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Abstract

A new three-dimensional thermo-viscoelastic constitutive model for uni-
directional fiber reinforced, polymer composite materials is developed in this
work. The key point is to introduce the viscoelastic behavior only where ap-
propriate, based on the constitutive behavior of the underlying constituents,
elastic fibers and viscoelastic (in shear) matrix. In order to achieve this, an
irreducible Cartan decomposition for the stress and strain tensors under the
hypothesis of transverse isotropy is derived. The integrity basis for the de-
composition is used to formulate the energy functional, which enables us to
define uncoupled constitutive laws in which the contributions of the under-
lying constituents are easily identified. In order to describe the viscoelastic
behavior in shear of the matrix, a generalized Maxwell model is applied to the
appropriate terms of the stress and strain decomposition, in agreement with
the underlying physical mechanism. Thermal strains and temperature effects
on the viscoelastic behavior are introduced through the time-temperature su-
perposition principle. Various numerical simulations are performed to show
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the key features of the presented constitutive model and an Abaqus UMAT
is implemented in order to perform structural simulations.

Keywords: Composite materials, Transversely isotropic, Cartan
decomposition, Viscoelastic, Numerical methods, Residual stresses

1. Introduction

In the last decades, the use of composite materials has grown a lot, in-
creasingly involving application which require high production rates, such
as in the automotive industry. The introduction of modern and automated
production techniques, like Laser Assisted Tape Placement (LATP), becomes
crucial in this context, and it needs to be accompanied by the development
of models which can predict the complex initial state induced in a composite
structure by the manufacturing process. In particular, localized laser heating
induces high temperature gradients in the structure, which require to account
for the viscoelastic, temperature dependent behavior of the composite in or-
der to achieve an accurate prediction of residual stresses and strains.

The Laser Assisted Tape Placement makes use of pre-impregnated tapes,
containing long, oriented fibers embedded in a thermoplastic matrix: the
basic building block of LATP structures is therefore a unidirectional fiber
reinforced composite material. In particular, the fibers can be considered
elastic and sustain most of the load, while the matrix shows a viscoelastic
behavior in shear [1, 2]. Therefore, the mechanical properties are strongly
direction dependent and, based on the material symmetries, a transversely
isotropic behavior can be postulated. The aim of this paper is to develop an
original constitutive model for a viscoelastic, temperature dependent com-
posite, in which the viscoelastic behavior of the composite is defined based on
the underlying physical mechanism described before, that is the viscoelastic
shear response of the matrix.

For isotropic material models, the viscoelastic relaxation is generally de-
scribed with a set of scalar parameters, each associated to a different relax-
ation time (see for example [3]). For anisotropic material models, on the other
hand, different relaxation functions (or a relaxation tensor) are introduced
to describe the viscoelastic behavior associated to each material parameter,
without a clear link to the underlying physical mechanisms (as in [4, 5, 6]).
It should be noted that, in the last reference [6], the transversely isotropic
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elastic behavior is derived from an energy function based on invariants of the
strain tensor.

A recent work which makes a clearer link between the viscoelastic behav-
ior of the matrix and that of the resulting composite is the paper by Nedjar
[7]. Starting from an energy-derived transversely isotropic elastic behavior
based on invariants of the strain tensor, a particular stress/strain decom-
position is introduced, following [8], and the viscoelastic behavior is only
attributed to the terms of this decomposition related to the shear behavior
of the matrix. A similar approach, although with some crucial differences, is
adopted in this paper.

The key element of the present work, discussed in Section 2, consists in
defining an irreducible decomposition [9] for the second order stress/strain
tensors before defining the strain energy. An integrity basis for the energy
function [10] can then been extracted, yielding naturally uncoupled constitu-
tive equations for each element of the decomposition. Thanks to this rigorous
mathematical formulation, the contributions of two underlying constituents
of the composite material (fibers and matrix) to each term of the constitutive
behavior become easy to identify. A generalized Maxwell model can then be
applied only to the appropriate terms of the stress/strain decomposition in
order to describe the viscoelastic behavior of the composite in agreement
with the underlying physical mechanism, as discussed in Section 3.

In order to account for the evolution of the viscoelastic behavior with
temperature, the thermal strains and the time-temperature superposition
principle are introduced in Section 4, under the hypothesis of thermorheo-
logically simple materials [11].

In Section 5, several numerical simulations are shown to highlight the key
characteristics of the presented model. In particular, it is illustrated how the
relaxation function associated to the transverse modulus of the composite is
not an independent function, but it is related to the relaxation of the shear
modulus in the plane of transverse isotropy. A user-material (UMAT) for the
commercial finite element software Abaqus is developed in order to perform
numerical simulations on structural parts.

