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Abstract
There is a great deal of literature regarding use of non-geographically based connec-

tivity matrices or combinations of geographic and non-geographic structures in spatial
econometric models. We focus on convex combinations of weight matrices that result
in a single weight matrix reflecting multiple types of connectivity, where coefficients
from the convex combination can be used for inference regarding the relative impor-
tance of each type of connectivity in the global cross-sectional dependence scheme. We
tackle the question of model uncertainty regarding selection of the best convex com-
bination by Bayesian model averaging. We use Metropolis-Hastings guided Monte
Carlo integration during MCMC estimation of the models to produce log-marginal
likelihoods and associated posterior model probabilities. We focus on MCMC estima-
tion, computation of posterior model probabilities, model averaged estimates of the
parameters, scalar summary measures of the non-linear partial derivative impacts,
and their associated empirical measures of dispersion.

KEYWORDS: Markov Chain Monte Carlo estimation, SAR, block sampling param-
eters for a convex combination, cross-sectional dependence, hedonic price model.



1 Introduction

Spatial regression models typically rely on spatial proximity to specify connectivity matri-

ces, where the relative Euclidean distance between observations determines the strength of

dependence between observations. One can generalize the notion of Euclidean distance to

produce measures of dependence between observations based on other metrics. For exam-

ple, Pace et al. (2000) proposed a model for prices of homes sold that occur at irregular

points in space and time, generalizing distance to include relative locations in time. Re-

lated work by Pace et al. (2002) relied on generalized distances that considered the number

of bedrooms and bathrooms (of nearby homes) to specify the structure of selling price

dependence between homes, with the motivation that appraisers determine market price

estimates based on homes comparable in these two metrics.

Once we open the door to non-spatial metrics as a way to specify dependence between

cross-sectional observations, a host of issues arise, which are discussed in LeSage and Pace

(2011) and Debarsy and LeSage (2018). Blankmeyer et al. (2011, p.94) point out that

“a single weight matrix, based on a multivariate similarity criterion (generalized distance)

requires a norm to prevent scale differences from influencing the weight placed on the various

measures of similarity. (This is unlike the case of spatial proximity where Euclidian distance

provides a natural scaling.)"

We avoid the scaling issue that arises in the case of generalized distance using an

approach set forth in Debarsy and LeSage (2018) that relies on convex combinations of

different connectivity matrices to form a single weight matrix, first explored by Pace and

LeSage (2002) as well as Hazır et al. (2018). The convex combination approach uses a

single n × n weight matrix that represents the global cross-sectional dependence scheme.

This combination is constructed from alternative underlying types of connectivity between

n observations reflected by n× n matrices which capture different modeling strategies for

cross-sectional dependence. The parameters associated with each matrix in the convex
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combination indicate the relative importance assigned to each type of dependence in the

global cross-sectional dependence scheme. This approach avoids the issue of scaling for

different metrics used in a generalized measure of distance as each connectivity matrix

entering the convex combination is normalized beforehand.

In this contribution, we focus on the spatial autoregressive model with a convex com-

bination of connectivity matrices and follow Debarsy and LeSage (2018) in using Markov

Chain Monte Carlo (MCMC) estimation of the model. However, in contrast to Debarsy

and LeSage (2018), this paper explicitly addresses the estimation, inference and numer-

ical challenges raised by SAR models with convex combination of connectivity matrices.

Debarsy and LeSage (2018) discuss issues pertaining to estimation and interpretation of

models involving convex combinations of only two connectivity matrices, which do not re-

quire the approach developed here. We tackle the problem of model uncertainty inherent

in models involving numerous connectivity matrices by relying on a Bayesian model aver-

aging procedure. Further, the sampling procedure for the convex combination parameters

requires specific treatment since they have to be jointly drawn and need to obey two sets

of constraints. Also, we develop measures of dispersion for the effects of interest (direct;

indirect and total) that account for uncertainty in estimation of the convex combination

parameters. Lastly, the estimation procedure requires development of an approximation to

the Jacobian of the transformation, since it cannot be precalculated as in traditional SAR

models (or as in Debarsy and LeSage, 2018).

In Section 2, we set forth matrix expressions for the model and discuss MCMC estima-

tion. We also provide specifics regarding a computationally efficient approach that relies

on trace approximations and quadratic forms involving outer vectors of parameters and

inner matrices of sample data. In addition, we present the joint posterior distribution of

the spatial dependence parameters in the model; an efficient approach to calculate partial

derivative estimates needed to interpret the model; a Metropolis-Hastings tuned Monte

Carlo integration approach to calculating the log-marginal likelihood; and our approach to
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Bayesian model averaging which we compare to alternative estimation procedures.

An online appendix provides computational timing results as well as results from Monte

Carlo experiments that explores bias, dispersion and coverage to validate our estimation

procedure. An applied illustration of the method in a hedonic house price model is the

subject of section 3. Finally, section 4 concludes.

2 Computationally efficient expressions for the model

The spatial autoregressive (SAR) model we wish to estimate is shown in (1), where eachW`

represents an n × n connectivity matrix whose main diagonal contains zero elements and

row-sums of the off-diagonal elements equal one, with n being the number of observations.

Non-zero (off-diagonal) matrix elements i, j of each W` reflect that observation i is linked

to observation j, with different connectivity matrices describing different possible types of

interaction (e.g., geographic, economic, and so on).

y = ρWc(Γ)y +Xβ + ε, ε ∼ N(0, σ2In), (1)

Wc(Γ) =
L∑
`=1

γ`W`, 0 ≤ γ` ≤ 1,
L∑
`=1

γ` = 1,

Γ = (γ1, . . . , γL)′

The n × k matrix X in (1) contains exogenous explanatory variables, with β being the

associated k × 1 vector of parameters. The n × 1 vector ε represents a constant variance

normally distributed disturbance term.

The SAR model in (1) can be re-expressed as in (2), a computationally convenient
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expression that isolates the parameters ρ, γ`, ` = 1, . . . , L in the (L+ 1)× 1 vector ω.

ỹω = Xβ + ε (2)

ỹ = (y, W1y, W2y, . . . , WLy)

ω = (1,−ρΓ′)
′
.

The value of isolating the parameter vector ω is that we can pre-calculate the n× (L+ 1)

matrix ỹ prior to the beginning of the MCMC sampling loop, which only contains sample

data.

The likelihood of the model in (2) is shown in (3), where W = W1, · · · ,WL.

f(y|X,W ; ρ,Γ, σ2, β) = |R(ω)|
(
2πσ2

)−n/2
exp

(
− e′e

2σ2

)
(3)

e = ỹω −Xβ

R(ω) = In − ρWc(Γ)

where |R(ω)| is the Jacobian of the transformation, which in this case depends on the

parameters (ρ,Γ). We restrict ρ ∈ (−1, 1), so that R(ω)−1 =
∑∞

j=0 ρ
jW j

c (Γ) exhibits an

underlying stationary process. Some authors use ρ ∈ (−λ−1
n , 1), where λn is the smallest

eigenvalue of W and the upper bound of 1 arises as the maximum eigenvalue of row-

normalized matrices W . By considering (−1, 1) as parameter space for ρ, we avoid com-

puting the minimum eigenvalue of Wc(Γ). The parameter space for the set of parameters

(ρ,Γ, σ2, β) is: Ω := Ωρ × ΩΓ × Ωσ × Ωβ = (−1, 1)× [0, 1]L × (0,∞)×Rk.

