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Abstract

A class of non–classical logics called gaggle logics is introduced, based on a
Kripke–style relational semantics and inspired by Dunn’s gaggle theory. These
logics deal with connectives of arbitrary arity and we show that they capture
a wide range of non–classical logics. In particular, we list the 96 binary con-
nectives and 16 unary connectives of basic gaggle logic and relate their truth
conditions to the non-classical logics of the literature. We establish connections
between gaggle theory and group theory. We show that Dunn’s abstract law of
residuation corresponds to an action of transpositions of the symmetric group
on the set of connectives of gaggle logics and that Dunn’s families of connec-
tives are orbits of the same action. Other operations on connectives, such as
dual and Boolean negation, are also reformulated in terms of actions of groups
and their combination is defined by means of free groups and free products.
We show how notions of groups arise naturally from our gaggle logics and how
gaggle logics can be canonically defined from given groups. Our other main
contribution deals with the proof theory of gaggle logics. We show how sound
and complete calculi can be systematically computed from any basic gaggle
logic with or without Boolean connectives. These calculi are display calculi and
we prove that the cut rule can be systematically eliminated from proofs. This
allows us to prove that basic gaggle logics are decidable.

Keywords: substructural logics, residuation, gaggle theory, display cal-
culus, group theory, action of group, free group and free product.

1 Introduction
A wide variety of non–classical logics have been introduced over the past decades,
such as relevant logics, linear logics and Lambek calculi, to name just a few. On
the one hand, this diversity is an asset since each logic has an interest for a specific
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purpose, and one can select, and resort to, some of them for reasoning about a given
applicative issue [38]. In fact, many of these non–classical logics have been developed
for solving concrete problems in computer science: for example, dynamic logics [24],
Hoare and separation logics [25, 43] for reasoning about computer programs, and
description logics [3] for formalizing ontologies of the semantic web. Acknowledging
and dealing with this plurality and diversity of logics is in a sense at the origin of
the development of a philosophical stance in logic called “logical pluralism” [5]. On
the other hand, and from a theoretical point of view, this plurality can be felt as
problematic because it threatens the unity and the unifying power of logic. Indeed,
all logics already have in common the same terminology and notions, such as truth,
validity, conservativity and interpolation, and this is also an asset. Nevertheless, one
can argue that non–classical logics are still disorganized and scattered and somehow
miss a common formal ground. As Gabbay summarised the state of play (vis-à-
vis non-monotonic logics) in the early 1980s, “we have had a multitude of systems
generally accepted as ‘logics’ without a unifying underlying theory and many had
semantics without proof theory. Many had proof theory without semantics, though
almost all of them were based on some sound intuitions of one form or another.
Clearly there was the need for a general unifying framework.” [15, p. 184].

In response to that situation, a number of e�orts have been made by some logi-
cians to provide a genuine unity to logic as witnessed for example by the development
of abstract model theory and “institutions” [4, 33, 19], the introduction of “labelled
deductive systems” by Gabbay [17] or the “basic logic” of Sambin & al. [45] (see [16]
for details and more examples). This led to the rise of a research thread sometimes
referred to (nowadays) as “Universal Logic”. Many kinds of semantics, such as al-
gebraic, categorial, topological, phase or relational semantics, have been introduced
and developed, sometimes for the express purpose of tackling this issue [46]. Within
that line of research, Dunn’s gaggle theory [10, 11, 7] is one of the most well–known
frameworks based on the relational Kripke-style semantics which itself deals with
the aforementioned problem. Dunn’s gaggle theory is an attempt to understand the
Kripke semantics of non-classical logics in a disciplined, systematic way.1

We share the ideal and the objective of “Universal Logic”, but, in our view, gaggle
theory is only a first step. Indeed, this theory does not really introduce an actual
logic or logical framework that can serve as a foundation for non–classical logics, in
the same way as the Lambek calculus is sometimes presented as the foundational
logic of the varied substructural logics [42]. However, as we will show, gaggle theory
provides formal methods to define a generic logic. In fact, it allows us to define a

1Dunn “owe[s] the name “gaggle” to [his] colleague Paul Eisenberg (a historian of philosophy,
not a logician), who supplied it at [his] request for a name like a “group”, but which suggested a
certain amount of complexity and disorder.” [10, p. 31]
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class of logics that can handle connectives of arbitrary arity. Building on (partial)
gaggle theory, we will define a class of non-classical logics that we call gaggle logics
and which generalize the Lambek calculus and other substructural logics in many
directions.

In doing so, we will establish connections between gaggle theory and group the-
ory. We will show that Dunn’s abstract law of residuation corresponds to an action
of transpositions of the symmetric group (the group of permutations) on the set of
connectives of gaggle logics and that Dunn’s families of connectives are orbits of the
same action. Other operations on connectives, such as dual and Boolean negation,
will also be reformulated in terms of actions of groups, and their combination will
be defined by means of free groups and free products. We will also show how no-
tions of groups arise naturally from our gaggle logics and how gaggle logics can be
canonically defined from given groups.

Our other main contribution will deal with the proof theory of gaggle logics.
We will show how sound and complete calculi can be systematically computed and
defined for any basic gaggle logic given by its set of connectives. This generic result
is in line with our ‘universal’ approach explained above and constitutes the main
technical advance of the article. We will use a specific Henkin construction method to
prove the strong completeness of our calculi. Our main objective is to obtain sound
and complete proof calculi for basic gaggle logics without the Boolean connectives.
However, we will need to add them anyway and proceed in two steps. Firstly, we
will consider a language with the Boolean connectives and prove completeness with
them (Section 7). Secondly, after proving the cut elimination (via the proof of
conditions (C1)− (C8)), we will obtain sound and complete calculi for basic gaggle
logics without the Boolean connectives thanks to a proof-theoretical analysis of the
calculi obtained (Sections 8 and 9, proof of Theorem 53). The cut elimination will
also entail that basic gaggle logics are conservative extensions of each other and are
decidable.

Organization of the article. In Section 2, we recall the basic results of (partial)
gaggle theory. In Section 3, we recall the basics of group theory including the
symmetric group (the group of permutations), free groups, free products and actions
of groups. In Section 4, we introduce our gaggle logics and define our actions of
groups on the gaggle connectives, in particular the residuation and the Boolean
negation. In Section 5, we prove that Dunn’s abstract laws of residuation are actions
of transpositions of the symmetric group on the set of connectives and that Dunn’s
families of connectives are orbits of the action of the symmetric group. In Section 6,
we relate our gaggle logics with the literature by listing the 96 binary connectives and
the 16 unary connectives of basic gaggle logic while mentioning which connectives
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have already been introduced in a publication. We also mention two logics which
cannot be embedded in gaggle logics. In Section 7, we introduce our display calculi.
In Section 8 we prove that our calculi satisfy the display property and that the
cut rule can be eliminated from any proof. Then, in Section 9, thanks to cut–
elimination, we provide sound and strongly complete display calculi for gaggle logics
without Boolean connectives. We also prove that basic gaggle logics are decidable.
In Section 10, we show how notions of groups arise naturally from our gaggle logics
and how gaggle logics can be canonically defined from given groups. We conclude
in Section 11. Long proofs are in the Appendix.

2 The core of gaggle theory

We present the core ideas of (partial) gaggle theory [10, 11]. Partial gaggle first
appeared in Dunn [11] as a generalization of a gaggle that has just an underlying
poset, not necessarily a distributive lattice as required for a gaggle in Dunn [10].
For our purpose, the presentation of (partial) gaggle theory is slightly di�erent from
the usual presentation of this theory. The definitions are the same (although they
are sometimes instantiated) but the results of this theory are di�erently presented.
Our results can nevertheless easily be obtained from the original presentation [11].

In this section, we consider given an integer n ∈ N and a non-empty set W . P (W )
is the set of subsets of W and if S is a set, Sn is the Cartesian product S × . . .×S, n
times. A n–ary function f on P (W ) is a function f ∶ P (W )n → P (W ) and a n–ary
relation R over W is a subset of W n. We write Rw1 . . . wn for (w1, . . . , wn) ∈ R.
For all m, n ∈ N, the expression Jm; nK denotes the set {m, . . . , n} if m ≤ n, and the
empty set � otherwise. In the sequel, we will resort to polarity groups, in particular
to the negation group P(+,−) and later to the anti-group P(+,∼).
Definition 1 (Polarity groups). Let (x, y) be an ordered pair. The polarity group
associated to (x, y) is P(x,y) � ({x, y}, ⋅) where the operation ⋅ ∶ P(x,y)×P(x,y) → P(x,y)
is defined by x ⋅ y = y ⋅ x = y and x ⋅ x = y ⋅ y = x. For all ±,±′ ∈ {x, y}, we write ±±′
for ± ⋅ ±′.

Note that x is the neutral element of a polarity group.

Definition 2 (Trace, contrapositive trace). A (n–ary) trace is a tuple t =(±1, . . . ,±n,±) ∈ {+,−}n+1, often denoted t = (±1, . . . ,±n) � ±. If j ∈ J1; nK,
then the contrapositive trace of t with respect to its jth argument is the trace
tj � (±1, . . . ,−±, . . . ,±n)� −±j .
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Note that the contrapositive operation on traces is symmetric: �tj�j = t.

Example 3. The 2–ary traces (−,−) � − and (−,+) � + are contrapositive with
respect to (w.r.t.) their first argument.

Definition 4 (Relation negation and permutation). Let R be an arbitrary n+1–ary
relation over W . Then, for all j ∈ {1, . . . , n}, we define the n + 1–ary relation −R as
follows: for all w1, . . . , wn, w ∈W ,

−Rw1 . . . wnw i� (w1, . . . , wn, w) ∉ R

Sn+1 denotes the set of permutations of the set J1; n + 1K (see Section 3 for
details). If ‡ ∈ Sn+1 is a permutation then its inverse permutation is denoted ‡−.
We define the n + 1–ary relation R‡ as follows: for all w1, . . . , wn+1 ∈W ,

R‡w1 . . . wn+1 i� Rw‡−(1) . . . w‡−(n+1)
We also define +R � R and if ± ∈ {+,−} then R±‡ denotes ±R‡.

Definition 5 (Logical functions associated to a trace and a relation). Let t =(±1, . . . ,±n) � ± be a n–ary trace and let R be a n + 1–ary relation on W . The
n–ary function f on P (W ) associated to t and R, denoted f t

R, is defined as follows:

• If n = 0, f t
R � R;

• If n > 0, then for all W1, . . . , Wn ∈ P (W ),
f t

R(W1, . . . , Wn) � �w ∈W � Ct
R (W1, . . . , Wn, w)�

where Ct
R (W1, . . . , Wn, w) is called the truth condition of the function f t

R and is
defined as follows:

• if ± = +: “for all w1, . . . , wn ∈ W , we have w1 � W1 or . . . or wn � Wn or
Rw1 . . . wnw”;

• if ± = −: “there are w1, . . . , wn ∈ W such that w1 � W1 and . . . and wn � Wn

and Rw1 . . . wnw”;

where, for all j ∈ J1; nK, wj �Wj � �������wj ∈Wj if ±j± = +;
wj ∉Wj if ±j± = −.

Example 6. Let R be a 3–ary relation on W and let ‡ be the permutation (2, 3, 1)
on the set J1; 3K (see Section 3 for details). Then, we have that R‡uvw if, and only
if, Rwuv.
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• If t = (−,−) � − then the function f t
R ∶ P (W ) × P (W ) → P (W ), whose

truth condition is Ct
R (W1, W2, w) = ∃uv (u ∈W1 ∧ v ∈W2 ∧Ruvw), defines the

semantics of a connective, that we denote ○, as follows: for all w ∈W ,

w ∈ JÏ ○ ÂK i� w ∈ f t
R (JÏK, JÂK)

i� ∃uv (u ∈ JÏK ∧ v ∈ JÂK ∧Ruvw)
• If t = (−,+)� + then the function f t−R‡

∶ P (W )×P (W )→ P (W ), whose truth
condition is Ct−R‡

(W1, W2, w) = ∀vu (v ∈W1 ∨ u ∈W2 ∨ −R‡vuw), defines the
semantics of a connective that we denote �, as follows: for all w ∈W ,

w ∈ JÏ�ÂK i� w ∈ f t′−R‡

(JÏK, JÂK)
i� ∀vu (v ∉ JÏK ∨ u ∈ JÂK ∨ −R‡uvw)
i� ∀vu ((Rwuv ∧ u ∈ JÏK)→ v ∈ JÂK) .

Definition 7 (Isotonic and antitonic functions). Let f be a n–ary func-
tion on P (W ). We say that f is isotonic (resp. antitonic) with respect to
the jth argument, written tn(f, j) = + (resp. tn(f, j) = −), when for all
W1, . . . , Wj−1, Wj+1, . . . , Wn, X, Y ∈ P (W ),

if X ⊆ Y

then f(W1, . . . , Wj−1, X, Wj+1, . . . , Wn) ⊆ f(W1, . . . , Wj−1, Y, Wj+1, . . . , Wn)(resp. f(W1, . . . , Wj−1, Y, Wj+1, . . . , Wn) ⊆ f(W1, . . . , Wj−1, X, Wj+1, . . . , Wn)) .
Example 8. If JÏK ⊆ JÏ′K then JÏ′�ÂK ⊆ JÏ�ÂK because tn(f t′−R‡

, 1) = −, and JÏ ○ ÂK ⊆
JÏ′ ○ ÂK because tn(f t

R, 1) = +.

Definition 9 (Relation transformations). Let R be an arbitrary n + 1–ary relation
over W . Then, for all j ∈ {1, . . . , n}, we define the n + 1–ary relation Rj as follows:
for all w1, . . . , wn, w ∈W ,

Rjw1 . . . wnw i� Rw1 . . . w . . . wnwj

If t = (±1, . . . ,±n) � ± and t′ = (±′1, . . . ,±′n) � ±′ are two n–ary traces which are
contrapositive w.r.t. their jth argument, we define the n + 1–ary relation (t′, t)(R)
over W as follows:

(t′, t)(R) � �������Rj if ± = ±′;−Rj otherwise.

880



Towards Universal Logic

Theorem 10. Let R be a n+1–ary relation over W . Let t = (±1, . . . ,±n)� ± and t′ =(±′1, . . . ,±′n) � ±′ be two contrapositive n–ary traces w.r.t. their jth argument. Let
f (resp. f ′) be the n–ary function on P (W ) associated to t and R (resp. associated
to t′ and (t′, t)(R)). Then, if n > 0:

1. for all j ∈ J1; nK, tn(f, j) = ±j± (and thus tn(f ′, j) = ±′j±′ too);

2. f and f ′ satisfy the abstract law of residuation w.r.t. their jth argument: for
all W1, . . . , Wn, X ∈ P (W ),

S(f, W1, . . . , Wj , . . . , Wn, X) i� S(f ′, W1, . . . , X, . . . , Wn, Wj).
where S(f, W1, . . . , Wn, X) � �������f(W1, . . . , Wn) ⊆X if ± = −

X ⊆ f(W1, . . . , Wn) if ± = +.

Example 11. Let us define Ï Â by for all w ∈W , w ∈ JÏK implies that w ∈ JÂK.
Then, the following holds:

• if Â Â′ then Ï ○ Â Ï ○ Â′ because tn(f t
R, 2) = +, and if Ï Ï′ then

Ï′�Â Ï�Â because tn(f t′−R‡

, 1) = −. In other words, f t
R is isotonic w.r.t. its

second argument and f t′−R‡

is antitonic w.r.t. its first argument.

• Ï ○ Â ‰ i� Ï Â�‰, because t and t′ are contrapositive w.r.t. their first
argument.

3 Group theory
We first recall some basics of group theory (see for instance [44] for more details).

Permutations and cycles. If X is a non-empty set, a permutation is a bijection
‡ ∶ X → X. We denote the set of all permutations of X by SX . In the important
special case when X = {1, . . . , n}, we write Sn instead of SX . Note that �Sn� = n!,
where �Y � denotes the number of elements in a set Y . A permutation ‡ on the set{1, . . . , n} such that ‡(1) = x1, ‡(2) = x2, . . . , ‡(n) = xn is denoted (x1, x2, . . . , xn).
For example, (1, 3, 2) is the permutation ‡ such that ‡(1) = 1, ‡(2) = 3 and ‡(3) = 2.

If x ∈ X and ‡ ∈ SX , then ‡ fixes x if ‡(x) = x and ‡ moves x if ‡(x) ≠ x. Let
j1, . . . , jr be distincts integers between 1 and n. If ‡ ∈ Sn fixes the remaining n − r
integers and if ‡(j1) = j2, ‡(j2) = j3, . . . , ‡(jr−1) = jr, ‡(jr) = j1 then ‡ is an r–cycle;
one also says that ‡ is a cycle of length r. Denote ‡ by (j1 j2 . . . jr). A 2–cycle
which merely interchanges a pair of elements is called a transposition.
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Two permutations ‡, · ∈ SX are disjoint if every x moved by one is fixed by
the other. A family of permutations ‡1, ‡2, . . . , ‡n is disjoint if each pair of them is
disjoint. Every permutation ‡ ∈ Sn is either a cycle or a product of disjoint cycles.
Moreover, this factorization is unique except for the order in which the factors occur.

Groups. A group (G, ○) is a non–empty set G equipped with an associative oper-
ation ○ ∶ G×G→ G and containing an element denoted 1G called the neutral element
such that:

• 1G○a = a = a○1G for all a ∈ G;

• for every a ∈ G, there is an element b ∈ G such that a○b = 1G = b○a.

This element b is unique and called the inverse of a, denoted a−1. The set Sn with
the composition operation is a group called the symmetric group on n letters.

A non–empty subset S of a group G is a subgroup of G if s ∈ S implies s−1 ∈ S
and s, t ∈ S imply s○t ∈ S. In that case, S is also a group in its own right.

If X is a subset of a group G, then the smallest subgroup of G contain-
ing X, denoted by �X�, is called the subgroup generated by X. For exam-
ple, Sn = �(1 2), (2 3), . . . , (i i + 1), . . . , (n − 1 n)� = �(n 1), (n 2), . . . , (n n − 1)� =�(n − 1 n), (1 2 . . . n)�. Sn is also generated by (1 2) and 3–cycles. For n ≥ 3,
the alternating group Un is the subgroup of Sn generated by the n–cycles of Sn.

In fact, if X is non–empty, then �X� is the set of all the words on X, that is,
elements of G of the form x±1

1 x±2

2 . . . x±n

n where x1, . . . , xn ∈ X and ±1, . . . ,±n are
either −1 or empty.

Free groups and free products. If X is a subset of a group F , then F is a free
group with basis X if, for every group G and every function f ∶X → G, there exists
a unique homomorphism Ï ∶ F → G extending f . One can prove that a free group
with basis X always exists and that X generates F . We therefore use the notation
F = �X� also for free groups.

If G and H are groups, the free product of G and H is a group P and homomor-
phisms jG and jH such that, for every group Q and all homomorphisms fG ∶ G→ Q
and fH ∶ H → Q, there exists a unique homomorphism Ï ∶ P → Q with ÏjG = fG

and ÏjH = fH . Such a group always exists and it is unique modulo isomorphism,
we denote it G ∗H. This definition can be generalized canonically to the case of a
finite number of groups G1, . . . , Gn, yielding the free product G1 ∗ . . . ∗Gn.

Group actions. If X is a set and G a group, an action of G on X is a function
– ∶ G ×X →X given by (g, x)� gx such that:
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• 1x = x for all x ∈X;

• (g1g2)x = g1(g2x) for all x ∈X and all g1, g2 ∈ G.

An action of G on X is transitive if for every x, y ∈ X, there exists g ∈ G such that
y = gx; it is faithful if for gx = x for all x ∈X implies that g = 1.

If x ∈ X and – an action of a group G on X, then the orbit of x under – isO–(x) � {–(g, x) � g ∈ G}. The orbits form a partition of X. The stabilizer of x,
denoted by Gx, is the subgroup Gx � {g ∈ G � gx = x} of G. If G is finite, then we
have that �O–(x)� = �G��G

x

� . Moreover, if X and G are finite then the number N of
orbits of X is N = 1�G� ∑·∈G F (·) where, for · ∈ G, F (·) is the number of x ∈X fixed
by · (Burnside’s lemma). Finally, if X ′ ⊆X then O–(X ′) denotes �

x′∈X′O–(x′).
Fact 12. If – is an action of G on a set X and H is a subgroup of G, then the
restriction of – to H, denoted –H , is also an action of H on the set X.

Definition 13. Let G and H be two groups. If – and — are actions of G and
H on a set X, then the free action – ∗ — is the mapping – ∗ — ∶ G ∗H ×X → X
given by –∗—(g, x) � –(g1, —(h1, . . . , –(gn, —(hn, x)))), where g = g1h1 . . . gnhn is the
factorization of g in the free group G ∗H.