Finally, in Section 6 conclusions and perspectives are discussed. The
stress and strain tensors decomposition proposed in the present work enable
us to address, in a relatively simple way, other physical mechanism related
to each constituent, such as the crystallization kinetics in the matrix.
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2. Transversely isotropic elastic behavior based on Cartan decom-
position

The key point of the proposed model consists in defining the transversely
isotropic elastic behavior of a unidirectional composite ply in terms of ele-
mentary, uncoupled material parameters, which can be physically related to
the material parameters of the two underlying constituents, the fibers and
the matrix. As it is discussed in the following, these uncoupled parameters
do not exactly correspond to the classically defined elastic constants EL, ET ,
µL, µT and νLT .

The key to the definition of such an uncoupled behavior is to derive the
elastic fourth order tensor from a quadratic energy function, formulated in
terms of an appropriate minimal integrity basis [10]. Such an integrity basis,
in turn, is defined by finding an irreducible O(2) decomposition [9] of the
second order stress (and strain) tensor, where O(2) is the orthogonal group
of the Euclidean plane, modeling the anisotropy.

The idea to use group representation theory [12] and make an irreducible
decomposition of the second order stress or strain tensor has already been
used in the case of the cubic anisotropy [13, 14, 15, 16, 17]. Furthermore,
finding an explicit O(2) integrity basis can be straightforward using the recent
publication [18], while some work was done in [19] about O(2) irreducible
decomposition of strain tensor.

This rigorous mathematical formulation turns out to have deep physi-
cal significance, as it is discussed in the following. In particular, it enables
us to clearly separate the material parameters which are influenced by the
shear behavior of the matrix and, as such, which should display a viscoelastic
long term behavior, from those which should remain elastic throughout the
analysis. This approach is radically different from the one adopted in many
viscoelastic models for transversely isotropic materials [4, 6, 5], which in-
troduce different viscous relaxation functions for each of the classical elastic
constants (EL, ET , µL, µT and νLT ), with no clear link to the mechanical
behavior of the underlying constituents. A similar, although not irreducible,
decomposition of the stress (and strain) tensor, was proposed by [8] and
used to model the viscoelastic response of unidirectional plies by [7], but
only partial uncoupling is achieved in that case.

Let us introduce the fibers’ direction vector vvvf , defining the normal to
the isotropic plane (vvv2, vvv3). The transverse isotropy is then modelled on the
group generated by the rotations of axis vvvf , as well as the change of direction
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of vvvf (equivalently the rotation of axis vvv2 and angle π). Such a group is in
fact the group O(2) of orthogonal transformation of the plane (vvv2, vvv3). An
O(2) irreducible decomposition of the stress tensor, also known as a Cartan
decomposition [9], is for instance given as follows:

σσσ = sfMMM f + shMMMh + sssfs + sssd, (1)

where

sssfs = sf2MMM f2 + sf3MMM f3,

sssd = sdMMMd + s23MMM23, (2)

and the (unit) second order tensors MMM• are defined as

MMM f = vvvf ⊗ vvvf ,

MMMh =
1√
2

(vvv2 ⊗ vvv2 + vvv3 ⊗ vvv3) ,

MMM f2 =
1√
2

(vvvf ⊗ vvv2 + vvv2 ⊗ vvvf ) ,

MMM f3 =
1√
2

(vvvf ⊗ vvv3 + vvv3 ⊗ vvvf ) ,

MMMd =
1√
2

(vvv2 ⊗ vvv2 − vvv3 ⊗ vvv3) ,

MMM23 =
1√
2

(vvv2 ⊗ vvv3 + vvv3 ⊗ vvv2) . (3)

It can be verified that the elements defined in the decomposition Eq. (1)
are stable, that is they remain in the same space when subjected to operations
belonging to the group. Indeed, we have for a rotation of axis vvvf and angle
θ:

sfMMM f + shMMMh 7→ sfMMM f + shMMMh

sf2MMM f2 + sf3MMM f3 7→ (cos(θ)sf2 − sin(θ)sf3)MMM f2 + (sin(θ)sf2 + cos(θ)sf3)MMM f3

sdMMMd + s23MMM23 7→ (cos(2θ)sd − sin(2θ)s23)MMMd + (sin(2θ)sd + cos(2θ)s23)MMM23

(4)

Such a decomposition of the stress tensor is far from being unique. Indeed,
any invertible linear combination

(MMM f ,MMMh) 7→ αMMM f + βMMMh (5)
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leads to another Cartan decomposition of σσσ. The specific decomposition cho-
sen here is related to the physical interpretation of the obtained components,
which is quite straightforward. Two of the four terms involve the vvvf direc-
tion, namely sf (normal stress in the fibers’ direction) and sssfs (longitudinal
shear stresses sfi). The other two, sh and sssd, involve only the plane of trans-
verse isotropy, and they are analogous to the classical hydrostatic/deviatoric
decomposition in two dimensions. Since the tensors MMM• are orthogonal and
of unit length by construction, each term s• of the decomposition can be
extracted from the complete tensor σσσ as s• = σσσ : MMM•.

