046.

For the simulated pathways in Fig. 4, once the pointed
tips have formed (n = 1.5), 20% of the initial charge is
suddenly removed and the fissility parameter drops in-
stantaneously to X = 0.64. At the same time, we re-
duced the kinetic energy by 80 %, by simply multiplying
ψ by the factor

√
0.2. The latter is an arbitrary choice

and motivated here so as to allow to simulate also very
low viscous drops Oh = 10−3, for which the low energy
dissipation could otherwise prevent the numerically sta-
ble computation of the return path of such low-viscous
drops. After charge emission, the pressure due to the
surface tension dominates the Coulomb pressure at the
surface and the pointed tips retract so as to flatten the
ends. This is monitored by the increase of the parame-
ter n from 1.5 to up to 3.0 to fit an elongated capsule.
The maximal value of n during the return path depends
on the Oh number. Because of viscous forces at the in-
terface, the accumulated kinetic energy is dissipated and
the drops return finally to the spherical shape, unlike the
simulations done with the inviscid liquid [4, 12].

The shape deformation of viscous drops shows a sim-
ilar behaviour than the damped forced oscillator. For

Oh< 0.2, the dynamics is under-damped and the return
to the sphere goes through oblate shapes as indicated by
the ratio a/b < 1. In the (a/b, n) graph, the droplet os-
cillates with decreasing amplitude, between the prolate
and oblate shapes and between pointed (diamonds) and
flattened (capsule) tip shapes. We note that Oh ' 0.2
corresponds to the value were the droplet is critically
damped, meaning that it no longer overshoots when re-
turning to the asymptotic spherical shape. For Oh> 0.2,
the motion is overdamped and the droplet returns slowly
to the stable spherical shape. In the particular case of
Oh≥ 0.4, the return path is even characterized by n ≤ 2,
meaning that the tips stay pointed for a while even after
charge emission. This is a surprising result and the pre-
diction may not be meaningful as VCVPF calculations
with Oh≥ 0.4 are expected to deviated significantly from
full NS calculations, as was shown in [22] in their study
of small drop surface oscillations.

B. Influence of the charge carrier mobility

	1.4
	1.6
	1.8
	2

	2.2
	2.4
	2.6
	2.8
	3

	1 	1.2 	1.4 	1.6 	1.8 	2 	2.2 	2.4 	2.6 	2.8 	3

n

a/b

λ=0.2
λ=1
λ=2
λ=4

λ=10
p.c.

FIG. 6: Deformation pathway of a droplet with Oh=0.023
(typically a � = 50µm water droplet at room temperature)

for various dimensionless charge carrier mobility λ̃, ranging
from 0.1 to 10 and for the perfect conductor (p.c.).

In the second step, we focus on the influence of the
charge mobility of excess charge carrier on the defor-
mation pathway. We consider the particular case where
the dimensionless bulk conductivity κ̃� 1 is sufficiently
small so that the charge dynamics are dominated by the
surface current js and depends mainly on the dimen-
sionless charge mobility λ̃. The simulations were per-
formed with κ̃ = 0.1 and with a dimensionless viscosity
of Oh=0.023 (corresponding to a � = 52µm droplet of
deionized water at room temperature, see table I and II).
In figure 6, we show that the first part of the pathway
(corresponding to X=1) depends notably on the charge

mobility λ̃. Considering that the charge mobility affects
mainly the ”fine-structure” of the Coulomb pressure, its
influence on the pathway is rather remarkable. We see
that with decreasing mobility, the aspect ratio a/b of the
droplet at tip formation (n ∼ 1.5) decreases from 2.85
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to 2.6. Taking λ̃ � 10 gives a pathway which is indis-
tinguishable from the perfect conductor (p.c) case. At
n = 1.5 the charge is reduced by 20%. The pathway
is now dominated by the capillary pressure because the
Coulomb pressure has been reduced significantly due to
the emitted charge (X = 0.64). The effect of the charge
mobility on the sub-critical part of the pathways was in-
deed found negligible and the return pathways are all
similar. They differ only because they start with differ-
ent initial conditions (different a/b ratios).