This definition can be generalized canonically to the case of a finite number of
actions –1, . . . , –n, yielding the mapping –1 ∗ . . . ∗ –n.

Proposition 14. If –1, . . . , –n are actions of G1, . . . , Gn on a set X respectively,
then the mapping –1 ∗ . . . ∗ –n is an action of the (free) group G1 ∗ . . . ∗Gn on X.

4 From gaggle theory to gaggle logics

The introduction of the formal concepts of gaggle theory are motivated by some
heuristic and logical reasons (see for example [41] for informal explanations). We
are going to reformulate these formal concepts of gaggle theory because we want
to make more clear the connection between traces and the relational Kripke–style
semantics that they induce. Thereby, we replace the notion of trace by our notion of
‘signature’ which highlights and distinguishes in a more immediate way the di�erent
semantic ingredients that compose gaggle theory. More specifically, the output of
a trace (+ or −) is replaced by a quantification signature (∀ or ∃). Doing so, our
reformulation will capture and represent more directly and faithfully the tonicity of
the connective defined by a given trace/signature and the formulation of its truth

883



Aucher

condition (even if, as we said, the notion of trace output was introduced for di�erent
heuristic reasons [41]).

In this section, we show how gaggle theory, and in particular Definition 5, leads
to the definition of finite families of connectives of arbitrary arities which are related
to each other by the abstract law of residuation of Theorem 10.

4.1 From traces to gaggle connectives
Informally, ∀ is associated with + and ∃ is associated with −. We formalize this
association with the function ± ∶ {∀,∃} → {+,−} defined by ±(∀) � +,±(∃) � − and
the inverse function Æ ∶ {+,−} → {∀,∃} defined by Æ(+) � ∀, Æ(−) � ∃. Also, we
define the function + ∶ {∀,∃} → {∀,∃} by +(∀) � ∀ and +(∃) � ∃ and the function− ∶ {∀,∃} → {∀,∃} by −(∀) � ∃ and −(∃) � (∀). For better readability, we write+∀,+∃,−∀,−∃ instead of −(∀),+(∃),−(∀),−(∃).
Definition 15 (Signatures versus traces). A (n–ary) signature s is a tuple s =(Æ, (±1, . . . ,±n)) ∈ {∀,∃}×{+,−}n. If s = (Æ, (±1, . . . ,±n)) is a n–ary signature and
t = (±1, . . . ,±n,±) a n–ary trace, then

• The trace T (s) equivalent to s is the trace (±′1, . . . ,±′n) � ± where ± � ±(Æ)
and ±′j � ±±j for all j ∈ J1; nK.

• The signature S(t) equivalent to t is the signature (Æ, (±′1, . . . ,±′n)) where
Æ �Æ(±) and ±′j � ±±j for all j ∈ J1; nK.

Note that the derived notion of tonicity tn(f, j) determined in Theorem 10 is
now taken as primitive with our notion of signature. Then, we can easily prove the
following:

s = S(T (s)) t = T (S(t))
We also reformulate the definition of contrapositive trace in terms of signature as

follows. If s = (Æ, (±1, . . . ,±n)) is a n–ary signature and rj = (n+1 j) a transposition
with j ∈ J1; nK, then we define

rjs � (− ±j Æ, (− ±j ±1, . . . ,±j , . . . ,− ±j ±n)). (1)

Then, we can easily prove the following: for all n–ary traces t and n–ary signa-
tures s,

rjs = S �T (s)j� tj = T (rjS(t))
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Moreover, for every cycle c fixing n + 1, we define

cs � �Æ, �±c(1),±c(2), . . . ,±c(n)�� . (2)

This definition is coherent with Expression (1). Indeed, the transpositions (n +
1 1), (n+1 2), . . . , (n+1 n) generate Sn+1 and every cycle fixing n+1 can be factorized
into a sequence of transpositions of the form (n + 1 j) so that, applying iteratively
Expression (1), we obtain Expression (2).

Definition 16 (Gaggle connectives). The set of atoms P and connectives C are:

P �S1 × {+,−} × {∀,∃} C �P ∪ �
n∈N∗Sn+1 × {+,−} × {{∀,∃} × {+,−}n} .

Both atoms and connectives can be represented by triples p = (1,±, Æ) (for atoms)
and � = (‡,±, (Æ, (±1, . . . ,±n))) (for connectives) where ‡ ∈ Sn+1, ± ∈ {+,−}
and (Æ, (±1, . . . ,±n)) ∈ {∀,∃} × {+,−}n. The arity of an atom is 0, the arity of
a connective � = (‡,±, (Æ, (±1, . . . ,±n))) ∈ C, denoted a(�), is n, its signature
is (Æ, (±1, . . . ,±n)), its quantification signature is Æ and its tonicity signature is(±1, . . . ,±n). For all j ∈ J1; nK, tn(�, j) denotes ±j . Atoms are denoted p, p1, p2, etc.
and connectives are denoted �,�1,�2, etc. The set of n–ary connectives, for n > 0,
is denoted Cn.

Fact 17. The number of n–ary gaggle connectives is (n + 1)! ⋅ 2n+2.

Proof: It follows from the very definition of connectives. �
4.2 Actions of groups on gaggle connectives
In this section, we introduce actions on the set of gaggle connectives. In the next
sections, we will show that they generalize standard notions of residuations, duals
and Boolean negation.

Definition 18 (Action of the symmetric group). Let n ∈ N∗. We define the
function –n ∶ Sn+1 × Cn → Cn, (·,�) � ·� inductively as follows. Let � =(‡,±, (Æ, (±1, . . . ,±n))) ∈ Cn and let c ∈Sn+1.

• If c is the transposition rj = (j n + 1), then rj� � (rj ○ ‡,− ±j ±, rjs), i.e.:

rj� � ((j n + 1) ○ ‡,− ±j ±, (− ±j Æ, (− ±j ±1, . . . ,±j , . . . ,− ±j ±n)) .
The connective rj is called the residual of � w.r.t. its jth argument.
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Permutations of S2 1–ary signatures
·1 = (1, 2) t1 = (∃,+)
·2 = (2, 1) t2 = (∀,+)

t3 = (∀,−)
t4 = (∃,−)

Permutations of S3 2–ary signatures
‡1 = (1, 2, 3) s1 = (∃, (+,+))
‡2 = (3, 2, 1) s2 = (∀, (+,−))
‡3 = (3, 1, 2) s3 = (∀, (−,+))
‡4 = (2, 1, 3) s4 = (∀, (+,+))
‡5 = (2, 3, 1) s5 = (∃, (+,−))
‡6 = (1, 3, 2) s6 = (∃, (−,+))

s7 = (∃, (−,−))
s8 = (∀, (−,−))

Figure 1: Permutations of S2 and S3 and ‘families’ of 1–ary and 2–ary signatures

• If c is the cycle (j1 j2 . . . jk n + 1), then c� � rj
1

(rj
2

. . . (rj
k

�)), where
rj � (j n + 1) for all j.

• If c is a cycle fixing n + 1, then c� � (c ○ ‡,±, cs), i.e.:

c� � �c ○ ‡,±, �Æ, �±c(1),±c(2), . . . ,±c(n)��� .

Finally, if · is an arbitrary permutation of Sn+1, it can be factorized into a product
of disjoint cycles · = c1c2 . . . ck and this factorization is unique (modulo its order)
[44]. So, we define ·� � c1 (c2 . . . (ck�)).

The mapping –n is well-defined because one can easily prove that any other
ordering of the disjoint cycles c1, . . . , ck of · yields the same outcome for ·�. Our
definition is based on cycles and not on transpositions because the decomposition of
any permutation into disjoint cycles is unique (modulo its order), unlike its decom-
position into transpositions.

Proposition 19. For all n ∈ N∗, the mapping –n ∶Sn+1×Cn → Cn is a group action
of Sn+1 on Cn. For all n ∈ N∗, the group actions –n (and all their restrictions to
subgroups G) are not transitive, the cardinality of each orbit is �Sn+1� (resp. �G�) and
the number of orbits is 4 ⋅ 2n (resp. �Cn

��G� ).
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Proof: (sketch) The condition (·1 ○ ·2)� = ·1(·2�) of the definition of group actions
is proved by induction on ·1. The other results follow from group theory because
for all x ∈ Cn, Gx = {1}. �
Definition 20 (Actions of the negation group and the anti-group). Let n ∈ N∗.
We define the functions —n ∶ P(+,−) × Cn → Cn, (±,�) � ±� and “n ∶ P(+,∼) × Cn →
Cn, (±,�)� ±� as follows: if � = (‡,±, (Æ, (±1, . . . ,±n))) ∈ Cn, then

• +� � �
• ∼ � � (‡,−±, (Æ, (±1, . . . ,±n)))
• −� � (‡,−±, (−Æ, (−±1, . . . ,−±n))).
−� and ∼ � are called the Boolean negation and the symmetry of � respectively.
Moreover, if � is an atom p = (1,±, Æ), then we also define −p � (1,−±,−Æ).
As we will see in Proposition 29, our definition of Boolean negation does corre-

spond to the intended (Boolean) negation.

Proposition 21. For all n ∈ N∗, the functions —n and “n are non–transitive actions.
For both actions, the cardinality of each orbit is 2 and the number of orbits is �Cn

�
2 .

Proof: It follows from the application of Burnside Lemma. Only + fixes connectives
of Cn and it fixes all of them. − and ∼ do not fix any element of Cn. �
4.3 Gaggle logics

Our introduction of ‘gaggle logics’, like many semantic-based logics, is made in
three parts: first, we define their language (Definition 22), then their class of models
(Definition 24) and finally their satisfaction relation (Definition 25).

Definition 22 ((Boolean) gaggle language). The gaggle language L0 is the small-
est set that contains the propositional letters and that is closed under the gaggle
connectives. That is,

• P ⊆ L0;

• for all � ∈ C of arity n > 0 and for all Ï1, . . . , Ïn ∈ L0, we have �(Ï1, . . . , Ïn) ∈L0.
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The Boolean gaggle language L is the smallest set that contains the proposi-
tional letters and that is closed under the gaggle connectives as well as the Boolean
connectives ∧,∨ and ¬.

Elements of L are called formulas and are denoted Ï, Â, –, . . . For all
Ï1, . . . , Ïn ∈ L, Ï1 ∧ . . . ∧ Ïn and Ï1 ∨ . . . ∨ Ïn stand for ((Ï1 ∧Ï2) ∧ . . . ∧Ïn) and((Ï1 ∨Ï2) ∨ . . . ∨Ïn) respectively.

If C ⊆ C ∪ {∧,∨,¬} is such that C ∩ P ≠ �, then an element of LC is an element
of L that contains only connectives and atoms of C. In the sequel, we assume that
all the sets of atoms and connectives C ⊆ C ∪ {∧,∨,¬} are such that C ∩ P ≠ �.

Remark 23. We could consider a countable number of copies of the atoms and
connectives: P′ � �

i∈N{�i � � ∈ P}, C′ � �
i∈N{�i � � ∈ C}. Indeed, in general we need a

countable number of atoms or, like in some modal logics, we need multiple modalities
of the same (similarity) type. All the results that follow would still hold in this
extended language.

Definition 24 (C–models and C–frames). Let C ⊆ C. A C–model is a tuple M =(W,R) where W is a non-empty set and R is a set of relations over W . Each n–ary
connective � ∈ C is associated to a n+1–ary relation R� such that for all connectives�1,�2 ∈ C, we have that R�

1

= R�
2

i� O–
n

∗—
n

(�1) = O–
n

∗—
n

(�2).
We abusively write w ∈M for w ∈W . A pointed C–model (M, w) is a C–model

M together with a state w ∈M . The class of all pointed C–models is denoted MC
and simply M when C = C. A C–frame is a C�P–model. The class of all pointed
C–frames is denoted FC and simply F when C = C.

Definition 25 (Gaggle logics). Let C ⊆ C and let M = (W,R) be a C–model.
We define the interpretation function of LC in M , denoted J⋅KM ∶ LC → P (W ),
inductively as follows: for all p ∈ C ∩ P and all � ∈ C of arity n > 0 and signature
denoted (‡,±, s), for all Ï, Â, Ï1, . . . , Ïn ∈ LC,

JpKM � ±Rp

J¬ÏKM � W − JÏKM

J(Ï ∧ Â)KM � JÏKM ∩ JÂKM

J(Ï ∨ Â)KM � JÏKM ∪ JÂKM

J�(Ï1, . . . , Ïn)KM � f�(JÏ1KM , . . . , JÏnKM)
where the function f� = f t

R±‡� with t = T (s) defined in Section 4.1 and f t
R±‡�

in Definition 5. That is, f� is defined as follows: for all W1, . . . , Wn ∈ P (W ),
f�(W1, . . . , Wn) � {w ∈W � C� (W1, . . . , Wn, w)} where C� (W1, . . . , Wn, w) is called
the truth condition of � and is:
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• if Æ = ∀: “∀w1, . . . , wn ∈W (w1 �W1 ∨ . . . ∨wn �Wn ∨R±‡� w1 . . . wnw)”;

• if Æ = ∃: “∃w1, . . . , wn ∈W (w1 �W1 ∧ . . . ∧wn �Wn ∧R±‡� w1 . . . wnw)”;

where, for all j ∈ J1; nK, wj � Wj � wj ∈ Wj if ±j = + and wj � Wj � wj ∉ Wj if±j = − and R±‡� w1 . . . wn+1 i� ±R�w‡−(1) . . . w‡−(n+1) (we recall that +R� � R� and−R� �W n+1 −R�).
We extend the definition of the interpretation function J⋅KM to C–frames as fol-

lows: for all Ï ∈ LC and all C–frames F ,

JÏKF ���JÏK(F,P) � P a set of n–ary relations over W such that (F,P) is a C–model�
If EC is a class of pointed C–models or C–frames, the satisfaction relation ⊆EC × LC is defined as follows: for all Ï ∈ LC and all (M, w) ∈ EC, ((M, w), Ï) ∈

i� w ∈ JÏKM . We usually write (M, w) Ï instead of ((M, w), Ï) ∈ . The triple(LC,EC, ) is a logic called the gaggle logic associated to EC and C. The logics of
the form (LC,MC, ) are called basic gaggle logics. We call them Boolean (basic)
gaggle logics when their language includes the Boolean connectives ∧,∨,¬.

The truth conditions of the above definitions have been introduced in a di�erent
formal approach by Bimbó & Dunn [7] and for some particular cases by Dunn [10]
and Dunn & Hardegree [13]. However, it is the first time that they are spelled out
systematically and in a comprehensive manner.

Example 26 (Lambek calculus, modal logic). The Lambek calculus (LC,MC, )
where C = {p, ○, �, �} defined in Section 2 is an example of basic gaggle logic. Here○, �, � are the connectives (‡1,+, s1), (‡5,−, s3), (‡3,−, s2). Another example of gaggle
logic is modal logic (LC,EC, ) where C = {p,�,�,∧,∨,�,�} is such that

• �,� are the connectives (1,+,∃) and (1,−,∀) respectively;

• ∧,∨,�,� are the connectives (‡1,+, s1), (‡1,−, s4), (·2,+, s1), (·2,−, s2) respec-
tively;

• the C-models M = (W,R) ∈ EC are such that R∧ = R∨ = {(w, w, w) � w ∈ W},
R� = R�, R� = R� =W .

Indeed, one can easily show that, with these conditions on the C–models of EC,
we have that for all (M, w) ∈ EC, (M, w) (‡1,+, s1)(Ï, Â) i� (M, w) Ï and(M, w) Â, and (M, w) (‡1,−, s4)(Ï, Â) i� (M, w) Ï or (M, w) Â. Note that
the Boolean conjunction and disjunction ∧ and ∨ are defined using the connectives
of C by means of special relations R∧ and R∨. They could obviously be defined
directly. Many more examples will be given in Section 6.
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5 Residual, Boolean negation, dual and switch

The action of specific permutations on the set of connectives corresponds to well–
known operations used in proof theory. For example, the action of a transposition(j n + 1) corresponds to the abstract law of residuation for the jth argument. This
operation of residuation turns out to be central since every permutation can be
decomposed into a composition of transpositions. Yet, we argue that the actions of
cycles is more central because every permutation can be decomposed uniquely into
disjoint cycles. Moreover, the symmetric group Sn+1 is also generated by the cycles(1 . . . n+1) and (n n+1) and the alternation group is generated by the n+1-cycles
of Sn+1. This confirms an observation already made in [2] which highlighted the
role of 3-cycles for substructural and update logics in the formal connections that
exist between connectives.

Proposition 27. Let t be a n-ary trace, R a n+1-ary relation over W and ‡ ∈Sn+1.
Then, f t

R±‡

= f� where � = (‡,±, S(t)) = (‡,±, (Æ, (±1, . . . ,±n))). Moreover, if
j ∈ J1; nK, then the n-ary function associated to tj and (tj , t)(R) of Definition 5 is
fr

j

� where rj�, the residual of � w.r.t. its jth argument, was defined in Definition
18:

rj� � ((j n + 1) ○ ‡,− ±j ±, (− ±j Æ, (− ±j ±1, . . . ,±j , . . . ,− ±j ±n)) .
Therefore, we have the following property: for all Ï1, . . . , Ïj , . . . , Ïn, Ï ∈ L,

S [�, Ï1, . . . , Ïj , . . . , Ïn, Ï] i� S [rj�, Ï1, . . . , Ï, . . . , Ïn, Ïj] (3)

where S [�, Ï1, . . . , Ïn, Ï] � ��������(Ï1, . . . , Ïn) Ï if Æ = ∃
Ï � (Ï1, . . . , Ïn) if Æ = ∀ .

Proof: It follows straightforwardly from our definitions. Expression (3) follows
from Theorem 10 (item 2). �

Hence, rj� does correspond to the residual connective of � w.r.t. its jth argument
as it is usually defined in Dunn’s theory.

Definition 28 (Dual and switch operations). Let � = (‡,±, (Æ, (±1, . . . ,±n))) ∈ C
be a n–ary connective and let j ∈ J1; nK.

• The switch of � w.r.t. its jth argument is the n-ary connective

sj� � (‡,±, (Æ, (±1, . . . ,−±j , . . . ,±n))).
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• The dual of � w.r.t. its jth argument is the n–ary connective

dj� � (‡,−±, (−Æ, (−±1, . . . ,±j , . . . ,−±n))).
• The dual of � is the n-ary connective

d� � (‡,−±, (−Æ, (±1, . . . ,±n))).
The following proposition shows that our terminology for “Boolean negation”

and “dual” is appropriate and does correspond to the standard intuitive meaning
(see Blackburn & Al. [8, Def 1.13] for example).

Proposition 29. Let � ∈ C be a n–ary connective and let Ï1, . . . , Ïn ∈ L. Then, for
all (appropriate) pointed models (M, w),
(M, w) −�(Ï1, . . . , Ïn) i� (M, w) � (Ï1, . . . , Ïn) does not hold(M, w) sj � (Ï1, . . . , Ïn) i� (M, w) � (Ï1, . . . ,¬Ïj , . . . , Ïn)(M, w) dj � (Ï1, . . . , Ïn) i� (M, w) −�(Ï1, . . . ,¬Ïj , . . . , Ïn)(M, w) d � (Ï1, . . . , Ïn) i� (M, w) −�(¬Ï1, . . . ,¬Ïn)
The following proposition shows that the switch as well as the dual operations

are definable in terms of residuations and Boolean negation.

Proposition 30. If � ∈ Cn is a n–ary connective, then for all j ∈ J1; nK,

• sj� = rj − rj�
• dj� = rj − rj −�
• d� = s1 . . . sn −�.

Proof: See the Appendix, Section A. �
Proposition 31. Dunn’s (complete) families of n–ary connectives are orbits O–

n

(�)
of the group action –n. These families/orbits form a partition of the set of n–ary
connectives.

Proof: It follows easily from Dunn’s and our definitions. �
Dunn’s families of n–ary connectives are called “complete families” of operations

by Bimbó & Dunn [7]. Likewise, two n–ary connectives �,� ∈ Cn are “colligated”
in the sense of Bimbó & Dunn [7] when they belong to the same orbit O–

n

(�).
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(‡6,+, s5)

(‡6,−, s3)

(‡1,+, s1)

(‡1,−, s8)

(‡6,−, s8)

(‡6,+, s1)

(‡1,−, s3)

(‡1,+, s5)

residuation r2

Boolean negation −

Figure 2: The 8 connectives of the orbit O–
G

2

((‡1,+, s1))
(‡1,+, s1)

(‡6,−, s3)

(‡5,−, s3) (‡4,+, s1)

(‡3,−, s2)

(‡2,−, s2)

residuation r2

residuation r1

Figure 3: The 6 connectives of the orbit O–
2

((‡1,+, s1))
Proposition 32. Let n ∈ N∗, j ∈ J1; nK and let us define Gj = �rj�∗P(+,−). Since Gj

is a subgroup of Sn+1 ∗P(+,−), let us denote by –G
j

the action of Gj on Cn induced
by the free action –n ∗ —n. Then, for all connectives � of arity n,

1. O–
G

j

(�) is isomorphic to a cyclic group of order 8.