From a direct application of [18], an O(2) integrity basis of σσσ is given by
the 6 polynomials

I1 := sf , J1 := sh, I2 := ‖sssfs‖2, J2 := ‖sssd‖2, I3 := tr
(
sss2
fssssd

)
, (6)

meaning that any O(2) polynomial invariant I can be written as I = p(I1, J1, I2, J2, I3),
with some polynomial p (see [10] for more details on integrity bases). The
Gibbs free energy leading to linear elasticity can thus be defined using the 5
polynomial invariants

I2
1 = s2

f , I1J1 = sfsh, J2
1 = s2

h, I2 = ‖sssfs‖2, J2 = ‖sssd‖2, (7)

so it can be written as:

w̄ =
1

2
SF s

2
f + SFHsfsh +

1

2
SHs

2
h +

1

2µL
||sssfs||2 +

1

2µT
||sssd||2 ,

where SF , SFH , SH , µL and µT are the five elementary material parameters
which define the transversely isotropic elastic behavior.

Knowing the Gibbs free energy, the strain can be then computed as:

εεε =
∂w̄

∂σσσ
= (SF sf + SFHsh)MMM f + (SFHsf + SHsh)MMMh +

1

2µL
sssfs +

1

2µT
sssd

= efMMM f + ehMMMh + eeefs + eeed. (8)

As expected, the strain can also be set in terms of the Cartan decomposition.
The constitutive relations can finally be written as[

ef
eh

]
=

[
SF SFH
SFH SH

] [
sf
sh

]
,

eeefs =
sssfs
2µL

,

eeed =
sssd

2µT
. (9)
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The first of Eq. (9) involves the normal stresses/strains in the fibers’
direction (sf/ef ), as well as the hydrostatic part of the stresses/strains in
the plane of transverse anisotropy (sh/eh). These terms are coupled by the
material constant SFH ; while a different linear combination of sf and sh could
be chosen to further uncouple these terms, this is beyond the scope of this
work. Physically, this part of the constitutive behavior is controlled by the
fibers’ elastic modulus, EF , as well as by the bulk modulus of the polymer
matrix, KM . As EF and KM are generally considered elastic, the material
constants SF , SFH and SH are assumed as purely elastic in the following.

The second and third of Eq. (9) involve the longitudinal and transverse
shear responses of the composite. These two parts of the composite’s re-
sponse are influenced by the shear modulus of the polymer matrix, µM . As
the polymer is generally assumed to be viscoelastic in shear, a viscoelastic
model is introduced for µL and µT in Section 3. In principle, the viscoelastic
behavior of the matrix could have different effects on the longitudinal and
transverse shear behaviors of the composite, thus two different viscoelastic
relaxation functions could be considered, to be identified via computational
homogenization or via direct experimental testing on the composite. This
will be the subject of further work.

If the full compliance tensor SSS, defined as εεε = SSS : σσσ, is needed (such as
for the implementation of a user material in a standard finite element code),
it can be written as

SSS =SFMMM f ⊗MMM f + SHMMMh ⊗MMMh + SFH (MMM f ⊗MMMh +MMMh ⊗MMM f )

+
1

2µL
(MMM f2 ⊗MMM f2 +MMM f3 ⊗MMM f3) +

1

2µT
(MMMd ⊗MMMd +MMM23 ⊗MMM23) .

(10)

In practice, the inverse (stiffness) relations will be used in the implementa-
tion, but the compliance relations were derived here because of their easier
physical interpretation.

Remarks.

• The parameters µL and µT are the classical longitudinal and transverse
shear moduli of the composite ply. In order to identify the values of SF ,
SFH and SH in terms of the classical material constants (EL, ET , µL,
µT , νLT ), one can choose the particular case vvvT

f = [1, 0, 0], vvvT
2 = [0, 1, 0],
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vvvT
3 = [0, 0, 1]. The compliance tensor SSS yields

SSS =



SF
SFH√

2

SFH√
2

0 0 0
SFH√

2

SH

2
+ 1

4µT

SH

2
− 1

4µT
0 0 0

SFH√
2

SH

2
− 1

4µT

SH

2
+ 1

4µT
0 0 0

0 0 0 1
2µT

0 0

0 0 0 0 1
2µL

0

0 0 0 0 0 1
2µL


. (11)

This can be compared to the classical compliance tensor written in the
material basis

SSS =



1
EL

−νLT

EL
−νLT

EL
0 0 0

−νLT

EL

1
ET

−νTT

ET
0 0 0

−νLT

EL
−νTT

ET

1
ET

0 0 0

0 0 0 1
2µT

0 0

0 0 0 0 1
2µL

0

0 0 0 0 0 1
2µL


, (12)

leading to the following identification, from the terms (1,1), (1,2) and
(2,2)

SF =
1

EL
,

SFH = −
√

2νLT
EL

,

SH =
2

ET
− 1

2µT
. (13)

It should be noticed that, since SH is assumed as purely elastic in the
following, the viscous relaxation of the transverse modulus ET is di-
rectly related to the viscous relaxation of the transverse shear modulus
µT , and not an independent function of time.