2.1 Flat priors for the parameters

Mathematically, the flat or uniform priors for ρ,Γ, β can be represented as p(ρ) ∼ U(−1, 1),

p(Γ) ∼ U(0, 1) and p(β) ∝ 1. The noise variance σ2, is restricted to positive values. It is

customary to apply a flat prior to the log-transformed value, log(σ2). By retransforming
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the flat prior for log(σ2) in terms of the original noise variance, we get p(σ2) ∝ 1/σ2 (see

Dittrich et al., 2017, p.216). Given this prior information, and prior independence, we can

write: p(ρ) × p(Γ) × p(σ2) × p(β) ∝ 1/σ2, where the uniform priors for the parameters ρ

and Γ reflect proper (bounded) probability distributions, while the priors on σ2 and β are

unbounded and improper since the integral over their parameter space (Ωσ2 and Ωβ) is not

finite. In the context of alternative models involving different weight matrices, if we rely

on the same uniform priors for ρ, Γ and integrate out the parameters β and σ2, Hepple

(1995a,b) has shown that the joint posterior distribution for the cross-sectional dependence

parameters ρ and Γ are proper under relatively unrestrictive assumptions.

Combining the likelihood function in (3) with the flat priors (and ignoring the constant

term 2πn/2) leads to the joint posterior p(ρ,Γ, β, σ2) in (4), from which σ can be integrated

out, leading to (6).

p(ρ,Γ, σ2, β|y,X,W) ∝ |R(ω)|(σ2)−
(n+2)

2 exp

(
− 1

2σ2
e′e

)
(4)

e = ỹω −Xβ

p(ρ,Γ, β|y,X,W) ∝ |R(ω)|
∫ ∞

0

σ−(n+2)exp
(
− 1

2σ2
e′e

)
dσ (5)

∝ |R(ω)| (e′e)−n/2 (6)

To integrate out the k different β parameters, properties of the multivariate t−distribution

in conjunction with ‘completing the square’ are used (see Zellner, 1971). This leads to a

joint distribution for the dependence parameters ω shown in (7), with the term |X ′X|−1/2

and the exponent −(n − k)/2 arising from this integration (see Hepple, 1995a,b). This

expression must be numerically integrated with respect to ω to arrive at the log-marginal

likelihood for these models. This is accomplished using Monte Carlo integration discussed
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later.

p(ω|ỹ, X,W) ∝ |R(ω)||X ′X|−1/2(ω′Fω)−(n−k)/2 (7)

F = U ′U

U = Mỹ, M = In −X(X ′X)−1X ′

A question that has been explored in the literature is whether this conditional posterior

distribution is proper and can be integrated over the parameter space for the case of the

flat priors described here. Dittrich et al. (2017) tackle the traditional SAR model (relying

on a single weight matrix W ) and conclude that propriety of this distribution requires

conditions that extend to our model since Wc = γ1W1 + . . . + γLWL is equivalent to the

single weight matrix W , given our restrictions on the parameters γ`, ` = 1, . . . , L.

2.2 The Markov Chain Monte Carlo (MCMC) estimation scheme

Successful estimation of parameters for the model in (1) requires a sufficiently large sample

n of observations. To see this, note that the matrices W` reflect important sample data in

this type of model, as we wish to make distinctions between alternative specifications ofW`.

Highly correlated connectivity matrices will lead to problems identifying the parameters Γ.

Distinguishing between alternative interaction structures also requires that the dependence

reflected by the parameter ρ is different from zero, which should be clear when considering

that for ρ = 0, the parameters Γ are not identifiable. Since our focus is on large samples

n, reliance on the flat and uniform priors will not likely impact posterior estimates.

The conditional distribution for the parameters β is multivariate normal with mean and

7



variance-covariance shown in (8).

p(β|σ2, ω, ỹ, X) = N(β̃, Σ̃β) (8)

β̃ = (X ′X)−1(X ′ỹω)

Σ̃β = σ2(X ′X)−1

The conditional posterior for σ2 (given β̃, ω) takes the form in (9), given the prior p(σ2) ∝ 1/σ2.

p(σ2|β, ω, ỹ, X) ∝ (σ2)−(n
2

)exp
(
− e′e

2σ2

)
(9)

e = ỹω −Xβ

∼ IG(ã, b̃)

ã = n/2

b̃ = (e′e)/2

The (log) joint posterior for the parameters in ω after integrating out the parameters

β and σ2 takes the form in (10) and does not reflect a known distribution (as in the case

of the conditional distributions for β and σ2).

ln p(ω|ỹ, X,W) ∝ ln |R(ω)| − n− k
2

ln (ω′Fω) (10)

We note that ln(ω′Fω) is a quadratic form involving the matrix F , which consists of only

sample data and can be calculated prior to MCMC sampling. As such ln(ω′Fω) can be

quickly evaluated for any vector of dependence parameters ω.

Finally, we sample the parameter ρ from the joint posterior distribution in (10) condi-

tioning on Γ and similarly for Γ conditioning on ρ. Details about the sampling procedure

are postponed to section 2.4.
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2.3 Log-determinants based on trace approximations

To approximate the logarithm of the Jacobian, we rely on a (truncated) Taylor series

expansion, shown in (11), which has been initially set forth by Pace et al. (2002) and

Golub and Van Loan (1996). We use a fourth order Taylor expansion which Monte Carlo

simulations reported in the online Appendix show works well to produce accurate parameter

estimates as well as good coverage intervals.

ln|In − ρWc(Γ)| = −
∞∑
i=1

ρitr(W i
c(Γ))/i (11)

' −
q∑
j=2

ρjtr(W j
c (Γ))/j (12)

Note that the 1st-order tr(Wc(Γ)) is zero, given the definitions ofW` and the restrictions

placed on γ`. The second-order trace can be expressed as a quadratic form in parameters

Γ and all pairwise multiplications of the individual matrices in W` as shown in (14) and

(15), which are equivalent to expression (13).

tr(W 2
c (Γ)) =

L∑
i=1

L∑
j=1

γiγj tr(WiWj) (13)

= Γ′QΓ. (14)

= (Γ⊗ Γ)′vec(Q), (15)

Q =



tr(W 2
1 ) tr(W1W2) . . . tr(W1WL)

tr(W2W1) tr(W 2
2 ) . . . tr(W2WL)

... . . .

tr(WLW1) tr(WLW2) . . . tr(W 2
L)


. (16)

LeSage and Pace (2009) point out that accelerated computation of traces can be ac-

complished using sums of matrix Hadamard products, which for asymmetric nonnegative

connectivity matrices take the following form: tr(WiWj) =
∑L

i

∑L
j Wi �W ′

j .
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Expression (14) shows that the parameters can be separated from the trace of the

product of matrices, which can be pre-calculated prior to MCMC sampling. An even more

efficient computational expression to compute tr(W 2
c ) is shown in (15), where ⊗ stands for

the Kronecker product and vec(Q) is the operator which stacks the columns of the matrix

Q.