2. �O–
n

∗—
n

(�) ,O–
n

∗—
n

(∼ �)� forms a partition of the set Cn of connectives of
arity n. Moreover, the mapping ∼⋅ ∶ O–

n

∗—
n

(�) → O–
n

∗—
n

(∼ �), x �∼ x is
involutive.
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(‡1,+, s1)
(‡1,+, s5)

(‡1,+, s7)
(‡1,+, s6)

(‡1,−, s8)
(‡1,−, s3)

(‡1,−, s4)
(‡1,−, s2)(‡6,−, s3)

(‡6,+, s5)
(‡6,+, s7)

(‡6,−, s4)

(‡6,−, s8)
(‡6,+, s1)

(‡6,+, s6)
(‡6,+, s2)(‡5,−, s3)

(‡5,−, s4)
(‡5,+, s7)

(‡5,+, s5)

(‡5,−, s8)
(‡5,−, s2)

(‡5,+, s6)
(‡5,+, s1)(‡4,+, s1)

(‡4,+, s6)
(‡4,+, s7)

(‡4,+, s5)

(‡4,−, s8)
(‡4,−, s2)

(‡4,−, s4)
(‡4,−, s3)(‡3,−, s2)

(‡3,+, s6)
(‡3,+, s7)

(‡3,−, s4)

(‡3,−, s8)
(‡3,+, s1)

(‡3,+, s5)
(‡3,−, s3)(‡2,−, s2)

(‡2,−, s4)
(‡2,+, s7)

(‡2,+, s6)

(‡2,−, s8)
(‡2,−, s3)

(‡2,+, s5)
(‡2,+, s3)residual r2

residual r1

switch s1

switch s2

negation −
Figure 4: The 48 connectives of the orbit O–

2

∗—
2

((‡1,+, s1)) related to each other
by residual, negation and switch operations.
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3. For all n ∈ N∗, the free action –n ∗ —n ∗ “n on the set of connectives Cn is
transitive.

Proof: See the Appendix, Section A. �
So, for every pair of connectives (�,�′), there exists a sequence of residuation(s),

negation(s) and symmetry which transforms � into �′. In other words, every gaggle
connective � ∈ Cn can be obtained from another connective �′ ∈ Cn with a suitable
choice of element in the free groups Sn+1 ∗P(+,−) ∗P(+,∼): for all �,�′ ∈ Cn, there is
g ∈Sn+1 ∗ P(+,−) ∗ P(+,∼) such that �′ = –n ∗ —n ∗ “n(g,�).
Example 33. In Figure 2, we represent the orbit O–

G

2

((‡1,+, s1)). It is isomorphic
to a group of order 8 according to the first item of Proposition 32. In Figure 4, we
represent the orbit O–

2

∗—
2

((‡1,+, s1)) where the 48 binary connectives are related
to each other by means of residuation, switch or Boolean negation. The other 48
binary connectives of the orbit O–

2

∗—
2

(∼ (‡1,+, s1)) are obtained symmetrically by
switching everywhere − to + and + to −. These two orbits form a partition of C2
according to the second item of Proposition 32. The orbits O–

2

(�) of the binary
connectives � of C2 are given in Figures 7, 8, 9, 10, 11 and 12. Every orbit O–

2

(�) is
of cardinality 6 = �S3�. In order to follow common notations, binary connectives are
denoted Ï�Â instead of �(Ï, Â). Finally, the orbit of O–

2

((‡1,+, s1)) is represented
graphically in Figure 3, it corresponds to the outermost left vertical line of Figure
4.

6 Gaggle logics in the literature
In this section, we provide formal connections between our gaggle logics and sub-
structural and non-classical logics. The last columns of our tables indicate the rele-
vant publication where the gaggle logic connective was introduced for the first time.
A logic close to our approach with connectives of arbitrary arity is the Generalized
Lambek Calculus of Kolowska-Gawiejnovicz [26]. It is in fact the basic gaggle logic(LC,MC, ) where C = �

n∈N∗{�n, ri�n �, i = 1, . . . , n} with �n the n-ary connnective(1,+, (∃, (+, . . . ,+))). (�n and ri�n are denoted f and f�i in [26].)

6.1 Binary and unary connectives of basic gaggle logic

The truth conditions of the 16 unary gaggle connectives of gaggle logic are given
in Figure 6 and those of the 96 binary gaggle connectives of gaggle logic in Figures
7, 8, 9, 10, 11 and 12. Many of these unary and binary connectives have already
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been introduced in the literature [30, 23, 28, 29, 40, 31, 22, 42, 2]. For example, the
binary connectives (‡1,+, s1) , (‡5, s3,−) and (‡3, s2,−) are the fusion ○, implication� and co-implication � connectives of the Lambek calculus [30] used to illustrate
our examples in Section 2. They are also denoted ⊗

3

, ⊃
1

and ⊂
2

in update logic
[2].2 In the third column of the tables, we provide the bibliographical references
where the connectives were first introduced. Note that each binary connective �
has a commutative version �′ which belongs to the same orbit/family so that for
all formulas Ï, Â we have that Ï�Â = Â �′ Ï. So, instead of 6 di�erent connectives
for each 2–ary orbit, we genuinely have 3 di�erent connectives. This is in line with
a result about colligated operations of Bimbó & Dunn [7]. For each orbit, one goes
from one connective to the next by alternating residuations w.r.t. the first or the
second argument, like in Figure 3. For example, (‡1,+, s1) = r1 (‡2,−, s2) =
r1r2 (‡3,−, s2) = r1r2r1 (‡4,+, s1) = r1r2r1r2 (‡5,−, s3) = r1r2r1r2r1 (‡6,−, s3) .

To each family/orbit of connectives corresponds a series of laws of residuation.
These laws are all instances of the same abstract law of residuation of Definition
10 and correspond to the action of transpositions of the form (j n + 1) on the set
of connectives. They are of di�erent types depending on the family/orbit to which
they belong. These types were denoted in the literature: residuation connection,
dual residuation connection, Galois connection and dual Galois connection (denoted
rp, drp, gc and dgc by Goré [22]). These di�erent ‘types’ of instance of the same
abstract law of residuation for binary and unary connectives are given in Figure 5.
In particular, note that the notion of dual residuation is the same as our definition
of dual w.r.t. the jth argument (Definition 28 and Proposition 29).

6.2 Non gaggle logics
Some connectives of non–classical logics are not connectives of gaggle logics. We
mention two of them here. First, the standard modal connective interpreted over
a neighborhood semantics [34, 35, 47]. It cannot be expressed by a combination of
gaggle logic connectives, because its reformulation with a ternary relation contains
an alternation of quantifiers that cannot occur in any function of Definition 5:

w ∈ J�ÏK i� ∃u∀v (Rwuv↔ v ∈ JÏK) .
2There is a number of important typographical mistakes about dual update logic in [2]. In par-

ticular, in Definition 20 (dual update logic) of [2], y and z should be swapped in the truth conditions
of ⌃

i

and ⌥
i

. There are also some errors in the case study of Section 8 about bi-intuitionistic logic.
A fully corrected version of [2] is available at https://hal.inria.fr/hal-01476234v2/document.
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‘Type’ of the abstract law Binary connectives Unary connectives

Residuation

Ï⊗
i

Â ‰

Ï Â ⊃
j

‰
1

Â ‰ ⊂
k

Ï
2

�−Ï Â

Ï � Â

�Ï Â

Ï �− Â

Dual residuation

‰ Ï �
i

Â

Â ⌥
j

‰ Ï

‰ ⌃
k

Ï Â

Galois

Ï �
i

Â ‰

Ï �
j

‰ Â

Â �
k

‰ Ï

Ï1 Â
1Â Ï

Dual Galois

‰ Ï ↓
i

Â

Â Ï ↓
j

‰

Ï Â ↓
k

‰

Â Ï0

Ï 0Â

Figure 5: Instances of the abstract law of residuation(i, j, k) ∈ {(3, 1, 2), (2, 3, 1), (1, 2, 3)}
Second, the disjunction of connexive logics interpreted over the ternary semantics

of relevant logics [37]. It cannot be expressed in basic gaggle logic either, because
its formulation contains a pattern of Boolean connectives absent from the functions
of Definition 5:

w ∈ JÏ ∨ ÂK i� ∃uv (Rwuv ∧ (u ∈ JÏK ∨ v ∈ JÂK)) .
7 Calculi for Boolean gaggle logics

After some general definitions in Section 7.1 and definitions of structures and con-
secutions for gaggle logics in Definition 40, we introduce in Section 7.3 our calculus
for Boolean basic gaggle logics. The calculus is a display calculus.

7.1 Preliminary definitions

These definitions are very general and apply to any kind of formalism.
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Gaggle Truth condition Substructural
connective connective

The existentially positive orbit: residuations(·1,+, t1) Ï ∃v (v ∈ JÏK ∧Rvw) �−Ï [40] �↓ [10](·2,−, t2) Ï ∀v (v ∈ JÏK ∨ −Rwv) �Ï [28]
The universally positive orbit: residuations(·1,+, t2) Ï ∀v (v ∈ JÏK ∨Rvw) +↓Ï [10] [13, p. 401](·2,−, t1) Ï ∃v (v ∈ JÏK ∧ −Rwv) [10]

The existentially negative orbit: Galois connections(·1,+, t4) Ï ∃v (v ∉ JÏK ∧Rvw) ?Ï [10][13, p. 402] �1Ï [10][7, Def. 10.7.7](·2,+, t4) Ï ∃v (v ∉ JÏK ∧Rwv) ?↓Ï [10][14] [13, p. 402] �2Ï [7, Def. 10.7.7]
The universally negative orbit: dual Galois connections(·1,+, t3) Ï ∀v (v ∉ JÏK ∨Rvw) Ï⊥ [10, 12] Ïo [22] �1Ï [7, Def. 10.7.2](·2,+, t3) Ï ∀v (v ∉ JÏK ∨Rwv) ∼ Ï [20] ⊥Ï [10, 12] oÏ [22]�2Ï [7, Def. 10.7.2]

The symmetrical existentially positive orbit: residuations(·1,−, t1) Ï ∃v (v ∈ JÏK ∧ −Rvw) [10](·2,+, t2) Ï ∀v (v ∈ JÏK ∨Rwv) +Ï [10] [13, p. 402] Ï∗ [7, Def. 7.1.19]
The symmetrical universally positive orbit: residuations(·1,−, t2) Ï ∀v (v ∈ JÏK ∨ −Rvw) �−Ï [40] �↓ [10](·2,+, t1) Ï ∃v (v ∈ JÏK ∧Rwv) �Ï [28]

The symmetrical existentially negative orbit: Galois connections(·1,−, t4) Ï ∃v (v ∉ JÏK ∧ −Rvw) ?Ï [10][7, Ex. 1.4.5] Ï1 [22](·2,−, t4) Ï ∃v (v ∉ JÏK ∧ −Rwv) ?↓Ï [10] [7, Ex. 1.4.5] 1Ï [22]
The symmetrical universally negative orbit: dual Galois connections(·1,−, t3) Ï ∀v (v ∉ JÏK ∨ −Rvw) [10](·2,−, t3) Ï ∀v (v ∉ JÏK ∨ −Rwv) ¬hÏ [29, 42] �Ï [14]

Figure 6: The 1–ary gaggle connectives
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Gaggle Truth condition Substructural
connective connective

The conjunction orbit O–
3

( (‡1,+, s1) ): residuations
Ï (‡1,+, s1) Â ∃uv (u ∈ JÏK ∧ v ∈ JÂK ∧Ruvw) Ï ○ Â [30], Ï⊗

3

Â [2]
Ï (‡2,−, s2) Â ∀uv (u ∈ JÏK ∨ v ∉ JÂK ∨ −Rwvu)
Ï (‡3,−, s2) Â ∀uv (u ∈ JÏK ∨ v ∉ JÂK ∨ −Rvwu) � [30], Ï ⊂

2

Â [2]
Ï (‡4,+, s1) Â ∃uv (u ∈ JÏK ∧ v ∈ JÂK ∧Rvuw)= Â (‡1,+, s1) Ï
Ï (‡5,−, s3) Â ∀uv (u ∉ JÏK ∨ v ∈ JÂK ∨ −Rwuv) � [30], Ï ⊃

1

Â [2]= Â (‡2,−, s2) Ï
Ï (‡6,−, s3) Â ∀uv (u ∉ JÏK ∨ v ∈ JÂK ∨ −Ruwv)= Â (‡3,−, s2) Ï

The not–but orbit O–
3

( (‡1,+, s6) ): residuations
Ï (‡1,+, s6) Â ∃uv (u ∉ JÏK ∧ v ∈ JÂK ∧Ruvw) Ï ⌥

3

Â [2]
Ï (‡2,+, s6) Â ∃uv (u ∉ JÏK ∧ v ∈ JÂK ∧Rwvu)
Ï (‡3,−, s4) Â ∀uv (u ∈ JÏK ∨ v ∈ JÂK ∨ −Rvwu) Ï �

2

Â [2]
Ï (‡4,+, s5) Â ∃uv (u ∈ JÏK ∧ v ∉ JÂK ∧Rvuw)= Â (‡1,+, s6) Ï
Ï (‡5,+, s5) Â ∃uv (u ∈ JÏK ∧ v ∉ JÂK ∧Rwuv) Ï ⌃

1

Â [2]= Â (‡2,+, s6) Ï
Ï (‡6,−, s4) Â ∀uv (u ∈ JÏK ∨ v ∈ JÂK ∨ −Ruwv)= Â (‡3,−, s4) Ï

The but–not orbit O–
3

( (‡1,+, s5) ): residuations
Ï (‡1,+, s5) Â ∃uv (u ∈ JÏK ∧ v ∉ JÂK ∧Ruvw) Ï ⌃

3

Â [2]
Ï (‡2,−, s4) Â ∀uv (u ∈ JÏK ∨ v ∈ JÂK ∨ −Rwvu)
Ï (‡3,+, s6) Â ∃uv (u ∉ JÏK ∧ v ∈ JÂK ∧Rvwu) Ï ⌥

2

Â [2]
Ï (‡4,+, s6) Â ∃uv (u ∉ JÏK ∧ v ∈ JÂK ∧Rvuw) Ï  Â [23, 36]= Â (‡1,+, s5) Ï
Ï (‡5,−, s4) Â ∀uv (u ∈ JÏK ∨ v ∈ JÂK ∨ −Rwuv) Ï � Â [23, 36] Ï �

1

Â [2]= Â (‡2,−, s4) Ï
Ï (‡6,+, s5) Â ∃uv (u ∈ JÏK ∧ v ∉ JÂK ∧Ruwv) Ï ◆ Â [23, 36]= Â (‡3,+, s6) Ï

Figure 7: The 2–ary gaggle connectives
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Gaggle Truth condition Substructural
connective connective

The symmetrical conjunction orbit O–
3

( (‡1,−, s1) ): residuations
Ï (‡1,−, s1) Â ∃uv (u ∈ JÏK ∧ v ∈ JÂK ∧ −Ruvw) Ï ○ Â [7, Def. 5.2.3]
Ï (‡2,+, s2) Â ∀uv (u ∈ JÏK ∨ v ∉ JÂK ∨Rwvu)
Ï (‡3,+, s2) Â ∀uv (u ∈ JÏK ∨ v ∉ JÂK ∨Rvwu)
Ï (‡4,−, s1) Â ∃uv (u ∈ JÏK ∧ v ∈ JÂK ∧ −Rvuw)= Â (‡1,−, s1) Ï
Ï (‡5,+, s3) Â ∀uv (u ∉ JÏK ∨ v ∈ JÂK ∨Rwuv) Ï→ Â [7, Def. 5.2.3]= Â (‡2,+, s2) Ï
Ï (‡6,+, s3) Â ∀uv (u ∉ JÏK ∨ v ∈ JÂK ∨Ruwv)= Â (‡3,+, s2) Ï

The symmetrical not–but orbit O–
3

( (‡1,−, s6) ): residuations
Ï (‡1,−, s6) Â ∃uv (u ∉ JÏK ∧ v ∈ JÂK ∧ −Ruvw)
Ï (‡2,−, s6) Â ∃uv (u ∉ JÏK ∧ v ∈ JÂK ∧ −Rwvu)
Ï (‡3,+, s4) Â ∀uv (u ∈ JÏK ∨ v ∈ JÂK ∨Rvwu)
Ï (‡4,−, s5) Â ∃uv (u ∈ JÏK ∧ v ∉ JÂK ∧ −Rvuw)= Â (‡1,−, s6) Ï
Ï (‡5,−, s5) Â ∃uv (u ∈ JÏK ∧ v ∉ JÂK ∧ −Rwuv)= Â (‡2,−, s6) Ï
Ï (‡6,+, s4) Â ∀uv (u ∈ JÏK ∨ v ∈ JÂK ∨Ruwv)= Â (‡3,+, s4) Ï

The symmetrical but–not orbit O–
3

( (‡1,−, s5) ): residuations
Ï (‡1,−, s5) Â ∃uv (u ∈ JÏK ∧ v ∉ JÂK ∧ −Ruvw)
Ï (‡2,+, s4) Â ∀uv (u ∈ JÏK ∨ v ∈ JÂK ∨Rwvu)
Ï (‡3,−, s6) Â ∃uv (u ∉ JÏK ∧ v ∈ JÂK ∧ −Rvwu)
Ï (‡4,−, s6) Â ∃uv (u ∉ JÏK ∧ v ∈ JÂK ∧ −Rvuw)= Â (‡1,−, s5) Ï
Ï (‡5,+, s4) Â ∀uv (u ∈ JÏK ∨ v ∈ JÂK ∨Rwuv)= Â (‡2,+, s4) Ï
Ï (‡6,−, s5) Â ∃uv (u ∈ JÏK ∧ v ∉ JÂK ∧ −Ruwv)= Â (‡3,−, s6) Ï

Figure 8: The 2–ary gaggle connectives
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Gaggle Truth condition Substructural
connective connective

The disjunction orbit O–
3

( (‡1,−, s4) ): dual residuations
Ï (‡1,−, s4) Â ∀uv (u ∈ JÏK ∨ v ∈ JÂK ∨ −Ruvw) Ï �

3

Â [2]
Ï (‡2,+, s5) Â ∃uv (u ∈ JÏK ∧ v ∉ JÂK ∧Rwvu)
Ï (‡3,+, s5) Â ∃uv (u ∈ JÏK ∧ v ∉ JÂK ∧Rvwu) Ï ⌃

2

Â [2]
Ï (‡4,−, s4) Â ∀uv (u ∈ JÏK ∨ v ∈ JÂK ∨ −Rvuw)= Â (‡1,−, s4) Ï
Ï (‡5,+, s6) Â ∃uv (u ∉ JÏK ∧ v ∈ JÂK ∧Rwuv) Ï ⌥

1

Â [2]= Â (‡2,+, s5) Ï
Ï (‡6,−, s6) Â ∃uv (u ∉ JÏK ∧ v ∈ JÂK ∧Ruwv)= Â (‡3,+, s5) Ï

The implication orbit O–
3

( (‡1,−, s3) ): dual residuations
Ï (‡1,−, s3) Â ∀uv (u ∉ JÏK ∨ v ∈ JÂK ∨ −Ruvw) Ï ⊃

3

Â [2]
Ï (‡2,−, s3) Â ∀uv (u ∉ JÏK ∨ v ∈ JÂK ∨ −Rwvu)
Ï (‡3,+, s1) Â ∃uv (u ∈ JÏK ∧ v ∈ JÂK ∧Rvwu) Ï⊗

2

Â [2]
Ï (‡4,−, s2) Â ∀uv (u ∈ JÏK ∨ v ∉ JÂK ∨ −Rvuw)= Â (‡1,+, s3) Ï
Ï (‡5,−, s2) Â ∀uv (u ∈ JÏK ∨ v ∉ JÂK ∨ −Rwuv) Ï ⊂

1

Â [2]= Â (‡2,−, s3) Ï
Ï (‡6,+, s1) Â ∃uv (u ∈ JÏK ∧ v ∈ JÂK ∧Ruwv)= Â (‡3,+, s1) Ï