Finally, the fourth equation, term (2,3), yields the well-known trans-
verse isotropy condition:

µT =
ET

2 (1 + νTT )
. (14)
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Figure 1: Basic rhelogical units: Kelvin-Voigt (left) and Maxwell (right)

• The decomposition proposed in Eq. (1) is similar to the one introduced
in [8] and used by [7] to model the viscoelastic response of unidirectional
plies. The decomposition proposed in those works, however, is derived
a posteriori from internal constraints, and not defined a priori in a
rigorous mathematical fashion as it is the case here. As a result, the
material behavior obtained by [8, 7] is not fully uncoupled, and it is not
possible to clearly separate the material parameters which are affected,
or not, by the viscoelastic relaxation. This is the reason why the present
approach was proposed here instead.

3. Linear viscoelasticity

A linear viscoelastic model is defined here and applied to the terms µL
and µT of the behavior introduced in the previous Section.

Several viscoelastic models that can be found in the literature can be
effectively understood by looking at their rheological representations. Com-
binations of springs and dash-pots can accurately represent and describe the
material viscoelastic behavior.

The Kelvin-Voigt basic rheological unit is characterized by a spring and
a dash-pot in parallel (Figure 1, left) and its one dimensional differential
equation is:

s = Ee+ ηė, (15)

where E is the spring stiffness and η is the viscosity of the dash-pot. The
generalized Kelvin-Voigt model, obtained by setting N different Kelvin-Voigt
units (plus, eventually, a single spring) in series, is typically used to describe
the material creep at constant stress.

The Maxwell basic rheological unit, on the other hand, is characterized
by a spring and a dash-pot in series (Figure 1, right) and its one dimensional
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differential equation is:
s

η
+
ṡ

E
= ė. (16)

The generalized Maxwell model (Figure 2), obtained by setting N different
Maxwell units and a single spring in parallel, is typically used to characterize
the stress relaxation at constant strain of the material. In particular, the
characteristic relaxation time for a given Maxwell unit is τ = η

E
.

In the present case, a general loading path is sought, in which stress
and strain both vary to satisfy the problem equations. In this case, both
generalized Kelvin-Voigt and generalized Maxwell models can be successfully
applied.

In the following, a generalized Maxwell model is considered for ease of
implementation in a finite element setting. Indeed, in a classical finite el-
ement implementation, the search direction to determine stress and strain
fields which satisfy the local constitutive behavior is taken at constant dis-
placement. For this reason, the algorithms which solve the local constitutive
equations are strain-driven, and each element of the generalized Maxwell
model can be solved independently. Furthermore, based on the Boltzmann
superposition principle, the model is formulated in integral form, which en-
ables us to make use of well known literature results to achieve a simple and
accurate numerical integration scheme.

The hereditary integrals for sssfs and sssd of the generalized Maxwell model
are:

sssfs(t) =

∫ t

0

Γfs(t− t′)
deeefs(t

′)

dt′
dt′,

sssd(t) =

∫ t

0

Γd(t− t′)
deeed(t

′)

dt′
dt′, (17)

Figure 2: Material parameters for the Generalized Maxwell rheological model
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where the relaxation functions Γfs and Γd, derived from solving Eq. (16) for
each of the N Maxwell elements, can be written as follows:

Γfs(t− t′) = 2µltL +
N∑
j=1

2µLj
exp

(
−t− t

′

τfsj

)
,

Γd(t− t′) = 2µltT +
N∑
j=1

2µTj exp

(
−t− t

′

τdj

)
. (18)

In these expressions, the parameter µltL (resp. µltT ) is associated to the isolated
spring, and it represents the long term behavior once all stress relaxation has
taken place. The parameter µLj

(resp. µTj) is associated to the j-th spring,
while τfsj (resp. τdj) is the relaxation time associated to the j-th Maxwell
element.