Expressions for 3rd- and 4th-order traces are presented in (17) and (18) respectively.

tr(W 3
c (Γ)) =

L∑
i=1

L∑
j=1

L∑
k=1

γiγjγk tr(WiWjWk), (17)

tr(W 4
c (Γ)) =

L∑
i=1

L∑
j=1

L∑
k=1

L∑
l=1

γiγjγkγ` tr(WiWjWkWl). (18)

2.4 Sampling procedures for ρ and Γ

As noted in the introduction, a second computational challenge for MCMC estimation of

the model is sampling parameters in the vector Γ, which must sum to one and cannot be

negative. We set forth a block sampling procedure for Γ that proposes a vector of candidate

values for γ`, ` = 1, 2, . . . , L−1, with γL = 1−
∑L−1

`=1 . The conditional distributions for the

current and proposed vectors that we label Γc and Γp are evaluated with a M-H step used to

either accept or reject the newly proposed vector Γp. Block sampling the parameter vector

Γ has the virtue that accepted vectors will obey the summing up restriction and reduce

autocorrelation in the MCMC draws for these parameters. However, block sampling is

known to produce lower acceptance rates which may require more MCMC draws in order

to collect a sufficiently large sample of draws for posterior inference regarding Γ.

The block sampling procedure involves (for each γ`, ` = 1, . . . , L − 1) a three-headed

coin flip. By this we mean a uniform random number on the closed interval coin flip =

U(0, 1), with head #1 a value of coin flip ≤ 1/3, head #2 a value in (1/3, 2/3] and head #3

a value > 2/3. Given a head #1 result, we set a proposal for γp` using a uniform random

draw on the interval [0, γc`), the current value. A head #2 results in setting the proposal
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value equal to the current value (γp` = γc`), while a head #3 selects a proposal value based

on a uniform random draw on the interval (γc` , 1].

The (non-logged) conditional distributions in expression (19) are used to calculate a

M-H acceptance probability.

ψMH(Γc,Γp) = min (1, exp[(ln p(Γp|ρ)− ln p(Γc|ρ)]) (19)

The expression to be evaluated at the current and proposed vectors of parameters

Γ consists of two relevant terms, one involving the log-determinant and the other the

quadratic form: ln (ω′Fω), both of these evaluated for the vector of parameters Γ. As

already motivated, our fourth-order Taylor series approximation to the log-determinant

ln|In−ρWc(Γ)| can be easily and rapidly calculated for any vector Γ using the pre-calculated

traces and the conditioning parameter ρ, and use of these traces allows us to avoid the need

to calculate the n × n matrix Wc(Γ) =
∑L

`=1 γ`W`, which saves on computer memory. A

second point is that the quadratic form expression ln[ω′Fω] can be easily calculated using

the pre-calculated expression ỹ = (y W1y W2y . . . WLy) and the vector ω.

After the initial 1,000 draws we switch to a tuned random-walk proposal procedure. This

is needed because proposals from the block sampling procedure based on the large intervals

between [0, γcj ) and (γcj , 1] will not produce candidates likely to be accepted when these

parameters are estimated with a great deal of precision, as would be the case for problems

involving large sample size. This can result in a failure to move the chain adequately over

the parameter space. To address this issue, standard deviations, σγ(j) for each parameter

j = 1, . . . , L−1 are calculated based on the first 1,000 draws (and thereafter using a rolling

window interval of 1, 000 draws). These are used in a tuned random-walk procedure to

produce candidate/proposal values. Specifically, we use a tuning scalar that is adjusted

based on acceptance rates for the block of parameters Γ. This is used in conjunction with

the standard deviations and the block sampling procedure described previously to produce
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proposals. Monte Carlo experiments in the online Appendix demonstrate the efficacy of

this approach to sampling the parameter vector Γ.

Finally, the parameter ρ is drawn from the joint distribution for ω shown in (10) condi-

tioning on Γ. We follow LeSage and Pace (2009) and use M-H sampling for this parameter,

based on a normal distribution along with a tuned random-walk procedure to produce

candidate values for ρ. We further rely on rejection sampling to guarantee that proposed

values belong to the (−1, 1) parameter space.

2.5 Calculating effects estimates

In addition to producing estimates for the underlying model parameters ρ, β,Γ, σ2, the

non-linear nature of the model relationship requires calculating partial derivatives of y with

respect to changes in the exogenous variables X based on the reduced form of the model.

For the standard SAR model, LeSage and Pace (2009) derive these partial derivatives

along with scalar summary measures reflecting own- and cross-partial derivatives that they

label average direct and indirect effects. For the SAR model with a convex combination

of connectivity matrices, the partial derivative of y with respect to the rth explanatory

variable Xr is shown in (20) while the associated scalar summary measures are presented
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in (21) to (25).

∂y/∂Xr = = Sr(Wc(Γ)) (20)

Sr(Wc(Γ)) = (In − ρWc(Γ))−1βr

M̄(r)direct = n−1tr(Sr(Wc(Γ))) (21)

= n−1βr

∞∑
i=0

ρi tr(W i
c(Γ)) (22)

≈ n−1βr

q∑
i=0

ρi tr(W i
c(Γ)) (23)

M̄(r)total =
βr

(1− ρ)
(24)

M̄(r)indirect = M̄(r)total − M̄(r)direct (25)

While expressions in (21), (24) and (25) produce point estimates for the scalar summary

measures of effects, we also require measures of dispersion for statistical inference regarding

the significance of these effects. Use of an empirical distribution constructed by simulating

the non-linear expressions in (20) using (say 1,000) draws from the posterior distribution

of the underlying parameters ρ, βr, γ`, ` = 1, . . . , L is suggested by LeSage and Pace (2009).

Expression (22) shows that the only required quantities for constructing scalar effect

measures are the traces of powers of Wc(Γ). In practice, this infinite sum is truncated, as

indicated by (23). LeSage and Pace (2009), who initially set forth this computationally

efficient solution rely on q = 100. See LeSage and Pace (2009, chap.4) for details regarding

computation of measures of dispersion for the scalar summary effects estimates in the

traditional SAR model.

The computation of the traces in (23) is complicated by the fact that the matrix Wc(Γ)

depends on estimated parameters γ`, ` = 1, . . . , L ruling out use of pre-calculated traces.

To account for the stochastic variation in the effects estimated due to uncertainty in the

estimation of the parameter Γ, we proceed in the following steps.

We calculate q = 100 traces using Wc(Γ) =
∑L

`=1 γ̄`W` where Γ is the posterior mean
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value of the vector Γ (more precisely, the traces are not computed but estimated using the

procedure set forth in LeSage and Pace, 2009). The second- through fourth-order traces

are then replaced with those shown in (13), (17) and (18) during simulation, where MCMC

draws for the parameters γ` are used instead of relying on the posterior mean value of these

parameters.

Given that the sum in (23) involves increasingly small magnitudes associated with

higher-order powers of the parameters ρ and Γ, low-order traces are most important for

accurate estimates of the effects. With the exception of modeling situations involving very

large negative or positive values of spatial dependence ρ (say greater than 0.9 in absolute

value) which do not arise often in applied practice, this approach should produce accurate

estimates for the effects, as shown in the Monte Carlo experiments reported in the online

Appendix.