The coimplication orbit O–
3

( (‡1,−, s2) ): dual residuations
Ï (‡1,−, s2) Â ∀uv (u ∈ JÏK ∨ v ∉ JÂK ∨ −Ruvw) Ï ⊂

3

Â [2]
Ï (‡2,+, s1) Â ∃uv (u ∈ JÏK ∧ v ∈ JÂK ∧Rwvu)
Ï (‡3,−, s3) Â ∀uv (u ∉ JÏK ∨ v ∈ JÂK ∨ −Rvwu) Ï ⊃

2

Â [2]
Ï (‡3,−, s3) Â ∀uv (u ∉ JÏK ∨ v ∈ JÂK ∨ −Rvuw)= Â (‡1,−, s2) Ï
Ï (‡5,+, s1) Â ∃uv (u ∈ JÏK ∧ v ∈ JÂK ∧Rwuv) Ï⊗

1

Â [2]= Â (‡2,+, s1) Ï
Ï (‡6,−, s2) Â ∀uv (u ∈ JÏK ∨ v ∉ JÂK ∨ −Ruwv)= Â (‡3,−, s3) Ï

Figure 9: The 2–ary gaggle connectives
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Gaggle Truth condition Substructural
connective connective
The symmetrical disjunction orbit O–

3

( (‡1,+, s4) ): dual residuations
Ï (‡1,+, s4) Â ∀uv (u ∈ JÏK ∨ v ∈ JÂK ∨Ruvw) Ï � Â [22]
Ï (‡2,−, s5) Â ∃uv (u ∈ JÏK ∧ v ∉ JÂK ∧ −Rwvu) Ï ⌃ Â [22]
Ï (‡3,−, s5) Â ∃uv (u ∈ JÏK ∧ v ∉ JÂK ∧ −Rvwu)
Ï (‡4,+, s4) Â ∀uv (u ∈ JÏK ∨ v ∈ JÂK ∨Rvuw)= Â (‡1,+, s4) Ï
Ï (‡5,−, s6) Â ∃uv (u ∉ JÏK ∧ v ∈ JÂK ∧ −Rwuv)= Â (‡2,−, s5) Ï
Ï (‡6,+, s6) Â ∃uv (u ∉ JÏK ∧ v ∈ JÂK ∧ −Ruwv) Ï ⌥ Â [22]= Â (‡3,−, s5) Ï

The symmetrical implication orbit O–
3

( (‡1,+, s3) ): dual residuations
Ï (‡1,+, s3) Â ∀uv (u ∉ JÏK ∨ v ∈ JÂK ∨Ruvw)
Ï (‡2,+, s3) Â ∀uv (u ∉ JÏK ∨ v ∈ JÂK ∨Rwvu)
Ï (‡3,−, s1) Â ∃uv (u ∈ JÏK ∧ v ∈ JÂK ∧ −Rvwu)
Ï (‡4,+, s2) Â ∀uv (u ∈ JÏK ∨ v ∉ JÂK ∨Rvuw)= Â (‡1,+, s3) Ï
Ï (‡5,+, s2) Â ∀uv (u ∈ JÏK ∨ v ∉ JÂK ∨Rwuv)= Â (‡2,+, s3) Ï
Ï (‡6,−, s1) Â ∃uv (u ∈ JÏK ∧ v ∈ JÂK ∧ −Ruwv)= Â (‡3,−, s1) Ï

The symmetrical coimplication orbit O–
3

( (‡1,+, s2) ): dual residuations
Ï (‡1,+, s2) Â ∀uv (u ∈ JÏK ∨ v ∉ JÂK ∨Ruvw)
Ï (‡2,−, s1) Â ∃uv (u ∈ JÏK ∧ v ∈ JÂK ∧ −Rwvu)
Ï (‡3,+, s3) Â ∀uv (u ∉ JÏK ∨ v ∈ JÂK ∨Rvwu)
Ï (‡4,+, s3) Â ∀uv (u ∉ JÏK ∨ v ∈ JÂK ∨Rvuw)= Â (‡1,+, s2) Ï
Ï (‡5,−, s1) Â ∃uv (u ∈ JÏK ∧ v ∈ JÂK ∧ −Rwuv)= Â (‡2,−, s1) Ï
Ï (‡6,+, s2) Â ∀uv (u ∈ JÏK ∨ v ∉ JÂK ∨Ruwv)= Â (‡3,+, s3) Ï

Figure 10: The 2–ary gaggle connectives
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Gaggle Truth condition Substructural
connective connective

The stroke orbit O–
3

( (‡1,+, s7) ): Galois connections
Ï (‡1,+, s7) Â ∃uv (u ∉ JÏK ∧ v ∉ JÂK ∧Ruvw) Ï �

3

Â [1, 22]
Ï (‡2,+, s7) Â ∃uv (u ∉ JÏK ∧ v ∉ JÂK ∧Rwvu)
Ï (‡3,+, s7) Â ∃uv (u ∉ JÏK ∧ v ∉ JÂK ∧Rvwu)
Ï (‡4,+, s7) Â ∃uv (u ∉ JÏK ∧ v ∉ JÂK ∧Rvuw)= Â (‡1,+, s7) Ï
Ï (‡5,+, s7) Â ∃uv (u ∉ JÏK ∧ v ∉ JÂK ∧Rwuv) Ï �

1

Â [1, 22]= Â (‡2,+, s7) Ï
Ï (‡6,+, s7) Â ∃uv (u ∉ JÏK ∧ v ∉ JÂK ∧Ruwv) Ï �

2

Â [1, 22]= Â (‡3,+, s7) Ï

The dagger orbit O–
3

( (‡1,−, s8) ): Galois connections
Ï (‡1,−, s8) Â ∀uv (u ∉ JÏK ∨ v ∉ JÂK ∨ −Ruvw) Ï ↓

3

Â [1, 22]
Ï (‡2,−, s8) Â ∀uv (u ∉ JÏK ∨ v ∉ JÂK ∨ −Rwvu)
Ï (‡3,−, s8) Â ∀uv (u ∉ JÏK ∨ v ∉ JÂK ∨ −Rvwu)
Ï (‡4,−, s8) Â ∀uv (u ∉ JÏK ∨ v ∉ JÂK ∨ −Rvuw)= Â (‡1,−, s8) Ï
Ï (‡5,−, s8) Â ∀uv (u ∉ JÏK ∨ v ∉ JÂK ∨ −Rwuv) Ï ↓

1

Â [1, 22]= Â (‡2,−, s8) Ï
Ï (‡6,−, s8) Â ∀uv (u ∉ JÏK ∨ v ∉ JÂK ∨ −Ruwv) Ï ↓

2

Â [1, 22]= Â (‡3,−, s8) Ï

Figure 11: The 2–ary gaggle connectives

Definition 34 (Logic). A logic is a triple L = (L, E, ) where

• L is a language defined as a set of well-formed expressions built from a set of
connectives C and a set of atoms P;

• E is a class of pointed models or frames;

• is a satisfaction relation which relates in a compositional manner elements
of L to models of E by means of so-called truth conditions.

A L–consecution is an expression of the form Ï Â, Â or Ï , where Ï, Â ∈ L.

Our definition of a calculus and of an inference rule is taken from [32].
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Gaggle Truth condition Substructural
connective connective
The symmetrical stroke orbit O–

3

( (‡1,−, s7) ): dual Galois connections
Ï (‡1,−, s7) Â ∃uv (u ∉ JÏK ∧ v ∉ JÂK ∧ −Ruvw)
Ï (‡2,−, s7) Â ∃uv (u ∉ JÏK ∧ v ∉ JÂK ∧ −Rwvu)
Ï (‡3,−, s7) Â ∃uv (u ∉ JÏK ∧ v ∉ JÂK ∧ −Rvwu)
Ï (‡4,−, s7) Â ∃uv (u ∉ JÏK ∧ v ∉ JÂK ∧ −Rvuw)= Â (‡1,−, s7) Ï
Ï (‡5,−, s7) Â ∃uv (u ∉ JÏK ∧ v ∉ JÂK ∧ −Rwuv)= Â (‡2,−, s7) Ï
Ï (‡6,−, s7) Â ∃uv (u ∉ JÏK ∧ v ∉ JÂK ∧ −Ruwv)= Â (‡3,−, s7) Ï

The symmetrical dagger orbit O–
3

( (‡1,+, s8) ): dual Galois connections
Ï (‡1,+, s8) Â ∀uv (u ∉ JÏK ∨ v ∉ JÂK ∨Ruvw)
Ï (‡2,+, s8) Â ∀uv (u ∉ JÏK ∨ v ∉ JÂK ∨Rwvu)
Ï (‡3,+, s8) Â ∀uv (u ∉ JÏK ∨ v ∉ JÂK ∨Rvwu)
Ï (‡4,+, s8) Â ∀uv (u ∉ JÏK ∨ v ∉ JÂK ∨Rvuw)= Â (‡1,+, s8) Ï
Ï (‡5,+, s8) Â ∀uv (u ∉ JÏK ∨ v ∉ JÂK ∨Rwuv)= Â (‡2,+, s8) Ï
Ï (‡6,+, s8) Â ∀uv (u ∉ JÏK ∨ v ∉ JÂK ∨Ruwv)= Â (‡3,+, s8) Ï

Figure 12: The 2–ary gaggle connectives

Definition 35 (Conservativity). Let L = (L, E, ) and L′ = (L′, E′, ′) be two
logics such that L ⊆ L′. We say that L′ is a conservative extension of L when�Ï ∈ L � LÏ� = L ∩ �Ï′ ∈ L′ � ′

L′Ï
′�.

Definition 36 (Calculus and sequent calculus ). Let L = (L, E, ) be a logic. A
calculus P for L is a set of elements of L called axioms and a set of inference rules.
Most often, one can e�ectively decide whether a given element of L is an axiom. To
be more precise, an inference rule R for L is a relation among elements of L such
that there is a unique l ∈ N∗ such that, for all Ï, Ï1, . . . , Ïl ∈ L, one can e�ectively
decide whether (Ï1, . . . , Ïl, Ï) ∈ R. The elements Ï1, . . . , Ïl are called the premises
and Ï is called the conclusion and we say that Ï is a direct consequence of Ï1, . . . , Ïl
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by virtue of R. Let � ⊆ L and let Ï ∈ L. We say that Ï is provable (from �) in P or
a theorem of P, denoted �P Ï (resp. � �P Ï), when there is a proof of Ï (from �) in
P, that is, a finite sequence of formulas ending in Ï such that each of these formulas
is:

1. either an instance of an axiom of P (or a formula of �);

2. or the direct consequence of preceding formulas by virtue of an inference rule
R.

If S is a set of L–consecutions, this set S can be viewed as a language. In that
case, we call sequent calculus for S a calculus for S.

Axioms and inference rules are often represented by means of axiom schemas
and inference rule schemas, that is, expressions of the following form, depending on
whether we deal with formulas of L or L–consecutions:

Axiom schemas:
– A B

Inference rule schemas:
–1 . . . –n

–
A1 B1 . . . An Bn

A B

where –1, . . . , –n, – are built up from variables often denoted Ï, Â, . . . and the con-
nectives of C and, likewise, A1, . . . , An, B1, . . . , Bn, A, B are built up from variables
often denoted X, Y, . . . and the connectives of C. In this representation, inference
rules and axioms schemas are closed by uniform substitution: each variable can be
replaced uniformly by any well-formed expression of L.

An inference rule R′ is derivable from an inference rule R in P when there is a
finite sequence of rules R1, . . . , Rn of P, with at least one of them equal to R, such
that R′ = R1 ○ . . . ○Rn.

Definition 37 (Truth, validity, logical consequence). Let L = (L, E, ) be a logic.
Let M ∈ E, Ï ∈ L, R be an inference rule for L and S, S′ be either inference rules
for L or formulas of L. If � is a set of formulas or inference rules, we write M �
when for all Ï ∈ �, we have M Ï. Then, we say that

• Ï is true (satisfied) at M or M is a model of Ï when M Ï;

• Ï is valid, denoted LÏ, when for all models M ∈ E, we have M Ï;

• R is true (satisfied) at M or M is a model of R, denoted M R, when for all(Ï1, . . . , Ïl, Ï) ∈ R, if M Ïi for all i ∈ {1, . . . , l}, then M Ï.
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An inference rule R is equivalent to another inference rule R′ i� for all M ∈ E,
M R i� M R′.
Definition 38 (Soundness and completeness). Let L = (L, E, ) be a logic. Let P
be a calculus for L. Then,

• P is sound for the logic L when for all Ï ∈ L, if �P Ï, then LÏ.

• P is (strongly) complete for the logic L when for all Ï ∈ L (and all � ⊆ L), if
LÏ, then �P Ï (resp. if � LÏ, then � �P Ï).

7.2 Structures and consecutions

In order to provide a sound and complete calculus for a gaggle logic based on a set
of connectives C ⊆ C, we will need to resort to the connectives of C which are in
the orbits of the free action –n ∗ —n (for appropriate ns). We introduce these extra
connectives in the language as structural connectives: they will appear in the proof
derivations but not in the formulas proved by the calculus.

Definition 39 (Structural connectives). (Gaggle) structural connectives, denoted[C], are a copy of the connectives: for all C ⊆ C,

[C] �{[�] � � ∈ C} .

Structural connectives are denoted [p] , [p1] , [p2] , . . . and [�] , [�1] , [�2] , . . . For all� = (‡,±, s) ∈ C, the arity, signature, tonicity signature, quantification signature of[�] are the same as �.
We also introduce the (Boolean) structural connective , .

Definition 40 (Structural gaggle language and consecutions). The structural gaggle
language [L] is the smallest set that contains the gaggle language L, the structures∗Ï for all Ï ∈ L as well as [P] and that is closed under the structural connectives of[C] ∪ { , }.

A L–consecution (resp. [L]–consecution) is an expression of the form Ï Â (resp.
X Y ), where Ï, Â ∈ L (resp. X, Y ∈ [L]). The set of all (Boolean) L–consecutions
(resp. [L]–consecutions) is denoted S (resp. [S]) and the set of all L0–consecutions
is denoted S0. If C ⊆ C then an element of [L]C (resp. S0

C, SC, [S]C) is an element
of [L] (resp. S0, S, [S]) which contains only connectives of [C].

Elements of L (resp. [L] and [S]) are called formulas (resp. struc-
tures and consecutions); they are denoted Ï, Â, –, . . . (resp. X, Y, A, B, . . . and
X Y, A B, . . .).
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Definition 41 (Boolean negation). Let X ∈ [L] be a structure. The Boolean nega-
tion of X, denoted ∗X, is defined inductively as follows:

∗X �
�����������������
[−�] (X1, . . . , Xn) if X = [�] (X1, . . . , Xn)(∗X1 , ∗X2) if X = (X1 , X2)
Ï if X = ∗Ï∗Ï if X = Ï ∈ L

where −� was defined in Definition 20.
Note that from that definition, for all structures X ∈ [L], it follows that ∗∗X =X.

Definition 42 (Formula associated to a structure). We define inductively the func-
tion ·0 and ·1 from structures of [L] to formulas of L as follows: for all i ∈ {0, 1},
all � = (‡,±, (Æ, (±1, . . . ,±n))),

·i(Ï) � Ï
·i(∗Ï) � ¬Ï

·0 (X , Y ) � (·0(X) ∧ ·0(Y ))
·1 (X , Y ) � (·1(X) ∨ ·1(Y ))

·i ([�] (X1, . . . , Xn)) � �(·i
1

(X1), . . . , ·i
n

(Xn))
where for all j ∈ J1; nK, ·i

j

(Xj) � �������·i(Xj) if ±j = +
·1−i(Xj) if ±j = − .

Then, we define the function · from [L]–consecutions of [S] to L–consecutions
of S as follows:

·(X Y ) � ·0(X) ·1(Y )
Instead of a single structural connective , , we could introduce two Boolean

structural connectives [∧], [∨] as a copy of the Boolean connectives ∧,∨, like for the
other gaggle connectives �. This would not be usual but in line with our approach.
This would greatly simplify the definition of the function · since the interpretation
of the structural connectives would then not be context-dependent as here. In par-
ticular one would not need two functions ·0 and ·1. We proceed as follows on the
one hand in order to stay in line with current practice and on the other hand be-
cause it simplifies the subsequent calculus GGLC of Figure 13: we use one structural
connective ( , ) instead of two ([∧] and [∨]). This said, it would be easily possible to
adapt and rewrite the calculus GGLC with these two structural connectives [∧] and[∨]: the structural connective , would need to be replaced by [∧] in the premise of(dr2) and in (B �) , (CI �) , (K �) , (∧ �) and by [∨] in the conclusion of (dr2) and in(� B) , (� CI) , (� K) , (� ∨) (see below).
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Definition 43 (Interpretation of gaggle structures and consecutions). Let C ⊆ C
and let M = (W,R) be a C–model. We extend the interpretation function J⋅KM ofLC in M to LC–consecutions of SC as follows: for all Ï, Â ∈ LC and all w ∈ W , we
have that w ∈ JÏ ÂKM i� if w ∈ JÏKM then w ∈ JÂKM , we have that w ∈ J ÂKM i�
w ∈ JÂKM and we have that w ∈ JÏ KM i� w ∉ JÏKM . We then extend in a natural
way the interpretation function J⋅KM of LC in M to [L]C–consecutions of [S]C as
follows: for all X ∈ LC, all X Y ∈ [S]C and all w ∈W , we have that w ∈ JX Y KM

if, and only if, w ∈ J·(X Y )KM . If EC is a class of C–models, then the satisfaction
relation ⊆ EC × [S]C is defined like for formulas of L.

7.3 Our display calculus
We introduce a calculus for Boolean basic gaggle logics. Our calculus is defined
relatively to an orbit/family of connectives. This means that if we have a basic
gaggle logic defined on the basis of some connectives C and if we want to obtain a
sound and complete calculus for that logic, we need to consider in the proof system
the following associated set of connectives:

O(C) � ��∈C�O–
n

∗—
n

(�) � a(�) = n� (4)

This set of connectives O(C) is stable under the free action –n ∗ —n: for all � ∈O(C), we have that O–
n

∗—
n

(�) ⊆ O(C). This is because in the completeness proof,
we need to apply the abstract law of residuation for any arguments j (associated
to the residuation operator of Definition 18) and consider the Boolean negation for
each connective. This entails that we must consider the orbits of the connectives of
C under the free action –n ∗ —n.

Definition 44. Let C ⊆ C. We denote by GGLC the calculus of Figure 13 where the
introduction rules (� �) and (� �) are defined for the connectives � of C and where
the rule (dr1) is defined for the elements · of an arbitrary set of generators of Sn+1
(for each n ranging over the arities of the connectives of C).

Theorem 45 (Soundness and strong completeness). Let C ⊆ C be such that O(C) =
C. The calculus GGLC is sound and strongly complete for the Boolean basic gaggle
logic (SC,MC, ).
Proof: See the Appendix, Section B. �

Some comments about the rules of the calculus GGLC are needed.

907



Aucher

Structural rules:

((X , Y ) , Z) U

(X , (Y , Z)) U
(B �) (X , Y ) U

(Y , X) U
(CI �)

X U

(X , Y ) U
(K �) (X , X) U

X U
(WI �)

U Ï Ï V

U V
cut

Display rules:

S ([�] , X
1

, . . . , X
n

, X
n+1

)
S �[·�] , X

·(1), . . . , X
·(n), X

·(n+1)� (dr
1

) (X , Y ) Z

X (Z , ∗Y ) (dr
2

)
Introduction rules:

U ∗Ï

U ¬Ï
(� ¬) ∗Ï U

¬Ï U
(¬ �)

X Ï Y Â

(X , Y ) (Ï ∧Â) (� ∧)
(Ï , Â) U

(Ï ∧Â) U
(∧ �)

U (Ï , Â)
U (Ï ∨Â) (� ∨)

Ï X Â Y

(Ï ∨Â) (X , Y ) (∨ �)

U
1

V
1

. . . U
n

V
n

S ([�] , X
1

, . . . , X
n

,� (Ï
1

, . . . , Ï
n

)) (� �)
S ([�] , Ï

1

, . . . , Ï
n

, U)
S (�, Ï

1

, . . . , Ï
n

, U) (� �)

In rules (� �) and (� �), for all � = (‡,±, (Æ, (±
1

, . . . ,±
n

))) ∈ C:

● for all j ∈ J1; nK, we set U
j

V
j

� �������
X

j

Ï
j

if ±
j

± (Æ) = −
Ï

j

X
j

if ±
j

± (Æ) = +
such that, in rule (� �), for all j X

j

is not empty and if Ï
j

is empty for some j
then �(Ï

1

, . . . , Ï
n

) is also empty.