From now on, only the mathematical development of the viscoelastic
model for the terms sssfs and eeefs is detailed, as the two equations are identi-
cal in all except the material parameters. Substituting (18) into (17), it is
possible to split the integral into a long term elastic part and a viscoelastic
one:

sssfs(t) = 2µltLeeefs +
N∑
j=1

∫ t

0

2µLj
exp

(
−t− t

′

τfsj

)
deeefs(t

′)

dt′
dt′. (19)

Finally, from (19) sssfs can be decomposed as:

sssfs = sssfs0 +
N∑
j=1

gggfsj . (20)

Eq. (20) shows how sssfs is obtained as a summation of an elastic stress(
sssfs0 = 2µltLeeefs

)
, and j internal viscoelastic stress variables gggfsj .

Finding an accurate and efficient numerical solution of the integral in Eq.
(19) is crucial. Considering the time step ∆t = tn+1 − tn, and noting with a
superscript i the quantities at time ti, the elastic stress is readily computed
as sssn+1

fs0
= 2µltLeee

n+1
fs , while the internal variables can be written as:

gggn+1
fsj

= 2µLj

∫ tn+1

0

exp

(
−t

n+1 − t′

τfsj

)
deeefs(t

′)

dt′
dt′. (21)
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Remembering the properties of the integral and of the exponential function,
we obtain:

gggn+1
fsj

= exp

(
− ∆t

τfsj

)
gggnfsj + 2µLj

∫ tn+1

tn

exp

(
−t

n+1 − t′

τfsj

)
deeefs(t

′)

dt′
dt′. (22)

This recursive formulation, first introduced in [20], is particularly efficient
for large finite element problems, as it enables us to compute the internal
variables at the current time instant tn+1, knowing the information at the
previous time instant tn only, without needing to store the whole history of
the material.

The finite difference approximation of the first derivative of the strain
tensor eeefs enables us to compute the increment of the internal variables:

deeefs(t
′)

dt′
≈
eeen+1
fs − eeenfs

∆t
. (23)

Applying (23) to (22) we have:

gggn+1
fsj

= exp

(
− ∆t

τfsj

)
gggnfsj + 2µLj

∫ tn+1

tn

exp

(
−t

n+1 − t′

τfsj

)
dt′

(
eeen+1
fs − eeenfs

∆t

)
.

(24)
Solving the integral analytically, we finally obtain the following closed-form
expression:

gggn+1
fsj

= exp

(
∆t

τfsj

)
gggnfsj +

1− exp
(

∆t
τfsj

)
(

∆t
τfsj

) 2µLj

[
eeen+1
fs − eee

n
fs

]
. (25)

With analogous reasoning, the consistent tangent stiffness can be ob-
tained as:

2µn+1
L =

∂sssn+1
fs

∂eeen+1
fs

= 2µltL +
N∑
j=1

2µLj

1− exp
(

∆t
τfsj

)
(

∆t
τfsj

) . (26)

The full tangent constitutive tensor, useful to achieve efficient numerical solu-
tions in commercial finite element codes, can be simply obtained by replacing
the tangent values of µL and µT in Eq. (10).
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Small values of
(

∆t
τfsj

)
lead to cancellation error of the second term on the

right-hand side of Eq. (25) and (26). In order to avoid this inconvenience,
under these conditions the aforementioned term can be replaced by its Taylor
series development as follows [21]:

1− exp
(

∆t
τfsj

)
(

∆t
τfsj

) ≈ 1− 1

2

(
∆t

τfsj

)
+

1

6

(
∆t

τfsj

)2

. (27)

It is important to notice that the only approximation introduced in the
numerical solution is in Eq. (23), while the integral has been solved analyti-
cally. The resulting numerical integration algorithm is particularly accurate,
even for large time increments.

Remarks. The parameters to be identified for the viscoelastic portion of the
model are µltL (resp. µltT ), as well as µLj

and τfsj (resp. µTj and τdj) for

each Maxwell element. In particular, µltL, related to sssfs0 , is the long term
modulus, once viscoelastic relaxation has completely occurred (that is, once
the internal variables gggfsj are null), while the short term (instantaneous)

modulus is given by µstL = µltL +
∑N

j=1 µLj
. Experimental characterization at

temperatures much lower than the reference temperature yield a measure of
µstL , while higher temperature tests over time scales similar to the relaxation
time enable to evaluate the other viscoelastic properties.

4. Effects of temperature: thermal strains and time-temperature
superposition

The viscoelastic response of the matrix and, consequently, of the compos-
ite, plays a crucial role in the establishment of residual stresses and strains
during manufacturing processes involving high temperature gradients. In
order to model these phenomena, temperature effects are included in the
present model: in particular, the thermal strain is introduced, as well as the
effect of temperature on viscoelasticity through time-temperature superposi-
tion.