2.6 Accounting for model uncertainty

The convex combination of connectivity matrices model specification raises the question of

which matrices should be used and which should be ignored. For example, in the case of L

candidate connectivity matrices, there are M = 2L−L− 1 possible ways to employ two or

more of the L matrices in alternative model specifications. When L = 5, we have M = 26

possible models involving two or more matrices, and for L = 10, M = 1, 013. To account

for this model uncertainty, we rely on Metropolis-Hastings guided Monte Carlo integration

during MCMC estimation of the models to produce log-marginal likelihoods and associated

posterior model probabilities for the set of M possible models, which allows for Bayesian

model averaged estimates. Alternative Bayesian procedures developed in the literature to

account for model uncertainty are also discussed.
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2.6.1 Computation of log-marginal likelihoods

Calculation of the log marginal likelihood for model (1) involves integrating the joint pos-

terior distribution over all model parameters. We can analytically integrate out the param-

eters β and σ2, leading to a (log kernel) joint posterior for the remaining model parameters

in ω that takes the form in (10), (see Hepple, 1995a,b).

Integrating out the remaining parameters using numerical methods could be computa-

tionally intensive for cases involving a large number of parameters in the vector Γ. We rely

on Metropolis-Hastings tuned Monte Carlo integration that avoids the efficiency problem

typically encountered with Monte Carlo integration when samples would reflect areas of low

support in the joint posterior distribution. Use of MCMC draws for the parameters ω based

on the Metropolis-Hastings sampler makes the integration very efficient because these are

located in areas of high density in the posterior distribution. The Monte Carlo integration

estimate of the the (kernel) joint posterior is the mean of expression (10) evaluated for

values in the vector ω on every trip through the MCMC sampling loop.

We can then add any constants of integration to produce an estimate of the log marginal

likelihood. These constants take the form: κ = −log(1/max ρ−1/min ρ)+log(Gamma(dof))−

dof × log(2π), where log(Gamma()) is the log gamma function, and dof are the degrees

of freedom equal to (n− L)/2, where we loose degrees of freedom based on the number of

weight matrices. The (normalized) non-log joint posterior can be calculated in the usual

way using exp[log p(ω)−max(log p(ω))].

2.6.2 Bayesian model averaging

Given the speed of estimation for single models and the availability of multi-core computer

architecture, it is possible to estimate models based on all possible combinations of two or

more connectivity matrices, even in cases of 10 matrices.

During estimation, log-marginal likelihood estimates would be produced that allow
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calculation of posterior model probabilities for the set of M models.

Given the non-linear relationship between the underlying parameters β,Γ, ρ and the

scalar summary measures of direct and indirect effects which are the focus of inference in

these models, model averaged estimates should be constructed by applying model proba-

bilities to the scalar summary estimates of the direct and indirect effects from each model.

As an illustration, we present estimation results for all models (M = 26) involving

two or more connectivity matrices using a set of five candidate W−matrices and a sample

of N = 2, 000 observations in Table 1. The DGP in (26) was used where the three first

candidate matrices have non-zero gamma values, γ1 = 0.4, γ2 = 0.3, γ3 = 0.3. We set

γ4 = γ5 = 0, as a test of overfitting for this type of convex combination.

y = ρ(γ1W1 + γ2W2 + γ3W3)y +Xβ + ε (26)

= (In − ρWc(Γ))−1(Xβ + ε)

Where X includes a constant term and 2 standard normal variables, β = (−1, −0.5, 1.5)′

and ρ = 0.6. The error term ε is assumed normally distributed, centered around zero with

a variance σ2In where σ2 = 3.6061 so the signal to noise ratio (SNR) of the model is

defined following Debarsy and LeSage (2018) to equal to 0.7. They define SNR as in (27),

SNR =
A′A

A′A+ σ2tr(B′B)
(27)

where A = (In − ρWc(Γ))−1Xβ and B = (In − ρWc(Γ))−1.

The five candidateW−matrices are based on five nearest neighbors matrices constructed

from independent sets of random normal latitude-longitude vectors to ensure they convey

different connectivity information. A set of 60,000 draws were used with the first 10,000

discarded for burn-in, and thinning of the 50,000 retained draws was used based on every

fifth draw producing a sample of 10,000 draws used to construct estimates.

Estimates for ρ and the parameters γ`, ` = 1, . . . , 5 for the 26 possible models involving

16



combinations of 2 or more of the five W−matrices are shown in the upper part of Table 1,

along with the log-marginal likelihood estimate and posterior model probabilities. From

the table, we see that the true model (model #11) that generated the sample data vector

y had a posterior model probability of 92.19%, with model #21 assigned a probability of

3.68% and model #22 a probability of 3.96%. Note that model #21 contains the three

true matrices W1,W2,W3 plus W4 with a γ̂4 = 0.0366, and model #22 contains the three

true matrices W1,W2,W3 plus W5 with a γ̂5 = 0.0415, both of which are plausible models

to receive some support in terms of posterior model probabilities.

Table 1 also shows posterior means for a set of model averaged estimates for the param-

eters ρ, γ`, ` = 1, . . . , 5. These were constructed using the model probabilities to weight the

10,000 retained MCMC draws from each of the 26 models, with posterior means calculated

based on the set of 10,000 probability-weighted draws. We see small values for the BMA

parameters γ̂4 = 0.0014, γ̂5 = 0.0017. We can calculate credible intervals for these two

parameters using the distribution of the 10,000 probability-weighted draws, which would

allow us to determine if estimates for model #11 suffers from problems with inference at

the boundary of the parameter space for Γ. That is, we can use credible intervals for the

BMA posterior estimates of γ4, γ5 to see if an inference of zero for these parameters is rea-

sonable. The 0.01 interval for γ̂4 is 0.0046, and that for γ̂5 is 0.005, allowing us to conclude

that these parameters are sufficiently close to zero to make an inference of zero reasonable.

2.6.3 Alternative estimation methods

There is a literature on Bayesian model averaging for spatial autoregressive models, where

the focus has been on extending the approaches of Fernàndez et al. (2001) and George and

McCulloch (1993, 1997) from non-spatial regression modeling that focuses on selection of

explanatory variables in the matrix X. LeSage and Parent (2007) show how to extend the

approach of Fernàndez et al. (2001) that relies on the log-marginal likelihood for models

consisting of differing explanatory variables using univariate numerical integration of the
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spatial dependence parameter that arises in the spatial autoregressive model (with a single

weight matrix) to arrive at the log-marginal likelihood. They rely on the same reversible

jump MCMC estimation approach as Fernàndez et al. (2001) to explore alternative ex-

planatory variables as well as the Zellner (1986) g−prior distribution for the coefficients

association with these variables, while fixing the single spatial weight matrix. LeSage and

Fischer (2008) extend this approach slightly to sample alternative (single) weight matrices

based on differing numbers of nearest neighbors.

Although LeSage and Fischer (2008) allow for uncertainty in the connectivity matrix,

the SAR model they consider allows for only one connectivity matrix. In other words,

they implicitly assume (as does most of the spatial econometrics literature) that the cross-

sectional dependence scheme is composed of only one layer. Our approach allows for a

more general interaction scheme based on a convex combination of several simultaneously

interacting layers. We note that estimating a SAR model with a single connectivity matrix

when the DGP involves several of these matrices should lead to unreliable estimates. To

illustrate this point, we perform a small Monte Carlo analysis where we compare the LeSage

and Fischer (2008) approach with the one developed here.