The reason why smaller charge mobilities λ̃ tend to
accelerate the tip formation is explained by the competi-
tion between the charges being dragged by the fluid and
the charges being pushed by the tangent component of
the electric field at the surface. For low-viscous drops,
Oh< 0.03, the velocity at the surface may be so high
that the flow drags a large amount of charges to the tips.
The large concentration of charges at the tips tends to
accelerate the formation of pointed ends. If the accumu-
lated charge density at the tips exceeds the equilibrium
charge density σeq (the equilibrium charge corresponds to
the charge distribution that results in an equipotential at
the surface) it generates an electric field directed from the
tip to the equator of the droplet, acting against the drag
of the flow. The larger the charge mobility, the larger
the surface charge relaxation rate τ−1

s and the closer the
charge distribution stays to the equilibrium charge distri-
bution σeq. That is why the deformation pathway tends

to the p.c. case for λ̃ � 1. On contrary, for λ̃ � 1 the
surface charges move mainly with the fluid to the ends,
where they accumulate. The finite charge mobility has
thus a non-negligible effect on the shape deformation and
should be taken into account when looking at the path-
way in detail. We will see below that the charge mobility
allows to discriminate between positively and negatively
charged pure water droplets.

C. Influence of the charge polarity: Case of
positively and negatively water droplets

By changing the sign of the polarization ring of the
injector, negatively or positively charged droplets can
be injected and trapped. From the recorded snapshots,
we reconstructed in Fig. 7 the deformation pathway of
positively (green squares) and negatively (black circles)
charged drops. Surprisingly, the pathways differ and the
positively charged droplets show at charge breakup lemon
like shape with an aspect ratio of a/b = 2.9 larger than
the negatively charged ones (a/b = 2.7). As the radius
was 26 µm for both cases and as the viscosity and den-
sity are not expected to depend on the sign of the charge,
we supposed that the different behavior comes from the
different mobilities of the charge carriers in water. In-
deed, both protons H+ and hydroxides OH− in aqueous
solution have anomalously large diffusion coefficients, but
with the mobility of H+ almost twice as large as that of
OH− anions [29, 31].

0.5 1 1.5 2 2.5 3
a/b

1

1.5

2

2.5

3

3.5

n

neg
pos

λ=4, ∆Q/Q=20%

λ=2, ∆Q/Q=40%

λ=2, ∆Q/Q=20%

FIG. 7: Deformation pathway for positively and negatively
charged water droplets having a radius of 26 µm. Solid and
dashed lines are simulations, black closed circles and green
open squares are experimental results of negatively and pos-
itively charged deionized water droplets, respectively. In the
legend, λ stands for the dimensionless charge mobility (tilde
has been omitted) and ∆Q/Q is the relative amount of emit-
ted charge. The red dashed line is added to show the effect
on the return path for λ̃ = 2, in the case where 20% of the
charge was removed instead of 40%.

Polarity κ (µS/m) λ (m2/s/V) εr κ̃ λ̃
pos 5.5 37 × 10−8 80 0.1 4.0
neg 5.5 20 × 10−8 80 0.1 2.1

TABLE II: Electrical properties of pure water depending on
the polarity of the carried charge. Proton and hydroxide mo-
bilities at room tempertaure are found in [29, 31].

We simulated the deformation pathway using the
VCVPF approach, where the charge dynamics at the sur-
face are explicitly taken into account by (17). The latter
depends on the mobility of the charge carriers via the di-
mensionless mobility λ̃ and on the bulk conductivity via
the dimensionless factor κ̃. In table I and II, we give the
relevant parameters of a deionized water droplet used
in the simulations. Positively and negatively charged
droplets distinguish only by the charge carrier mobil-
ity and, in both cases, the dimensionless charge mobility
dominates the dimensionless bulk conductivity λ̃ � κ̃.
We are thus in the same configuration presented in sec-
tion III B and the deformation pathway is expected to
depend on λ̃, with the bulk conductivity having merely a
negligible effect on the deformation dynamics. The simu-
lated path is superimposed in Fig. 7 to the experimental
data. We found a remarkable agreement between the
simulated and observed pathway. We focus our analy-
sis on the first part (X = 1) of the pathway for which
the charge mobility has a non-negligible influence. We
clearly see that positively (green open squares) and neg-
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atively (black closed circles) charged water droplets can
already be distinguished by the first part of their respec-
tive pathway. The VCVPF calculation with λ̃ = 4 fol-
lows rather the path of the positively charged droplets
(green squares) with a final a/b ratio of about 2.8 for

n = 1.5. On the other hand, the simulation with λ̃ = 2
agrees better with the measurements of negatively (black
points) charged droplets. The comparison corroborates
that the observed difference in the (X = 1) part of the
pathway can be explained by the difference in the charge
mobility of H+ and OH− in water.