In Section 2 the stress and strain Cartan decomposition was presented.
The thermal strain can be decomposed in the same way to yield

εεεth = ethf MMM f + ethhMMMh, (28)
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where
ethf = α1∆T, ethh =

√
2α2∆T, (29)

and α1 and α2 are the coefficient thermal expansions in the fibers’ direction
and in the transverses directions, respectively. Therefore, the viscoelastic
strain tensor can be written as:

εεεve =
(
ef − ethf

)
MMM f +

(
eh − ethh

)
MMMh + eeefs + eeed. (30)

It is interesting to notice that the thermal strain does not contain the shear-
related terms eeefs and eeed, while the viscoelastic model presented in Section
3 only applies to these two terms. Consequently, any possible relaxation of
the stresses induced by incompatible thermal strains cannot occur directly
through the f and h portions of the behavior, which is purely elastic, but
needs to be linked to the viscoelastic shear portions fs and d. Obviously,
the link between the different portions of the behavior occurs through the
directions of the stress and strain tensors imposed by the rest of the problem
equations. This consideration, which is valid as well for classical isotropic
thermo-visco-elastic behavior, is resumed in the rheological scheme of Fig. 3.

Figure 3: Rheological representation of the different portions of the composite’s constitu-
tive behavior: generalized Maxwell model to describe the viscoelastic shear portions (left)
and the elastic portions with thermal strains (right)

The definition of the stress relaxation as a function of the temperature
involves, for thermorheologically simple materials, the introduction of a new
time scale called reduced time, which is a function of the temperature [11].
The reduced time is defined as follows:

tred =

∫ t

0

1

a(T )
dt′. (31)
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The shift function (a(T )) used here is the Williams-Landel-Ferry equation
(WLF law):

log [a(T )] = − C1 (T − Tref )

C2 + (T − Tref )
, (32)

where T is the temperature, Tref is the reference temperature for the polymer
(generally coincident with the glass transition temperature) and C1, C2 are
two material constants. The reduced time is used instead of the real time in
the viscoelastic model equations of Section 3.

Depending on the composite’s temperature, two extreme scenarios can
occur (Fig. 4):

• for temperatures well above the reference temperature, the reduced
time is much longer than the real time (and than the relaxation time),
so stresses relaxation occurs nearly instantaneously,

• for temperatures much lower than the reference temperature, the re-
duced time is much shorter than the relaxation time, so the polymer is
characterized by an elastic behavior in the time scale of interest.

Figure 4: Reduced time as a function of temperature

Numerical integration of the reduced time is not trivial to compute over
a non isothermal time step. Indeed, the shift function a(T ) is extremely
nonlinear with the temperature. An approximation of the shift function could
lead to large errors, therefore h(T ) = − ln(a(T )) is approximated instead, as
a linear function of the temperature over the time increment [22]. Further

15



assuming the temperature T is a linear function of the time t over the time
increment, follows:

h(T ) = − ln(a(T (t))) = A+Bt, (33)

where the coefficients are readily obtained as

A =
tn+1h(T n)− tnh(T n+1)

∆t
,

B =
h(T n+1)− h(T n)

∆t
. (34)

Therefore, from Eq. (31) the reduced time increment can be computed as
follows:

∆tred =

∫ tn+1

tn
exp (A+Bt) dt, (35)

which yields:

∆tred =
a−1(T n+1)− a−1(T n)

h(T n+1)− h(T n)
. (36)

5. Numerical simulations

In order to illustrate the main features of the proposed model, several
numerical simulations are presented.

In Section 5.1, different loading histories are applied to a single material
point in order to illustrate the model response in stress relaxation, creep and
variable temperature tests. A Matlab implementation of the model is used
for these examples.

In Section 5.2, on the other hand, the model is used within a thermo-
mechanical structural simulation, in order to predict the residual stresses
distributions within a composite structure for different surface cooling rates.
The example is taken from [23], although in that case a different mechanical
model was considered. An Abaqus UMAT was implemented to this end,
using C language code generated from the original Matlab implementation
via the Matlab Coder toolbox.

The instantaneous elastic parameters used for all simulations are the fol-
lowing [24]:

EL = 134 GPa, ET = 10.3 GPa, µL = 6 GPa, νLT = 0.32, νTT = 0.4.
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Only one Maxwell element has been used for simplicity. The viscoelastic
parameters are specified for each simulation.

5.1. Loading histories on a single material point
5.1.1. Stress relaxation tests

In order to simulate stress relaxation tests, a strain was imposed rapidly,
then maintained until complete relaxation of the viscous term. Imposing
different combinations of strain components, while setting the other stress
components to zero, enables us to highlight some of the model features. Here,
the fiber orientation vector was taken as vvvT

f = [1, 0, 0], thus the transverse
isotropy direction is aligned with the x direction. For the simulations shown
in this part, the viscoelastic parameters are taken as:

µltL = 0.1µstL , µltT = 0.1µstT , τfs = 10 s, τd = 10 s.