In this setup, we consider uncertainty solely in the specification of the connectivity

matrix and for the sake of simplicity, we only consider two possible choices: W1 and W2.

We compare the LeSage and Fischer (2008) approach with the one developed here under

two alternative DGPs. The first DGP is based on the cross-sectional dependence scheme

involving a convex combination of the two matrices W1 and W2 as shown in (28), while the

second uses only the matrix W1 in the DGP as shown in (29), where ιn is an n× 1 vector

of ones.

y = ρ(γ1W1 + (1− γ1)W2)y + β0ιn +X1β1 + ε (28)

y = ρW1y + β0ιn +X1β1 + ε (29)

Matrices W1 and W2 are based on five nearest neighbors, where each connectivity matrix
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was generated using different sets of standard normal latitude-longitude coordinates. We

consider a standard normal variable for the vector X1 (kept constant across the 1000

replications) and also for the error term. Finally, the sample size is set to 2000 observations.

To compare the two approaches, we produce estimates based on either the DGP from

(28) or (29) using matrices W1 and W2 separately, and then calculate Bayesian model

averaging estimates based on the two sets of results (approach of LeSage and Fischer,

2008). We contrast these BMA results with those obtained from the convex combination

methodology set forth here.

The first column of Tables 2 to 4 shows the true value of the parameters used in the

DGP. Columns 2 to 4 summarize the results obtained with LeSage and Fischer (2008). The

last column reports the results based on the convex combination approach. Table 2 reports

the results based on the DGP with a convex combination of connectivity matrices, setting

γ1 = 0.5. As expected, the convex combination approach performs much better. Columns

2 to 4 show substantial bias in the estimated coefficients and associated effects estimates

arising from model misspecification of the connectivity matrix. Large bias in the estimate

of ρ leads to direct, indirect and total effects far from their true value. (We note that these

effects estimates are the focus of interest and the basis for inference in SAR models.) Since

γ1 = 0.5, the posterior probability is roughly the same for each model based on a single

connectivity matrix, as we would expect.

Table 3 summarizes the results when γ1 = 0.2, with findings similar to those from Table

2. We note that the SAR model with only W2 is always chosen over that based on W1 only.

Results based on the convex combination approach are always much better.

Finally, Table 4 reports results for a case where the DGP is a SAR based on W1 only

(equation 29) using the same format as in preceding tables. In this case, the convex

combination performs well, but remains slightly inferior to estimates obtained from the

true DGP model. This is expected since the estimated parameter governing the convex

combination (γ1) will not exactly equal that implied by the true DGP (γ1 = 1).
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A second alternative strategy has been proposed by Piribauer and Crespo Cuaresma

(2016) who focus on a single weight matrix for the spatial autoregressive model constructed

based on some unknown number of nearest neighboring regions and adopt the stochastic

variable selection approach from George and McCulloch (1997). This approach introduces

a parameter that controls inclusion of explanatory variables in the model, and uses the

posterior inclusion probability for this parameter as a way to draw inferences regarding

which variables are important. Piribauer and Crespo Cuaresma (2016) extend the param-

eter that controls inclusion of explanatory variables in the model to also govern inclusion

of a weight matrix based on some variable number of nearest neighbors. This allows a pos-

terior inference regarding the number of neighbors that are most appropriate for a single

weight matrix. They argue that applying the stochastic variable selection approach used

for selection of explanatory variables to also determine the number of nearest neighbors

weight matrix in spatial autoregressive models holds computational advantages over the

approach taken by LeSage and Fischer (2008). In the applied illustration presented in the

next section, we show that for the case of a single connectivity matrix, the two estimation

strategies (LeSage and Fischer, 2008; Piribauer and Crespo Cuaresma, 2016) find the same

optimal matrix. However, the same drawback illustrated above for the LeSage and Fischer

(2008) approach applies to the Piribauer and Crespo Cuaresma (2016) approach in cases

where the true DGP involves convex combinations of weight matrices.

3 An applied illustration

To illustrate the method, we estimate a hedonic house price regression using a sample of

72,045 homes sold in the state of Ohio during the year 2000. The data is described in

Brasington and Haurin (2006); Brasington (2007) and Brasington and Hite (2008). The

dataset is publicly avaliable at: http://homepages.uc.edu/~brasindd/housing.html.

We rely on a subset from a larger sample of 112,830 homes, because we require that each
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home has twenty nearest neighboring homes within two miles that had the the same number

of bedrooms, same number of full plus half baths and same categorical age variable. Full

plus half baths were assigned a value equal to the # of full + 0.5 x # of half-baths. So,

a home with one full plus two half baths has a value of 2 (equal to two full baths), and

so on. House age was specified as six categorical variables, 0 to ≤ 5 years (new homes up

to those less than or equal to 5 years old), 6 to ≤ 10 years, 11 to ≤ 20 years, 21 to ≤ 50

years, 51 to ≤ 100 years, and more than 100 years.

The dependent variable is the (logged) selling price, with two explanatory variables:

log(total living area) in square feet, denoted as lTLA and log(lot size) in square feet, which

we label lLSIZE. Typically, house characteristics such as bedrooms, baths and house age

are used as explanatory variables in hedonic house price regressions. We take a different

approach and use these variables to specify a set of alternative connectivity matrices. The

motivation for this approach is that the conventional spatial autoregressive hedonic house

price regression uses a spatial lag of prices from nearby homes (whatever their characteris-

tics) as a way to approximate prices of comparable homes, and treats house characteristics

such as bedrooms, baths and house age as explanatory variables that explain variation in

selling prices.

Our use of these characteristics to form a convex combination of connectivity matrices,

treats the characteristics as reflecting a more composite notion that we label house design.

House design is the basis on which a buyer searching for a home identifies comparable homes.

Since the conventional spatial lag of nearby home selling prices is an approximation used to

identify comparable homes on which selling price of each home is dependent, our approach

could be viewed as an attempt to improve on identifying comparable homes on which

selling price of each home is dependent. As such, we expect to see a higher level of cross-

sectional dependence between selling prices. The higher level of dependence also implies

that we would see larger indirect/spillover effects for the model that uses connectivity

matrices reflecting design aspects of homes. In addition, we might see a denser weight
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matrix arising from the convex combination approach, which would also lead to larger

spatial spillovers, because these are calculated as an average of the cumulative off-diagonal

elements of the n × n matrix of partial derivatives, which are used to produce the scalar

summary measures of indirect effects. In the following, we will compare our proposed

approach to constructing the neighborhood of each home based on house design with the

one based only on spatial neighbors without regard for house design. We also compare

the convex combination approach based only on lTLA and lLSIZE (in square feet) as

explanatory variables with a more conventional specification that models cross-sectional

dependence using only spatial neighbors and treats the number of bedrooms, baths and

house age as explanatory variables in the hedonic house price relationship.