After charge breakup, the subcritical pathway is dom-
inated by the amount of emitted charge. In particu-
lar, the slope of the path after charge emission in the
graph (a/b, n) increases with increasing emitted charge,
as the larger difference between the capillary pressure and
Coulomb pressure accelerates the flattening of the tips.
In the case of negatively charged droplets, we found that
removing 40% of the initial charge gives the best ”visual
fit” for the return pathway. Removing only 20% of the
charge (see red dashed line in Fig. 7), shifts the return
path by ' 0.2 to the right on the a/b axis, resulting in
a less satisfying visual fit with the black closed circles.
In the case of positively charged droplets the best visual
fit with the green squares was obtained for a relative
emitted charge ∆Q/Q of 20%. These finding are cor-
roborated by the observations reported by R. Müller [6],
who found that negatively charged pure water droplets at
room temperature having � = 62 µm emit about 40% of
the initial charge at charge breakup while positively emit
merely 20%. We note however that the large scattering
of the green squares and black dots in Fig. 7 does not
allow us to clearly discriminate between 20% and 40% of
the emitted charge.

It seems thus that the reason to why positively
charged pure water droplets have a aspect ratio a/b
larger than negatively charged ones is because H+ has a
higher charge mobility than OH−. For such low-viscous
droplets, Oh= 0.023, the drag of the charges by the fluid
velocity is in competition with the push by the electric
field. It happens that for OH− the latter effect is less
efficient so that more charges accumulate at the tips, ac-
celerating the tip formation. The charge velocity tangent
to the surface, given as the sum of the drag velocity ũτ
and ”electric field” velocity λ̃Ẽτ is illustrated in the up-
per panel of Fig.8 for three different values of λ̃. The
quantities in Fig.8 are given as a function of the dimen-
sionless distance r/R, corresponding to the distance from
the symmetry axis to a surface point, such that r → 0
corresponds to the tips (see inset). We note that close
to the tips (r/R ' 0.06), the velocity of the charges is

reduced by a factor 2 when increasing λ̃ = 1 to λ̃ = 4.
The accumulated charge density at the tips (lower panel)

for λ̃ = 1 was also found to be larger about by a factor 2
than for λ̃ = 4, accelerating thus the tip formation. The
higher charge density may also explain why negatively
charged pure water droplets emit more charge than posi-
tively charged pure water droplets, as was observed in [6].

(a)

(b)
(

FIG. 8: (a) Dimensionless velocity of the charges tangent to

the surface, ũτ + λ̃Ẽτ , as a function of the dimensionless dis-
tance r/R defined in the inset. Positive values indicate ve-
locities directed towards the tips. (b) Dimensionless surface
charge density σ̃ as a function of r/R. The quantities are cal-

culated for three different charge mobilities λ̃. The blue line
with pluses gives the equilibrium surface charge density σ̃eq

in the case of a perfectly conducting liquid (p.c.).

If instead of pure water we had used sea water, having a
bulk conductivity of 5 S/m so that κ̃ ' 104 � λ̃α for all
excess charge carrier α, the charge dynamics would be
dominated by the bulk current κ̃Ẽn and the liquid well
approached by a perfect conductor. We expect thus posi-
tively and negatively charge droplets of sea water to yield
the same deformation path and emit the same amount of
charge at charge break-up. The latter prediction may be
verified in future experiments.