The result obtained by imposing a shear strain εxy = 0.005 is depicted
in Fig.(5). The evolution of the stress directly mirrors the evolution of the
shear modulus µL as defined in Eq. (18).

Figure 5: Shear stress relaxation for a constant imposed shear strain (εxy = 0.005)

Imposing a strain εyy = 0.01 in the transverse direction, on the other
hand, enables us to observe the evolution of the transverse modulus ET with
time (see Figure 6). While other transversely isotropic material models,
as [4, 6, 5], choose to specify different relaxation function for each of the
five material parameters, here the relaxation of ET is directly related to the
relaxation of µT , as it can be noticed in the model equations. In particular,
the short and long term values of ET can be easily assessed as:

ET =
4µT

1 + 2µTSH
, (37)
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where SH is constant and µT takes its short term and long term values,
respectively. This is a distinguishing and very important feature of the pro-
posed model.

Figure 6: Transverse stress relaxation for a constant imposed transverse strain (εyy = 0.01)

More complex combinations of strains enable us to highlight the inter-
play between the different elements of the stress and strain decomposition.
Imposing εyy = 0.01 and εzz = 0, the terms eh and ed are both constant
and equal, and the stress response is the sum of the corresponding sh and sd
terms. This is illustrated in Fig.(7).

Figure 7: Transverse stress relaxation for a biaxial constant imposed strain state (εyy =
0.01, εzz = 0)

The eh contribution can be easily turned off imposing εyy = 0.01 and
εzz = −0.01. In this case, the stress relaxation is directly given by the
evolution of µT (see Fig. (8)).
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Figure 8: Transverse stress relaxation for a biaxial constant imposed strain state (εyy =
0.01, εzz = −0.01)

5.1.2. Creep tests

In this example, the effect of introducing different viscoelastic parameters
for µL and µT is discussed using a creep test. Indeed, the viscoelastic behavior
of the matrix could translate into different relaxation functions for µL and
µT . Differently from [7], the model proposed here enables one to account for
this effect. An investigation on this matter, based on the homogenization of
a fiber/matrix representative volume element, is among the perspectives of
this work.

In order to highlight the effect of each set of viscoelastic parameters, a
constant stress σxx = 100 MPa was imposed, while the fiber direction vvvf was
rotated at different angles θ with respect to x.

Two different sets of simulations are depicted in Fig. (9). In the first, the
viscoelastic parameters are

µltL = 0.5µstL , µltT = 0.5µstT , τfs = 100 s, τd = 100 s,

while, in the second, more relaxation is assumed to occur in the µT term:

µltL = 0.5µstL , µltT = 0.28µstT , τfs = 100 s, τd = 100 s.

The difference between the two sets of parameters can be noticed, es-
pecially in the tests with large angles between the fibers and the loading
direction. Indeed, in these transverse dominated directions, the term µT
plays a more significant role, while µL is dominant for small angles. All
viscoelastic contribution disappears completely for a load along the fibers’s
direction, which yields a purely elastic response.
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Figure 9: Creep loading tests for different angles θ between the loading and the fibers’
direction, with the same relaxation functions (top) and with different relaxation functions
(bottom) for µL and µT

5.1.3. Variable temperature tests

In order to see the effect of the temperature on stress relaxation, two
simulations of a thermoplastic matrix composite cooling down from above
its fusion point were carried out. A simple linear temperature function (to
simulate a constant cooling rate from 400°C to 100°C in a time frame of 100
s) was used as input, and different restraints were imposed on the material
point in order to evaluate their effect on the generation of thermal residual
stresses. In this Section, the following viscoelastic parameters were used, to
simulate the possibility of nearly complete relaxation:

µltL = 0.001µL, µltT = 0.001µT , τfs = 10 s, τd = 10 s.

The coefficients thermal expansion of the composite material are [24]:

α1 = 0.2(10−6)/°C, α2 = 28.8(10−6)/°C,

while the parameters used for the WLF law are [23]:
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Tref = 143°C, C1 = 52, C2 = 243°C.

Figure 10: Thermal stresses induced by a linear temperature history when the relaxation
is inhibited (top) and where the relaxation is allowed (bottom)

Two different situations were considered. In the first, a null strain has
been imposed in the transverse isotropic plane (εyy = 0 and εzz = 0). This
corresponds to blocking both eh and ed: thermal stresses develop due to the
condition eh = 0, and they cannot relax through the transverse shear term
µT as ed = 0. Thermal stress can be directly calculated as:

σyy = − e
th
h

SH
= −α2∆T

SH
, (38)

that corresponds to the result shown in Fig. (10), top.
In the second scenario, a null strain has been imposed only in the trans-

verse direction (εyy = 0). Both eh and ed are non null, and related to each
other through the free εzz term. The stresses which would develop due to
ethh are therefore relaxed through ed (see Fig. (10), bottom). In particular,
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thermal stress relaxation takes place instantaneously in the first part of the
simulation, where the temperature is above the reference temperature, but
it appears to stop (in the time frame of the analysis) in the second part of
the simulation, when the temperature starts to be lower than the reference
temperature and the reduced time becomes far smaller than the relaxation
time, inhibiting the viscous term.