We note that one can view characteristics such as bedrooms, baths and house age as

either explanatory variables (e.g., conventional hedonic house price relationship), or as

facets of house design that define comparable homes (e.g., our convex combination model

illustrated here), but not both. If the weight matrix used in a SAR model is functionally

related to explanatory variables in the model, important interpretation difficulties arise.

Consider that in this case, the partial derivative effect of a a change in Xr on the outcome

variable vector y would require that we take into account any (non-linear) change in the

connectivity structure induced by the change in Xr. Lee and Yu (2012) develop theoretical

expressions for this type of situation which require knowledge of the functional relationship

between Xr and the connectivity matrix, something unlikely to be known in practice.

Three connectivity matrices were constructed to reflect the nearest neighboring homes

that potential buyers would view as comparable along three dimensions. Specifically, the

nearest homes (within two miles) with the same number of bedrooms (Wbeds), the same

number of full plus half-baths (Wbaths), and the same age category (Wage). In their search

for a home, buyers would view nearby homes that did not have a similar number of beds,

baths or house age as not truly comparable.

Of course, there is the question of how many nearest neighboring homes should be
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used to construct each connectivity matrix (and hence the convex combination) which can

be answered using estimated log-marginal likelihoods and associated model probabilities.

Throughout the application, a set of 60,000 MCMC draws were made with the first 30,000

discarded for burn-in and thinning of the 30,000 retained draws was used to produce a

sample of 1,000 draws used for inference. The model used to select the relevant number of

neighbors for each definition of connectivity is shown in (30), where 4 types of connectedness

were considered: three mentioned above as well as the conventional spatial connectivity

matrix based on geographically nearest neighboring homes (Wspace).

y = ρWy + β0ιn + β1lTLA+ β2lLSIZE + ε (30)

Table 5 shows the results of these calculations while Table 6 reports the outcomes asso-

ciated to the approach developed by Piribauer and Crespo Cuaresma (2016). We observe

that both approaches lead to the same results, where the optimal number of neighbors for

Wspace is 14, 12 for Wbeds, 13 for Wbaths and 14 for Wage.

LeSage and Pace (2014) propose a measure of similarity for alternative connectivity

matrices, that involves multiplication of each n × n matrix with the same n × 1 random

normal vector (ν) to produce vectors Wspaceν,Wbedsν, Wbathsν, Wageν. The correlation

between these vectors can then be used to judge similarity. A correlation matrix based on

the optimal number of neighbors is shown in Table 7, where we see correlations around

0.5 for lag vectors Wbedsν and Wbathsν and a slightly higher correlation of 0.54 between

lag vectors Wbathsν and Wageν. These correlations indicate that neighbors defined on the

basis of homes with a common number of bedrooms, baths or of similar age are not the

same. It is also of interest to consider the correlation between the three components that

we use to define our notion of house design versus the conventional connectivity matrix

based solely on nearby spatial neighbors. We see that the highest correlation between the

spatial lag vector Wspaceν is with Wageν, indicating spatial clustering of homes of the same
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vintage/age, which is not surprising given that homes in a neighborhood are usually built

around the same time. These results point to the inherent truth that homes located nearby

tend to be similar in design providing a good approximation to comparable homes, which

accounts for the success of spatial autoregressive hedonic house price regressions that rely

on prices of homes located nearby.

In this application, the convex combination of connectivity matrices is based on three

different measures of similarity. Table 8 reports the log-marginal likelihood and associ-

ated posterior probabilities of all models that include two or more matrices in the convex

combination. The results indicate a strong preference for a model based on the number of

bedrooms, bathrooms and house age (model 4), since the posterior probability associated

with this model is 100%. Table 9 reports estimation results for each connectivity ma-

trix considered separately along with estimates based on the convex combination of house

design.

Similar results in terms of estimated coefficients and log-marginal values are observed

for the SAR model based on the four separate connectivity matrices, but we see some

divergence in the calculated effects estimates. These differences are notable for the total

and indirect elasticities of selling price with respect to total living area, which range between

1.261 and 1.499 for the former and between 0.919 and 1.077 for the latter.

Comparing results based on a conventional geographically based weight matrix with

those from the convex combination model, we observe different findings in terms of the

direct, indirect and total effects. Estimates for the parameters γ1, γ2, γ3 indicate that

house age is the most important characteristic, with bathrooms next most important and

bedrooms least important. Given the lower 0.01 and upper 0.99 credible intervals, these

differences in the relative importance of house age, bathrooms and bedrooms are significant.

In addition, the lower 0.01 and upper 0.99 credible intervals point to a significant

difference between the direct effects of TLA from the two models. Specifically, a 10 percent

increase in living area (TLA) would result in a 4.2 percent higher price in the case of
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the spatial neighbors specification, but only a 3.3 percent higher price for the convex

combination model. Also, the spillover (indirect) effects associated with the 10 percent

increase in TLA are larger for the convex combination model, implying a 12.46 percent

increase in selling price versus an 10.77 percent higher price in the case of changes in TLA

when the interaction scheme is solely based on geographic neighbors. These results accord

with the motivation given earlier that better identification of comparable homes results in a

higher level of dependence, with a median value ρ = 0.803 for the convex combination model

versus ρ = 0.739 for the spatial neighbors model. Of course, this leads to larger indirect

or spillover effects. As noted earlier, larger spillover estimates may also arise because the

convex combination model weight matrix is denser than the spatial weight matrix. (A check

of non-zero off-diagonal elements from the two weight matrices showed this was indeed the

case. For example, the average number of non-zero off-diagonal elements of the convex

combination matrix was 23, versus 14 for the spatial weight matrix based on 14 nearest

neighbors.)

In the case of the elasticity response of selling price to changes in lotsize, we also observe

a significant difference in the direct and indirect effects for the five cases under study. Here

again, given the higher level of dependence for the convex combination model and the

denser connectivity matrix Wc, we would expect to see a larger indirect effect of lotsizes

from more comparable homes on the selling prices. The significant difference in indirect

lotsize effects estimates lead to a significant difference in the total effect of lotsize for the

five specifications, with those from the convex combination model being larger.

It is also the case that the log-marginal likelihood shows a clear improvement for the

convex combination model relative to that based on all proximity weights taken separately.

Finally, Table 10 compares the estimation results of the convex combination SAR model

with house characteristics (number of bedrooms, baths and house age) used to construct

the house design notion of comparable houses with those of a conventional SAR model

where the neighborhood is based on a purely geographic 14 nearest neighbors definition
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and where the characteristics are treated as explanatory variables.

We first note that the log-marginal likelihood value is much higher for the SAR model

based on a convex combination of matrices. Adding the number of bedrooms, bathrooms

and the house age to the set of explanatory variables slightly decreases estimated values of

the coefficients and effects of lTLA and lLSIZE, with respect to the first column of Table 9,

dedicated to the estimation of the conventional SAR model where connectivity is based on

the 14 geographic nearest neighbors, even though the log-marginal of the latter is somewhat

smaller than for the former (-26,490.735 vs -26,052.668).

Finally, we observe that the approach relying on a convex combination of matrices

implies much higher indirect and total effects for lTLA and lLSIZE than the SAR model

with the additional explanatory variables, even though direct effects are quite similar.