● for all � ∈ {�, [�]}, S(�, X
1

, . . . , X
n

, X) � �������
�(X

1

, . . . , X
n

) X if Æ = ∃
X � (X

1

, . . . , X
n

) if Æ = ∀ .

If X is empty then ∗X is empty and (X , Y ) and (Y , X) are equal to Y .

Figure 13: Calculus GGLC
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● The axioms and inference rules for atoms p are special instances of the rules(� �) and (� �) of Figure 13. With � = p, we have that n = 0 and, replacing � with
p in (� �), we obtain the inference rules below. Note that (� p) is in fact an axiom.

S([p] , p) (� p) S ([p] , X)
S (p, X) (p �)

where, if � is p or [p], then S(�, X) � �������� X if Æ = ∃
X � if Æ = ∀ .

Hence, for all p = (1,±, Æ), if Æ = ∃ then (� p) and (p �) rewrite as follows:

[p] p
(� p) [p] X

p X
(p �) (5)

and if Æ = ∀ then (� p) and (p �) rewrite as follows:

p [p] (� p) X [p]
X p

(p �) (6)

Note that in both cases, the standard axiom p p is derivable by applying (p �)
once again to [p] p or p [p]. If [p] is replaced by I and p by � in the first pair
and if [p] is replaced by I and p by � in the second pair then we obtain respectively
the operational rules ( �), (� ), (� ) and ( �) of Kracht [27] and Belnap [6].
This is meaningful since truth constants can be seen as special atoms, those that are
always true or always false. Then, one needs, like in the calculus DLM of Kracht
[27], to impose some conditions on these atoms by means of particular structural
inference rules so that these special atoms � and � do behave as truth constants, as
intended. Note that the reading of I, either as � or as �, is clearly separated here
by means of two structural constants, whereas in the literature it is disambiguated
depending on the context, whether it is in antecedent part or consequent part of a
consecution. Alternatively, one can easily prove (by extending the proof of Section
??) that adding the following axioms to our calculus GGLC is enough to capture the
standard truth constants � and �:

� (� �) � (� �)● The Boolean operator ∗ transforms the structures on which it is applied. It does
not function as an operator applied externally on structures, it modifies them in-
ternally. Hence, for example, for any structure [�] (X1, . . . , Xn), ∗ [�] (X1, . . . , Xn)
is equal to [−�] (X1, . . . , Xn). In that sense, it is formally di�erent from the usual
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structural connective ∗ used in display logics, even if its semantic meaning is the same
(it behaves as a Boolean negation). Moreover, because by Definition 41 ∗ ∗X = X,
the following rule is a reformulation of the display rule (dr2) (premise and conclusion
are turned upside down):

X (Y , Z)(X , ∗Z) Y

● Because of our convention that if X is empty then (X , Y ) and (Y , X) are
equal to Y , the following rules are specific instances of the display rule (dr2):(X , Y )

X ∗ Y

(Z , Y )∗Y Z

Likewise, if � = (‡,±, (Æ, (±1, . . . ,±n))) is such that, for example, Æ = ∃ and±j = +, then the following rule is an instance of the rule (� �), because of our
conventions about empty structures in the rule (� �):

U1 V1 . . . Xj . . . Un Vn[�] (X1, . . . , Xj , . . . , Xn) (7)

● The introduction rule (� �) of our calculus is a direct translation in gaggle
logics of the tonicity relations of Theorem 10. Likewise, the structural rule (dr1) is
a translation and a generalization of the abstract law of residuation of Theorem 10
(see Proposition 27).

● As shown in Example 26, ∧ and ∨ can be formalized by the gaggle connectives(‡1,+, s1) and (‡1,−, s4) if these are interpreted on identity ternary relations (which
can be obtained by imposing the validity of the classic structural rules involving
these connectives). Hence, unsurprisingly, rules (� ∨) and (∧ �) are instances of the
(gaggle) rule (� �) and rules (� ∧) and (∨ �) are also instances of the (gaggle) rule(� �).

This said, one could equivalently replace (� ∧) and (∨ �) by their exten-
sional/additive version (� ∧)′ and (∨ �)′ of Proposition 46 and still obtain the
completeness of the resulting calculus. In fact, completeness still holds if one
also removes the contraction rule (WI �) because a contraction is hidden in the
extensional/additive version of the conjunction and disjunction rule. Yet, one
needs the contraction rule (WI �) explicitly to prove cut elimination, in particular
for condition (C8) with the conjunction case (see Theorem 49). So, we prefer to
take in our calculus the intensional/multiplicative version (� ∧) and (∨ �) of the
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conjunction and disjunction rules because they are instances of the general rules(� �) and (� �) for gaggle connectives.

● Our calculus has the subformula property, but not the substructure property:
every formula appearing in a cut–free proof of a consecution is a subformula of a
formula of the final consecution.

● In the calculus GGLC, we do not need to consider all permutations · of the
symmetric group Sn+1. In fact, it su�ces to consider only a set of generators
of Sn+1 because rules for any permutations are derivable from these rules for
generators as the following proposition shows. One could naturally consider
transpositions because they generate the symmetric group and correspond to resid-
uation operations. One could consider as well other generators of the symmetric
group Sn+1, such as the pair {(n n + 1), (1 2 . . . n + 1)} or the set of generators{(1 2), (2 3), . . . , (i i + 1), . . . , (n n + 1)} or (1 2) together with the 3–cycles (see
Section 3). Hence, one can reduce the number of inference rules (dr1) from (n + 1)!
to 2: it su�ces to define the calculus GGLC only with the rules (dr1) where
· = (n n + 1) and · = (1 2 . . . n + 1) for example. Indeed, the rules (dr1) with
· ∈Sn+1 di�erent from (n n+ 1) and (1 2 . . . n+ 1) are all derivable from these two
rules since these two cycles generate Sn+1.

Proposition 46. Let C ⊆ C and let � ∈ C be a n-ary connective. The following rules
are all derivable in GGLC.

X Y∗Y ∗X
�dr′2� S([�] , X1, . . . , Xj , . . . , Xn, X)

S([sj�] , X1, . . . ,∗Xj , . . . , Xn, X) �swj�
∗X Y∗Y X

�dr′′2� X ∗ Y

Y ∗X
�dr′′′2 �

U ((X , Y ) , Z)
U (X , (Y , Z)) (� B) U (X , Y )

U (Y , X) (� CI)
U X

U (X , Y ) (� K) U (X , X)
U X

(�WI)
U Ï U Â

U (Ï ∧ Â) (� ∧)′ Ï U Â U(Ï ∨ Â) U
(∨ �)′

The rule �dr′2� is called the Boolean negation rule and the rule �swj�, for j ∈ J1; nK,
is called the switch rule w.r.t. the jth argument. The rule (dr1) is also derivable in
GGLC, for all · ∈Sn+1.
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Proof: See the Appendix, Section A. �
8 Cut elimination and displayability

In this section, we prove that the cut rule can be eliminated from any proof of
GGLC. This result relies on the fact that our gaggle calculi are in fact display calculi
and enjoy the display property: every substructure of a consecution provable in
GGLC can be displayed as the sole antecedent or consequent of a provably equivalent
consecution. In display calculi [6], the antecedent or consequent position depends
on the kind of position in which the given substructure appears in the consecution:
either in “antecedent part” or in “consequent part”. In standard display logics,
these two related notions are defined on the basis of the parity of the number of
structural connectives ∗ that occur in front of the given substructure (odd or even).
Since our framework is more abstract, we reformulate these two notions in a more
abstract form based on the tonicity of the connectives that occur in front of the
substructure. This leads us to define the following notions of ‘protoantecedant part’
and ‘protoconsequent part’. A similar notion was defined by Goré [21] without
Boolean structural connectives.

Definition 47 (Protoantecedent and protoconsequent part). Let X, Y, Z ∈ [L] be
structures. If Z is a substructure of X, then tn(X, Z) is defined inductively as
follows:

• if X = Z then tn(X, Z) � +;

• if X = ∗Y and Z appears in Y then tn(X, Z) � −tn(Y, Z);
• if X = (X1 , X2) and Z appears in Xj then tn(X, Z) � tn(Xj , Z);
• if X = [�] (X1, . . . , Xn) and Z appears in Xj then tn(X, Z) �

tn(�, j)tn(Xj , Z).
If X Y is a [L]–consecution, then X is called the antecedent and Y is called the

consequent of X Y . If Z is a substructure of X or Y , Z is called a protoantecedent
part (resp. protoconsequent part) of X Y when tn(X, Z) = + or tn(Y, Z) = − (resp.
tn(X, Z) = − or tn(Y, Z) = +).

Proposition 48 (Display property). Let C ⊆ C. For all [L]–consecutions X Y
provable in GGLC and for all substructure Z of X Y ,
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• if Z is protoantecedent part of X Y then there exists a structure W ∈ [L]
such that Z W is provably equivalent to X Y in GGLC;

• if Z is protoconsequent part of X Y then there exists a structure W ∈ [L]
such that W Z is provably equivalent to X Y in GGLC.

Hence, GGLC is a display calculus.

Proof: It follows from an inductive application of the display rules (dr1) and (dr2)
on each substructure of X (or Y ) containing Z, from the outermost one to the
innermost one (Z itself). We use (dr1) if we have to ‘unfold’ a structural gaggle
connective [�] and (dr2) (or one of its derived rules) if we have to ‘unfold’ the
structural Boolean connective , . �
Theorem 49 (Cut–elimination). Let C ⊆ C. The calculus GGLC is cut–eliminable:
it is possible to eliminate all occurrences of the cut rule from a given proof in order
to obtain a cut-free proof of the same consecution.

Proof: See the Appendix, Section C. �
As usual in proof theory and ever since Gentzen [18], the fact that the cut rule

can be eliminated from any proof is of practical and theoretical importance and we
easily obtain a number of significant results about our logics. This also holds in our
setting.

Theorem 50 (Conservativity). If C ⊆ C′ ⊆ C then the logic �SC′ ,MC′ , � is a
conservative extension of the logic �SC,MC, �.
Proof: It is standard because our calculi have the subformula property. See for
example [39] for details. �
Theorem 51 (Soundness and strong completeness). Let C ⊆ C. The calculus GGLC
is sound and strongly complete for the Boolean basic gaggle logic (SC,MC, ).
Proof: Since any proof of a consecution Ï Â ∈ SC can be cut–free and our
calculus has the subformula property, it contains only the introduction rules (� �)
for the connectives of C. (The introduction rules for the other connectives ofO(C) − C were needed in the initial completeness proof before the cut elimination
theorem for Lemma 68.) �
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The di�erence between the above theorem and Theorem 45 is that the set of
connectives C considered is not assumed to be such that C = O(C) (we recall thatO(C) is defined by Expression (4)). Thanks to cut–elimination, the completeness
result also holds if we do not have equality. This said, all connectives of O(C) do
appear in the calculus, but only as structural connectives.

9 Calculi for gaggle logics
Until now, our calculi are sound and complete for logics including the Boolean
connectives. However, we would like to obtain calculi for plain gaggle logics, without
Boolean connectives. Indeed, we consider the latter to be more primitive than
Boolean gaggle logics because even the Boolean connectives can be seen as particular
gaggle connectives, interpreted over special relations (identity relations, see Example
26). These special relations are obtained at the proof-theroretical level by imposing
the validity of Gentzen’s structural rules. So, in this section, we are going to define
sound and complete calculi for (plain) gaggle logics, without Boolean connectives.

Definition 52. Let C ⊆ C. We denote by GGL0
C the calculus of Figure 14 where the

introduction rules (� �) and (� �) are defined for the connectives � of C and where
the rule (dr1) is defined for the elements · of an arbitrary set of generators of Sn+1
(for each n ranging over the arities of the connectives of C).

Note that �dr′2� (introduced in Proposition 46) is in GGL0
C instantiated with gag-

gle connectives. More precisely, in GGL0
C, an application of �dr′2� is of the following

form:[�] (X1, . . . , Xm) [�′] (X ′1, . . . , X ′n)[−�′] (X ′1, . . . , X ′n) [−�] (X1, . . . , Xm) �(Ï1, . . . , Ïm) �′ (Ï′1, . . . , Ï′n)∗ �′ (Ï′1, . . . , Ï′n) ∗ �(Ï1, . . . , Ïm)
An equivalent axiomatization of GGL0

C is obtained if we replace rule �dr′2� by the
switch rule �swj� of Proposition 46, for each j ∈ J1; nK:

S([�] , X1, . . . , Xj , . . . , Xn, X)
S([sj�] , X1, . . . ,∗Xj , . . . , Xn, X) �swj�

.

This is due to the fact that the switch rule is derivable in GGL0
C and, vice versa,�dr′2� is derivable from the switch rule and (dr1) thanks to Proposition 30.

The main di�erence between GGLC and GGL0
C lies in the fact that the introduction

rules for the Boolean connectives have been removed as well as the structural rules.
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Display rules:

S ([�] , X1, . . . , Xn, Xn+1)
S �[·�] , X·(1), . . . , X·(n), X·(n+1)� (dr1) X Y∗Y ∗X

�dr′2�
Introduction rules:

U1 V1 . . . Un Vn

S ([�] , X1, . . . , Xn,� (Ï1, . . . , Ïn)) (� �) S ([�] , Ï1, . . . , Ïn, U)
S (�, Ï1, . . . , Ïn, U) (� �)

In rules (� �) and (� �), for all � = (‡,±, (Æ, (±1, . . . ,±n))) ∈ C:

● for all j ∈ J1; nK, we set Uj Vj � �������Xj Ïj if ±j ± (Æ) = −
Ïj Xj if ±j ± (Æ) = +

such that, in rule (� �), for all j Xj is not empty and with the convention
that if Ïj is empty for some j then �(Ï1, . . . , Ïn) is also empty.

● for all � ∈ {�, [�]}, S(�, X1, . . . , Xn, X) � ��������(X1, . . . , Xn) X if Æ = ∃
X � (X1, . . . , Xn) if Æ = ∀.

Figure 14: Calculus GGL0
C

Theorem 53 (Soundness and strong completeness). Let C ⊆ C. The calculus GGL0
C

is sound and strongly complete for the basic gaggle logic (S0
C,MC, ).

Proof: See the Appendix, Section C. �
Goré [21] introduces a calculus ”OP which is basically our calculus GGL0

C without
the rule �dr′2�. Restall [41] establishes connections between gaggle theory and dis-
play logics and sketches a similar calculus (without proving condition (C8)). This
di�erence between our and their calculi is due to the fact that they do not deal
with Boolean negation and do not consider it in their approach and framework.
As one can notice, this complicates the proofs tremendously even if the addition
in the calculi is minimal. This said, Goré [21] recognizes the dual character, in a
proof–theoretical sense, of pairs of traces which are obtained from each other by
multiplying every argument of the trace by −. This leads him to introduce the func-
tion/connective f� of trace −t associated to a function f of trace t. However, he
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does not make the connection between this function/connective f� and the Boolean
negation of f as we do (see Definition 20 and Proposition 29). Therefore, he proves
the soundness and completeness of his calculus but with respect to two distinct yet
dual semantics based on Dunn’s tonoids. As such, he does not connect his algebraic
semantics with the Kripke–style relational semantics (elicited by Dunn) explicitly as
we do. A similar observation regarding the role of Boolean negation in his and our
work was already made in [2].

Theorem 54 (Decidability). Let C ⊆ C and let Ï, Â ∈ L0
C. The problem of deter-

mining whether Ï or Ï Â are valid in the logics (L0
C,MC, ) and (S0

C,MC, )
(respectively) is decidable.

Proof: It su�ces to observe that the set of consecutions that can lead to a
cut-free proof of Ï Â in GGL0

C is finite. The problem of finding a proof of Ï Â
thus boils down to a graph reachability problem in a finite graph whose edges
are labeled by the rules. This problem is decidable. We then obtain the result
by the completeness of GGL0

C for (L0
C,MC, ) and (S0

C,MC, ) of Theorem 53. �
10 Logics defining groups and groups defining logics

In this section, we are going to show how notions of groups arise naturally from our
gaggle logics and how gaggle logics can be canonically defined from groups thanks
to our connections with group theory.

10.1 Groups defined from logics

One problem solved in this article is the following: given an arbitrary basic gaggle
logic (Boolean or not) defined by a set C of (gaggle) connectives, how do we compute
and define uniformly a sound and complete calculus for that logic ? Theorems 51
and 53 of the previous sections have solved it. However, we needed in our calculi
to introduce all connectives of O(C) (defined by Expression (4)) either as logical
connectives in Theorem 45 or as structural connectives in Theorems 51 and 53. In
this section, we are going to show that we can in fact limit further the connectives
considered and not take the full orbits O(C) of C under the action –n∗—n. For that,
we need to explore a bit more the proof–theoretical aspects of our gaggle logics in
light of our connections with group theory.

We have introduced actions on the set of gaggle connectives. Even if we know
how a permutation, the Boolean negation and their combinations act on connectives,
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S ([�] , X1, . . . , Xn, Xn+1)
S �[·�] ,±1X·(1), . . . ,±nX·(n),±n+1X·(n+1)� (dr3)

where · ∈Sn+1 ∗ P(+,−) and

if · = ·0 − ·1 . . . − ·m with m ≥ 1 then · � ·0·1 . . . ·m and for all j ∈ J1; n + 1K,

±j � ±j
1 ±j

2 . . .±j
m with, for all i ∈ J1; mK, ±j

i � �������∗ if j = ·i·i+1 . . . ·m(n + 1)
empty otherwise

;

if · = ·0 − ·1 . . . − ·m−1− with m ≥ 1 then replace · with ·0 − ·1 . . . − ·m−1 − 1;
if · = −·1 . . . − ·m−1 − ·m with m ≥ 1 then replace · with 1 − ·1 . . . − ·m−1 − ·m;
if · ∈Sn+1 then · � · and ±1, . . . ,±n+1 are empty;
if · = − then · = 1 and ±1, . . . ,±n are empty and ±n+1 = −.

Figure 15: Rule (dr3)
we still do not know how their combination and iteration operate at the proof–
theoretical level. Indeed, we have a rule (dr1) for permutations ·1, . . . , ·n and a rule�dr′2� for Boolean negation −, yet we do not have a rule combining both, for elements
·0 − ·1 . . . − ·m of the free group Sn+1 ∗ P(+,−). Such a rule is defined in Figure 15.
One can easily prove that rule (dr3) is valid and derives from (dr1) and �dr′2� in
GGL0

C. Conversely, with · ∈ Sn+1, we recover rule (dr1) and with · = − we recover
rule �dr′2�. (The term “empty” could be replaced by ∗∗.)

Now, let us be given a set of connectives C ⊆ C and assume without loss of
generality that all connectives of C belong to the same orbit O(C) = O–

n

∗—
n

(�) (for
some � ∈ C). What we would want in (dr1) is to be able to ‘go’ from one connective� of C to an arbitrary other connective �′ of C. By transitivity of the action –n∗—n,
this is possible in O(C): given any two connectives �,�′ ∈ C, there is an element
of the group g ∈ Sn+1 ∗ P(+,−) such that �′ = –n ∗ —n(g,�). This leads us to define
a special subset G of Sn+1 ∗ P(+,−) such that for all �,�′ ∈ C there is g ∈ G such
that �′ = –n ∗ —n(g,�). We want this set G to be a group. Indeed, informally, its
composition operation should be associative, because of the definition of an action
group, and every element g of G should have an inverse: if �′ = –n ∗ —n(g,�) then
there should be a g−1 such that � = –n ∗ —n(g−1,�′). This leads us to the following
definition:
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Definition 55 (Group associated to a set of connectives). Let C ⊆ C. A group
associated to C is a group G such that for all n ∈ N∗, all �,�′ ∈ C∩Cn, there is g ∈ G
such that �′ = –n ∗ —n(g,�).

Implicitly, note that G ⊆ �
n∈N�Sn+1 ∗ P(+,−) � a(�) = n,� ∈ C�. A group

associated to a set of connectives always exists because the free group� �
n∈N∗ �g ∈Sn+1 ∗ P(+,−) � �′ = g �′ for some �,�′ ∈ C ∩Cn�� satisfies the required

condition. It is not in general unique because the action –n ∗ —n is not faithful:
we proved in Proposition 32 (item 1) that −rj − rj − rj − rj� = �.

Definition 56. Let C ⊆ C and let G be a group associated to C. We denote by GL0
C,G

(resp. GLC,G) the calculus of Figure 14 (resp. Figure 13) where the introduction rules(� �) and (� �) are defined for the connectives � of C and where rules (dr1) and�dr′2� (resp. only (dr1)) are replaced by rule (dr3) which is defined for elements ·
belonging to a set of generators of the group G.