The final residual stresses differ by one order of magnitude between the
two scenarios. In the first scenario, where stress relaxation is completely
inhibited, they reach very high values, which would lead to transverse damage
within the composite, but this is not accounted for in the present model.

5.2. Structural simulation: residual stress buildup on a cooled infinite plate

In the present Section, following the work presented in [23], the resid-
ual stresses induced in an infinite, unconstrained unidirectional plate un-
dergoing a non-uniform cooling process were assessed using the commercial
finite-element software Abaqus. Numerical simulations were performed on
a small plate volume (Fig. (11), left). The cooling process occurs through
the external surfaces, where an exponential decay temperature function has
been imposed. The thermal problem has been solved numerically in Abaqus,
setting the following thermal material properties:

ρ = 1598 kg/m3, C = 930 J/(kg K), k = 0.4 W/(m K),

where ρ is the density, C is the specific heat and k is the conductivity.
The temperature history obtained from the thermal computation was

used as input to the mechanical problem, in which the material behavior of
the composite was defined by an UMAT based on the proposed model. The
mechanical boundary conditions are schematically represented in Fig. (11),
right. Specifically, the plate volume can deforms in the thickness direction
(z-axis), but the two faces of normals x and y are constrained to remain
planar, which represents the effect of the infinite surrounding plate. The
parameters for the mechanical simulation are the same as in Section 5.1.3.

Residual stresses in the transverse direction were assessed imposing dif-
ferent cooling rates on the external surfaces of the plate volume as depicted
in Fig. (12). The outer portions of the plate are the first to reach room tem-
perature, and then act as a constraint to the inner portions, which are not
able to contract freely during cooling. A well-known residual stresses profile,
with tension at the core and compression close to the surface, develops in the
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Figure 11: Plate volume simulated in Abaqus (left) and schematic representation its me-
chanical boundary conditions (right)

plate. As it can be noted, this effects is exacerbated by high cooling rated,
which lead to significant through-thickness temperature gradient. On the
other hand, it becomes negligible for slow cooling rates, the limit case being
a uniform cooling, which would lead to no internal stresses at the ply’s scale
for a unidirectional composite.

Figure 12: Final residual stress through the thickness in the transverse direction for dif-
ferent initial surfaces cooling rates .

As we have mentioned before, the numerical simulation performed here
is inspired by the work presented in [23]. Some differences, however, exist
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between the simulations in [23] and the present work. Indeed, [23] includes
the crystallization kinetics of the polymeric matrix, which intervenes as an
extra source term in the thermal problem, and as an extra source of inelastic
deformation in the mechanical problem. On the other hand, the mechani-
cal model is far simpler, involving an incremental elastic description of the
stress/strain relation in order to mimic the viscoleastic behavior. For this
reason, the results from [23] are similar, but not identical, to those reported
here.

6. Conclusions and perspectives

A thermo-viscoelastic constitutive model suited for unidirectional fiber
reinforced composite material was presented. In order to highlight the con-
tributions of the fibers and the polymeric matrix, a Cartan decomposition for
the stress and the strain tensors was used. The energy function, based on an
integrity basis of the decomposition, enabled us to obtain uncoupled constitu-
tive equations in which fibers and matrix contribution are easily recognized.
A generalized Maxwell model was applied only to the terms of the decom-
position which are affected by the viscoelasticity of the matrix, in agreement
with the underlying physical mechanism. The temperature dependence was
introduced through the time-temperature superposition principle using the
Williams–Landel–Ferry shift function. Thermal strains were included using
the same Cartan decomposition.

A first perspective of this work would be to derive the constitutive law
for the composite from homogenization of a fiber/matrix representative vol-
ume element, and to use the homogenized behavior to identify the material
parameters introduced here. This should enable us to validate the choice
operated in the paper, that is to consider the viscoelastic contribution only
for parameters µL and µT , and also to identify the respective viscoelastic
relaxation functions in terms of the matrix behavior.

As the model was developed in the framework of residual stresses and
strain prediction for thermoplastic matrix composites, it will be used in fur-
ther work to simulate the initial state of LATP manufactured parts. To this
aim, it may be necessary to address in the model other physical mechanisms
which could affect the development of residual stresses and strains, such as
the effect of crystallization of the matrix on the mechanical behavior. The
stress/strain decomposition proposed here should make this task relatively
easy to achieve.
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