4 Conclusion

We consider estimating spatial regression models that utilize convex combinations of con-

nectivity structures that expand on conventional approaches based only on a single con-

nectivity scheme between observations. Models constructed using a convex combination of

weight matrices to form a single linear combination of alternative weight structures hold

intuitive appeal since cross-sectional dependence is most of the time multi-dimensional.

The spatial autoregressive model with convex combination of connectivity matrices

raises the question of which matrices should be used and which should be ignored. We

show how Metropolis-Hastings guided Monte Carlo integration can be used during MCMC

estimation of the models to produce estimates of log-marginal likelihoods and associated

posterior model probabilities for alternative models, which allows for Bayesian model av-

eraged estimates.

An applied illustration of our model shows that spatial hedonic house price regressions

that rely on the conventional spatial weight matrix that relates selling prices of homes to
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those located nearby in space can be improved by taking into consideration design char-

acteristics of homes located nearby. Homes located nearby of comparable age, bedrooms

and baths can be viewed as comparable in terms of design, and better model the relevant

neighborhood buyers (or real estate appraisers) consider to assess house prices.
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Table 1: Estimates for 5 candidate W−matrices, M = 26 models, N = 2000.
Models log marginal Prob(mi) ρ γ1 γ2 γ3 γ4 γ5

1 -4860.8213 0.0000 0.4201 0.5688 0.4312 - - -
2 -4866.3998 0.0000 0.3979 0.6023 - 0.3977 - -
3 -4881.2037 0.0000 0.2568 0.9194 - - 0.0806 -
4 -4881.1596 0.0000 0.2599 0.9096 - - - 0.0904
5 -4882.0701 0.0000 0.3353 - 0.5378 0.4622 - -
6 -4896.0347 0.0000 0.2011 - 0.8924 - 0.1076 -
7 -4895.9268 0.0000 0.2042 - 0.8818 - - 0.1182
8 -4901.7257 0.0000 0.1757 - - 0.8746 0.1254 -
9 -4901.6148 0.0000 0.1799 - - 0.8579 - 0.1421
10 -4914.8764 0.0000 -0.0098 - - - 0.5008 0.4992
11∗ -4849.2302 0.9219 0.5750 0.4154 0.3124 0.2722 - -
12 -4864.1171 0.0000 0.4356 0.5407 0.4115 - 0.0478 -
13 -4863.9848 0.0000 0.4390 0.5375 0.4099 - - 0.0526
14 -4869.6133 0.0000 0.4153 0.5728 - 0.3750 0.0522 -
15 -4869.5024 0.0000 0.4190 0.5653 - 0.3756 - 0.0592
16 -4884.3557 0.0000 0.2768 0.8423 - - 0.0743 0.0834
17 -4885.2463 0.0000 0.3518 - 0.5047 0.4327 0.0625 -
18 -4885.1041 0.0000 0.3570 - 0.4990 0.4281 - 0.0729
19 -4899.1158 0.0000 0.2207 - 0.7948 - 0.0959 0.1092
20 -4904.7257 0.0000 0.1960 - - 0.7631 0.1080 0.1289
21 -4852.4506 0.0368 0.5912 0.3996 0.3012 0.2626 0.0366 -
22 -4852.3771 0.0396 0.5939 0.3991 0.2987 0.2606 - 0.0415
23 -4867.2128 0.0000 0.4551 0.5155 0.3882 - 0.0454 0.0509
24 -4872.6434 0.0000 0.4354 0.5412 - 0.3544 0.0488 0.0557
25 -4888.3092 0.0000 0.3736 - 0.4691 0.4026 0.0593 0.0690
26 -4855.5251 0.0017 0.6112 0.3851 0.2875 0.2531 0.0342 0.0401

bma_avg -4849.4842 1.0000 0.5764 0.4141 0.3114 0.2713 0.0014 0.0017
highest -4849.2302 0.9219 0.5750 0.4154 0.3124 0.2722 - -
truth 0.6000 0.4000 0.3000 0.3000 0.0000 0.0000

Table 2: DGP is a convex combination, n = 2000, γ1 = 0.5, 1000 replications
Parameter true W1 W2 BMA Convex

ρ 0.600 0.311 0.312 0.321 0.598
γ1 0.5 - - - 0.499

intercept 1.000 1.733 1.738 1.713 1.006
β1 2.000 2.033 2.032 2.030 2.000

direct1 2.073 2.072 2.071 2.071 2.073
indirect1 2.927 0.885 0.889 2.071 2.936
total1 5.000 2.957 2.959 2.071 5.009
σ2 1.000 1.168 1.163 1.153 1.001

post prob - 0.443 0.557 - -
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Table 3: DGP is a convex combination, n = 2000, γ1 = 0.2, 1000 replications
true W1 W2 BMA Convex

ρ 0.600 0.140 0.486 0.486 0.600
γ1 0.200 - - - 0.196

intercept 1.000 2.159 1.292 1.292 1.000
β1 2.000 2.101 2.004 2.004 2.000

direct1 2.112 2.109 2.113 2.113 2.114
indirect1 2.888 0.337 1.788 2.113 2.917
total1 5.000 2.446 3.901 2.113 5.031
σ2 1.000 1.571 1.023 1.023 1.000

post prob - 0.000 1.000 - -

Table 4: DGP is a classic SAR (with W1 only), n = 2000, 1000 replications
true W1 W2 BMA Convex

ρ 0.600 0.605 0.012 0.605 0.622
γ1 1 - - - 0.973

intercept 1.000 0.986 2.509 0.986 0.944
β1 2.000 1.998 2.184 1.998 1.998

direct1 2.194 2.198 2.185 2.198 2.198
indirect1 2.806 2.874 0.029 2.198 3.104
total1 5.000 5.072 2.214 2.198 5.302
σ2 1.000 0.999 2.183 0.999 0.999

post prob - 1.000 0.000 - -
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Table 5: Selection of the most relevant number of neighbors for each connectivity matrix.
Posterior probabilities (in %)

# neighbors Wspace Wbeds Wbaths Wage

1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 0.0
4 0.0 0.0 0.0 0.0
5 0.0 0.0 0.0 0.0
6 0.0 0.0 0.0 0.0
7 0.0 0.0 0.0 0.0
8 0.0 0.0 0.0 0.0
9 0.0 0.0 0.0 0.0
10 0.0 0.0 0.0 0.0
11 0.0 0.0 0.0 0.0
12 0.0 100.0 0.0 0.0.
13 0.0 0.0 100.0 0.0
14 100.0 0.0 0.0 100.0
15 0.0 0.0 0.0 0.0
16 0.0 0.0 0.0 0.0
17 0.0 0.0 0.0 0.0
18 0.0 0.0 0.0 0.0
19 0.0 0.0 0.0 0.0
20 0.0 0.0 0.0 0.0

Table 6: Selection of the most relevant number of neighbors for each connectivity matrix
using the Piribauer and Crespo Cuaresma (2016) approach

Wspace Wbeds Wbaths Wage

# of neighbors 14 12 13 14
Probability (%)a 100.0 100.0 100.0 100.0
a The probability has been computed as the percentage
of (retained) draws for which the number of neighbors
in the above row has been preferred.