Theorem 57 (Soundness and strong completeness). Let C ⊆ C and let G be a group
associated to C. The calculus GL0

C,G (GLC,G) is sound and strongly complete for the
(Boolean) basic gaggle logic (S0

C,MC, ) (resp. (SC,MC, )).
Proof: See the Appendix, Section C. �
Example 58. The symmetric group S3 is a group associated to the connectives
of the Lambek calculus [30] and update logic [2]. However, there is a simpler and
smaller group associated. Indeed, the alternating group U3, generated by the 3–cycle(123) (or (132) = (123) ○ (123), see Section 3) is another group associated to the
connectives of the Lambek calculus and update logic. This confirms an observation
already made in [2] about the central role played by ternary cycles in update logic
and substructural logics in general. The free group U3 ∗P(+,−) is a group associated
to the connectives of dual update logic [2], because the dual connectives of dual
update logic are definable from the connectives of update logic thanks to Boolean
negation (see [2, Proposition 16]).

10.2 Logics defined from groups
According to Cayley’s theorem, every finite group of cardinal n + 1 is isomorphic to
a subgroup of the symmetric group Sn+1. Now, the restriction of the action –n to
any subgroup G of Sn+1 is also an action of G on Cn. Therefore, every finite group
G of cardinal n + 1 induces a canonical group action – of G on Cn defined for all
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g ∈ G and � ∈ Cn by –(g,�) = –n(Ï(g),�), where Ï is an isomorphism between G
and the subgroup of Sn+1. Every finite group therefore defines a set of connectives
obtained by considering the orbit of an arbitrary connective � ∈ C by this canonical
group action –. In other words, every finite group defines a class of logics. These
logics provide a certain perspective on the whole set of gaggle connectives.

11 Conclusion

In this article we have introduced a uniform method to automatically compute sound
and strongly complete calculi for a wide class of non–classical logics, basic gaggle
logics. These calculi are display calculi and enjoy the cut elimination. This allowed
us to prove in particular that basic gaggle logics are decidable. We further restrained
the structural connectives needed in our calculi by introducing the notion of group
associated to a set of connectives. We also established connections between gaggle
theory and group theory. We showed that Dunn’s abstract law of residuation cor-
responds to an action of transpositions of the symmetric group on the set of gaggle
connectives and that Dunn’s families of connectives are orbits of the same action of
the symmetric group. Other operations on connectives, such as dual and Boolean
negation, were also reformulated in terms of actions of groups and their combination
was defined by means of free groups and free products.

Based on our connection with group theory, we argued that there are more ‘basic’
operations on connectives than Dunn’s abstract law of residuation, based on cycles of
the symmetric group rather than transpositions (which are cycles anyway), because
every permutation factorizes uniquely into disjoint cycles. Residuation is still central
because it corresponds to the action of transpositions of the symmetric group and
transpositions generate it as well. Yet, there are many other generators and ways to
present and represent the symmetric groups and its subgroups. What really matters
from a proof-theoretical perspective is the set of generators of the groups that we
consider and how groups can be presented. That is why the results in group theory
regarding the presentation and classification of finite groups have now become quite
relevant for the study of various (gaggle) logics.

Our connections with the theory of groups enable to study the structure of gaggle
connectives in a very modular and systematic way, using bridges from algebra such
as Cayley’s theorem. Thanks to this bridge, each finite group can be seen as a set of
operations acting on the set of connectives. Hence, each group generates and defines
gaggle logics. Thus, the structure of the gaggle connectives can be studied under
a variety of di�erent viewpoints by means of di�erent logics that correspond to the
wide range of finite groups that can act on the connectives. This is similar to what
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happens in mathematics where the structure of (vectorial, Euclidean, etc.) spaces
can be studied by di�erent geometries corresponding to di�erent groups of trans-
formation acting on it: Euclidean geometry with the isometric group, hyperbolic
geometry with the Lorentz group, a�ne geometry with the a�ne group, etc.
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A Proofs of propositions 30, 32 and 46

Proposition 30. If � ∈ Cn is a n–ary connective, then for all j ∈ J1; nK,

• sj� = rj − rj�
• dj� = rj − rj −�
• d� = s1 . . . sn −�.

Proof: Let � = (‡,±, (Æ, (±1, . . . ,±n))) ∈ Cn. Then,

rj� =(‡,− ±j ±, (− ±j Æ, (− ±j ±1, . . . ,±j , . . . ,− ±j ±n)))−rj� =(‡,±j±, (±jÆ, (±j±1, . . . ,−±j , . . . ,±j±n)))
rj − rj� =(‡,±, (Æ, (±1, . . . ,−±j , . . . ,±n)))

Moreover,

−� =(‡,−±, (−Æ, (−±1, . . . ,−±n)))
rj −� =((j n + 1) ○ ‡,− ±j ±, (− ±j Æ, (− ±j ±1, . . . ,−±j , . . . ,− ±j ±n)))−rj −� =((j n + 1) ○ ‡, (±j±, (±jÆ, (±j±1, . . . ,±j , . . . ,±j±n))))

rj − rj −� =(‡,−±, (−Æ, (−±1, . . . ,±j , . . . ,−±n)))
�

Proposition 32. Let n ∈ N∗, j ∈ J1; nK and let us define Gj = �rj�∗P(+,−). Since Gj

is a subgroup of Sn+1 ∗P(+,−), let us denote by –G
j

the action of Gj on Cn induced
by the free action –n ∗ —n. Then, for all connectives � of arity n,

1. O–
G

j

(�) is isomorphic to a cyclic group of order 8.

2. �O–
n

∗—
n

(�) ,O–
n

∗—
n

(∼ �)� forms a partition of the set Cn of connectives of
arity n. Moreover, the mapping ∼⋅ ∶ O–

n

∗—
n

(�) → O–
n

∗—
n

(∼ �), x �∼ x is
involutive.

3. For all n ∈ N∗, the free action –n ∗ —n ∗ “n on the set of connectives Cn is
transitive.
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Proof: For the first item, it su�ces to prove that for all connectives � of arity n
and all j ∈ J1; nK, −rj − rj − rj − rj� = �. Let � = (‡,±, (Æ, (±1, . . . ,±n))) and let rj

be the transposition (j n + 1). (See also Figure 2 for an example.)

� = (‡,±, (Æ, (±1, . . . ,±j , . . . ,±n)))
rj� = (rj ○ ‡,− ±j ±, (− ±j Æ, (− ±j ±1, . . . ,±j , . . . ,− ±j ±n)))−rj� = (rj ○ ‡,±j±, (±jÆ, (±j±1, . . . ,−±j , . . . ,±j±n)))

rj − rj� = (‡,±, (Æ, (±1, . . . ,−±j , . . . ,±n)))−rj − rj� = (‡,−±, (−Æ, (−±1, . . . ,±j , . . . ,−±n)))
rj − rj − rj� = (rj ○ ‡,±j±, (±jÆ, (±j±1, . . . ,±j , . . . ,±j±n)))−rj − rj − rj� = (rj ○ ‡,− ±j ±, (− ±j Æ, (− ±j ±1, . . . ,−±j , . . . ,− ±j ±n)))

rj − rj − rj − rj� = (‡,−±, (−Æ, (−±1, . . . ,−±j , . . . ,−±n)))−rj − rj − rj − rj� = (‡,±, (Æ, (±1, . . . ,±j , . . . ,±n))) = �.

For the second item, one should first observe that O–
n

∗—
n

(�)∩O–
n

∗—
n

(∼ �) = �(∗). Indeed, for all �′ = (‡′,±′, (Æ′, (±′1, . . . ,±′n))) ∈ O–
n

∗—
n

(�), we have that±′ ± (Æ′) = ± ± (Æ) but at the same time, for all �′ = (‡′,±′, (Æ′, (±′1, . . . ,±′n))) ∈O–
n

∗—
n

(∼ �), we also have that ±′ ± (Æ′) = − ± ±(Æ). Now, we prove that for all�′ = (‡′,±′, (Æ′, (±′1, . . . ,±′n))), if ±′ ± (Æ′) = ± ± (Æ) then �′ ∈ O–
n

∗—
n

(�), and�′ ∈ O–
n

∗—
n

(∼ �) otherwise. First, assume that ±′ ± (Æ′) = ± ± (Æ). Then, we
define �′′ = ‡‡

′−�′. So, �′′ = (‡,±′′, (Æ′′, (±′′1 , . . . ,±′′n))) and we still have that±′′ ± (Æ′′) = ±′ ± (Æ′) = ± ± (Æ). If ±′′ = ±, then it only su�ces to switch the
tonicity of the arguments j1, . . . , jk of �′′ such that ±′′j ≠ ±j . This can be done by
applying the switch operation for the arguments j1, . . . , jk to �′′. We then obtain
that sj

1

sj
2

. . . sj
k

�′′ = �. Thus, sj
1

sj
2

. . . sj
k

‡‡
′−�′ = �. Second, assume that ±′ ±(Æ′) = −±±(Æ). Then, we define �′′ =∼ � = (‡′,±′, (Æ′′, (±′1, . . . ,±′n))) and we have

that ±′±(Æ′′) = ±′(−±(Æ′)) = ±±(Æ). So, we proceed like in the first case. We then
obtain that there are i1, . . . , il ∈ J1; nK such that si

1

si
2

. . . si
l

‡‡
′− ∼ �′ = �. So, we

have proved that for all �′ = (‡′,±′, (Æ′, (±′1, . . . ,±′n))), it holds that �′ ∈ O–
n

∗—
n

(�)
i� ±′±(Æ′) = ±±(Æ). This entails that �O–

n

∗—
n

(�)� = �O–
n

∗—
n

(∼ �)� = (n+1)! ⋅2n+1 =�C
n

�
2 . Therefore, O–

n

∗—
n

(�)∪O–
n

∗—
n

(∼ �) = Cn and together with (*), we have that�O–
n

∗—
n

(�),O–
n

∗—
n

(∼ �)� forms a partition of Cn.
The third item follows easily from the second item. �

Proposition 46. Let C ⊆ C and let � ∈ C be a n-ary connective. The following rules
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are all derivable in GGLC.

X Y∗Y ∗X
�dr′2� S([�] , X1, . . . , Xj , . . . , Xn, X)

S([sj�] , X1, . . . ,∗Xj , . . . , Xn, X) �swj�
∗X Y∗Y X

�dr′′2� X ∗ Y

Y ∗X
�dr′′′2 �

U ((X , Y ) , Z)
U (X , (Y , Z)) (� B) U (X , Y )

U (Y , X) (� CI)
U X

U (X , Y ) (� K) U (X , X)
U X

(�WI)
U Ï U Â

U (Ï ∧ Â) (� ∧)′ Ï U Â U(Ï ∨ Â) U
(∨ �)′

The rule �dr′2� is called the Boolean negation rule and the rule �swj�, for j ∈ J1; nK,
is called the switch rule w.r.t. the jth argument. The rule (dr1) is also derivable in
GGLC, for all · ∈Sn+1.

Proof:

�dr′2� ∶ �dr′′2� ∶ �dr′′′2 � ∶
X Y(X , ∗Y ) (dr2)

(∗Y , X) (CI �)
∗Y ∗X

(dr2)
∗X Y(∗X , ∗Y ) (dr2)

(∗Y , ∗X) (CI �)
∗Y X

(dr2)
X ∗ Y(X , Y ) (dr2)
(Y , X) (CI �)
Y ∗X

(dr2)
�swj� ∶ (� K) ∶

S(�, X1, . . . , Xj , . . . , Xn, X)
S(rj�, X1, . . . , X, . . . , Xn, Xj) (dr1)

S(−rj�, X1, . . . , X, . . . , Xn,∗Xj) �dr′2�
S(rj − rj�, X1, . . . ,∗Xj , . . . , Xn, X) (dr1)

S(sj�, X1, . . . ,∗Xj , . . . , Xn, X) Rewrite

U X∗X ∗U
�dr′2�(∗X , ∗Y ) ∗U
(K �)

U ∗ (∗X , ∗Y ) �dr′′′2 �
U (X , Y ) Rewrite

926



Towards Universal Logic

(� CI) ∶ (� B) ∶
U (X , Y )(U , ∗(X , Y )) (dr2))(U , (∗X , ∗Y )) Rewrite

((∗X , ∗Y ) , U) (CI �)
(∗X , ∗Y ) ∗U

(dr2)
(∗Y , ∗X) ∗U

(CI �)
((∗Y , ∗X) , U) (dr2)
(U , (∗Y , ∗X)) (CI �)
U ∗ (∗Y , ∗X) (dr2)

U (Y , X) Rewrite

U ((X , Y ) , Z)∗((X , Y ) , Z) ∗U
�dr′2�((∗X , ∗Y ) , ∗Z) ∗U
Rewrite

(∗X , (∗Y , ∗Z)) ∗U
(B �)

U ∗ (∗X , (∗Y , ∗Z)) �dr′2�
U (X , (Y , Z)) Rewrite

(�WI) ∶ (� ∧)′ ∶ (∨ �)′ ∶
U (X , X)(∗X , ∗X) ∗U

�dr′2�∗X ∗U
(WI �)

U X
�dr′2�

U Ï U Â(U , U) (Ï ∧ Â) (� ∧)
U (Ï ∧ Â) (WI �)

Ï U Â U(Ï ∨ Â) (U , U) (∨ �)(Ï ∨ Â) U
(�WI)

The last rewriting part in the proof of �swj� is due to Proposition 30. �
B Proof of theorem 45
Theorem 45 (Soundness and strong completeness). Let C ⊆ C be such that O(C) =
C. The calculus GGLC is sound and strongly complete for the Boolean basic gaggle
logic (SC,MC, ).

In this section, C ⊆ C is such that O(C) = C. We provide the soundness and
completeness proofs of Theorem 45. We adapt the proof methods introduced in [2],
based on a Henkin construction, to our more abstract and general setting. We start
by the soundness proof.

Lemma 59. The calculus GGLC is sound for the Boolean basic gaggle logic(SC,MC, ).
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Proof: We only need to prove the soundness for the rules (dr1) and (� �), the
soundness of the other rules being standard. The soundness of the inference rule(� �) follows directly from item 1 of Theorem 10, the soundness of rule (dr1)
follows from an iterative application of item 2 of Theorem 10 (or Proposition 27)
by the decomposition of permutations into cycles or transpositions. �

The completeness proof uses a canonical model built up from maximal GGLC–
consistent sets. First, we define the notions of GGLC–consistent set and maximal
GGLC–consistent set. In the sequel, by abuse of notation and to ease the presentation,
when we write Ï Â we mean that Ï Â is provable in the calculus GGLC.
Definition 60 ((Maximal) GGLC–consistent set).

• A GGLC–consistent set is a subset � of LC such that there are no Ï1, . . . , Ïn ∈ �
such that Ï1 , . . . , Ïn . If Ï ∈ LC, we also say that Ï is GGLC–consistent
when the set {Ï} is GGLC–consistent.

• A maximal GGLC–consistent set is a GGLC–consistent set � of LC such that
there is no Ï ∈ LC satisfying both Ï ∉ � and � ∪ {Ï} is GGLC–consistent.

Lemma 61 (Cut lemma). Let � be a maximal GGLC–consistent set. For all
Ï1, . . . , Ïn ∈ � and all Ï ∈ L, if Ï1 , . . . , Ïn Ï then Ï ∈ �.
Proof: First, we show that � ∪ {Ï} is GGLC–consistent. Assume towards a
contradiction that it is not the case. Then, there are Â1, . . . , Âm ∈ � such that
Â1 , . . . , Âm , Ï . Then, by the rules (dr2) and (CI �), we have that
Ï ∗ (Â1 , . . . , Âm). Now, by assumption, Ï1 , . . . , Ïn Ï. Therefore, by
the cut rule, we have that Ï1 , . . . , Ïn ∗ (Â1 , . . . , Âm). Then, by the
rules (dr2) and (B �), we have that Ï1 , . . . , Ïn , Â1 , . . . , Âm . However,
Ï1, . . . , Ïn, Â1, . . . , Âm ∈ �. This entails that � is not GGLC–consistent, which
is impossible. Thus, � ∪ {Ï} is GGLC–consistent. Now, since � is a maximal
GGLC–consistent set, this implies that Ï ∈ �. �
Lemma 62 (Lindenbaum lemma). Any GGLC–consistent set can be extended into
a maximal GGLC–consistent set.
Proof: Let Ï1, Ï2, . . . , Ïn, . . . be an enumeration of LC (it exists because C is count-
able). We define the sets �n inductively as follows:

�0 � �

�n+1 � ��������n ∪ {Ïn} if �n ∪ {Ïn} is GGLC–consistent
�n otherwise.
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Then, we define the subset �+ of L as follows: �+ = �
n∈N�n.

We show that �+ is a maximal GGLC–consistent set. Clearly, for all n ∈ N, �n

is GGLC–consistent by definition of �n. So, if �+ was not GGLC–consistent, there
would be a n0 ∈ N such that �n

0

is not GGLC–consistent, which is impossible. Now,
assume towards a contradiction that �+ is not a maximal GGLC–consistent set.
Then, there is Ï ∈ LC such that Ï ∉ �+ and � ∪ {Ï} is GGLC–consistent. But there
is n0 ∈ N such that Ï = Ïn

0

. Because Ï ∉ �+, we also have that Ïn
0

∉ �n
0

+1. So,
�n

0

∪ {Ïn
0

} is not GGLC–consistent by definition of �+. Therefore, �+ ∪ {Ï} is not
GGLC–consistent either, which is impossible. �

Lemma 63. The following consecutions are provable in GGL: for all Ï, Ï′ ∈ L, all� = (‡,±, (∃, (±1, . . . ,±j , . . . ,±n))),

Ï Ï (8)((Ï ∨Ï′) ∧ (Ï ∨ ¬Ï′)) Ï (9)
Ï ((Ï ∧ ¬Ï′) ∨ (Ï ∧Ï′)) (10)

if ±j = + then�(Ï1, . . . , Ïj ∨Ï′j , . . . , Ïn) (�(Ï1, . . . , Ïj , . . . , Ïn) ∨�(Ï1, . . . , Ï′j , . . . , Ïn)) (11)
if ±j = − then�(Ï1, . . . , Ïj ∧Ï′j , . . . , Ïn) (�(Ï1, . . . , Ïj , . . . , Ïn) ∨�(Ï1, . . . , Ï′j , . . . , Ïn)) (12)

(Ï , ¬Â) i� Ï Â (13)

Proof: The proof of Expression (8) is by induction on Ï. The proof of Expression
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(9) is:

Ï Ï

Ï (Ï , ∗(Ï ∨ ¬Ï′)) K ,

Ï Ï

Ï (Ï , ∗Ï′) K ,

Ï′ Ï′∗Ï′ ∗Ï′ (dr2) , (dr2)
¬Ï′ ∗Ï′ (¬ �)¬Ï′ (Ï , ∗Ï′) (� CI) , K ,

(Ï ∨ ¬Ï′) (Ï , ∗Ï′) (∨ �)′
((Ï ∨ ¬Ï′) , Ï′) Ï

(dr2)
(Ï′ , (Ï ∨ ¬Ï′)) Ï

(CI �)
Ï′ (Ï , ∗(Ï ∨ ¬Ï′)) (dr2)

(Ï ∨Ï′) (Ï , ∗(Ï ∨ ¬Ï′)) (∨ �)′
((Ï ∨Ï′) , (Ï ∨ ¬Ï′)) Ï

(dr2)
((Ï ∨Ï′) ∧ (Ï ∨ ¬Ï′)) Ï

(∧ �)
and the proof of Expression (10) is:

Ï Ï(Ï , ∗(Ï ∧ ¬Ï′)) Ï
(K �)

(Ï Ï)(Ï , ∗Ï′) Ï
(K �)

Ï′ Ï′∗Ï′ ∗Ï′ (dr2) , (dr2)
∗Ï′ ¬Ï′ (� ¬)(Ï , ∗Ï′) ¬Ï′ (CI �) , (K �)

(Ï , ∗Ï′) (Ï ∧ ¬Ï′) (� ∧)′
(Ï , ∗(Ï ∧ ¬Ï′)) Ï′ (dr2)

(Ï , ∗(Ï ∧ ¬Ï′)) (Ï ∧Ï′) (K �)
Ï ((Ï ∧ ¬Ï′) , (Ï ∧Ï′)) (dr2)
Ï ((Ï ∧ ¬Ï′) ∨ (Ï ∧Ï′)) (� ∨)

Proof of Expression (11). Assume that ±j = +. Then,

[�] (Ï1, . . . , Ïn) � (Ï1, . . . , Ïn)[�] (Ï1, . . . , Ïn) (�(Ï1, . . . , Ïj , . . . , Ïn) , �(Ï1, . . . , Ï′j , . . . , Ïn)) (� K)
[�] (Ï1, . . . , Ïn) (�(Ï1, . . . , Ïj , . . . , Ïn) ∨�(Ï1, . . . , Ï′j , . . . , Ïn)) (� ∨)

Ïj [·j�] (Ï1, . . . , (�(Ï1, . . . , Ïj , . . . , Ïn) ∨ �(Ï1, . . . , Ï′j , . . . , Ïn)), . . . , Ïn) (dr1)
Likewise, we prove that:
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Ï′j [·j�] (Ï1, . . . ,�(Ï1, . . . , Ïj , . . . , Ïn) ∨�(Ï1, . . . , Ï′j , . . . , Ïn), . . . , Ïn).
So, by (∨ �)′, we obtain that:

Ïj ∨Ï′j [·j�] (Ï1, . . . ,�(Ï1, . . . , Ïj , . . . , Ïn) ∨�(Ï1, . . . , Ï′j , . . . , Ïn), . . . , Ïn).
Thus, by (dr1) and (� �), we obtain that:

�(Ï1, . . . , Ïj ∨Ï′j , . . . , Ïn) � (Ï1, . . . , Ïj , . . . , Ïn) ∨�(Ï1, . . . , Ï′j , . . . , Ïn).
Proof of Expression (12). Assume that ±j = −. Then,

[�] (Ï1, . . . , Ïn) � (Ï1, . . . , Ïn)[�] (Ï1, . . . , Ïn) (�(Ï1, . . . , Ïj , . . . , Ïn) , �(Ï1, . . . , Ï′j , . . . , Ïn)) (� K)
[�] (Ï1, . . . , Ïn) (�(Ï1, . . . , Ïj , . . . , Ïn) ∨�(Ï1, . . . , Ï′j , . . . , Ïn)) (� ∨)[·j�] (Ï1, . . . , (�(Ï1, . . . , Ïj , . . . , Ïn) ∨�(Ï1, . . . , Ï′j , . . . , Ïn)), . . . , Ïn) Ïj

(dr1)
Likewise, we prove that:

[·j�] (Ï1, . . . , (�(Ï1, . . . , Ïj , . . . , Ïn) ∨�(Ï1, . . . , Ï′j , . . . , Ïn)), . . . , Ïn) Ï′j .