IV. CONCLUSION

We conclude this work by highlighting the remarkable
results. On the experimental front, we trapped charged
pure water droplets in a Paul trap and took snapshots
of the ultra-fast shape deformation after the onset of
the Coulomb instability. This was done for positively
and negatively charged droplets at room temperature.
We noted that, just before charge emission, negatively
charged droplets are more elongated than positively ones.
On the numerical front, we developed a numerical code,
based on the VCVPF approach, which includes viscous
effects at the interface. The fluid dynamics is coupled
to the surface charge dynamics, so that the Coulomb
pressure depends also on the electrical properties of the
liquid. For the particular case of pure water droplets,
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we showed that the VCVPF model describes accurately
all steps of the shape deformation. The pathway from
the initial spherical shape to the lemon shape, the in-
stantaneous charge emission with negligible kinetic en-
ergy loss and the pathway back to the sphere by going
through exactly the same exotic shapes are well repro-
duced. The excellent agreement gives much confidence
in the underlying model and numerical algorithms of the
code. We found that the VCVPF model predicts that
with increasing viscosity, or more precisely, with increas-
ing Oh, the final shape before charge break-up is more
and more elongated. We found that, at charge emission,
the ratio a/b lies between 2.66 for inviscid liquids and
3.86 in the limiting case of a Stokes flows. We found
that, if the dimensionless charge mobility λ̃ dominates
the dimensionless bulk conductivity κ̃ of the liquid while
being of the order of 1, the droplet deformation is sen-
sitive to the mobility of the charge carriers. We showed
that for λ̃ = 1 the charge dynamics is dominated by the
fluid velocity at the interface which drags the charge car-
riers to the tips, accelerating the formation of pointed
tips. On the other hand, for λ̃ = 4 the electric field is
efficient enough to avoid a rapid accumulation of charge
at the tips, delaying the formation of pointed tips. Fi-
nally, our simulations explained that, even though the
charge mobility of protons is higher only by a factor 2
than the one of OH−, positively and negatively charged
droplets show a notable different aspect ratio at charge
breakup. The lower mobility of OH− may also explain
why more charge (by factor 2) is released for negatively
charged droplets at charge breakup.
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SUPPLEMENTARY MATERIAL

1. Surface divergence

Let ~τ be a vector tangent to the surface defined by the
vector ~s. The surface divergence operator

~∇s · (Ψ(~s)~τ(~s)) (35)

for arbitrary function Ψ(~s) defined on the surface, may
not be well known to the reader, so we give a computa-
tionally useful expression of the surface divergence found
in (17). Let (ξ > 1,−1 ≤ η ≤ 1, 0 ≤ ϕ ≤ 2π) be curvi-
linear orthogonal coordinates and ~r(ξ, η, ϕ) an arbitrary
vector. Because the droplet deformation and charge dy-
namics are axisymmetric, the function Ψ(ξ, η) = σ(uτ +
λEτ ) does not depend on the the azimuthal angle ϕ. The
surface vector ~s(η) depends thus only on η. The general
expression simplifies in that case to

~∇s · (~τ(~s) Ψ(~s)) = ~n ·
(
~∇∧ (Ψ(~r)~eϕ)

)∣∣∣
~r=~s

= ~n · ~eξ
1

hηhϕ

d

dη
(hϕ(~s)Ψ(~s)) (36)

where ~τ = ~eϕ ∧ ~n is the tangent vector and hη and hϕ
the scale factors associated to the curvilinear coordinate
system and evaluated at the surface. The term d()/dη
in (36) can be accurately computed using for example a
Gauss-Lobatto interpolation scheme, which is appropri-
ate if the endpoints are know (here hϕ(~s)Ψ(~s) = 0 for
η = ±1).

2. Numerical method for computing the viscous
potential

The VCVPF model is only useful if one can compute
the viscous pressure pµ, which enters the normal stress
term. We propose here a numerical method to compute
the viscous pressure in VCVPF. Making use of the fact
that the Laplace operator is separable in prolate spheroid
coordinate system (ξ ≥ 1,−1 ≤ η ≤ 1, 0 ≤ ϕ ≤ 2π), we
get a simple expression for the harmonic functions fm
that satisfy the Laplace equation ~∇2fm = 0. As we want
fm(ξ, η) = fm(ξ,−η) to be axisymmetric and even and
defined at the origin f(1, 0) <∞, we have

fm(ξ, η) = P2m(ξ)P2m(η) (37)

where Pm() are Legendre polynomials of order m. Let
{fm } be a basis of harmonic function. We may now
expand the viscous pressure on the harmonic basis fm,

pµ(ξ, η) =

M∑
m=1

bmfm(ξ, η) (38)

The expansion coefficients {bm} are deduced using the
boundary condition (24),

M∑
m=1

bm fm(~si)un(~si)dsi︸ ︷︷ ︸
Fm,i

=uτ (~si)(2µDτn(~si)dsi︸ ︷︷ ︸
di

− uτ (~si)σi(~si)Eτ (~si))dsi︸ ︷︷ ︸
ei

(39)

where ~si≤N is an ensemble of N points at the surface.
Equation (39) is a system of N equations and M un-
knowns of the form

M∑
m=1

bmFm,i = di − ei , 1 ≤ i ≤ N (40)

IfN ≥M the system is overdetermined and can be solved
using a singular value decomposition (SVD), which finds
the coefficient {bm} as least squares solutions.
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