Table 7: Correlation of Wspaceν, Wbedsν, Wbathsν Wageν

Wspace(14) Wbeds(12) Wbaths(13) Wage(14)
Wspace(14) 1.000
Wbeds(12) 0.604 1.000
Wbaths(13) 0.642 0.490 1.000
Wage(14) 0.728 0.511 0.538 1.000
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Table 8: Posterior model probabilities using different convex combination of matrices
Model log-marginal Post. prob. (in %) ρ Wbeds Wbaths Wage

1 -25,216.558 0.0 0.795 0.412 0.588 0.000
2 -24,957.895 0.0 0.778 0.361 0.000 0.639
3 -24,172.776 0.0 0.791 0.000 0.462 0.538
4 -23,884.628 100.0 0.803 0.196 0.375 0.429

BMA -23,884.628 - 0.803 0.196 0.375 0.429

33



Table 9: SAR model hedonic house price regressions
Estimates (variable) Wspace Wbeds Wbaths Wage Wc = γ1Wbeds + γ2Wbaths + γ2Wage

Constant -0.358 -0.119 -0.052 -0.402 -0.513
[-0.422 ; -0.297] [-0.181 ; -0.053 ] [-0.113 ; 0.005 ] [-0.465 ; -0.342] [-0.571 ; -0.453]

β1(lTLA) 0.391 0.351 0.314 0.384 0.306
[0.383 ; 0.399] [0.341 ; 0.360 ] [ 0.304 ; 0.322 ] [0.376 ; 0.392] [0.298 ; 0.316]

β2(lLSIZE) 0.059 0.076 0.072 0.070 0.062
[0.055 ; 0.063] [0.072 ; 0.081] [0.068 ; 0.076] [0.066 ; 0.074] [0.058 ; 0.066]

ρ(Wy) 0.739 0.730 0.751 0.739 0.803
[0.733; 0.746 ] [0.723 ; 0.738] [0.745 ; 0.759] [0.733 ; 0.746] [0.796 ; 0.811]

γ1(Wbeds) - - - - 0.195
[0.177 ; 0.218]

γ2(Wbaths) - - - - 0.376
[0.357 ; 0.397]

γ3(Wage) - - - - 0.429
[0.407 ; 0.449]

Direct(lTLA) 0.422 0.381 0.342 0.415 0.330
[0.413 ; 0.430] [0.371 ; 0.391] [0.332 ; 0.351] [0.406 ; 0.423] [0.321 ; 0.340]

Direct(lLSIZE) 0.064 0.083 0.078 0.076 0.067
[0.059 ;0.068] [0.078 ; 0.088] [0.074 ; 0.082] [0.072 ; 0.081] [0.063 ; 0.072]

Indirect(lTLA) 1.077 0.920 0.919 1.054 1.229
[1.043 ;1.116] [0.885 ; 0.955] [0.884 ; 0.950] [1.021 ; 1.094] [1.177 ; 1.292]

Indirect(lLSIZE) 0.163 0.200 0.210 0.193 0.249
[0.151 ;0.176] [0.186 ; 0.213] [0.197 ; 0.222 ] [0.181 ; 0.206] [0.230 ; 0.267]

Total(lTLA) 1.499 1.301 1.261 1.469 1.560
[1.460 ; 1.542] [1.261 ; 1.339] [1.218 ; 1.299] [1.430 ; 1.514] [1.500 ; 1.629]

Total(lLSIZE) 0.226 0.283 0.289 0.269 0.316
[0.210 ; 0.244 ] [0.264 ; 0.301 ] [0.271 ; 0.305] [0.253 ; 0.286] [0.293 ; 0.338]

Log-marginal likelihood -26,490.735 -28,573.085 -26,903.300 -26,055.200 -23,884.628
Monte Carlo Errors

Constant 0.0008 0.0007 0.0006 0.0007 0.0005
β1(lTLA) 0.0001 0.0001 0.0001 0.0001 0.0001
β2(lLSIZE) 0.0001 0.0001 0.0001 0.0001 0.0001
ρ(Wy) 0.0001 0.0001 0.0001 0.0001 0.0001

γ1(Wbeds) - - - - 0.0002
γ2(Wbaths) - - - - 0.0002
γ3(Wage) - - - - 0.0002

Median values of the posterior distribution are reported. Further, figures between square brackets represent the credible
confidence interval at the 99% threshold.
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Table 10: Comparison of SAR models
Estimates (variable) Wspace Wc = γ1Wbeds + γ2Wbaths + γ2Wage

Constant 0.475 -0.513
[0.380 ; 0.567] [-0.571 ; -0.453]

β1(lTLA) 0.331 0.306
[0.320 ; 0.341] [0.298 ; 0.316]

β2(lLSIZE) 0.056 0.062
[0.052 ; 0.060] [0.058 ; 0.066]

Bedrooms (#) 0.009 -
[0.005 ; 0.014]

Bathrooms (#) 0.041 -
[0.036 ; 0.046]

House age -0.009 -
[-0.011 ; -0.007]

ρ(Wy) 0.702 0.803
[0.694 ; 0.709] [0.796 ; 0.811]

γ1(Wbeds) - 0.195
[0.177 ; 0.218]

γ2(Wbaths) - 0.376
[0.357 ; 0.397]

γ3(Wage) - 0.428
[0.407 ; 0.449]

Direct(lTLA) 0.352 0.330
[0.340 ; 0.363] [0.321 ; 0.340]

Direct(lLSIZE) 0.060 0.067
[0.056 ; 0.064] [0.063 ; 0.072]

Direct(Bedrooms (#)) 0.010 -
[0.005 ; 0.015]

Direct(Bathrooms (#)) 0.044 -
[0.038 ; 0.049]

Direct(House age) -0.010 -
[-0.012 ; -0.007]

Indirect(lTLA) 0.757 1.229
[0.722 ; 0.791] [1.177 ; 1.292]

Indirect(lLSIZE) 0.129 0.249
[0.119 ; 0.139] [0.230 ; 0.267]

Indirect(Bedrooms (#)) 0.021 -
[0.010 ; 0.032]

Indirect(Bathrooms (#)) 0.094 -
[0.083 ; 0.106]

Indirect(House age) -0.021 -
[-0.026 ; -0.015]

Total(lTLA) 1.109 1.560
[1.069 ; 1.151] [1.500 ; 1.629]

Total(lLSIZE) 0.189 0.316
[0.175 ; 0.203] [0.293 ; 0.338]

Total(Bedrooms (#)) 0.032 -
[0.015 ; 0.047]

Total(Bathrooms (#)) 0.137 -
[0.121 ; 0.155]

Total(House age) -0.030 -
[-0.038 ; -0.022]

Log-marginal likelihood -26052.668 -23884.639
Monte Carlo Errors

Constant 0.0010 0.0005
β1(lTLA) 0.0001 0.0001
β2(lLSIZE) 0.0001 0.0001

Bedrooms (#) 0.0001 -
Bathrooms (#) 0.0001 -

House age 0.0001 -
ρ(Wy) 0.0001 0.0001

γ1(Wbeds) - 0.0002
γ2(Wbaths) - 0.0002
γ3(Wage) - 0.0002

Median values of the posterior distribution are reported. Further,
figures between square brackets represent the credible confidence
interval at the 99% threshold.
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