So, by (� ∧)′, we obtain that:

[·j�] (Ï1, . . . , (�(Ï1, . . . , Ïj , . . . , Ïn) ∨�(Ï1, . . . , Ï′j , . . . , Ïn)), . . . , Ïn) Ïj ∧Ï′j .

Thus, by (dr1) and (� �), we obtain that:

�(Ï1, . . . , Ïj ∧Ï′j , . . . , Ïn) (�(Ï1, . . . , Ïj , . . . , Ïn) ∨�(Ï1, . . . , Ï′j , . . . , Ïn)).
Proof of Expression (13):
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Ï Â∗Â ∗Ï
�dr′2�¬Â ∗Ï
(¬ �)

(¬Â , Ï) (dr2)
(Ï , ¬Â) (CI �)

Ï , ¬Â

Ï ∗ ¬Â
(dr2)

Ï ¬¬Â
(¬ �)

Â Â∗Â ∗Â
�dr′2�∗Â ¬Â
(� ¬)

∗¬Â Â
�dr′′2�¬¬Â Â
(¬ �)

Ï Â
cut

�
Lemma 64. Let �(Ï1, . . . , Ïn) ∈ L with � = (‡,±, (∃, (±1, . . . ,±n))). If�(Ï1, . . . , Ïn) is GGLC–consistent then ±1Ï1, . . . ,±nÏn are GGLC–consistent, where

±jÏj � �������Ïj if ±j = +¬Ïj if ±j = − .

Proof: We prove it by contraposition. If ±jÏj is GGLC–inconsistent then ±jÏj .
If ±j = + then Ïj . If ±j = − then ¬Ïj and therefore Ïj by the cut rule
because ¬¬Ïj Ïj is provable. So, in both cases, applying Rule (� �), we obtain
that �(Ï1, . . . , Ïn) and thus �(Ï1, . . . , Ïn) is GGLC–inconsistent. �
Definition 65 (Canonical model). The canonical model is the tuple (W c,Rc) where
W c is the set of all maximal GGLC–consistent sets of LC and Rc is a set of relations
R� over W c, associated to the connectives � ∈ C and defined by:

• if � = p then � ∈ R±p i� p ∈ � (where p = (1,±, Æ));
• if � = (‡,±, (∃, (±1, . . . ,±n))) then (�1, . . . , �n+1) ∈ R±‡� i� for all Ï1, . . . , Ïn ∈LC, if Ï1 � �1 and . . . and Ïn � �n then �(Ï1, . . . , Ïn) ∈ �n+1;

• if � = (‡,±, (∀, (±1, . . . ,±n))) then (�1, . . . , �n+1) ∉ R±‡� i� for all Ï1, . . . , Ïn ∈LC, if �(Ï1, . . . , Ïn) ∈ �n+1 then Ï1 � �1 or . . . or Ïn � �n;

where for all j ∈ J1; nK, Ïj � �j � �������Ïj ∈ �j if ±j = +
Ïj ∉ �j if ±j = − .

Lemma 66 (Truth lemma). For all Ï ∈ L, for all maximal GGLC–consistent sets �,
we have that M c, � Ï i� Ï ∈ �.
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Proof: By induction on Ï. The base case Ï = p ∈ P holds trivially by definition of
M c.

● Case ¬Ï.

Assume that ¬Ï ∈ � and assume towards a contradiction that it is not the case
that M c, � ¬Ï. Then, M c, � Ï. So, by Induction Hypothesis, Ï ∈ �. Now,
Ï , ¬Ï and ¬Ï ∈ � by assumption. Thus, � is not GGLC–consistent, which is
impossible. Therefore, M c, � ¬Ï.

Conversely, assume that M c, � ¬Ï. Then, it is not the case that M c, � Ï,
so, by Induction Hypothesis, Ï ∉ �. Since � is a maximal GGLC–consistent set, this
implies that � ∪ {Ï} is not GGLC–consistent. So, there are Ï1, . . . , Ïn ∈ � such that
Ï1 , . . . , Ïn , Ï . Thus, Ï1 , . . . , Ïn ∗Ï and also by (� ¬), Ï1 , . . . , Ïn ¬Ï.
Therefore, ¬Ï ∈ � by the cut lemma.

● Case (Ï ∨ Â).
We prove the following fact. It will prove the induction step because M c, � Ï∨

Â i� M c, � Ï or M c, � Â i� Ï ∈ � or Â ∈ � by induction hypothesis.

Fact 67. For all maximal GGLC–consistent sets �, (Ï ∨ Â) ∈ � i� Ï ∈ � or Â ∈ �.

Without loss of generality, assume that Ï ∈ �. Then, Ï Ï implies Ï Ï ∨ Â
by K , and (� ∨). So, by the cut lemma, (Ï ∨ Â) ∈ � since Ï ∈ �. Conversely,
we prove that (Ï ∨ Â) ∈ � implies that Ï ∈ � or Â ∈ �. Assume that (Ï ∨ Â) ∈ �
and assume towards a contradiction that Ï ∉ � and Â ∉ �. Then, because �
is a maximal GGLC–consistent set, there are Ï1, . . . , Ïm ∈ � and Â1, . . . , Ân ∈ �
such that Ï1 , . . . , Ïm , Ï and Â1 , . . . , Ân , Â . Thus, by (K �),(B �) and (CI �), we have that Ï1 , . . . , Ïm , Â1 , . . . , Ân , Ï and
Ï1 , . . . , Ïm , Â1 , . . . , Ân , Â . Then, by rule (dr2), we have that
Ï ∗ (Ï1 , . . . , Ïm , Â1 , . . . , Ân) and Â ∗ (Ï1 , . . . , Ïm , Â1 , . . . , Ân). So,
by rule (∨ �)′, (Ï∨Â) ∗(Ï1 , . . . , Ïm , Â1 , . . . , Ân) and by rule (dr2) and (B �),(Ï∨Â) , Ï1 , . . . , Ïm , Â1 , . . . , Ân . However, (Ï∨Â), Ï1, . . . , Ïm, Â1, . . . , Ân ∈ �.
Therefore, � is not GGLC–consistent, which is impossible. Thus, Ï ∈ � or Â ∈ �.

● Case (Ï ∧ Â).
We prove that Ï ∧ Â ∈ � i� Ï ∈ � and Â ∈ �. This will prove this induction step

because M c, � Ï∧Â i� M c, � Ï and M c, � Â i� Ï ∈ � and Â ∈ � by induction
hypothesis. Assume that Ï ∈ � and Â ∈ �. Then, since Ï , Â Ï ∧ Â is provable,
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we have by the cut lemma that Ï ∧ Â ∈ �. Conversely, assume that Ï ∧ Â ∈ � and
assume towards a contradiction that Ï ∉ �. Since � is a maximal GGLC–consistent
set, there is Ï1, . . . , Ïn ∈ � such that Ï1 , . . . , Ïn , Ï . Now, by rule (K �), we
have that Ï1 , . . . , Ïn , Ï , Â . Therefore, by rule B∨, Ï1 , . . . , Ïn , (Ï , Â) .
Then, by rules (CI �) (dr2), we have that (Ï , Â) ∗ (Ï1 , . . . , Ïn). So, by rule(∧ �), we have that (Ï ∧ Â) ∗ (Ï1 , . . . , Ïn). Then, again by rules (CI �) and(dr2), we obtain Ï1 , . . . , Ïn , (Ï , Â) . Since (Ï ∧ Â) ∈ � and Ï1, . . . , Ïn ∈ �,
this entails that � is not GGLC–consistent, which is impossible. Therefore, Ï ∈ �.
Likewise, we prove that Â ∈ �.

● Case �(Ï1, . . . , Ïn) with � = (‡,±, (Æ, (±1, . . . ,±n))).
First, we deal with the subcase Æ = ∃.
Assume that �(Ï1, . . . , Ïn) ∈ �. We have to show that M c, � � (Ï1, . . . , Ïn),

i.e., there are �1, . . . , �n ∈ M c such that R±‡� �1 . . . �n� and �1 � JÏ1K and . . . and
�n � JÏnK. We build these maximal GGLC–consistent sets �1, . . . , �n thanks to
(pseudo) Algorithm 1 (because it does not terminate). This algorithm is such that
if � (11 ±1 �1, . . . ,1n ±n �n) ∈ � then for all Ï1, . . . , Ïn ∈ L, there are (±′1, . . . ,±′n) ∈{+,−}n such that � ((11 ±1 �m

1 ) ×1 (±′1Ïm
1 ) , . . . , (1n ±n �m

n ) ×n (±′nÏm
n )) ∈ �. This

is due to Expressions (9), (10) and Expressions (11), (12) of Lemma 63. What
happens is that each 1j ±j �j is decomposed into disjunctions ((1j ±j �j) ∧Ïn) ∨((1j ±j �n) ∧ ¬Ïn) and conjunctions ((1j ±j �j) ∨Ïn)∧((1j ±j �j) ∨ ¬Ïn) depend-
ing on whether ±j = + or ±j = −. Then, each decomposition of 1j ±j �n is re-
placed in Expression � (11 ±1 �1, . . . ,1n ±n �n). This is possible thanks to rule(� �) and this yields a new expression (∗). This new expression (∗) belongs
to � because � is a maximal GGLC–consistent set, by the cut lemma. Then,
we decompose again (∗) iteratively by applying Expressions (11) or (12). For
each decomposition, at least one disjunct belongs to � because Ï ∨ Â ∈ � im-
plies that either Ï ∈ � or Â ∈ � by Fact 67. Finally, after having decomposed
each argument of �, we obtain that there is (±′1, . . . ,±′n) ∈ {+,−}n such that� ((11 ±1 �m

1 ) ×1 (±′1Ïm
1 ) , . . . , (1n ±n �m

n ) ×n (±′nÏm
n )) ∈ �.

Now, let m ≥ 0 be fixed and assume that �m
j is GGLC–consistent. Then,� ((11 ±1 �m

1 ) ×1 (±′1Ïm
1 ) , . . . , (1n ±n �m

n ) ×n (±′nÏm
n )) is GGLC–consistent because it

belongs to the GGLC–consistent set �m
j . Thus, by Lemma 64, for all j ∈ J1; nK, if±j = + then ��m

j ∧ ±′jÏm
j is GGLC–consistent and if ±j = − then ��m

j ∧ (−±′j)Ïm
j is

GGLC–consistent. That is, in both cases, �m+1
j is GGLC–consistent. We have proved

by induction that for all m ≥ 0, �m
j is GGLC–consistent. Thus, �1, . . . , �n are GGLC–
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Algorithm 1
Require: (Ï1, . . . , Ïn) ∈ Ln

C and a maximal GGLC–consistent set � such that�(Ï1, . . . , Ïn) ∈ � with � = (‡,±, (∃, (±1, . . . ,±n))).
Ensure: A n–tuple of maximal GGLC–consistent sets (�1, . . . , �n) such that

R±‡� �1 . . . �n� and ±1Ï1 ∈ �1,. . . , ±nÏn ∈ �n.

Let (Ï0
1, . . . , Ï0

n), . . . , (Ïm
1 , . . . , Ïm

n ),. . . be an enumeration of Ln
C;

�0
1 ∶= {±1Ï1};. . . ; �0

n ∶= {±nÏn};
5:

for all m ≥ 0 do
for all (±′1, . . . ,±′n) ∈ {+,−}n do

if � ((11 ±1 �m
1 ) ×1 (±′1Ïm

1 ) , . . . , (1n ±n �m
n ) ×n (±′nÏm

n )) ∈ � then
�m+1

1 ∶= �m
1 ∪ {(±1±′1)Ïm

1 };
10: ⋮

�m+1
n ∶= �m

n ∪ {(±n±′n)Ïm
n };

end if
end for

end for
15:

�1 ∶= �
m≥0�

m
1 ;. . . ; �n ∶= �

m≥0�
m
n ;

where for all Ï ∈ L, ±Ï � �������Ï if ± = +¬Ï if ± = − ; for all j ∈ J1; nK, ×j � �������∧ if ±j = +∨ if ±j = − and

1j ±j �m
j � ���������Ï � Ï ∈ �m

j � if ±j = +��¬Ï � Ï ∈ �m
j � if ±j = − .

consistent. Moreover, for all j ∈ J1; nK, �j are maximally GGLC–consistent because
by construction for all Ï ∈ L either Ï ∈ �j or ¬Ï ∈ �j .

Finally, we prove that R±‡� �1 . . . �n�, that is, we prove that for all Â1, . . . , Ân ∈ L
if Â1 � �1 and . . . and Ân � �n then �(Â1, . . . , Ân) ∈ �, that is, since �1, . . . , �n

are maximally GGLC–consistent sets, if ±1Â1 ∈ �1 and . . . and ±nÂn ∈ �n then�(Â1, . . . , Ân) ∈ �. Assume that ±1Â1 ∈ �1 and . . . and ±nÂn ∈ �n, we are going
to prove that �(Â1, . . . , Ân) ∈ �. Now (Â1, . . . , Ân) ∈ Ln, so there is m0 ≥ 0 such
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that (Ïm
0

1 , . . . , Ïm
0

n ) = (Â1, . . . , Ân). Since �m
0

+1
1 ⊆ �1 and . . . and �m

0

+1
n ⊆ �n, we

have that the tuple (±′1, . . . ,±′n) satisfying the condition of line 8 of Algorithm 1
is (+, . . . ,+), because of the way �m

0

+1
1 ,. . . , �m

0

+1
n are defined. So, the condition

of line 8, which is fulfilled, is � ��11 ±1 �m
0

1 � ×1 Ïm
0

1 , . . . , (1n ±n �m
0

n ) ×n Ïm
0

n � ∈ �.
Then, for all j ∈ J1; nK, if ±j = + then �1j ±j �m

0

j � ×j Ïm
0

j Ïm
0

j and if ±j = −
then Ïm

0

j �1j ±j �m
0

j � ×j Ïm
0

j . Therefore, applying rule (� �), we obtain that� ��11 ±1 �m
0

1 � ×1 Ïm
0

1 , . . . , (1n ±n �m
0

n ) ×n Ïm
0

n � � �Ïm
0

1 , . . . , Ïm
0

n � is provable.
Since we have proved that � ��11 ±1 �m

0

1 � ×1 Ïm
1 , . . . , (1n ±n �m

0

n ) ×n Ïm
0

n � ∈ �, we
obtain by the cut lemma that � �Ïm

0

1 , . . . , Ïm
0

n � ∈ � as well, that is � (Â1, . . . , Ân) ∈ �.

Conversely, assume that M c, � � (Ï1, . . . , Ïn), we are going to show that�(Ï1, . . . , Ïn) ∈ �. By definition, we have that there are �1, . . . , �n ∈M c such that
R±‡� �1 . . . �n� and �1 � JÏ1K and . . . and �n � JÏnK. By Induction Hypothesis, we
have that Ï1 � �1 and . . . and Ïn � �n. Then, by definition of R±‡� in Definition 65,
we have that �(Ï1, . . . , Ïn) ∈ �.

Second, we deal with the subcase Æ = ∀.

Assume that �(Ï1, . . . , Ïn) ∈ �. We have to show that M c, � � (Ï1, . . . , Ïn),
i.e. for all �1, . . . , �n ∈ M c, (�1, . . . , �n, �) ∈ R±‡� or �1 � JÏ1K or . . . or �n � JÏnK.
Assume that (�1, . . . , �n, �) ∉ R±‡� . Then, since �(Ï1, . . . , Ïn) ∈ �, we have by
Definition 65 that Ï1 � �1 or . . . or Ïn � �n. So, by Induction Hypothesis, we have
that �1 � JÏ1K or . . . or �n � JÏnK.

Conversely, we reason by contraposition and we assume that �(Ï1, . . . , Ïn) ∉ �.
We are going to show that M c, � −�(Ï1, . . . , Ïn) (we recall that −� is a connective
of C), which will prove that it is not the case that M c, � � (Ï1, . . . , Ïn) by
Proposition 29. First, we prove that ¬� (Ï1, . . . , Ïn) −�(Ï1, . . . , Ïn) as follows:

Ï1 Ï1 . . . Ïn Ïn[−�] (Ï1, . . . , Ïn) −�(Ï1, . . . , Ïn) (� �)∗ [�] (Ï1, . . . , Ïn) −�(Ï1, . . . , Ïn) Rewrite

∗ − �(Ï1, . . . , Ïn) [�] (Ï1, . . . , Ïn) �dr′′2�∗ − �(Ï1, . . . , Ïn) � (Ï1, . . . , Ïn) (� �)∗ � (Ï1, . . . , Ïn) −�(Ï1, . . . , Ïn) �dr′′2�¬� (Ï1, . . . , Ïn) −�(Ï1, . . . , Ïn) (¬ �)
Then, by Fact 67 and because (Ï ∨ ¬Ï) is provable, we have that
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¬ � (Ï1, . . . , Ïn) ∈ � or �(Ï1, . . . , Ïn) ∈ �. So, by assumption, ¬ � (Ï1, . . . , Ïn) ∈ �.
Therefore, by the cut lemma, since ¬ � (Ï1, . . . , Ïn) − �(Ï1, . . . , Ïn) we have
that − � (Ï1, . . . , Ïn) ∈ �. Hence, this case boils down to the case Æ = ∃ because−� = (‡,−±, (∃, (−±1, . . . ,−±n))). This case has been proved in the previous item
and we thus have that M c, � −�(Ï1, . . . , Ïn). �

We finally prove that the canonical model is indeed a C–model. For that, we
need to prove the following lemma:

Lemma 68. Let � ∈ C be a connective of arity n ∈ N. Then, for all �′ ∈ O–
n

∗—
n

(�),
we have that R� = R�′.
Proof: We prove this lemma using the following two facts: for all � ∈ C, all
transpositions ·j = (j n + 1),

if � = (‡,±, (∃, (±1, . . . ,±n))) then � (Ï1, . . . , ·j � (Ï1, . . . , Ïn), . . . , Ïn) Ïj (14)
if � = (‡,±, (∀, (±1, . . . ,±n)))then Ïj � (Ï1, . . . , ·j � (Ï1, . . . , Ïn), . . . , Ïn) (15)

Expressions (14) and (15) are proved by a direct application of (dr1) with ·j

and then (� �) to the provable consecution [·j�] (Ï1, . . . , Ïn) ·j � (Ï1, . . . , Ïn) if
Æ(·j�) = ∃ and ·j � (Ï1, . . . , Ïn) [·j�] (Ï1, . . . , Ïn) if Æ(·j�) = ∀.

First, we prove that for all �′ ∈ O–
n

(�), we have that R� = R�′ . For that, it
su�ces to prove that for all transpositions ·j = (j n + 1), we have that R·

j

� = R�
because the transpositions generate the symmetric group. Proving R� ⊆ R·

j

� or
R·

j

� ⊆ R� for all ·j = (j n+ 1) is enough, because by double inclusion we then have
that R� ⊆ R·

j

� ⊆ R·
j

·
j

� = R� and thus R� = R·
j

�.

● Case � = (‡,±, (∃, (±1, . . . ,±j−1,+,±j+1, . . . ,±n))). Then, ·j� =(·j‡,−±, (∀, (−±1, . . . ,−±j−1,+,−±j+1, . . . ,−±n))).
Assume that (�1, . . . , �n+1) ∈ R±‡� . We are going to show that (�1, . . . , �n+1) ∈

R±‡
·

j

�, i.e. (�1, . . . , �n+1) ∉ R−±‡
·

j

� , i.e. (�1, . . . , �j−1, �n+1, �j+1, . . . , �n, �j) ∉ R
−±·

j

‡
·

j

� .
Let Ï1, . . . , Ïn ∈ LC and assume that ·j � (Ï1, . . . , Ïn) ∈ �j and Ï1 � �1 and . . . and

Ïn � �n where Ïi � �i � �������Ïi ∈ �i if ±i = +
Ïi ∉ �i if ±i = − . We want to prove that Ïj ∈ �n+1.

Since (�1, . . . , �n, �n+1) ∈ R±‡� and Ï1 � �1 and . . . and ·j � (Ï1, . . . Ïn) ∈ �j and
. . . and Ïn � �n, we have that M c, �n+1 �(Ï1, . . . , ·j(Ï1, . . . , Ïn), . . . , Ïn). So, by
the truth lemma, �(Ï1, . . . , ·j � (Ï1, . . . , Ïn), . . . , Ïn) ∈ �n+1. Now, by Expression
(14), �(Ï1, . . . , ·j � (Ï1, . . . , Ïn), . . . , Ïn) Ïj . Therefore, Ïj ∈ �n+1 by the cut
lemma.
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● Case � = (‡,±, (∃, (−, . . . ,−))). Then, ·j� = (·j‡,±, (∃, (−, . . . ,−))).
Assume that (�1, . . . , �n+1) ∈ R±‡� , i.e. for all Ï1, . . . , Ïn ∈ LC, if Ï1 ∉ �1

and . . . and Ïn ∉ �n then �(Ï1, . . . , Ïn) ∈ �n+1 (1). We are going to show
that (�1, . . . , �n+1) ∈ R±‡

·
j

�, i.e. (�1, . . . , �n+1, . . . �n, �j) ∈ R
±·

j

‡
·

j

� , i.e. for all
Ï1, . . . , Ïn ∈ LC, if Ï1 ∉ �1 and . . . and Ïj ∉ �n+1 and . . . and Ïn ∉ �, then
·j � (Ï1, . . . , Ïn) ∈ �j . Assume that Ï1 ∉ �1 and . . . and Ïj ∉ �n+1 and . . . and
Ïn ∉ �n. We want to prove that ·j � (Ï1, . . . , Ïn) ∈ �j .

Since Ïj ∉ �n+1, we have that �(Ï1, . . . , ·j � (Ï1, . . . , Ïn), . . . , Ïn) ∉ �n+1 because
of the cut lemma since �(Ï1, . . . , ·j �(Ï1, . . . , Ïn), . . . , Ïn) Ïj by Expression (14).
Then, either Ï1 ∈ �1 or Ï2 ∈ �2 or . . . or ·j � (Ï1, . . . , Ïn) ∈ �j or Ïj+1 ∈ �j+1 or
. . . or Ïn ∈ �n, because of (1). However, Ï1 ∉ �1,. . . , Ïj−1 ∉ �j−1, Ïj+1 ∉ �j+1, . . . ,
Ïn ∉ �n. Therefore, ·j � (Ï1, . . . , Ïn) ∈ �j .

● Case � = (‡,±, (∀, (±1, . . .±j−1,+,±j+1, . . . ,±n))). Then, ·j� =(·j‡,−±, (∃, (−±1, . . . ,−±j−1,+,−±j+1, . . . ,−±n))).
Assume that (�1, . . . , �n, �n+1) ∉ R±‡� . We are going to show

that (�1, . . . , �n, �n+1) ∉ R±‡
·

j

�, i.e. (�1, . . . , �n, �n+1) ∈ R−±‡
·

j

� i.e.(�1, . . . , �n+1, �j+1, . . . , �n, �j) ∈ R
−±·

j

‡
·

j

� i.e. for all Ï1, . . . , Ïn ∈ LC, if Ï1 � �1 and
. . . and Ïj ∈ �n+1 and Ïj+1 � �j+1 and . . . and Ïn � �n then ·j � (Ï1, . . . , Ïn) ∈ �j

where Ïi � �i � �������Ïi ∈ �i if −±i = +
Ïi ∉ �i if −±i = − . Assume that Ï1 � �1 and . . . and Ïj ∈ �n+1

and Ïj+1 � �j+1 and . . . and Ïn � �n. We want to show that ·j � (Ï1, . . . , Ïn) ∈ �j .
Since Ïj ∈ �n+1 and Ïj � (Ï1, . . . , ·j � (Ï1, . . . , Ïn), . . . , Ïn) by Expression

(15), we have by the cut lemma that �(Ï1, . . . , ·j � (Ï1, . . . , Ïn), . . . Ïn) ∈ �n+1.
So, M c, �n+1 � (Ï1, . . . , ·j � (Ï1, . . . , Ïn), . . . , Ïn) by the truth lemma. That
is, for all �′1, . . . , �′n ∈ M c, either (�′1, . . . , �′n, �n+1) ∈ R±‡� or not Ï1 � �1 or . . .
or ·j � (Ï1, . . . , Ïn) ∈ �j or . . . or not Ïn � �n (Ïi � �i is defined above). Take(�′1, . . . , �′n) = (�1, . . . , �n). Then, by assumption, (�1, . . . , �n, �n+1) ∉ R±‡� and
Ï1 � �1 and . . . and Ïj−1 � �j−1 and Ïj+1 � �j+1 and . . . and Ïn � �n. Therefore,
·j � (Ï1, . . . , Ïn) ∈ �j .

● Case � = (‡,±, (∀, (−, . . . ,−))). Then, ·j� = (·j‡,±, (∀, (−, . . . ,−))).
Assume that (�1, . . . , �n+1) ∉ R±‡� , i.e. for all Ï1, . . . , Ïn ∈ LC, if �(Ï1, . . . , Ïn) ∈

�n+1 and Ï1 ∈ �1 and . . . and Ïn ∈ �n then Ïj ∉ �j (2). We are going to show that(�1, . . . , �n+1) ∉ R±‡
·

j

�, i.e. (�1, . . . , �n+1, . . . , �n, �j) ∉ R
±·

j

‡
·

j

� i.e. for all Ï1, . . . , Ïn ∈LC if ·j � (Ï1, . . . , Ïn) ∈ �j and Ï1 ∈ �1 and . . . and Ïn ∈ �n then Ïj ∉ �n+1. Assume
that ·j � (Ï1, . . . , Ïn) ∈ �j (3) and Ï1 ∈ �1 and . . . and Ïn ∈ �n. We want to prove
that Ïj ∉ �n+1.
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Assume towards a contradiction that Ïj ∈ �n+1. Then, by Expression (15)
and the cut lemma, �(Ï1, . . . , ·j � (Ï1, . . . , Ïn), . . . , Ïn) ∈ �n+1. Now, Ï1 ∈ �1 and
. . . and Ïj−1 ∈ �j−1 and Ïj+1 ∈ �j+1 and . . . and Ïn ∈ �n. So, by (2), because(�1, . . . , �n+1) ∉ R±‡� , we have that ·j � (Ï1, . . . , Ïn) ∉ �j . This contradicts (3).

Second, we prove that R� = R−�. Again, it su�ces to prove that R� ⊆ R−�.

● Case � = (‡,±, (∃, (±1, . . . ,±n)). Then, −� = (‡,−±, (∀, (−±1, . . . ,−±n))).(�1, . . . , �n+1) ∈ R±‡� i� for all Ï1, . . . , Ïn ∈ LC, if Ï1 � �1 and . . . and Ïn � �n

then �(Ï1, . . . , Ïn) ∈ �n+1 where Ïj � �j = �������Ïj ∈ �j if ±j = +
Ïj ∉ �j if ±j = − . We are going to show

that (�1, . . . , �n+1) ∈ R±‡−�, i.e. (�1, . . . , �n+1) ∉ R−±‡−� i.e. for all Ï1, . . . , Ïn ∈ LC, if− � (Ï1, . . . , Ïn) ∈ �n+1 then Ï1 �′ �1 or . . . or Ïn �′ �n (1) where Ïj �′ �j =�������Ïj ∈ �j if −±j = +
Ïj ∉ �j if −±j = − . So, for all j, Ïj �′ �j is (not Ïj � �j). Therefore, (1) holds i�

if �(Ï1, . . . , Ïn) ∉ �n+1 and Ï1 � �1 and . . . and Ïn � �n then not Ïj � �j

i� if Ï1 � �1 and . . . and Ïn � �n then �(Ï1, . . . , Ïn) ∈ �n+1

i� (�1, . . . , �n+1) ∈ R±‡� which holds by assumption.

● Case � = (‡,±, (∀, (±1, . . . ,±n)). It is proved like the previous case. �
Proof: (Completeness proof) We prove that for all sets � ⊆ SC and all S = Ï Â ∈ SC,
if � S holds then S is provable from � in GGLC. We reason by contraposition.
Assume that S is not provable from � in GGLC. That is, there is no proof of Ï Â
in GGLC from �. Thus, it is not the case that (Ï , ¬Â) is provable in GGLC ∪ �
by Expression (13). Hence, {Ï,¬Â} is GGLC ∪�–consistent (we can naturally adapt
the definition of GGLC–consistency to define the notion of GGLC ∪ �–consistency).
So, by Lemma 62 (where GGLC–consistency is replaced by GGLC∪�–consistency), it
can be extended into a maximal GGLC ∪ �–consistent set �′ such that {Ï,¬Â} ⊆ �′.
Now, �′ is also GGLC–consistent, so it is a state of the canonical model M c. Then,
by the truth Lemma 66, we have that (M c, �′) Ï and (M c, �′) ¬Â, so it is
not the case that (M c, �′) S. Moreover, by the cut Lemma 61 and because �′ is
also GGLC ∪ �–consistent, we also have that (M c, �′) �. Hence, we have found a
pointed model (M c, �′), which is indeed a C–model according to Lemma 68, such
that (M c, �′) � but not (M c, �′) S. That is, it is not the case that � S. �
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C Proofs of theorems 49, 53 and 57
Theorem 49 (Cut–elimination). Let C ⊆ C. The calculus GGLC is cut–eliminable:
it is possible to eliminate all occurrences of the cut rule from a given proof in order
to obtain a cut-free proof of the same consecution.

Proof: Since GGLC is a display calculus in the general sense of Ciabattoni & Ra-
manayake [9], we only need to prove that it satisfies the conditions (C2)–(C8) spelled
out in [9] as proved by Belnap [6]. Note that condition (C1) is not needed in Bel-
nap’s proof [6]. The conditions (C2)–(C7) are easily checked on each rule of GGLC.
It remains to prove condition (C8). It has already been proved in the literature for
the Boolean connectives so we only prove it for the gaggle connectives. Instead of
proving it in the general case, we prove it for n = 2 with � = (‡,±, (∃, (+,−))). This
should provide the reader with the main ideas underlying the proof in the general
case. Basically, we display each subformula of the cut formula using the display rule(dr1) and we apply the cut rule on each subformula.

X1 Ï1 Ï2 X2[�] (X1, X2) � (Ï1, Ï2) (� �) [�] (Ï1, Ï2) U�(Ï1, Ï2) U
(� �)

[�] (X1, X2) U
cut (�(Ï1, Ï2))

is transformed into

X1 Ï1

[�] (Ï1, Ï2) U

Ï1 [r1�] (U, Ï2) (dr1)
X1 [r1�] (U, Ï2) cut (Ï1)
[�] (X1, Ï2) U

(dr1)
[r2�] (X1, U) Ï2

(dr1)
Ï2 X2[r2�] (X1, U) X2

cut (Ï2)
[�] (X1, X2) U

(dr1)
We proceed similarly for the rules concerning the Boolean connectives ¬,∧,∨ using
the Boolean display rule (dr2). �
Theorem 53 (Soundness and strong completeness). Let C ⊆ C. The calculus GGL0

C
is sound and strongly complete for the basic gaggle logic (S0

C,MC, ).
Proof: We are going to perform a backward proof search and analyze the structure
of a cut-free proof in GGLC which ends up in a consecution of the following form,
where Ï1, . . . , Ïk, Ï′1, . . . , Ï′l ∈ L0

C do not contain Boolean connectives:�(Ï1, . . . , Ïk) �′ (Ï′1, . . . , Ï′l).
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Our aim is, via that analysis, to transfom the proof in GGLC of the above
consecution into a proof in GGL0

C of the same consecution. This will prove the
theorem.

Before proceeding further, note that the following rules are particular instances
of (K �) and (� K) (with X empty):

U

Y U
(K �)′ U

U Y
(� K)′

Since the proof is cut-free and the final consecution does not contain Boolean
connectives, the Boolean rules (∧ �), (� ∧), (∨ �), (� ∨), (� ¬) and (¬ �) have not
been applied in the proof. Indeed, a property of our cut-free calculus GGLC is that
once a (Boolean) connective is introduced in a proof it stays present in the proof.
Because the conclusion of our proof does not contain Boolean connective, this entails
that the Boolean rules have not been used.

Stage A: rules (� �) and (dr1). We start with a proof in GGLC whose conclusion
is of the form �(Ï1, . . . , Ïk) �′(Ï′1, . . . , Ï′l) and we analyse its proof backwards and
determine which rule(s) can be used as we proceed bottom–up. At the begining, it
is not possible to apply rule (� �) because the antecedent and the consequent of the
consecution are both formulas. On the other hand, it is possible to apply rule (dr2)
or (WI �) right at the beginning and in that case we go directly to stage B. Oth-
erwise, it is also possible to apply the rules (� �) and (dr1) (possibly iteratively).
We then obtain an expression of the form S([�1] , X1, . . . , Xm,�2(Â1, . . . , Ân)) or
S([�1] , X1, . . . , Xm, [�2] (Y1, . . . , Yn)) where X1, . . . , Xm, Y1, . . . , Yn belong to the
language LX built up from formulas Ï, structural atoms and structural connec-
tives [�]. Hence, at the end of that stage, we have a consecution of the form[�1] (X1, . . . , Xn) �2 (Â1, . . . , Ân) (1) or �1(Ï1, . . . , Ïm) [�2] (Y1, . . . , Yn) (2)
or [�1] (X1, . . . , Xm) [�2] (Y1, . . . , Yn) (3). Without loss of generality, let us deal
with case (1) in what follows.

We can then go to stage B or to stage C.

Stage B: rules (dr2) or (WI �) and then structural rules. If rule (dr2) is
applied, we obtain([�1] (X1, . . . , Xm) , ∗ �2 (Â1, . . . , Ân))[�1] (X1, . . . , Xm) �2 (Â1, . . . , Ân) (dr2)

or
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(�2(Â1, . . . , Ân) , ∗ [�1] (X1, . . . , Xm))[�1] (X1, . . . , Xm) �2 (Â1, . . . , Ân) (dr2)
.

If rule (CI �) is applied, we obtain

([�1] (X1, . . . , Xm) , [�1] (X1, . . . , Xm)) �2 (Â1, . . . , Ân)[�1] (X1, . . . , Xm) �2 (Â1, . . . , Ân) (WI �)
.

In both cases, we obtain a premise including the structural connective , . This
means that we cannot apply rules (dr1), (� �) or (� �) for the moment. We must
use the other rules, the structural rules and (dr2), in order to apply one of these
rules. Indeed, for the proof to terminate, we have to apply these rules in order to
reduce the complexity of the consecution. Since the structural rules and (dr2) do
not change the constituants of a consecution, the consecutions that we can obtain
as a result of applying these rules in order to be able to apply rules (dr1), (� �) or(� �) again are the following:

1. �2 (Â1, . . . , Ân)
2. [�1] (X1, . . . , Xm)
3. ∗ �2 (Â1, . . . , Ân) [−�1] (X1, . . . , Xn)
4. [�1] (X1, . . . , Xm) �2 (Â1, . . . , Ân).

For each case, we replace the existing derivation by the following derivation:

1. �2 (Â1, . . . , Ân)[�1] (X1, . . . , Xm) �2 (Â1, . . . , Ân) (K �)′
2. [�1] (X1, . . . , Xm)[�1] (X1, . . . , Xm) �2 (Â1, . . . , Ân) (� K)′
3. ∗ �2 (Â1, . . . , Ân) [−�1] (X1, . . . , Xm)[�1] (X1, . . . , Xm) �2 (Â1, . . . , Ân) �dr′2�
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4. We simply remove the existing derivation.

So, for all cases the Boolean display rule (dr2) and the structural rules have been
eliminated. In all cases, the proof (considered so far) can be transfomed into a proof
where (dr2) has been eliminated and replaced by �dr′2�, (K �)′ and (� K)′.

In all cases, the last premise ends up to be a consecution of the form
S([�1] , X1, . . . , Xm,�2(Â1, . . . , Ân)) or �1(Ï1, . . . , Ïm) �2 (Â1, . . . , Ân) (possibly
with �2(Â1, . . . , Ân) empty). Then, we go to stage C.

Stage C: rules (dr1) or (� �). If rule (dr1) is applied then we go back to stage
A.

If rule (� �) is applied,

U1 V1 . . . Un Vn

S([�1] , X1, . . . , Xn,�2(Â1, . . . , Ân)) (� �)
then for all j ∈ J1; nK, Uj Vj are of the form Xj Âj or Ïj Xj where

Xj ∈ LX . So, we apply inductively stages A, B and C to each Uj Vj .

Hence, applying these stages recursively, we are able to eliminate all structural
rules and the Boolean display rule (dr2) from the proof and replace them with the
rules �dr′2�, (K �)′ and (� K)′.
Stage D. At this stage we have transformed our initial proof in GGLC into a
proof in the calculus consisting in the rules (� �), (� �), (dr1), �dr′2�, (K �)′
and (� K)′. A requirement of rule (K �)′ ((� K)′) is that the antecedent (resp.
consequent) of its premisse is empty. If we examine the other rules, we notice
that an empty antecedent can only appear in rule (� �) if one of its premise
already contains an empty antecedent (see Expression (7)). As a matter of
fact, because of our axioms (see Expressions (5) and (6)) and the other rules,
this can never happen. Hence, rules (K �)′ and (� K)′ are in fact never used in
a proof. Therefore, the proof that we eventually obtain is actually a proof in GGL0

C. �
Theorem 57 (Soundness and strong completeness). Let C ⊆ C and let G be a group
associated to C. The calculus GL0

C,G (GLC,G) is sound and strongly complete for the
(Boolean) basic gaggle logic (S0

C,MC, ) (resp. (SC,MC, )).
Proof: We assume that we have a proof of a consecution �1(Ï1, . . . , Ïm) �2(Â1, . . . , Ân) ∈ S0

C in GGL0
C and we show that we can transform this proof into a
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Aucher

proof of the same consecution in GL0
C,G. For that, we analyse the proof and perform

a backward proof search. The first rule that we can apply (backwards) is (� �) and
we arrive at a consecution of the form S([�] , Ï1, . . . , Ïn, U). Then, we can directly
apply (� �) or a sequence of display rules in order to apply (� �). In both cases, we
arrive at a consecution of the form S([�′] , X1, . . . , Xn,�(Ï1, . . . , Ïn)) with �′ ∈ C
(in order to apply (� �)). Since both � ∈ C and �′ ∈ C, the sequence of display
rules is equivalent to a single application of rule (dr3) and it su�ces to replace this
sequence by a single application of rule (dr3) to obtain a proof in GL0

C,G. Then,
we repeat this process inductively to the premises of the instance of the rule (� �)
applied. Hence, we obtain the result for GL0

C,G.
As for GLC,G, it su�ces to observe that (dr3) is derivable from (dr1) and (dr2)

and that, vice versa, (dr1) is derivable from (dr3). �
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